
Introduction 

Using diagnostic testing to determine the presence or absence of a disease is an essen-
tial process in the medical field. To determine whether a patient is diseased or not, it is 
necessary to select the diagnostic method with the best performance be used by compar-
ing various diagnostic tests. In many cases, test results are obtained as continuous values, 
which require conversion and interpretation into dichotomous groups to determine the 
presence or absence of a disease. At this time, determining the cut-off value (also called 
the reference value) to discriminate between normal and abnormal conditions is critical. 
The method that is mainly used for this process is the receiver operating characteristic 
(ROC) curve. The ROC curve aims to classify a patient’s disease state as either positive or 
negative based on test results and to find the optimal cut-off value with the best diagnos-
tic performance. The ROC curve is also used to evaluate the overall diagnostic perfor-
mance of a test and to compare the performance of two or more tests. 

Although non-statisticians do not need to understand all the complex mathematical 
equations and the analytical process associated with ROC curves, understanding the core 
concepts of the ROC curve analysis is a prerequisite for the correct interpretation and ap-
plication of analysis results. This review describes the basic concepts for the correct use 
and interpretation of the ROC curve, including how to draw an ROC curve, the differ-
ence between parametric and nonparametric ROC curves, the meaning of the area under 
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Statistical Round Using diagnostic testing to determine the presence or absence of a disease is essential in 
clinical practice. In many cases, test results are obtained as continuous values and require a 
process of conversion and interpretation and into a dichotomous form to determine the 
presence of a disease. The primary method used for this process is the receiver operating 
characteristic (ROC) curve. The ROC curve is used to assess the overall diagnostic perfor-
mance of a test and to compare the performance of two or more diagnostic tests. It is also 
used to select an optimal cut-off value for determining the presence or absence of a dis-
ease. Although clinicians who do not have expertise in statistics do not need to understand 
both the complex mathematical equation and the analytic process of ROC curves, under-
standing the core concepts of the ROC curve analysis is a prerequisite for the proper use 
and interpretation of the ROC curve. This review describes the basic concepts for the cor-
rect use and interpretation of the ROC curve, including parametric/nonparametric ROC 
curves, the meaning of the area under the ROC curve (AUC), the partial AUC, methods 
for selecting the best cut-off value, and the statistical software to use for ROC curve analy-
ses. 
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the ROC curve (AUC) and the partial AUC, the methods for se-
lecting the best cut-off value, and the statistical software for ROC 
curve analysis.  

Sensitivity, specificity, false positive, and false negative 

To understand the ROC curve, it is first necessary to under-
stand the meaning of sensitivity and specificity, which are used to 
evaluate the performance of a diagnostic test. Sensitivity is defined 
as the proportion of people who actually have a target disease that 
are tested positive, and specificity is the proportion of people who 
do not have a target disease that are tested negative. FP refers to 
the proportion of people that do not have a disease but are incor-
rectly tested positive, while FN refers to the proportion of people 
that have the disease but are incorrectly tested negative (Table 1). 
The ideal test would have a sensitivity and specificity equal to 1.0; 
however, this situation is rare in clinical practice since sensitivity 
and specificity tend to decrease when either of them increases. 

As shown in Fig. 1, when a diagnostic test is performed, the 
group with the disease and the group without the disease cannot 
be completely divided, and overlapping exist. Fig. 1A shows two 
hypothetical distributions corresponding to a situation where the 
mean value of a test result is 75 in the diseased group and 45 in 

the non-diseased group. In this situation, if the cut-off value is set 
to 60, people with the disease who have a test result <  60 will be 
incorrectly classified as not having the disease (false negative). 
When a physician lowers the cut-off value to 55 to increase the 
sensitivity of the test, the number of people who will test positive 
increases (increased sensitivity), but the number of false positives 
also increases (Fig. 1B). 

What is the ROC curve? 

The ROC curve is an analytical method, represented as a graph, 
that is used to evaluate the performance of a binary diagnostic 
classification method. The diagnostic test results need to be classi-
fied into one of the clearly defined dichotomous categories, such 
as the presence or absence of a disease. However, since many test 
results are presented as continuous or ordinal variables, a refer-
ence value (cut-off value) for diagnosis must be set. Whether a 
disease is present can thus be determined based on the cut-off 
value. An ROC curve is used for this process. 

The ROC curve was initially developed to determine between a 
signal (true positive result) and noise (false positive result) when 
analyzing signals on a radar screen during World War II. This 
method, which has been used for signal detection/discrimination, 
was later introduced to psychology [1,2] and has since been widely 
used in the field of medicine to evaluate the performance of diag-
nostic methods [3–6]. It has recently also been applied in various 
other fields, such as bioinformatics and machine learning [7,8]. 

The ROC curve connects the coordinate points using “1 – spec-
ificity (false positive rate)” as the x-axis and “sensitivity” as the 
y-axis for all cut-off values measured from the test results. The 
stricter the criteria for determining a positive result, the more 
points on the curve shift downward and to the left (Fig. 2, Point 
A). In contrast, if a loose criterion is applied, the point on the 

Table 1. The Decision Matrix 

Predicted condition
Test (+) Test (−)

True condition Disease (+) a b
Disease (−) c d

The receiver operating characteristic curve is drawn with the x-axis 
as 1 - specificity (false positive) and the y-axis as sensitivity. sensitivity 
= a / (a + b), specificity = d / (c + d), false negative = b / (a + b), false 
positive = c / (c + d), and accuracy = (a + d) / (a + b + c + d).

People 
without 
disease  

(TN)

(FN)

45 45
Normal NormalAbnormal Abnormal

60 5575 75

(FN)(FP) (FP)

People 
without 
disease  

(TN)

People 
with 

disease 
(TP)

People 
with 

disease 
(TP)

BA

Fig. 1. Graphical illustrations of two hypothetical distributions for patients with or without disease of interest. The vertical line indicates the cut-
point criterion to determine the presence of the disease. TN: true negative, TP: true positive, FN: false negative, FP: false positive.
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curve moves upward and to the right (Fig. 2, Point B). 
The ROC curve has various advantages and disadvantages. 

First, the ROC curve provides a comprehensive visualization for 
discriminating between normal and abnormal over the entire 
range of test results. Second, because the ROC curve shows all the 
sensitivity and specificity at each cut-off value obtained from the 
test results in the graph, the data do not need to be grouped like a 
histogram to draw the curve. Third, since the ROC curve is a 
function of sensitivity and specificity, it is not affected by preva-
lence, meaning that samples can be taken regardless of the preva-
lence of a disease in the population [9]. However, the ROC curve 
also has some disadvantages. The cut-off value for distinguishing 
normal from abnormal is not directly displayed on the ROC 
curve and neither is the number of samples. In addition, while the 
ROC curve appears more jagged with a smaller sample size, a 
larger sample does not necessarily result in a smoother curve.  

Types of ROC curves  

The types of ROC curves can be primarily divided into non-
parametric (or empirical) and parametric. Examples of the two 

curves are shown in Fig. 3, and the advantages and disadvantages 
of these two methods are summarized in Table 2. The parametric 
method is also referred to as the binary method. By expanding the 
sample size and connecting countless points, the parametric ROC 
curve forms the shape of a smooth curve [10]. This method esti-
mates the curve using a maximum likelihood estimation when 
the two independent groups with different means and standard 
deviations follow a normal distribution or meet the normality as-
sumption through algebraic conversion or square root transfor-
mation [11,12]. If the two normal distributions obtained from the 
two groups have considerable overlap, the ROC curve will be 
close to the 45° diagonal, whereas if only small portions of the two 
normal distributions overlap, the ROC curve will be located much 
farther from the 45° diagonal. 

However, when the ROC curve is obtained using the paramet-
ric method, an improper ROC curve is obtained if the data does 
not meet the normality assumption or within-group variations are 
not similar (heteroscedasticity). An example of an improper para-
metric ROC curve is shown in Fig. 4. To use a parametric ROC 
curve, researchers must therefore check whether the outcome val-
ues in the diseased and non-diseased groups follow a normal dis-

Fig. 2. A receiver operating characteristic (ROC) curve connects 
coordinate points with 1 - specificity (= false positive rate) as the x-axis 
and sensitivity as the y-axis at all cut-off values measured from the 
test results. When a strict cut-off point (reference) value is applied, the 
point on the curve moves downward and to the left (Point A). When a 
loose cut-off point value is applied, the point moves upward and to the 
right (Point B). The 45° diagonal line serves as the reference line, since 
it is the ROC curve of random classification.

Fig. 3. The features of the empirical (nonparametric) and binormal 
(parametric) receiver operating characteristic (ROC) curves. In 
contrast to the empirical ROC curve, the binormal ROC curve 
assumes the normal distribution of the data, resulting in a smooth 
curve. For estimating the binormal ROC curve, the sample mean and 
sample standard deviation are calculated from the disease-positive 
group and the disease-negative group. The 45° diagonal line serves as 
the reference line, since it is the ROC curve of random classification.
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tribution or a transformation is required to follow a normal distri-
bution. 

To overcome this limitation, a nonparametric ROC curve can 
be used since this method does not take into account the distribu-
tion of the data. This is the most commonly used ROC curve 
analysis method (also called the empirical method). For this 
method, the test results do not require an assumption of normali-
ty. The sensitivity and false positive rates calculated from the 2 ×  
2 table based on each cut-off value are simply plotted on the 
graph, resulting in a jagged line rather than a smooth curve. 

Additionally, a semiparametric ROC curve is sometimes used to 
overcome the drawbacks of the nonparametric and parametric 
methods. This method has the advantage of presenting a smooth 
curve without requiring assumptions about the distribution of the 
diagnostic test results. However, many statistical packages do not in-
clude this method, and it is not widely used in the medical research. 

How is a ROC curve drawn? 

Consider an example in which a cancer marker is measured 
for a total of 10 patients to determine the presence of cancer, and 
an empirical ROC curve is drawn (Table 3). If the measured val-
ue of the cancer marker is the same as or greater than the cut-off 
value (reference value), the patient is determined to have cancer, 
whereas if the measured value is less than the reference value, 
normal, and a 2 ×  2 table is thus created. The sensitivity and 
specificity change depending on the applied reference value. If 
the reference value is increased, the specificity increases while the 
sensitivity decreases. For example, if the reference value for de-
termining cancer is ≥  43.3, the sensitivity and specificity are cal-
culated as 0.67 and 1.0, respectively (Table 3). To increase the 
sensitivity, the reference value for a cancer diagnosis is lowered. 
If the reference value is ≥  29.0, the sensitivity and specificity are 
1.0 and 0.43, respectively. In this way, as the reference value is 
gradually increased or decreased, the proportion of positive can-
cer results varies, and each sensitivity and specificity pair can be 
calculated for each cut-off value. From these calculated pairs of 
sensitivity and specificity, a graph with “1 – specificity” as the x 
coordinate and “sensitivity” as the y coordinate can be created 
(Fig. 5). Some researchers draw an ROC curve by expressing the 
x-axis as “specificity” rather than “1 – specificity”. In this case, the 
values on the x-axis do not increase from 0 to 1.0, but decrease 
from 1.0 to 0.  
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Fig. 4. A comparison of the empirical (solid line) and parametric 
(dot-dashed line) receiver operating characteristic (ROC) curves 
drawn from the same data. In contrast to the empirical ROC curve, 
an inappropriate parametric ROC curve can be distorted or pass 
through the 45° diagonal line if the data are not normally distributed 
or heteroscedastic. In this case, the empirical method is recommended 
to overcome this problem.

Table 2. Pros and Cons of the Nonparametric (Empirical) and Parametric Receiver Operating Characteristic Curve Approaches

Nonparametric ROC curve Parametric ROC curve
Pros No need for assumptions about the distribution of data. Shows a smooth curve.

Provides unbiased estimates of sensitivity and specificity. Compares plots at any sensitivity and specificity value.
The plot passes through all points.
Uses all data.
Computation is simple.

Cons Has a jagged or staircase appearance. Actual data are discarded.
Compares plots only at observed values of sensitivity or specificity. Curve does not necessarily go through actual points.

ROC curves and the AUC are possibly biased.
Computation is complex.

ROC: receiver operating characteristic curve, AUC: area under the curve.
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Table 3. An Example of Simple Data with Ten Patients for Drawing Receiver Operating Characteristic Curves

Patient Confirmed 
cancer Tumor marker (continuous value)

1 (−) 25.8 25.8 25.8 25.8 25.8 25.8 25.8 25.8 25.8 25.8 25.8
2 (−) 26.6 26.6 26.6 26.6 26.6 26.6 26.6 26.6 26.6 26.6 26.6
3 (−) 28.1 28.1 28.1 28.1 28.1 28.1 28.1 28.1 28.1 28.1 28.1
4 (+) 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0
5 (−) 30.5 30.5 30.5 30.5 30.5 30.5 30.5 30.5 30.5 30.5 30.5
6 (−) 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0
7 (−) 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.6
8 (−) 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3
9 (+) 43.3 43.3 43.3 43.3 43.3 43.3 43.3 43.3 43.3 43.3 43.3
10 (+) 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8

Tumor marker (binary results)
(+) (−) (+) (−) (+) (−) (+) (−) (+) (−) (+) (−) (+) (−) (+) (−) (+) (−) (+) (−) (+) (−)

Confirmed 
cancer

(+) 3 0 3 0 3 0 3 0 2 1 2 1 2 1 2 1 2 1 1 2 0 3
(−) 7 0 6 1 5 2 4 3 4 3 3 4 2 5 1 6 0 7 0 7 0 7

Sensitivity 1.00 1.00 1.00 1.00 0.67 0.67 0.67 0.67 0.67 0.33 0
Specificity 0.00 0.14 0.29 0.43 0.43 0.57 0.71 0.86 1.00 1.00 1.00

Suppose three patients had biopsy-confirmed cancer diagnoses. The grey-colored values refer to the cases determined to be cancer according to 
each cut-off value highlighted in bold. The continuous test results can be transformed into binary categories by comparing each value with the 
cut-off (reference) value. As the cut-off value increases, the sensitivity for cancer diagnosis decreases and the specificity increases. At each cut-off 
value, one pair of sensitivity and specificity values can be obtained from the 2 × 2 table.

Fig. 5. Empirical (A) and parametric (B) receiver operating characteristic (ROC) curves drawn from the data in Table 3. Eleven labeled points 
on the empirical ROC curve correspond to each cut-off value to estimate sensitivity and specificity. A gradual increase or decrease of the cut-
off values will change the proportion of disease-positive patients. Depending on the cut-off values, each sensitivity and specificity pair can be 
obtained. Using these calculated sensitivity and specificity pairs, a ROC curve can be obtained with “1 – specificity” as the x coordinates and 
“sensitivity” as the y coordinates.

The area under the curve (AUC)  

The AUC is widely used to measure the accuracy of diagnostic 
tests. The closer the ROC curve is to the upper left corner of the 

graph, the higher the accuracy of the test because in the upper left 
corner, the sensitivity =  1 and the false positive rate =  0 (specific-
ity =  1). The ideal ROC curve thus has an AUC =  1.0. However, 
when the coordinates of the x-axis (1 – specificity) and the y-axis 
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correspond to 1 : 1 (i.e., true positive rate =  false positive rate), a 
graph is drawn on the 45° diagonal (y =  x) of the ROC curve 
(AUC =  0.5). Such a situation corresponds to determining the 
presence or absence of disease by an accidental method, such as a 
coin toss, and has no meaning as a diagnostic tool. Therefore, for 
any diagnostic technique to be meaningful, the AUC must be 
greater than 0.5, and in general, it must be greater than 0.8 to be 
considered acceptable (Table 4) [13]. In addition, when compar-
ing the performance of two or more diagnostic tests, the ROC 
curve with the largest AUC is considered to have a better diagnos-
tic performance. 

The AUC is often presented with a 95% CI because the data ob-
tained from the sample are not fixed values but rather influenced 
by statistical errors. The 95% CI provides a range of possible val-
ues around the actual value. Therefore, for any test to be statisti-
cally significant, the lower 95% CI value of the AUC must be >  
0.5. 

The CI of the AUC can be estimated using the parametric or 
nonparametric method. The binormal method proposed by Metz 
[14] and McClish and Powell [15] is used to estimate the CI of the 
AUC using the parametric approach. These methods use the 
maximum likelihood under the assumption of a normal distribu-
tion. Several nonparametric approaches have also been proposed 
to estimate the AUC of the empirical ROC curve and its variance. 
One such approach, the rank-sum test using the Mann-Whitney 
method, approximates the variance based on the exponential dis-
tribution [16]. However, the disadvantage of the rank-sum test is 
that it underestimates the variance when the AUC is close to 0.5 
and overestimates the variance as the AUC approaches 1. To over-
come this drawback, DeLong et al. [17] proposed a method of 
minimizing errors in variance estimates using generalized U-sta-
tistics without considering the normality assumptions used in the 
binormal method, which is provided in many statistical software 
packages. 

Nonparametric AUC estimates for empirical ROC curves tend 
to underestimate the AUC on a discrete rating scale, such as a 
5-point scale. Except when the sample size is extremely small, the 

parametric method is preferred even for discrete data, because the 
bias in the parametric estimates of the AUC is small enough to be 
negligible. However, if the collected data are not normally distrib-
uted, a nonparametric method is the correct option. For continu-
ous data, the parametric and nonparametric estimates of the AUC 
have very similar values [18]. In general, when the sample size is 
large, the AUC estimate follows a normal distribution. Therefore, 
when determining whether there is a statistically significant dif-
ference between the two AUCs (AUC1 vs. AUC2), the test can be 
tested using the following Z-statistics. To determine whether an 
AUC (A1) is significant under the null hypothesis, Z can be calcu-
lated by substituting A2 =  0.5. 

(1) 
Z =  (A1 − A2) /   Var(AUC) 

Partial AUC (pAUC) 

When comparing the AUC of two diagnostic tests, if the AUC 
values are the same, this only means that the overall diagnostic 
performance of the two tests are the same and not necessarily that 
the ROC curves of the two tests are the same [19]. For example, 
suppose two ROC curves intersect. In this case, even if the AUCs 
of the two ROC curves are the same, the diagnostic performance 
of test A may be superior in a specific region of the curve, and test 
B may be superior in another region. In this case, the pAUC can 
be used to evaluate the diagnostic performance in a specific re-
gion (Fig. 6) [11,12]. 

As its name suggests, the pAUC is the area below some of the 
ROC curve. It is the region between two points of false positive 
rate (FPR), defined as the pAUC between the two FPRs (FPR1 =  e1 
and FPR2 =  e2), which can be expressed as A (e1 ≤  FPR ≤  e2). For 
the entire ROC curve to be designated, e1 =  0, e2 =  1, and e1 =  e2 
=  e is the sensitivity at the point where FPR =  e. However, a po-
tential problem with the pAUC is that the minimum possible val-
ue of the pAUC depends on the region along the ROC curve that 
is selected. 

The minimum possible value of the pAUC can be expressed as  
  (e2 − e1) (e2 + e1) [15]. However, one issue is that the minimum 
pAUC value in the range 0 ≤  FPR ≤  0.2 is    (0.2 − 0) (0.2 + 0) =  
0.02, whereas in the range 0.8 ≤  FPR ≤  1.0, the minimum value 
of the pAUC is   (1.0 − 0.8)(1.0 + 0.8) =  0.18. Therefore, unlike 
the AUC, in which the maximum possible value is always 1, the 
pAUC value depends on the two chosen FPRs. Therefore, the 
pAUC must be standardized. To do this, the pAUC is divided by 
the maximum value that the pAUC can have, which is called the 
partial area index [20]. The partial area index can be interpreted 

Table 4. Interpretation of the Area Under the Curve

Area under the curve (AUC) Interpretation
0.9 ≤  AUC Excellent
0.8 ≤  AUC <  0.9 Good
0.7 ≤  AUC <  0.8 Fair
0.6 ≤  AUC <  0.7 Poor
0.5 ≤  AUC <  0.6 Fail
For a diagnostic test to be meaningful, the AUC must be greater than 0.5. 
Generally, an AUC ≥ 0.8 is considered acceptable.
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Fig. 6. Schematic diagram of two receiver operating characteristic 
(ROC) curves with an equal area under the ROC curve (AUC). 
Although the AUC is the same, the features of the ROC curves are not 
identical. Test B shows better performance in the high false-positive 
rate range than test A, whereas test A is better in the low false-positive 
range. In this example, the partial AUC (pAUC) can compare these 
two ROC curves at a specific false positive rate range.

as the average sensitivity in the selected FPR interval. In addi-
tion, the maximum pAUC between FPR1 =  e1 and FPR2 =  e2 is 
equal to e2 – e1, which is the width of the region when sensitivity 
=  1.0. By using the pAUC, it is possible to focus on the region of 
the ROC curve appropriate to a specific clinical situation. There-
fore, the performance of the diagnostic test can be evaluated in a 
specific FPR interval that is appropriate to the purpose of the 
study. 

The sample size for the ROC curve analysis 

To calculate the sample size for the ROC curve analysis, the ex-
pected AUCs to be compared (namely, AUC1 and AUC2, where 
AUC2 =  0.5 for the null hypothesis), the significance level (α), 
power (1 – β), and the ratio of negative/positive results should be 
considered [16]. For example, if there are twice as many negative 
results as positive results, the ratio =  2, and if there is the same 
number of negative and positive results, the ratio =  1. If two tests 
are performed on the same group to evaluate test performance, 
the two ROC curves are not independent of each other. Therefore, 
two correlation coefficients are additionally needed between the 
two diagnostic methods both for cases showing negative results 
and those showing positive results [21]. The correlation coeffi-

cient required here is Pearson’s correlation coefficient when the 
test result is measured as a continuous variable and Kendalls’ tau 
(τ) when measured as an ordinal variable [21]. 

Determining the optimal cut-off value 

In general, it is crucial to set a cut-off value with an appropriate 
sensitivity and specificity because applying less stringent criteria 
to increase sensitivity results in a trade-off in which specificity de-
creases. Finding the optimal cut-off value is not simply done by 
maximizing sensitivity and specificity, but by finding an appro-
priate compromise between them based on various criteria. Sen-
sitivity is more important than specificity when a disease is high-
ly contagious or associated with serious complications, such as 
COVID-19. In contrast, specificity is more important than sensi-
tivity when a test to confirm the diagnosis is expensive or highly 
risky. If there is no preference between sensitivity and specificity, 
or if both are equally important, then the most reasonable ap-
proach is to maximize them both. Since the methods introduced 
here are based on various assumptions, the choice of which 
method to use should be judged based on the importance of the 
sensitivity versus the specificity of the test. There are more than 
30 methods known to find the optimal cut-off value [22]. Some 
of the commonly used methods are introduced below. 

Youden’s J statistic 
Youden’s J statistic refers to the distance between the 45° diago-

nal and the ROC curve while moving the 45° diagonal (a straight 
line with a slope of 1) in the coordinate (0, 1) direction (Fig. 7A). 
Youden’s J statistic can be calculated as follows, where the point at 
which this value is maximized is determined as the optimal cut-
off value [23]. 

(2) 
J =  Se + Sp − 1

Euclidean distance 
Another method for determining the optimal reference value is 

to use the Euclidean distance from the coordinate (0, 1), which is 
also called the upper-left (UL) index [24]. For this method, the 
optimal cut-off value is determined using the basic principle that 
the AUC value should be large. Therefore, the distance between 
the coordinates (0, 1) and the ROC curve should be minimized 
[25,26]. The Euclidean distance is calculated as follows: 

(3)  
Euclidean distance =    (1 − Se)2 + (1 − Sp)2 
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A B C
Fig. 7. Figures illustrating the various methods to select the best cut-off values. (A) Youden’s J statistics, (B) Euclidean distance to the upper-left 
corner, and (C) maximum multiplication of sensitivity and specificity.

The point at which this value is minimized is considered the 
optimal cut-off value. The Euclidean distance on the ROC curve 
is shown in Fig. 7B. 

Accuracy 
Accuracy refers to the proportion of the cases that are accurate-

ly classified, as shown in Table 1. 

(4)  
True positive number + True negative number

Total number 

This definition assumes that all correctly classified results 
(whether it is true positive or true negative) are of equal value, 
and all misclassified results are equally undesirable. However, 
this is often not the case. The costs of false-positive and false-nega-
tive classifications are rarely equivalent; the more significant the 
cost difference between false positive and false negative results, 
the more likely that the accuracy distorts the clinical usefulness 
of the test results. Accuracy is highly dependent on the preva-
lence of a disease in the sample; therefore, even when the sensi-
tivity and specificity are low, the accuracy may be high [27]. In 
addition, this method has a disadvantage because, as sensitivity 
and specificity change, there may be two or more points at which 
this value is maximized. 

Index of union (IU) 
IU uses the absolute difference between the diagnostic mea-

surement and the AUC value to minimize the misclassification 
rate, calculated using the following formula [28]: 

(5) 
IU =  (|Se − AUC| + |Sp − AUC|) 

IU is a method for finding the point at which the sensitivity and 
specificity are simultaneously maximized. It is similar to the Eu-
clidean distance; however, it differs in that it uses the absolute dif-
ferences between the AUC value and diagnostic accuracy mea-
surements (sensitivity and specificity). This method does not re-
quire complicated calculations since it only involves checking 
whether the sensitivity and specificity at the optimal cut-off value 
are sufficiently close to the AUC values. In addition, the IU has 
been found to have a better diagnostic performance compared to 
the other methods in most cases [28]. 

Cost approach 
The cost approach is a method for finding the optimal cut-off 

value that takes into account the benefits of correct classification 
or the costs of misclassification. This method can be used when 
the costs of true positives (TPs), true negatives (TNs), false posi-
tives (FPs), and false negatives (FNs) of a diagnostic test are 
known. The costs here can be medical or financial and can be 
considered from a patient and/or social perspective. When deter-
mining the cut-off value using the cost approach, there are two 
ways; to calculate the cost itself [27], or use the cost index (fm) 
[29]. These are calculated as follows:  

(6) 
Cost =  CFN (1 − Se) Pr + CFP (1 − Sp) (1 − Pr) + CTP Se Pr  

+ CTN Sp (1 − Pr)  
1 − Pr  CFP − CTN 

 Pr   CFN − CTP

(0, 1)

(0, 1)

(0, 1)

Se

1 − Sp Sp

1 − Se

1 − Sp

(1 − Sp)2 + (1 − Se)2

(1 − Sp, Se)

Se

1 − Sp
(1 − Sp, 0)

(0, Se)

(1, 0)

(1, 0)

(1, 0)

Youden's J

fm = Se − (     ×  ) (1 − Sp)
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where Pr is prevalence and CFP, CTN, CFN, and CTP refer to the 
costs of FPs, TNs, FNs, and TPs, respectively. These four costs 
should be expressed as a common unit. When the cost index (fm) 
is maximized, the average cost is minimized, and this point is 
considered the optimal cut-off value.  

Another method for determining the optimal cut-off value in 
terms of cost is to use the misclassification cost term (MCT). 
Considering only the prevalence of the disease, the CFP, and the 
CFN, the point at which the MCT is minimized is determined as 
the optimal cut-off value [29] and expressed as follows:  

(7) 
MCT =     ×  Pr (1 − Se) + (1 − Pr)(1 − Sp)  

Positive likelihood ratio (LR+) and negative likelihood ratio (LR–) 
LR+ is the ratio of true positives to false positives, and LR– is the 

ratio of false negatives to true negatives. 

(8) 
LR+ = TP / FP = Se / (1 − Sp) LR− = FN / TN (1 − Se) / Sp

Researchers can choose a cut-off value that either maximizes 
LR+ or minimizes LR−. 

Maximum product of sensitivity and specificity 
For this method, the point at which the product of Se and Sp is 

maximized is considered the optimal cut-off value. 

(9) 
Maximum product =  max [Se ×  Sp] 

This can also be represented graphically, as shown in Fig. 7C. A 
square can be obtained whose vertex is on the line connecting the 
unit square’s upper left and lower right corners within the ROC 
curve (Se =  Sp line). When this square meets the ROC curve, Se 
×  Sp is maximized. 

Maximum sum of sensitivity and specificity 
For this method, the point at which the sum of Se and Sp is 

maximized is considered the optimal cut-off value. 

(10) 
Maximum sum =  max [Se + Sp] 

At the point where the summation value is maximized, Youd-
en’s index (Se + Sp – 1) and the difference between the true posi-
tives (Se) and false positives (1 – Sp) are also maximized [25]. 

CFP 

CFN 

This method is straightforward; however, the drawback is that as 
the Se and Sp change, there may be more than one point at which 
this value is maximized. When there are two or more points at 
which the summed value is maximized, the researcher must de-
cide whether to determine the optimal cut-off value based on the 
sensitivity or the specificity. 

Number needed to misdiagnose (NNM) 
This method refers to the number of patients required to obtain 

one misdiagnosis when conducting a diagnostic test. In other 
words, if NNM =  10, it means that ten people must be tested to 
find one misdiagnosed patient. The higher the NNM, the better 
the test performance. NNM is calculated as follows, and the point 
at which the NNM is maximized can be selected as the optimal 
cut-off value [30]: 

(11)  
     NNM =            =              

Statistical program for the ROC curve analysis 

Statistical programs used to perform the ROC curve analysis 
include various commercial software programs such as IBM 
SPSS, MedCalc, Stata, and NCSS and open-source software such 
as R. Most statistical analysis software programs provide basic 
ROC analysis functions. However, the functions provided by 
each software product are slightly different. IBM SPSS, the most 
widely used commercial software, can provide fundamental sta-
tistical analyses for ROC curves, such as plotting ROC curves, 
calculating the AUC, and CIs with statistical significance. How-
ever, IBM SPSS does not include various functions for optimal cut-
off values and does not provide a sample size calculation. Stata 
provides a variety of functions for ROC curve analyses, including 
the pAUC, multiple ROC curve comparisons, optimal cut-off val-
ue determination using Youden’s index, and multiple performance 
measures. MedCalc, as the name suggests, is a software developed 
specifically for medical research. MedCalc provides a sample size 
estimation for a single diagnostic test and includes various analyti-
cal techniques to determine the optimal cut-off value but does not 
provide a function to calculate the pAUC. 

Unlike commercial software packages, the R program is a free, 
open-source software that includes all the functions for ROC 
curve analyses using packages such as ROCR [31], pROC [32], 
and OptimalCutpoints [22]. Among the R packages, the ROCR is 
one of the most comprehensive packages for analyzing ROC 
curves and includes functions to calculate the AUC with CIs; 

1 1
FN + FP  Pr (1 − Se) + (1 − Pr) (1 − Sp)
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however, options for selecting the optimal cut-off value are very 
limited. The pROC provides more comprehensive and flexible 
functions than the ROCR. The pROC can be used to compare the 
AUC with the pAUC using various methods and it provides CIs 
for sensitivity, specificity, the AUC, and the pAUC. Similar to the 
ROCR, the pROC also provides some functions for determining 
the optimal cut-off value, which can be determined using Youd-
en’s index and the UL index. The pROC can also be used to calcu-
late the sample size required for a single diagnostic test or to com-
pare two diagnostic tests. OptimalCutpoints is a sophisticated R 
package specially developed to determine the optimal cut-off val-
ue. It has the advantage of providing 34 methods for determining 
the optimal cut-off value. 

Although these R packages have a considerable number of 
functions, they require good programming knowledge of the R 
language. Therefore, for someone who is not an R user, working 
with a command-based interface may be challenging and 
time-consuming. Therefore, a web-based tool that combines 
several R packages has recently been developed to overcome 
these shortcomings, enabling a more straightforward ROC 
analysis. The web tool for the ROC curve analysis based on R, 
which includes easyROC and plotROC [33,34], is a web-based 
application that uses the R packages plyr, pROC, and Optimal-
Cutpoints to perform ROC curve analyses, extending the func-
tions of multiple ROC packages in R so that researchers can 
perform ROC curve analyses through an easy-to-use interface 
without writing R code. The functions of various statistical pack-
ages for ROC curve analyses are compared and presented in  
Table 5. 

Summary 

The ROC curve is used to represent the overall performance of 
a diagnostic test by connecting the coordinate points with “1 – 
specificity” ( =  false positive rate) as the x-axis and “sensitivity” 
as the y-axis for all cut-off point at which the test results are mea-
sured. It is also used to determine the optimal cut-off value for 
diagnosing a disease. The AUC is a measure of the overall perfor-
mance of a diagnostic test and can be interpreted as the average 
value of sensitivities for all possible specificities. The AUC has a 
value between 0 and 1 but is meaningful as a diagnostic test only 
when it is >  0.5. The larger the value, the better the overall perfor-
mance of the test. Since nonparametric estimates of the AUC tend 
to be underestimated with discrete grade scale data, whereas para-
metric estimates of the AUC have a low risk of bias unless the sam-
ple size is very small, it is recommended to use parametric esti-
mates for discrete grade scale data. When evaluating the diagnostic 
performance of a test only in some regions of the overall ROC 
curve, the pAUC should be used in specific FPR regions. 

Youden’s index, Euclidean distance, accuracy, and cost index 
can be used to determine the optimal cut-off value. However, the 
approach should be selected according to the clinical situation 
that the researcher intends to analyze. Various commercial pro-
grams and R packages as well as a web tool based on R can be 
used for ROC curve analyses. 

In conclusion, the ROC curve is a statistical method used to de-
termine the diagnostic method and the best cut-off value showing 
the best diagnostic performance. The best diagnostic test method 
and the optimal cut-off value should be determined using the ap-
propriate method. 

Table 5. Comparison of the Statistical Packages for Receiver Operating Characteristic Curve Analyses

Statistical packages ROC  
plot

Confidence  
interval pAUC Multiple  

comparisons
Cut-off  
values

Sample  
size

Open  
source

Web tool  
access

User  
interface

Commercial program IBM SPSS (ver. 25) ○ ○ × × × × × × ○

STATA (ver. 14) ○ ○ ○ ○ ○ × × × ○

MedCalc (ver. 19.4.1) ○ ○ × ○ ○ ○ × × ○

NCSS 2021 ○ ○ × ○ ○ ○ × × ○

Free program OptimalCutpoints 
(ver. 1.1-4)

○ ○ × × ○ × ○ × ×

ROCR (ver. 1.0-11) ○ ○ ○ × × × ○ × ×
pROC (ver. 1.17.0.1) ○ ○ ○ ○ ○ ○ ○ × ○

easyROC (ver. 1.3.1) ○ ○ ○ ○ ○ ○ ○ ○ ○

plotROC (ver. 2.2.1) ○ ○ × ○ ○ × ○ ○ ○

This table was adapted and modified from Goksuluk et al. [33]. ROC: receiver operating characteristic, pAUC: partial area under the ROC curve.  
○: possible, ×: impossible.
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