PROTEIN EXTRACTION FROM CELL PELLETS AND QUANTIFICATION

Preparation of lysis buffer for protein extraction

Prepare 100 mL of Lysis Buffer:

- 50 mM Tris·HCl, pH 8.0
- 150 mM NaCl
- 1 mM EDTA
- 100 mM NaF
- 1 mM MgCl₂
- 10% Glycerol
- 1% Triton X-100
- bd-H₂O

Remember to add 1X Protease inhibitor cocktail (PIC) just before use (Stock 100X)

LYSIS BUFFER <u>100 mL</u>						
Reagent	Molecular weight (g/mol)	Stock solution conc.	Final conc.	g or mL to add		
Tris·HCl, pH 8.0	١	1 M	50 mM			
NaCl	58.44	١	150 mM			
EDTA	١	0.5 M	1 mM			
NaF	41.99	١	100 mM			
MgCl ₂	95.21	١	1 mM			
Glycerol	١	100%	10%			
Triton X-100	١	100%	1%			
bd-H ₂ O	١	١	١			

CELL LYSIS AND PROTEIN EXTRACTION PROTOCOL

- Add 500 μL of Lysis buffer to a 1.5 mL tube containing a thawed cell pellet (1 x 10⁶ cells) and adjust with a proper volume of 1X broad-range protease inhibitor cocktail (PIC).
- Homogenize cell pellet using a plastic pestle until it is completely dissolved to promote cell lysis.
- Incubate sample on ice (+4 °C) for 15 min. Mix occasionally by vortexing.
- Centrifuge samples at 14,000 x g for 15 min, at +4 °C.
- Transfer the clear supernatant containing proteins into a new 1.5 mL tube.
- Supernatants can be used immediately for protein quantification, alternatively can be stored at -20 °C for long-term storage.

BRADFORD ASSAY FOR PROTEIN QUANTIFICATION

The Bradford assay is a protein determination method that involves the binding of Coomassie Brilliant Blue G-250 dye to proteins, primarily to basic (especially arginine) and aromatic amino acid residues (Bradford 1976). The dye exists in three forms: cationic (red), neutral (green), and anionic (blue) (Compton and Jones 1985). Under acidic conditions, the dye is predominantly in the doubly protonated red cationic form (Amax = 470 nm). However, when the dye binds to protein, it is converted to a stable unprotonated blue form (Amax = 595 nm) (Reisner et al. 1975, Fazekes de St. Groth et al. 1963, Sedmack and Grossberg 1977). It is this blue protein-dye form that is detected at 595 nm in the assay using a spectrophotometer or microplate reader.

PROTEIN STANDARD FOR QUANTIFICATION: Bovine Serum Albumin (BSA)

Prepare a stock solution 2 mg/mL concentrated, then prepare 7 diluted aliquots of BSA at different concentrations (2, 1.5, 1, 0.75, 0.5, 0.25, 0.125 mg/ml) in 0.2 ml tubes:

Tube #	BSA volume (μL)	BSA source	Bd-H₂O volume (μL)	BSA final conc. (μg/mL)
1	20	2 mg/mL stock	0	2000
2	30	2 mg/mL stock	10	1500
3	20	2 mg/mL stock	20	1000
4	20	Tube 2	20	750
5	20	Tube 3	20	500
6	20	Tube 5	20	250
7	20	Tube 6	20	125
8 (blank)	/	/	20	0

- Remove the 1x Bradford reagent from 4°C storage and let it warm to ambient temperature. Invert the 1x dye reagent a few times before use.
- Pipet 5 μL of BSA at different concentrations into a 96-well microplate. In the same way pipet 5 μL of unknown concentrated sample.
- Add 1x Bradford reagent to each well and mix <u>carefully</u> by pipetting. Replace with clean tips and add reagent to the next set of wells (<u>Note:</u> *if you dispense Bradford reagent starting from the well with the lower concentration of BSA to the one with the higher concentration you can use the same tip*).

Assay	Volume of BSA	Volume of 1X Bradford
Microplate	5 μL	250 μL

It is recommended to test each BSA dilution (standard point) and unknown sample in duplicate or triplicate:

• Incubate at room temperature for at least 5 min. Samples should not be incubated longer than 1 hr at room temperature.

• Set the spectrophotometer to 595 nm. Measure the absorbance of the standards and unknown samples.

DATA ANALYSIS

- Average the blank values and subtract the average blank value from the standard and unknown sample values.
- Create a standard curve by plotting the 595 nm values (y-axis) versus their concentration in μg/ml (x-axis). Determine the unknown sample concentration using the standard curve. If the samples were diluted, adjust the final concentration of the unknown samples by multiplying by the dilution factor used.

Y = mX + q where Y= Absorbance⁵⁹⁵; X= μ g/ml protein

X = (Y - q)/m

<u>E.g.</u> If the sample is 10-fold diluted \rightarrow X= [(Y - q)/m] x 10

Fig 2. Typical standard curves using the microassay procedure with BSA and gamma-globulin standards.