UNIVERSITA
DEGLI STUDI
DI TERAMO

UNITE

UML Class Diagram

Prof. ssa Romina Eramo
Universita degli Studi di Teramo
Dipartimento di Scienze della Comunicazione
reramo@unite.it

Models

* The goal 1s not to build documents but software that satisfies the
user's requests with predictable times and methods

* Templates help build good software

* Proven and Accepted Engineering Technical Modeling
* Mathematical models for forecasts
* Models for building cars, cars

Models

* What is 1t?
* A model 1s a simplification of reality

e Because

* Models are built to better understand the system that 1s being
developed

Models

* Purposes

* They help to describe/visualize a system as 1t 1s and as we want 1t
to be

* Specify the structure or behavior of a system
* They give a template that guides you to build a system
* Document the decisions made

Models

Models of complex systems are built because
they cannot be understood in their entirety

UML: What 1s 1t?
* Acronym Unified Modeling Language

* Language: language
e Unified: standard, unified model
* Modeling: For Modeling

* Language for
* Visualize
* Specify
* Build
* Document
* the elaborations of a software system

Class Diagrams

* Concept of class diagram
* Creating class diagram

Classes

A class 1s a description of a set of
objects that share the same attributes,
operations, relationships, and semantics.

Graphically, a class 1s rendered as a
rectangle, usually including its name,
attributes, and operations in separate,
designated compartments.

Class Names

ClassN
Sz e The name of the class 1s the only required

tag in the graphical representation of a

attributes class. It always appears in the top-most

compartment.
operations

Class Attributes

Person

An attribute 1s a named property of a

class that describes the object being modeled.
In the class diagram, attributes appear in

the second compartment just below the
name-compartment.

Class Attributes (Cont’d)

Person Attributes are usually listed in the form:
attributeName : Type

A derived attribute 1s one that can be
computed from other attributes, but
doesn’t actually exist. For example,

a Person’s age can be computed from
his birth date. A derived attribute 1s
designated by a preceding ‘/° as 1n:

/ age : Date

Class Attributes (Cont’d)

Person

Attributes can be:
+ public
protected

- private
/ derived

Class Operations

Person

name : String
address : Address
birthdate : Date

ssn - Id

Operations describe the class behavior
and appear 1n the third compartment.

Depicting Classes

When drawing a class, you needn’t show attributes and operation
in every diagram.

Class Responsibilities

A class may also include its responsibilities in a class diagram.

A responsibility 1s a contract or obligation of a class to perform
a particular service.

Relationships

In UML, object interconnections (logical or physical), are
modeled as relationships.

There are three kinds of relationships in UML.:
* dependencies
* generalizations

* associations

Generalization Relationships

B
/\
| e

A generalization connects a subclass

to its superclass. It denotes an
inheritance of attributes and behavior
from the superclass to the subclass and
indicates a specialization in the subclass
of the more general superclass.

Dependency Relationships

A dependency indicates a semantic relationship between two or
more elements. The dependency from CourseSchedule to
Course exists because Course 1s used in both the add and
remove operations of CourseSchedule.

Generalization Relationships
(Cont’d)

UML permits a class to inherit from multiple super classes,
although some programming languages (e.g., Java) do not permit
multiple inheritance.

AN

Association Relationships

If two classes in a model need to communicate with each other,
there must be link between them.

An association denotes that link.

Student Instructor

Association Relationships
(Cont’d)

We can indicate the multiplicity of an association by adding
multiplicity adornments to the line denoting the association.

The example indicates that a Student has one or more
Instructors:

Student Instructor

Association Relationships
(Cont’d)

The example indicates that every Instructor has one or more
Students:

Student Instructor

Association Relationships
(Cont’d)

We can also indicate the behavior of an object in an association
(i.e., the role of an object) using role names.

teaches learns from

Student w o Instructor

Association Relationships
(Cont’d)

We can also name the association.

Student

membership

*

Team

Association Relationships
(Cont’d)

We can specify dual associations.

member of

l..*

president of 1..*

Association Relationships
(Cont’d)

Associations can also be objects themselves, called link classes
or an association classes.

Example

Y SeminarEnrallment :
1 enrolled in 1.* - 1.* enrolled in 155 -

Student = marksReceived Seminar
narne getAverageToDated) seminarNumber
phoneMumber getFinalMark(waitingList
emailAddress *{urdered, FIFO} L5 : 3
studentMumber 0. on waiting list 0." | addStudent(student)
averagehark dropStudent{student)
isEligible (hame, 0. 0*
studentbumber)
getsSeminarsTaken(offering of
purchaseParkingPassi) instructs

1
0.1
Course
Address Professar name
lves street — courseMumber
at ' .
1 ;T;'[e lives at phoneNumber 0.1 fees
s '

postalCode i 0.1] emaildddress getFullMamen

country salary

validate() getinformationd advisor

outputhsLabeld) purchaseParkingPassi| g q

associate| 0.*

Amentors

Enum Class = =

Enumeration Literals — =—

1 «=— = = Mulfiplicity
Aggregation
4

1 1 12
line item

t
I
Role (Name)

Generalization = =— =»

==

Operation

Bank

Checking

+Id: int
+Customerld: int

Savings

+Bankld: int +1
+Name: string
+Location: string ki
+1.% | +Id:int
+Name: string
+1
+CollectMoney()
+OpenAccount()
+1.* | +CloseAccount()
+1.* +LoanRequest()
+Providelnfo()
Customer +IssueCard()
+1d: int +1.*
+Name: string -
+Address: string Account
+PhoneNo: int il o1*
+AcctNo: int . +Id: int
+Customerld: int
+Generallnquiry()
+DepositMoney()
+WithdrawMoney() | 4
+OpenAccount()
+CloseAccount() Loan
+ApplyForLoan() L %
+RequestCard() :‘IId'y p::'tstring
« | +*Accountld: int
+0..

+Customerld: int

+Id: int
+Customerld: int

