
UML Class Diagrams

Prof. Romina Eramo
University of Teramo

Department of Communication Sciences
reramo@unite.it

Class Diagram

» Shows a set of classes, interfaces and their relationships
(dependency, association and generalization)

» It can be seen as a graph where the nodes are the
classes and interfaces, and the edges are the
relationships

» They can also contain packages or subsystems (used to
group elements)

» They model the static part of a system

2

Class Diagram

» Model the vocabulary of a system
− Classes model abstractions of things of a problem
− Such abstractions are part of a system's vocabulary

» Model simple collaborations
− Classes do not live alone
− They work together to provide behavior that is greater

than the sum of all the elements
» Model a logical database schema

− Instead of ER schemes

3

Example

» System for bibliographic archiving of texts , storing
information on the publisher and author and identifying what
are considered books precious . You also want to manage a
loan operation by one or more users

4

Example

Libro

Utente

Autore

Editore

Libro Prezioso
Prestito

5

Example

Libro Prezioso
Prestito

Utente

Editore

Libro AutoreScritto

Pubblicato

6

Example

Libro Prezioso
Prestito

Utente

Editore

Libro

0..n

0..n

1

1..n

Autore1..n1..n Scritto

Pubblicato

1..n 1..n

1

1..n

0..n

0..n

7

Example

8

Example

9

Object

» Informally, an object represents a physical, conceptual,
or software entity

− physical entity: tractor
− conceptual entity: chemical process
− software entities: list, queue...

» Formally
− Concrete manifestation of an abstraction
− Entity with a well-defined boundary and identity that

encapsulates state and behavior
− Instance of a class

» E.g.: Schumacher's Ferrari, Barrichello's Ferrari, My
computer

10

Object

» State
− Possible condition in which the object could exist and generally

changes over time
− Implemented using properties (attributes) with values, and links to

other objects
» Behavior

− Determines how an object acts and reacts to requests from another
object

− Represented by the set of messages to which it can respond
(operations)

» Identity
− It makes it possible to distinguish between two objects even if they

have the same state and the same value in its attributes

11

Representation in UML

Unnamed instance
Named instance

State

Class

» Description of a group of objects with common
properties (attributes), behavior (operations),
relationships, and semantics
− An object is an instance of a class

» Abstraction that
− Emphasize relevant characteristics
− Suppresses other features

13

Class example

» First name
− Course

» Property
− Name, Place, Duration, Credits, Start, End

» Behavior
− Adding student
− Student cancellation
− Check if it is full

14

Relationship between class and
object
» Class is an abstract definition of an object

− Defines the structure and behavior of each object in the
class

− It serves as a template for creating objects

» Objects are grouped into classes

15

Representation in UML

16

CourseStudent

Professor
ID
name

create()
save()
delete()
change()

First name

Attributes

Operations

Class: Name

» Represents a name, i.e. an entity
» Text string

− letters
− numbers
− some special characters

» First name
− Simple
− Path (prefix + “:” + class name)

» Convention
− Capital initial letter

17

Class: Attributes

» Property of a class that describes a set of values that
attribute instances can take on

» Represents properties of the things you are modeling that
are shared by all objects of that class

» Example
− Wall has a height, width and depth
− Customer has a name, address, telephone number

18

Class: Attributes

» First name
− Text string

» Guy
− E.g. int, float, double, String

» Initial value
» Convention

− Lowercase initial letter

19

Cus tom er
ID : long
name : String
phone : String
birthDate : java.util .Date
sex : char

Class: Operations

» Implementation of a service that can be requested by any
object

» It is an abstraction of something that is shared among all
objects of that class

» Represents a verb or phrase
» Generally invoking an operation changes the state of the

object
» Examples

− Rectangle has move, resize operations

20

Class: Operations

» First name
− Text string

» Signature
− comma separated list of
»Default value type name

» Return type
− For the "functions"

» Convention
− Lowercase initial letter

21

TemperatureSensor

reset()
setAlarm(t : Temperature)
value() : Temperature

Abstract classes

» Class with operations whose body is not defined

» You can declare an abstract class even if it has no abstract
operations

» It cannot be instantiated, that is, no instances of that class
can exist

» May contain operations that have implementation

22

Representation in UML

italic

23

Relations

» A relationship is a connection between things (i.e. classes,
interfaces, components, packages)

» A relationship provides a pathway for communication
between objects

29

Association

» Represents a structural relationship between objects of
different classes

» Bi-directional connection between classes, you can navigate
from one object of one class to another and vice versa

» It is possible to have circular associations, that is, between
objects of the same class

» Association that connects two classes is called binary; n-air
connecting n classes (little used)

» Represented by a continuous line connecting the two classes

32

Association: Name

» Describes the nature of the association

» It is possible to give a direction to the name by means of a
triangle pointing to the direction you want the direction to
read

33

Professor UniversityWorks for

Association: Role

» Specify the appearance that a class plays in the association
» It has a name and is placed next to the class that plays that

role in the association compared to the other
» The use of the role or name is mutually exclusive

34

Person Companyemployeremployee

Association: Multiplicity

» Defines how many objects participate in a relationship
− Specifies the number of instances of a class that is related to ONE

instance of the other class

» Applied at the end of each association

35

Person Companyn1..n

employeremployee

n1..n

Association: Multiplicity

Value Description
No Unlimited number of instances

1 (default) Only one instance

0..n Zero or more instances

1..n One or more instances

0..1 Zero or one instance

<literal>* Exact number of instances

<literal>..n Exact number or more instances

<literal>..<literal> Specified range of instances

<literal>..<literal>, <literal> Range plus specified number of instances

<literal>..<literal>, <literal>..<literal> The number of instances will be in one of the specified
ranges

* Where <literal> is an integer greater than or equal to 1

37

Association: Multiplicity

» If Multiplicity greater than 1 then the set of associated
elements may or may not be ordered

» Specified by constraint at the end of the association
− unordered : elements form an unordered set (default)
− ordered : elements they have an ordering and i duplicates are not

allowed ({ordered})

» Ordered relationship is specified by generating code
dependent on the implementation language

38

Polygon Point3..*3..*

{ordered}

Association: Association Class

» An association can own _ beyond at the multiplicity , roles
and visibility Also from the property structural and behavioral

» Example

45

Association: Aggregation

» Association between classes shows a peer-to-peer structural
relationship

− It is not possible to distinguish a class that is conceptually more
important than the others (they are all at the same level)

» There is a need to model situations in which a class
expresses a notion that is conceptually greater than the
others that constitute it

» Represents a relationship has -a , consists -of , contains , is -
part-of

46

Association: Aggregation

» It is necessary to use relationships of the "whole-part" type (
whole -part), in which there is a class that represents the
"larger" concept (the whole) made up of the remaining ones
that represent the smaller concepts (the parts)

» Such relationships are called Aggregation
» Represented with a line that connects the related objects

using a diamond placed next to the complete class

47

Association: Aggregation

» Example
− Car made up of wheels, engine, steering wheel, seats,

» Difference compared to purely conceptual association

» Circular aggregations make no sense
− Class A composed of a Class B; B composed of a Class C which in

turn is composed of Class A

48

Association: Aggregation

Ruota Volante

Macchina

44 1

Motore

11 1

49

Association: Shared Aggregation

» Special case of normal aggregation

» The part class can be part of any integer

» It is shared if the multiplicity in the integer part is
greater than one

50

Association: Shared Aggregation

Team

Persona
*

*

*
membri

*

51

Association: Composition

» Form of aggregation with a strong connotation of possession
and an (almost) coincidence of the life cycle between
instances from the classes “ part ” and the instance from the
class “ everything ” (class composed)

» Set off can also be generated at a later time at the creation
of the instance from the class composed , but one once these
are generated they live and are destroyed with the instance
from the class composed of membership

52

Association: Composition

» Composite class takes care of eliminating the instances of its
parts at a time prior to its destruction

» An object can only be part of one composite object at a time
− Example: A Frame belongs to only one Window

» However, in an aggregation a part can be shared between
multiple compounds

− Example: A Wall can belong to multiple Rooms

53

Association: Composition

Text ListBox Button

Window

*
* *

Menu

*

Value 0..1

54

Association vs. Dependence

» Association is a structural relationship (therefore
"persistent"), which highlights semantically related classes

» Dependence has a transitory character, a bond that is
established (or at least so it should be) temporarily, for the
period of time necessary to use a service, to create an object,
etc., and then loses meaning

55

n-air association

» Relationship involving more than two classes
» Represented by a rhombus where the classes belonging to

the relationship are connected
» Difficulty in attributing the values of multiplicities. They

specify, for each class, the potential number of instances of
the class that can participate in the relationship, fixing the
values of the other n–1 classes

56

n-air association

57

n-air association

Transformation of an n-ary association into binary associations

58

Generalization

» It's a relation Between a What more general (said superclass
or parent) ed a more specific (said subclass or daughter)

» He comes said Also “ is-a-kind-of ” relationship
» Objects son can to be used in place of parent objects (Liskov

substitutability principle) but not the vice versa , that is the
father is not a substitute for the son

59

Generalization

» The child inherits all the properties of its fathers, i.e.
attributes and operations

» Sometimes the child can override the parent's operations
» Relation

− Transitive: if C generalizes (i.e. inherits) B and B inherits from A, it
follows that C also generalizes A

− Antisymmetric: if A inherits from B, the opposite is absolutely not
true. If this is true then A and B are equal

60

Generalization

» Drawn with a closed arrow pointing towards the father
» Types of generalization

− Single (Java)
» You have only one father

− Multiple (C++ and NO Java)
» It is possible to have multiple fathers

61

Generalization

62

Generalization

Vehicle

WindPoweredVehicle MotorPoweredVehicle LandVehicle WaterVehicle

Truck

SailBoat

63

Enumeration

» Enumerations are model elements in class diagrams
that represent user-defined data types
» Enumerations contain sets of named identifiers that

represent the values of the enumeration.

64

Identifier

» A sequence of unrestricted length of letters and
digits
» They are used for class names, attributes names,
operations names, and are case-sensitive
» Keywords and true, false, and null literals do not

identify
» Examples

− Product
− product
− $userName

Literal (1)

» Represents the constant value that each primitive type
(either String or null) can take

» Types
− Int
− Floating
− Boolean: true o false
− Char
− String
− null

Literal: Int (2)

» Type is int
» When used as a suffix L or l becomes long
» Expressed as

− decimal (base 10): number
− octal (base 8): 0number
− hexadecimal (base 16): 0xnumber

» Examples
− Decimal int: 10
− Decimal long: 10L
− Octal int: 010
− Hexadecimal int: 0x10

Literal: Int (3)

» Largest decimal literal type int is 2147483648 (231)
» From 0 to 2147483647 a literal int can appear and

be used anywhere you can use a int
» 2147483648 can only appear as a negative number
» Largest decimal literal of type long is
9223372036854775808L (263)

Literal: Int (4)

» Largest positive type literal int hexadecimal and
octal are 0x7fffffff and 017777777777 respectively
(2147483647)
» Largest negative type literal int hexadecimal and

octal are 0x80000000 and 020000000000 that
represent –2147483648

» 0xffffffff and 037777777777 represent -1 in
hexadecimal and octal respectively

Literal: Floating (5)

» Composed of
− Integer Part
− Decimal point (.)
− Fractional Part
− Exponent: E or e followed by a signed integer
− Suffix

» F or f float
» D or d double (default)

» Examples
− Double: 1e1, 2., .3, 0.0, 3.14

− Float: 1e1f, 2.f, .3f, 0f, 3.14f

Literal : Floating (6)

» The larger the positive float literal it is
3.40282347e+38f

» Literal positive finite float not zero the smaller it is
1.40239846e-45f

» The larger the double positive literal it is
1.79769313486231570e+308

» Literal positive double finite not zero smaller is
4.94065645841246544e-324

Literal : Character (7)

» Expressed as a character or escape sequence
enclosed in single quotesTipo è sempre char
» Examples

− ‘c’
− ‘\\’
− ‘\n’, ‘\t’, ‘\b’, ‘\r’, ‘\’’, ‘\”’

Literal : String (8)

» Expressed as a sequence of zero or more characters
enclosed in double quotes
» Each character can be escaped
» Examples

− “welcome”
− “\””
− “\n”
− “ciao” + “ciao”

Data Types

» It allows you to express the nature of the data
» Indicates how the datum can be represented and

interpreted
» The same sequence can represent an integer or a

character
» Determines the range of values that a datum can

take
» Specifies possible operations on the data

Types

» Each type of data has
− A name
» int, double, char

− A set of possible literals
» 3, 3.1, ‘c’

− A set of lawful operations
» +, *, /, %, ……

» UML considers
− Primitive Types
− Reference Types

Primitive Types

» Logical
− boolean

» Numeric
− Integral
» byte, short, int, long e char

− Floating
» double e float

Primitive Types: Boolean

» Value boolean represents a condition of truth or
falsehood
» An attribute typed boolean can represent a two-

state value
− like a switch that is on or off

» true and false are the only allowed values
» Example

− boolean b = false;

Primitive types: Char

» Characters
» It is represented by the encoding scheme Unicode

Primitive Types: Char

\u005cBackslash\\

\u0027Apici singoli\’

\u0022Doppi apici\”

\u000dInvio a capo\r

\u000aAvanzamento riga\n

\u0009Tabulazione\t

\u0008Backspace\b

Value UnicodeNameCharacters

Primitivi type: byte, short, int e long

» Representation is made by means of two-complement
notation

-9223372036854775808 to
9223372036854775807

8 bytelong

–2147483648 to 21474836474 byteint

-32768 to 327672 byteshort

-128 to 1271 bytebyte

RangeDimensionType

Primitive guys: float e double

»Define numbers with fractional parts
»Doubles are called double-precision numbers

±1,79769313486231570E+308

(15 significant decimal places)
8 bytedouble

±3,40282347E+38F
(6 or 7 significant decimal places)

4 bytefloat

RangeDimensionType

Type Reference

» They are pointers (references) to Objects of a Class

