
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

CHAPTER 2

Database System Concepts 

and Architecture

Slide 1- 2



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 3

Outline

 Data Models and Their Categories

 History of Data Models

 Schemas, Instances, and States

 Three-Schema Architecture

 Data Independence

 DBMS Languages and Interfaces



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 4

Data Models

 Data Model:

 A set of concepts (abstraction) to describe the structure of 

a database, the operations for manipulating these 

structures, and certain constraints that the database 

should obey.

 Data Model Structure and Constraints:

 Constructs are used to define the database structure

 Constructs typically include elements (and their data 

types) as well as groups of elements (e.g. entity, record, 

table), and relationships among such groups

 Constraints specify some restrictions on valid data; these 

constraints must be enforced at all times



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 5

Data Models (continued)

 Data Model Operations:

 These operations are used for specifying database 

retrievals and updates by referring to the 

constructs of the data model.

 Operations on the data model may include basic 

model operations (e.g. insert, delete, update) and

user-defined operations (e.g. 

compute_avg_grade, update_inventory)



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 6

Categories of Data Models

 Conceptual (high-level, semantic) data models:

 Provide concepts that are close to the way many users 
perceive data. 

 (Also called entity-based or object-based data models)

 Physical (low-level, internal) data models:

 Provide concepts that describe details of how data is stored 
in the computer. These are usually specified in an ad-hoc 
manner through DBMS design and administration manuals

 Implementation (representational) data models:

 Provide concepts that fall between the above two, used by 
many commercial DBMS implementations (e.g. relational 
data models used in many commercial systems).

 Self-Describing Data Models:

 Combine the description of data with the data values, e.g. 
XML, key-value stores and some NOSQL systems.



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 7

Categories of Data Models

 Conceptual (high-level, semantic) data models:

 Provide concepts that are close to the way many users 
perceive data. 

 (Also called entity-based or object-based data models)

 They use the concepts of:

 Entity: object/concept of the real world (e.g. employee, 
project)

 Attribute: property of interest for an entity (e.g. name, 
salary)

 Relationship: link between entities (e.g. employee-
project)

 Example: Entity-Relationship data model



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 8

Categories of Data Models

 Physical (low-level, internal) data models:

 Provide concepts that describe details of how data is stored 
in the computer. These are usually specified in an ad-hoc 
manner through DBMS design and administration manuals

 They use:

 Access path: proper structure for efficient data 
access

 Index: example of access path for direct data access 
through a term/keyword



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 9

Categories of Data Models

 Implementation (representational) data models:

 Provide concepts that fall between conceptual and physical 
data models, used by many commercial DBMS 
implementations (e.g. relational data models used in many 
commercial systems).

 They use:
 Records (or tuples): proper structure for data 

representation, in terms of fields, each containing one 
item of information, e.g. (name, address, phone).

 Example: Relational, Hierarchical, Object data 
models.



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 10

Categories of Data Models

 Self-Describing Data Models:

 Combine the description of data with the data values 
(contrarily to traditional data models.

 Example: XML, key-value stores, NOSQL systems



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 11

Schemas versus Instances

 Database Schema:

 The description of a database, specified during the 
database design phase.

 Includes descriptions of the database structure, 
data types, and the constraints on the database.

 Schema Diagram:

 An illustrative display of (most aspects of) a 
database schema (i.e. records structure).

 No data types, file associations, complex 
constraints are tipically shown in schema diagrams.

 Schema Construct:

 A component of the schema or an object within the 
schema, e.g., STUDENT, COURSE.



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 12

Schemas versus Instances

 Database State:

 The actual data stored in a database at a 

particular moment in time. This includes the 

collection of all the data in the database.

 Also called database instance (or occurrence or 

snapshot).

 The term instance is also applied to individual 

database components, e.g. record instance, table 

instance, entity instance

 Everytime a record is inserted/deleted/updated, 

there is a database state change.



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 13

Database Schema 

vs. Database State

 Database State: 

 Refers to the content of a database at a moment 

in time.

 Initial Database State:

 Refers to the database state when it is initially 

loaded into the system.

 Note that, right after the schema definition, the 

initial database state is the empty state.

 Valid State:

 A state that satisfies the structure and constraints 

of the database.



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 14

Database Schema 

vs. Database State (continued)

 Distinction

 The database schema changes (evolves) very 

infrequently. 

 The database state changes every time the 

database is updated (e.g. a record is created or 

deleted). 

 Schema is also called intension.

 State is also called extension.



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 15

Example of a Database Schema



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 16

Example of a database state



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 17

Three-Schema Architecture

 Proposed to support DBMS characteristics of:

 Program-data independence.

 Support of multiple views of the data.

 Not explicitly used in commercial DBMS products, 

but has been useful in explaining database 

system organization



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 18

Three-Schema Architecture

 Defines DBMS schemas at three levels:

 Internal schema at the internal level to describe physical 

storage structures and access paths (e.g indexes). 

 Typically uses a physical data model.

 Conceptual schema at the conceptual level to describe the 

structure and constraints for the whole database for a 

community of users. 

 Uses a conceptual or an implementation data model.

 External schemas at the external level to describe the 

various user views. 

 Usually uses the same data model as the conceptual schema.



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 19

The three-schema architecture



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 20

Three-Schema Architecture

 Mappings among schema levels are needed to 

transform requests and data. 

 Programs refer to an external schema, and are 

mapped by the DBMS to the internal schema for 

execution.

 Data extracted from the internal DBMS level is 

reformatted to match the user’s external view (e.g. 

formatting the results of an SQL query for display 

in a Web page)



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 21

Data Independence

 Logical Data Independence: 

 The capacity to change the conceptual schema 
without having to change the external schemas 
and their associated application programs.

 Physical Data Independence:

 The capacity to change the internal schema 
without having to change the conceptual schema.

 For example, the internal schema may be changed 
when certain file structures are reorganized or new 
indexes are created to improve database 
performance



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 22

Data Independence (continued)

 When a schema at a lower level is changed, only 

the mappings between this schema and higher-

level schemas need to be changed in a DBMS 

that fully supports data independence.

 The higher-level schemas themselves are 

unchanged.

 Hence, the application programs need not be 

changed since they refer to the external schemas.



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 23

DBMS Languages

 Data Definition Language (DDL)

 Data Manipulation Language (DML)

 High-Level or Non-procedural Languages: These 

include the relational language SQL

 May be used in a standalone way or may be 

embedded in a programming language

 Low Level or Procedural Languages:

 These must be embedded in a programming 

language



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 24

DBMS Languages

 Data Definition Language (DDL): 

 Used by the DBA and database designers to 
specify the conceptual schema of a database.

 In many DBMSs, the DDL is also used to define 
internal and external schemas (views).

 In some DBMSs, separate storage definition 
language (SDL) and view definition language 
(VDL) are used to define internal and external 
schemas.

 SDL is typically realized via DBMS commands 
provided to the DBA and database designers



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 25

DBMS Languages

 Data Manipulation Language (DML):

 Used to specify database retrievals and updates

 DML commands (data sublanguage) can be 

embedded in a general-purpose programming 

language (host language), such as COBOL, C, 

C++, or Java.

 A library of functions can also be provided to access 

the DBMS from a programming language

 Alternatively, stand-alone DML commands can be 

applied directly (called a query language).


