
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

CHAPTER 2

Database System Concepts 

and Architecture

Slide 1- 2



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 3

Outline

 Data Models and Their Categories

 History of Data Models

 Schemas, Instances, and States

 Three-Schema Architecture

 Data Independence

 DBMS Languages and Interfaces



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 4

Data Models

 Data Model:

 A set of concepts (abstraction) to describe the structure of 

a database, the operations for manipulating these 

structures, and certain constraints that the database 

should obey.

 Data Model Structure and Constraints:

 Constructs are used to define the database structure

 Constructs typically include elements (and their data 

types) as well as groups of elements (e.g. entity, record, 

table), and relationships among such groups

 Constraints specify some restrictions on valid data; these 

constraints must be enforced at all times



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 5

Data Models (continued)

 Data Model Operations:

 These operations are used for specifying database 

retrievals and updates by referring to the 

constructs of the data model.

 Operations on the data model may include basic 

model operations (e.g. insert, delete, update) and

user-defined operations (e.g. 

compute_avg_grade, update_inventory)



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 6

Categories of Data Models

 Conceptual (high-level, semantic) data models:

 Provide concepts that are close to the way many users 
perceive data. 

 (Also called entity-based or object-based data models)

 Physical (low-level, internal) data models:

 Provide concepts that describe details of how data is stored 
in the computer. These are usually specified in an ad-hoc 
manner through DBMS design and administration manuals

 Implementation (representational) data models:

 Provide concepts that fall between the above two, used by 
many commercial DBMS implementations (e.g. relational 
data models used in many commercial systems).

 Self-Describing Data Models:

 Combine the description of data with the data values, e.g. 
XML, key-value stores and some NOSQL systems.



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 7

Categories of Data Models

 Conceptual (high-level, semantic) data models:

 Provide concepts that are close to the way many users 
perceive data. 

 (Also called entity-based or object-based data models)

 They use the concepts of:

 Entity: object/concept of the real world (e.g. employee, 
project)

 Attribute: property of interest for an entity (e.g. name, 
salary)

 Relationship: link between entities (e.g. employee-
project)

 Example: Entity-Relationship data model



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 8

Categories of Data Models

 Physical (low-level, internal) data models:

 Provide concepts that describe details of how data is stored 
in the computer. These are usually specified in an ad-hoc 
manner through DBMS design and administration manuals

 They use:

 Access path: proper structure for efficient data 
access

 Index: example of access path for direct data access 
through a term/keyword



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 9

Categories of Data Models

 Implementation (representational) data models:

 Provide concepts that fall between conceptual and physical 
data models, used by many commercial DBMS 
implementations (e.g. relational data models used in many 
commercial systems).

 They use:
 Records (or tuples): proper structure for data 

representation, in terms of fields, each containing one 
item of information, e.g. (name, address, phone).

 Example: Relational, Hierarchical, Object data 
models.



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 10

Categories of Data Models

 Self-Describing Data Models:

 Combine the description of data with the data values 
(contrarily to traditional data models.

 Example: XML, key-value stores, NOSQL systems



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 11

Schemas versus Instances

 Database Schema:

 The description of a database, specified during the 
database design phase.

 Includes descriptions of the database structure, 
data types, and the constraints on the database.

 Schema Diagram:

 An illustrative display of (most aspects of) a 
database schema (i.e. records structure).

 No data types, file associations, complex 
constraints are tipically shown in schema diagrams.

 Schema Construct:

 A component of the schema or an object within the 
schema, e.g., STUDENT, COURSE.



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 12

Schemas versus Instances

 Database State:

 The actual data stored in a database at a 

particular moment in time. This includes the 

collection of all the data in the database.

 Also called database instance (or occurrence or 

snapshot).

 The term instance is also applied to individual 

database components, e.g. record instance, table 

instance, entity instance

 Everytime a record is inserted/deleted/updated, 

there is a database state change.



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 13

Database Schema 

vs. Database State

 Database State: 

 Refers to the content of a database at a moment 

in time.

 Initial Database State:

 Refers to the database state when it is initially 

loaded into the system.

 Note that, right after the schema definition, the 

initial database state is the empty state.

 Valid State:

 A state that satisfies the structure and constraints 

of the database.



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 14

Database Schema 

vs. Database State (continued)

 Distinction

 The database schema changes (evolves) very 

infrequently. 

 The database state changes every time the 

database is updated (e.g. a record is created or 

deleted). 

 Schema is also called intension.

 State is also called extension.



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 15

Example of a Database Schema



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 16

Example of a database state



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 17

Three-Schema Architecture

 Proposed to support DBMS characteristics of:

 Program-data independence.

 Support of multiple views of the data.

 Not explicitly used in commercial DBMS products, 

but has been useful in explaining database 

system organization



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 18

Three-Schema Architecture

 Defines DBMS schemas at three levels:

 Internal schema at the internal level to describe physical 

storage structures and access paths (e.g indexes). 

 Typically uses a physical data model.

 Conceptual schema at the conceptual level to describe the 

structure and constraints for the whole database for a 

community of users. 

 Uses a conceptual or an implementation data model.

 External schemas at the external level to describe the 

various user views. 

 Usually uses the same data model as the conceptual schema.



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 19

The three-schema architecture



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 20

Three-Schema Architecture

 Mappings among schema levels are needed to 

transform requests and data. 

 Programs refer to an external schema, and are 

mapped by the DBMS to the internal schema for 

execution.

 Data extracted from the internal DBMS level is 

reformatted to match the user’s external view (e.g. 

formatting the results of an SQL query for display 

in a Web page)



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 21

Data Independence

 Logical Data Independence: 

 The capacity to change the conceptual schema 
without having to change the external schemas 
and their associated application programs.

 Physical Data Independence:

 The capacity to change the internal schema 
without having to change the conceptual schema.

 For example, the internal schema may be changed 
when certain file structures are reorganized or new 
indexes are created to improve database 
performance



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 22

Data Independence (continued)

 When a schema at a lower level is changed, only 

the mappings between this schema and higher-

level schemas need to be changed in a DBMS 

that fully supports data independence.

 The higher-level schemas themselves are 

unchanged.

 Hence, the application programs need not be 

changed since they refer to the external schemas.



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 23

DBMS Languages

 Data Definition Language (DDL)

 Data Manipulation Language (DML)

 High-Level or Non-procedural Languages: These 

include the relational language SQL

 May be used in a standalone way or may be 

embedded in a programming language

 Low Level or Procedural Languages:

 These must be embedded in a programming 

language



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 24

DBMS Languages

 Data Definition Language (DDL): 

 Used by the DBA and database designers to 
specify the conceptual schema of a database.

 In many DBMSs, the DDL is also used to define 
internal and external schemas (views).

 In some DBMSs, separate storage definition 
language (SDL) and view definition language 
(VDL) are used to define internal and external 
schemas.

 SDL is typically realized via DBMS commands 
provided to the DBA and database designers



Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 2- 25

DBMS Languages

 Data Manipulation Language (DML):

 Used to specify database retrievals and updates

 DML commands (data sublanguage) can be 

embedded in a general-purpose programming 

language (host language), such as COBOL, C, 

C++, or Java.

 A library of functions can also be provided to access 

the DBMS from a programming language

 Alternatively, stand-alone DML commands can be 

applied directly (called a query language).


