Corso di Laurea in Biotecnologie

Laboratori Didattici di Regolazione Genica Docente: Prof. Mariangela Pucci A.A. 2023/2024

Le attività di laboratorio avranno come obbiettivo finale la quantificazione dell'espressione del gene codificante il recettore cannabico di tipo 1 CNR1 in cellule eucariotiche mediante Real-Time PCR.

Le attività saranno suddivise in due giornate:

GIORNO 1:

- Estrazione RNA da pellet cellulare mediante TRIzol® Reagent.
- Dosaggio dell'RNA estratto mediante tecnica spettrofotometrica.
- Valutazione qualitativa dell'RNA estratto mediante corsa elettroforetica su gel di Agarosio.

GIORNO 2:

- Sintesi di DNA complementare (cDNA) mediante reazione di trascrizione inversa.
- Quantificazione dell'espressione del gene di nostro interesse mediante la tecnica di Real Time PCR.
- Disegno di Primers specifici per il gene di interesse.

GIORNO 1

1. ESTRAZIONE RNA

Reagenti:

- TRIzol® Reagent
- Cloroformio
- Isopropanolo 100%
- Etanolo 75% in H₂O Nuclease Free

Volume Finale 50 mL

Volume di Etanolo?

H₂O Nuclease Free

Materiali e Strumenti:

- Pennarello Indelebile
- Tubi da 1,5 mL
- Micropipette (10-100 μl; 20-200 μl; 200-1000 μl)

- Puntali (20-200 μl; 200-1000 μl)
- Centrifuga Refrigerata a 4°C
- Vortex
- Cappa Chimica
- Termoblock

1.1 OMOGENIZZAZIONE DEL CAMPIONE

In questa fase si lavora sotto cappa chimica, in quanto il TRIzol[®] contiene fenolo, tossico e corrosivo, e guanidina isotiocianato, irritante. Lavorare sempre indossando un camice da laboratorio e guanti.

- 1.1.1 Con una micropipetta da 200-1000 μl prelevare 500 ul di TRIzol[®] e aggiungerli al tubo da 1,5 mL contenente il pellet cellulare.
- 1.1.2 Mediante uso del vortex, promuovere la disgregazione del pellet e quindi la lisi cellulare.
- 1.1.3 Lasciare il campione omogenizzato a temperatura ambiente per 5 minuti in modo da permettere la completa dissociazione del complesso nucleoproteico

1.2 SEPARAZIONE DI FASE

Anche in questa fase è necessario lavorare sotto cappa, in quanto verrà fatto uso di Clorofotmio, irritante e tossico.

• 1.2.1 Con una micropipetta da 20-200 μl, aggiungere 100 μl di Cloroformio al nostro campione

NB: In questo step è necessario **AVVINARE** il puntale, cioè aspirare e buttar giù il cloroformio più volte fino a quanto tutto il volume sarà trattenuto dal puntale. Ciò serve a poter trattenere una soluzione idrofobica in un puntale idrofilico

- 1.2.2 Una volta chiuso il tubo da 1,5 mL, agitarlo vigorosamente a mano per 15 secondi.
- 1.2.3 Lasciare il campione a temperatura ambiente per 10 minuti.
- 1.2.4 Completata l'incubazione, disporre il campione nella centrifuga refrigerata e centrifugare a 12000xg per 10 minuti.
- 1.2.5 Durante la centrifugazione, siglare un tubo da 1,5 mL nuovo con pennarello indelebile e portarlo con sé sotto cappa.
- 1.2.6 Terminata la centrifuga, con una pipetta da 20-200 μl recuperare la fase acquosa inclinando di circa 45° il tubo contenente il campione e disporla nel tubo nuovo appena siglato.

FARE ATTENZIONE A NON ASPIRARE L'INTERFASE O LA FASE ORGANICA.

1.3 ISOLAMENTO RNA

In questa fase si può lavorare fuori cappa, ognuno nella sua postazione.

- 1.3.1 Con una pipetta da 200-1000 μl aggiungere 250 μl di isopropanolo al 100% alla fase acquosa appena recuperata.
- 1.3.2 Incubare a temperatura ambiente per 10 minuti
- **1.3.3** Centrifugare a 12,0000xg per 10 minuti a 4°C.

NB L'RNA è spesso invisibile prima della centrifugazione e forma un pellet gelatinoso sul fondo ed al lato del tubo.

1.4 LAVAGGIO RNA

- 1.4.1 Terminata la centrifuga, con una pipetta da 20-200 μl rimuovere il surnatante dal tubo agendo sulla parete opposta alla cerniera e facendo attenzione a non toccare il pellet.
- 1.4.2 Lavare il pellet aggiungendo 500 μl di etanolo al 75% con una pipetta da 200-1000 μl.
- 1.4.3 Vortexare il tubo brevemente
- 1.4.4 Centrifugare il campione a 7500xg per 5 minuti a 4°C
- 1.4.5 Terminata la centrifuga, con una pipetta da 20-200 μl rimuovere il surnatante dal tubo agendo sulla parete opposta alla cerniera e facendo attenzione a non toccare il pellet.
- 1.4.6 Far asciugare il pellet sotto cappa per 5-10 minuti

NB Fare attenzione a non lasciare asciugare completamente l'RNA, perché il pellet potrebbe perdere solubilità.

1.5 RISOSPENSIONE RNA

- 1.5.1 Risospendere l'RNA aggiungendovi 25 μl di H₂O nuclease-free
- 1.5.2 Disporre il tubo nel termoblock a 60°C per 15 minuti
- 1.5.3 Terminata l'incubazione, spinnare (centrifugare brevemente ad alta velocità) i campioni
 e disporli in ghiaccio.

2. DOSAGGIO RNA ALLO SPETTROFOTOMETRO

Reagenti:

- H₂O nuclese free
- Tubo con RNA estratto nello step 1

Materiali e Strumenti:

- Spettrofotometro UV-VIS
- Cuvetta di quarzo
- Micropipette
- Puntali

LEGGE DI LAMBERT-BEER

Spettro di assorbimento del DNA

lunghezza d'onda (nmi

1 OD₂₆₀=50µg/ml

OD₂₆₀/OD₂₈₀=1,8-2,0

Dalla misura della luce assorbita ad una determinata 1 si può risalire alla concentrazione della molecola in esame. Si tratta di una determinazione assoluta, che si basa sulla relazione esistente tra concentrazione e assorbanza.

$Log I_0/I = e c l$

Io: l'intensità della luce incidente

I : intensità della luce trasmessa

 e : coefficiente di estinzione molare (per DNA e RNA si usa il coefficiente di estinzione specifico K.

K esprime l'assorbanza di una soluzione a

concentrazione 1mg/ml alla lunghezza d'onda di 260 nm

K = 21 per DNA nativo a doppio filamento

K = 23 per DNA denaturato a singolo filamento

K = 25 per RNA

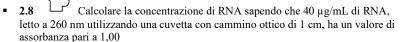

C: concentrazione della specie assorbente (moli/l)

1: percorso ottico (cm)

1A₂₆₀ di DNAds= 50 μg/ml

 $1A_{260} \, di \, RNA = 40 \, \mu g/ml$

L'espressione Log Io/I viene detta assorbanza (A) o densità ottica (OD)


- 2.2 Sullo strumento impostare la lunghezza d'onda alla quale è necessario lavorare, 260 e poi 280 nm.
- 2.3 Lavare la cuvetta con H₂O bidistillata evitando di toccare le superfici che verranno attraversate dalla luce
- 2.4 Tarare lo strumento a zero di assorbanza (fare "il bianco") caricando nella cuvetta 100 μl di H₂O con la quale abbiamo risospeso il nostro RNA nello step 1.5.1
- 2.5 In un tubo da 1,5 mL nuovo diluire il campione di 50 volte.

Sapendo che il Volume Finale nella cuvetta dovrà essere di 100 μ l , quanti microliti di RNA dovranno essere prelevati?

$V RNA ? V H_2O ?$

• 2.6 Trasferire il campione diluito nella cuvetta di quarzo

• 2.7 Disporre la cuvetta nello spettrofotometro ed effettuare la lettura a 260 nm e 280 nm, appuntarsi i valori di assorbanza.

 2.9 Determinare la purezza del campione di RNA calcolando il rapporto 260/280 (per RNA deve essere pari a 2) e 260/230 (deve essere pari a 2.2)

Campione	λ260	λ280	260/280	Concentrazione

3. CORSA ELETTROFORETICA

Reagenti:

- Agarosio
- TAE 50X
- TAE 1 X
- H2O bidistillata
- Nucleic Acid Gel Stain GelRed 10000X
- Loading dye Orange G
- Marker di peso molecolare (Ladder)

Materiali e Strumenti:

- Cella Elettroforetica
- Alloggiamento per gel (slitta o lettino)
- Pettini per creare i pozzetti
- Generatore di corrente
- Micropipette
- Puntali
- Transilluminatore UV
- Microonde
- Bilancia di precisione
- Navicella per pesata
- Beuta

3.1 PREPARAZIONE TAMPONE TAE 1X

• 3.1.1 TAE 1X. A partire da una soluzione concentrata 50X, preparare un litro di tampone

V TAE 50X? V H₂O BD?

• 3.1.2 Versare parte del Tampone nella cella elettroforetica

3.2 PREPARAZIONE GEL DI AGAROSIO ALL'1%

• 3.2.1 Preparare un gel di agarosio all'1% in un volume finale di 100 mL.

Quanti grammi di Agarosio sarà necessario pesare?

- 3.2.1 Accendere la bilancia di precisione.
- 3.2.2 Disporre sulla bilancia una navicella da pesata ed effettuare la tara
- **3.2.3** Pesare l'agarosio
- 3.2.4 Disporre l'agarosio appena pesato in una beuta di vetro e scioglierlo in 100 ml di TAE 1X in microonde fino ad ottenere una soluzione completamente limpida.
- 3.2.5 Aspettare qualche secondo ed aggiungere il GelRed.

La soluzione madre di GelRed è concentrata 10000X.

Nel nostro Vf di 100 mL, il GelRed deve essere concentrato 1X

Quanto GelRed va aggiunto?

- 3.2.6 Una volta aggiunto il GelRed, versare rapidamente il gel nella slitta con inserito il
 pettine e lasciare polimerizzare a temperatura ambiente per 15-20 minuti.
- 3.2.7 Terminata la polimerizzazione, rimuovere il pettine e disporre la slitta con il gel nella vaschetta elettroforetica assicurandosi che sia coperto completamente dal tampone di corsa.

3.3 CORSA DEI CAMPIONI

- 3.3.1 Nel primo pozzetto del gel caricare 5 µl di marcatore di dimensioni.
- 3.3.2 In un tubo da 0,2 mL preparare una mix con 5 μl di Orange G e 5 μl di RNA e caricarla nel pozzetto immediatamente successivo al marcatore.
- 3.3.3 Chiedere il coperchio della cella elettroforetica e collegare gli elettrodi al generatore.
- 3.3.4 Effettuare la corsa a 80mV per almeno 15-20 minuti.

3.4 VISUALIZZAZIONE DEI CAMPIONI.

- 3.4.1 Terminata la corsa spegnere il generatore, e rimuovere la slitta con il gel dalla camera elettroforetica
- 3.4.2 Disporre il gel su un transilluminatore UV e visualizzare i campioni. Dovranno essere visualizzate le bande corrispondenti alle 3 subunità ribosobiali 5S, 18S e 28S.

NB Limitare l'esposizione ai raggi UV.

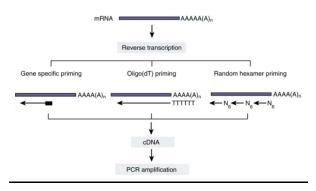
Corso di Laurea in Biotecnologie

Laboratori Didattici di Regolazione Genica Docente: Prof. Mariangela Pucci A.A. 2023/2024

Le attività di laboratorio avranno come obbiettivo finale la quantificazione dell'espressione del gene codificante il recettore cannabico di tipo 1 CNR1 in cellule eucariotiche mediante Real-Time PCR.

Le attività saranno suddivise in due giornate:

GIORNO 1:


- Estrazione RNA da pellet cellulare mediante TRIzol® Reagent.
- Dosaggio dell'RNA estratto mediante tecnica spettrofotometrica.
- Valutazione qualitativa dell'RNA estratto mediante corsa elettroforetica su gel di Agarosio.

GIORNO 2:

- Sintesi di DNA complementare (cDNA) mediante reazione di trascrizione inversa.
- Quantificazione dell'espressione del gene di nostro interesse mediante la tecnica di Real Time PCR.
- Disegno di Primers specifici per il gene di interesse.

GIORNO 2

1. <u>RETROTRASCRIZIONE</u>

Reagenti:

- Campione di RNA estratto il giorno 1
- Oligo(dT)₁₈ Primer
- Random Hexamer Primer
- M-MuLV Reverse Transcriptase (200u/ul) (RT)
- RiboLock RNase Inhibitor (20u/ul) (RNAsse Inbib)
- 5X Reaction Buffer (RB 5X)
- 10 mM dNTPs Mix
- H₂O, nuclease-free

Materiali e Strumenti:

- Pennarello Indelebile
- Tubi da PCR 0.2 mL, sterili nuclese-free
- Micropipette (10-100 μl; 20-200 μl; 200-1000 μl)
- Puntali (20-200 μl; 200-1000 μl)
- Minicentrifuga da banco
- Termociclatore

1.1 PREPARAZIONE MIX A

- 1.1.1 Con un pennarello indelebile, siglare il tubo da PCR 0.2 mL sterile.
- 1.1.2 Nel tubo da PCR appena siglato aggiungere i seguenti reagenti:

REAGENTI	RNA DA RETRO	VOLUME
Campione di RNA	100 ng	?
Oligo(dT) ₁₈ Primer		1 ul
Random Examer Primer		1 ul
H ₂ O nuclease free		?

VOLUME FINALE	12 ul

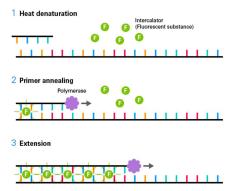
- 1.1.3 Mixare delicatamente tutti i componenti della reazione.
- 1.1.4 Incubare i campioni nel termociclatore a 65°C per 5 minuti.

1.2 PREPARAZIONE MIX B

- 1.2.1 Terminata l'incubazione a 65°C, riprendere i campioni dal termociclatore.
- 1.2.2 Aggiungere i seguenti reagenti:

REAGENTI	CONCENTRAZIONE	VOLUME	
	FINALE		
5X Reaction Buffer	1X*	?	
RNase Inhibitor		1 ul	
Reverse Transcriptase		1 ul	
10 mM dNTPs MIX		2 ul	

VOLUME FINALE	8 ul


* da considerare il V finale complessivo di 20 uL

- 1.2.3 Mixare delicatamente tutti i componenti della reazione.
- 1.2.4 Spinnare i campioni: metterli nella microcentrifuga e centrifugarli ad alta velocità per
 pochi secondi in modo da raccogliere tutti i componenti del mix di reazione sul fondo del
 tubo.
- 1.2.5 Disporre i campioni nel termociclatore ed avviare il programma.

Il programma impostato sul termociclatore è il seguente:

- 65°C pausa
- $65^{\circ}\text{C} 5 \text{ minuti } \rightarrow \text{Mix A}$
- 4°C pausa
- 25°C-pausa
- $25^{\circ}\text{C-}5 \text{ minuti} \rightarrow \text{Mix B}$
- 42°C- 60 minuti
- 70°C- 5 minuti
- 4°C pausa
- 1.2.6 Terminata la retrotrascrzione, rimuovere i campioni dal termociclatore e diluirli 1:2
- 1.2.7 Una volta diluiti, i campioni possono essere impiegati per la reazione di Real-Time PCR o conservati a -20°C.

2. REAL TIME-POLYMERASE CHAIN REACTION

Reagenti:

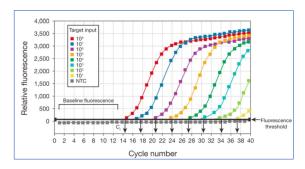
- cDNA
- 2X SYBR Green Mix
- Primer Forward 10 uM
- Primer Reverse 10 uM
- H₂O nuclease free

Materiali e Strumenti:

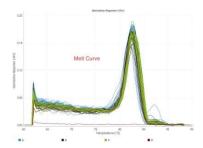
- Tubi da PCR 0.2 mL, sterili nuclease-free
- Micropipette (10-100 μl; 20-200 μl; 200-1000 μl)
- Puntali (20-200 μl; 200-1000 μl)
- Real-Time PCR
- 2.1 Con un pennarello indelebile, siglare un tubo da PCR 0.2 mL sterile nuovo
- 2.2 Nel tubo da PCR appena siglato aggiungere i seguenti reagenti:

REAGENTI	CONCENTRAZIONE FINALE	VOLUME
cDNA		2 ul
2X SYBR Green Mix	1X	?
Primer forward 10 uM	400 nM	?
Primer reverse 10 uM	400 nM	?
H20 nuclease free	·	?

VOLUME FINALE	20 ul


NB: Dovranno essere preparate 2 mix di reazione: nella prima verranno aggiunti i primer per il gene housekeeping B-Actina mentre nella seconda quelli per il gene di interesse CB1.

• 2.3 Spinnare i tubi, introdurli nello strumento ed avviare il seguente programma:


3.4 qRT-PCR Set up the following PCR program on an RT-PCR instrument:

1.95 °C	5 min	
2. 95 °C	10 s	>40 cycles
3. 55/60 °C (see Note 15)	30 s	
4.72 °C	30 s	
5.72 °C	5 min	
6. Melting curve (Fig. 3a): from 65 to 95 °C read every 0.5 °C and hold 00:00:02 (see Note 16)		
7. 4 °C pause		

• 2.4 Al termine della reazione visualizzare l'amplification plot:

E la melting curve:

■ 2.5 Mediante estrapolazione dei Ct, effettuare l'analisi quantitativa attraverso quantificazione relativa:

	Target gene C	Internal control average C,
Sample Y	27.4	15.2
Sample X	28.9	15.6
Sample Y ΔC_i	27.4-15.2-12.2	
Sample X ΔC_i	28.9-15.6-13.3	
Sample Y $\Delta\Delta C_i$	12.2-13.31.1	
Sample X $\Delta\Delta$ C _t	13.3-13.3-0	
	Comparative expression level	
Sample Y	2^-(-1.1) - 2.1	
Sample X	2^-(0)-1	