Electronic noses

➢ *environmental monitoring for air quality control*

➢ *food quality and safety control*

➢ *cosmetic industry control*

'An electronic nose is an instrument, which comprises an array of electronic chemical sensors with partial specificity and an appropriate patternrecognition system, capable of recognizing simple or complex odors' [1]

Electronic nose

[1] Gardner, Julian W., and Philip N. Bartlett. "A brief history of electronic noses." *Sensors and Actuators B: Chemical* 18.1-3 (1994): 210-211.

MOS SENSORS

Metal oxide semiconductors

Constituted by three main parts:

- •Ceramic substrate
- •Heating wire or thermistor
- Semiconducting metal oxides film (Zn, Co, etc.)

They measure conductivity changes onto the surface of the sensors induced by gases. Sensitive to combustion gases (hydrocarbons, NO, CO). Work at 300-400°C. An exchange between the gas and the oxygen on the film causes a change in resistance dedendent on the adsorbed gas.

MOSFET SENSORS

Field effect metal oxides transistors

Made by 3 parts:

- Semiconducting Silicon
- Insulating silica layer
- Catalytic metal (Pt, Pd, etc.)

Work as a transistor at applied potential at 140-170°C. Sensitive to compounds containing hydrogen (amines, aldehydes, esters, chetons, aromatics ed alcohols). Whwn a polar molecules interacts with the metal the electric field is modified and a change in current occurs. The device output is the voltage necessary to have the current back at the initial value.

QUARTZ CRYSTAL MICRO-BALANCE

Resonant frequency 20 **MHz**

Chocolate

- **Temperature: 40°C**
- **Equilibration time: 10 min**
- **15g in 100 mL lab bottle grated and melted 4 L/h**

Standard Samples

Off-flavoured samples

PLS-DA analysis

Off-flavours were preliminarily added in the cocoa butter to achieve the concentration of 125 ppm. One tea spoon of contaminated cocoa butter was then added to 400 g of chocolate to obtain an estimated final concentration in the sample of ~ 6ppm.

ELECTRONIC NOSE SENSOR ARRAYS

- \bigodot • **GNP-GLUTATHIONE** \bigcirc
- **GNP-CYS-GLY GNP-CYS** \odot
- \bigodot • **GNP-THIOGLICOLIC ACID GNP-**
- \circledcirc **CYS-ARG-GLN-VAL-PHE GNP-**
- \circledcirc **CYS-ILE-HIS-ASN-PRO GNP-CYS-**
- \circledcirc **ILE-GLN-PRO-VAL GNP**

 \bigodot

- GNP-Peptide based **Porphyrin based** Porphyrin based
	- **CU-BUTI-TPP** \circledcirc
	- $\left(\mathbf{\check{v}}\right)$ **CO-BUTI-TPP**
	- \odot **ZN-BUTI-TPP**
	- \circledcirc **MN-BUTI-TPP**
	- \bigcirc **FE-BUTI-TPP SN-**
	- **BUTI-TPP H² -** \bigcirc
	- \odot **BUTI-TPP**

 \odot

• **MG-BUTI-TPP**

Dark Chocolate National Associate White Chocolate

AuNP-Peptide vs. Porphyrin

GNP-Peptide based

UNITE

ELECTRONIC NOSE SEQUENCES…

Materials and Methods

Materials and Methods

 $\overline{}$

a) Retention time (min).

b) Kovat's retention index reported in the literature for BP-20 capillary column or equivalents [53]. c) Kovat's retention index relative n-alkanes(C_8-C_{20}) on a BP-20 capillary column

Example of frequency shift of four sequences and 1:9 v/v and 2:8 v/v water/solvent mixtures. A, A' =water/acetonitrile; B,B'=water/methanol; C,C'=water/acetone (yellow = glutathione, grey=TGKF, orange=IHRI, light blue=LGFD .

Example of frequency shift of the ZnONPs sensor array with 1:9 v/v and 3:7 v/v water/solvent mixtures. A, A' =water/acetonitrile; B, B'=water/methanol. (Yellow=TGKFC, Light blue=IHRIC, blue=LGFDC, brown=KSDSC; orange=glutathione; green=WHVS; grey=ZnONPs).

PCA of the piezoelectric response. The biplot (Score and loading) of the first two principal components showed 94.45% of the cumulative variance. Rows normalization were applied to the gas sensors array dataset. Data were auto scaled before PCA.

(A) The biplot values (sores and loadings) for fruit juices analysis along with the percentage (B) of fruit quantity and sugar concentration in the different fruit juices.

- \circ Drying is the most important unit operation in pasta;
- o the high-temperature (HT) drying technology has been widely applied by pasta manufacturers;
- o HT drying has a positive influence on the mechanical properties of pasta;

o To avoid Maillard's reaction as much as possible, it is necessary to monitor volatile compounds, which may be markers of the quality of the finished product.

Volatile compounds of high-price pasta samples. Data were expressed as % of the total GC area.

Typical replicate measurement of pasta sample with ZnO-peptides based Enose. A and B were a single batch of different pasta samples at high price.

PCA of the GC-MS response for low price samples (orange) and high price samples (green). The biplot (Score and loading) of the first two principal components showed 37.08% of the cumulative variance. Data were expressed in (R.A. %) before PCA

PCA biplot (score and loading) of the normalized piezoelectric response of the gas sensors.

Virtual screening method

Electrostatic molecular surfaces of the ssDNA CTGCAA, with a planar interaction surface (binding score -2.26 Kcal/mol)

Binding score average (Kcal/mol) of the tetramer, pentamer and hexamer DNA versus the VOCs tested in experimental part. In italic-bold, the binding score obtained by the simulations of the ssDNA versus the chemical classes (14 alcohols, 13 aldehydes, 18 esters and 5 ketones). The average and standard deviation was calculated over 10 conformers.

HpDNA-AuNP sensors relative binding affinities vs the VOCs, estimated using piezoelectric response. The correlation coefficient between experimental and simulated binding is reported in the last row. The standard deviation was calculated using three measurements taken in three different days.

PCA of the piezoelectric responses of hpDNA-AuNP sensors obtained using 900 μmoles of each VOC. The plot of Scores (A) and the plot of loading (B) of the first three principal components showed 92.40% of the cumulative variance. Data were autoscaled before PCA.

- o Monitoring and control of vegetable ripening are important parameters in the food industry, since the maturation state during harvest, storage and distribution on the market defines the quality of the finished product;
- \circ To prevent enzymatic reactions during processing, storage and thawing, the packaged carrots were blanched at 95 °C for 8 min in a water bath

 \circ 3 g of blanched carrots were placed in 20 ml gas-tight vials and hermetically sealed with a gas-tight septum. A total of 24 vials were prepared for each temperature tested (-18 °C, 4 °C, 25 °C, 40 °C), in order to have three replicates (three different vials) for each day of measurement (1, 4, 8, 12, 19, 26 days). Thus, a total of 140 vials for E-nose and GC-MS have been analyzed. Each vial was used only once for either the GC-MS or E-nose measurement and the relative sample was discarded.

*(mean value of n=3 repetitions); **n.d.: not detected.

Results of the gas-chromatographic (GC) analysis of the headspace of carrots samples. Data are expressed as % of the total GC area*. Frequency signal recorded with AuNPs-hpDNA testing carrots samples in triplicate

GC-MS E-nose

PCA of the GC-MS/SPME response of carrot samples stored for different time at various TERT OF THE CONDANT TEMPORS OF CARRY SAFETS SERIGN OF CALCINE TIME OF VALUES PCA biplot (scores and loadings) of the E-nose response to carrots samples. Data temperature. Data are expressed in (Relative Abundance %) before

were normalized before PCA