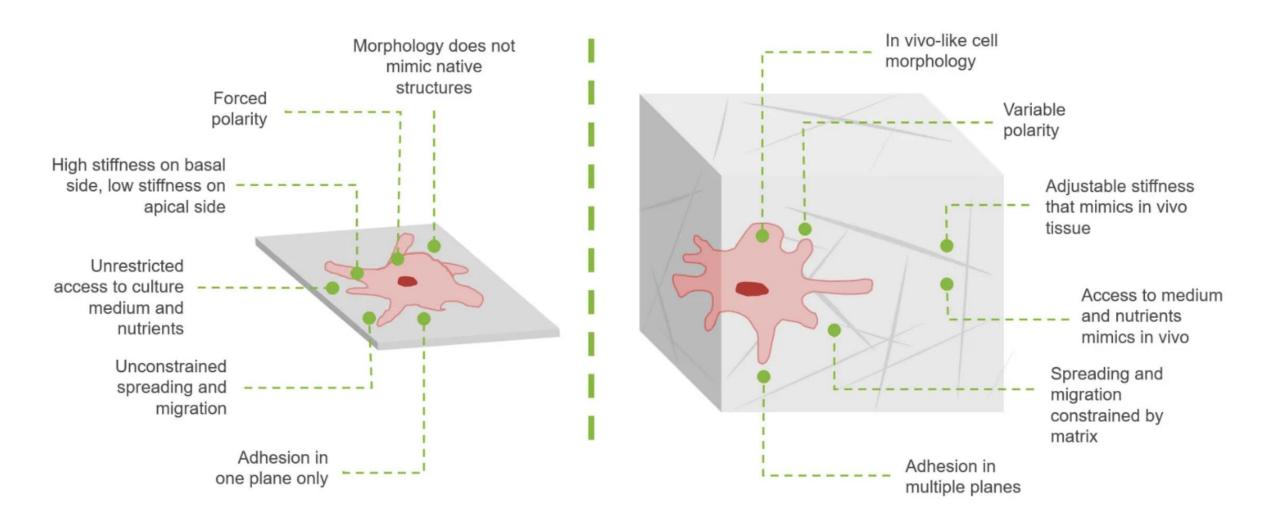

Corso di Laurea Magistrale in Biotecnologie Avanzate Corso di Laurea Magistrale in Reproductive Biotechnologies AA 2024-2025

Microfluidic Devices: Organ-On-a-Chip



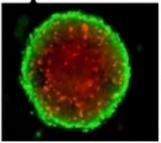
LECTURE 6 Microfluidic Devices

Creating environments for in vitro cell growth

2D vs. 3D Culture

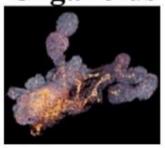
What are the advantages of 2D vs 3D culture?

Advantages of 2D cell culture	Advantages of 3D cell culture
Fast proliferation and colony formation (minutes to hours)	3D mimics tissue and organ structures
Simpler procedures	In vivo-like cell-cell and cell-environment interactions
Lower reagent cost	In vivo-like concentration gradients of essential compounds
More traditionally performed and accepted	Preserved morphology and molecular mechanisms
Very good reproducibility	Heterogenous cell polarities and phenotypes present, more representative of native tissue architecture
Suitable for high throughput	Mimics tissue stiffness
	Good reproducibility
	Some models are suitable for high throughput applications

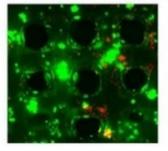

What are the disadvantages of 2D vs 3D cell culture?

Stiffness of surrounding tissue not replicated

Disadvantages of 2D cell culture	Disadvantages of 3D cell culture
Cells forced into planar shape, does not mimic native structures	Slower culture formation due to physical restraints of the matrix (hours to days)
No cellular microenvironment	More complex procedures
Lacking complex cell-cell and cell-environment interactions	Higher reagent cost
Unrestricted access to essential compounds, unlike <i>in vivo</i>	Fewer commercially available tests
Different cell morphology and molecular mechanisms compared to in vivo	


3D

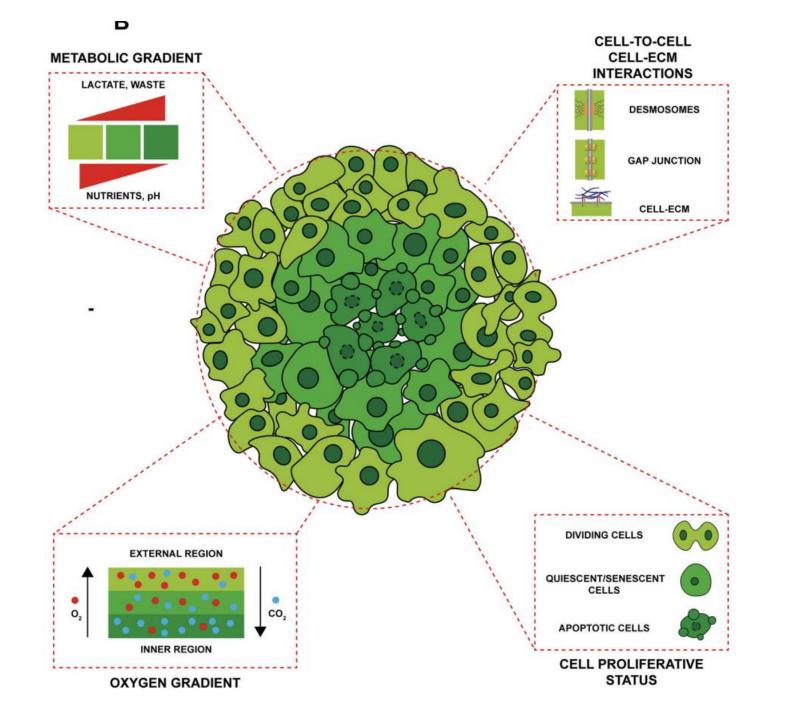
Spheroids

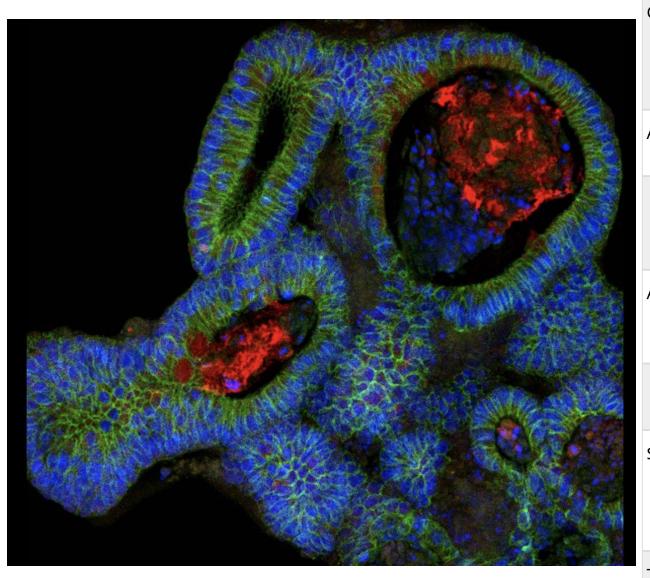

Multicellular, spherical structures composed of aggregated cells that do not adhere to a substrate but adhere to each other

Organoids

A self-organizing 3D cell structure that represents an organ with in vivo-like functions and physiology

Printed Tissues

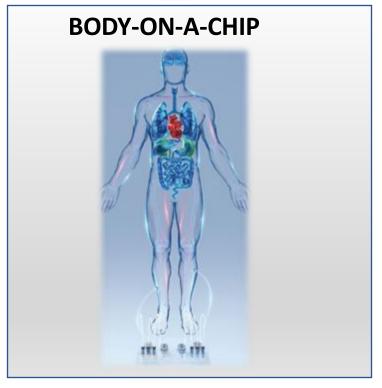


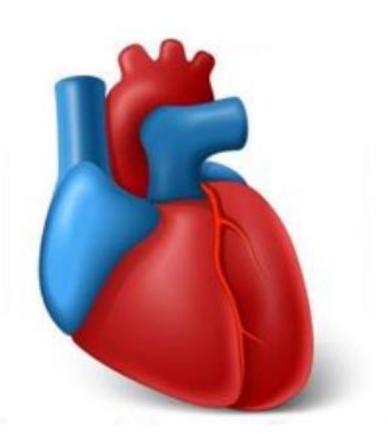

Accurate 3D printed tissues/organs through controlled localization of cells and materials

Microfluidics

Microfluidic devices consisting of multi channels compatible with cell culturing which resembles the physical and physiological functions of a specific organ

Differences	Spheroid	Organoid
Cell types	Multiple cell types including cell lines, tumor cells, primary cells and mixtures of cells	At least one endothelial and one mesenchymal cell type, including stem cells, induced pluripotent cells and tumor cells
Architecture	Resemblance to single tissue or 3D cellular architecture	Resemblance to multiple tissues or an organ
Form	Layers of heterogenous proliferating, necrotic or quiescent cells	Complex structures of differentiating cells
Assembly	Self-assembly with cell adhesion and cell-to-cell aggregation	Self-assembly of differentiating cells in response to physical and chemical cues
Organization	Self-organization in certain models	Self-organization into complex structures and patterning
Supplements	With or without extracellular matrix and growth factors, does not require expensive scaffolds	Requires growth factors, extracellular matrix with or without expensive scaffolds; organoids without scaffolds require additional accessories
Time and complexity	Lower complexity, less time to generate, less expensive than organoids	Higher complexity, longer to generate, more expensive than spheroids





What is an Organ-on-a-chip (OoC)?

- **SYNONIMS:** Also known as 'tissue chips' or microphysiological systems
- **DEFINITION:** microdevices engineered to contain cells and tissues and to model or mimic organ structures, functions and reactions to biological conditions, stressors or compounds

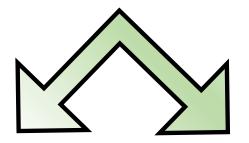
OoC: Where needs come from?

Animal models have contributed to:

- understanding of the physiology and disease
- development of new medicines

Frequent discordance between animal and human studies have been recorded

MUST HAVE!


modelling and testing platforms more predictive of human responses

Indeed, <u>drug candidates may be terminated</u> for lack of efficacy in animals, or discovery of hazards or toxicity in animals that might not be relevant to humans

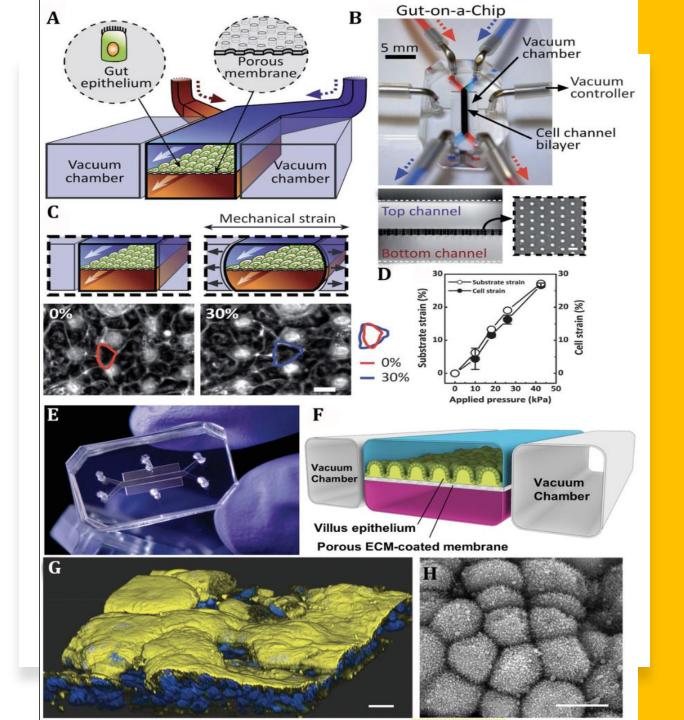
Let's give some numbers...

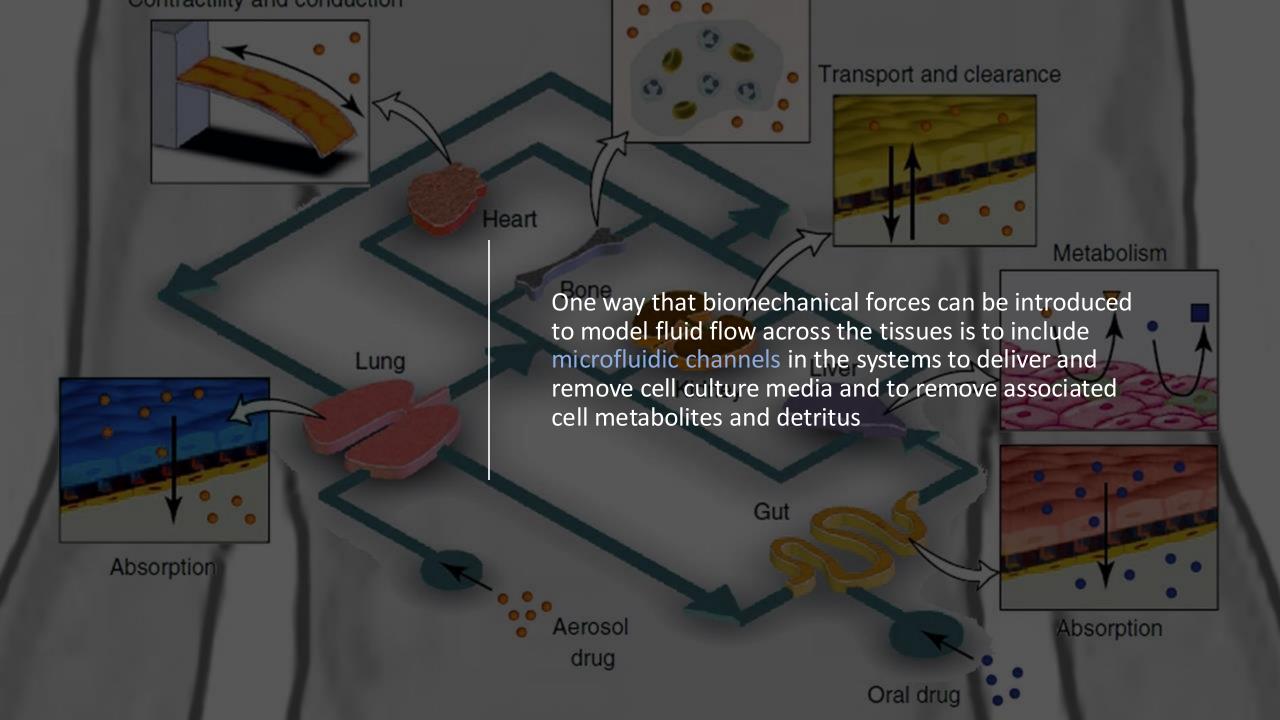
more than 80% of investigational drugs fail in clinical testing: 60% of those failures due to lack of efficacy 30% due to toxicity

Key features for setting up OoC

TECHNICAL

BIOLOGICAL

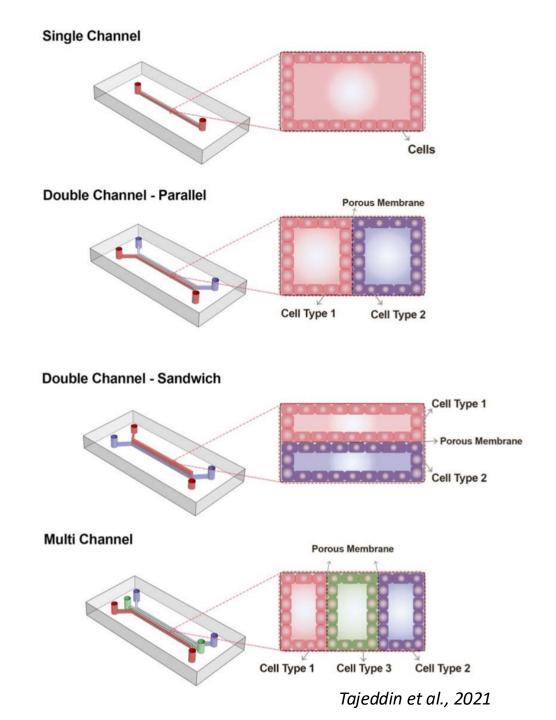

- Platform design
- Platform fabrication


Conceptual OoC design

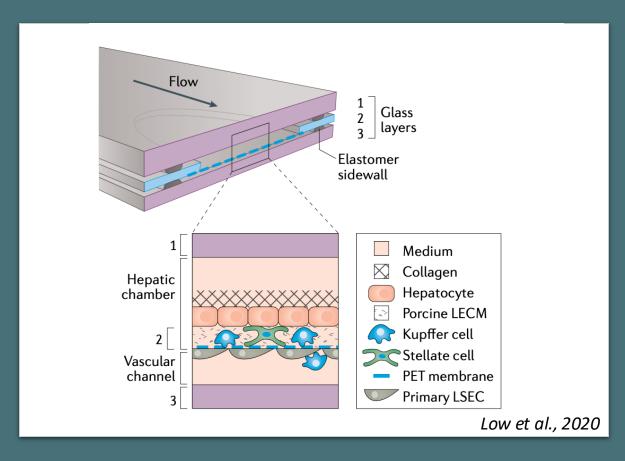
• OoCs range from devices with the size of a USB thumb drive to larger systems that reflect multiple linked organs within the footprint of a standard 96-well laboratory plate.

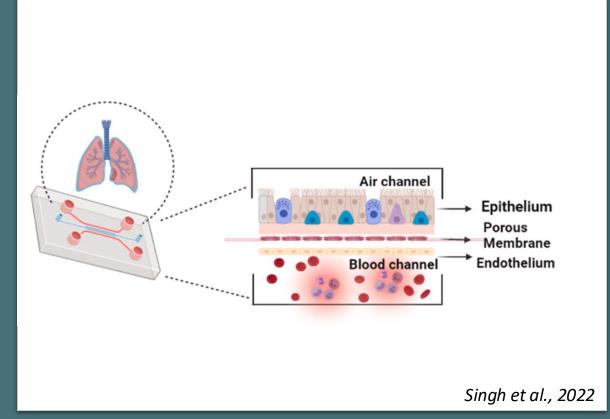
FEATURES:

- the 3D nature and arrangements of the tissues on the platforms
- the presence and integration of multiple cell types to reflect a more physiological balance of cells (parenchimal, stromal, vascular and immune cells)
- the presence of biomechanical forces relevant to the tissue being modelled



OoC: Geometry and Dimensions


Classified based on numbers and organization of channels/compartments


Double channel design is mostly used where one compartment was used to mimic the blood vessels and the other compartment(s) for the actual tissue cells

Porous membranes are usually polymeric

Example: OoC architecture

OoC: Channels and ports

- The shapes and diameters of channels vary extensively: circular and rectangular types
 From 10mm to 20um
- Ports for inflow and outflow design must keep sterility circular and rectangular types
 From 10mm to 20um

Bubble traps must be incorporated

Ex. A lung-on-a-chip with vacuum channels running alongside a porous membrane onto which lung alveolar cells were seeded on one side and lung endothelial cells were seeded on the other. Rhythmic application of the vacuum caused stretching and relaxation of the cell-lined membrane and mimicked the biomechanical forces associated with breathing. Adapted also for gut, heart, blood—brain barrier and kidney glomerulus.

OoC: Clogging mechanisms

Clogging is defined as the interruption of flow due to the aggregation of particles.

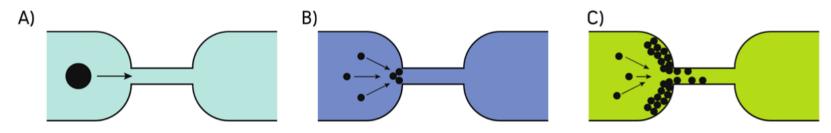


Figure 4. Clogging mechanisms: (A) sieving, (B) bridging, and (C) aggregation.

Tajeddin et al., 2021

SIEVING: Particles are larger than dimention of channels.

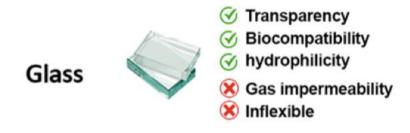
BRIDGING: Particles are smaller than the channel and form an arch-shape along the width of the channel due to the steric effects.

AGGREGATION: The aggregated layer grows as a result of competition between hydrodynamic, diffusive, and colloidal effects.

OoC: Fabrication Materials

Transparency Biocompatibility Polydimethylsiloxane: Low cost a silicon-based elastomer PDM9 Flexibility Hydrophobic X Slightly Flueorecent Transparency soda lime, Quartz, Borosilicate They are a mixture of silicon dioxide (SiO2), Biocompatibility hydrophilicity the base material of glass, with other Glass oxides, such as CaO and MgO X Gas impermeability Inflexible Biocompatibility Easy Fabrication, Thermoplastic Low cost polymethyl methacrylate (PMMA) or copolymers (COC) Poor gas permeability Slightly Flurescence Inflexible

Tajeddin et al., 2021


OTHER MATERIALS: Hydrogels, silicon, metals (titanium, gold)

PDMS is the most common material used for the fabrication of microfluidic devices, and OOCs in particular. It is a silicon-based elastomer and has extremely advantageous properties, namely economic feasibility, transparency, flexibility, oxygen permeability, and biocompatibility. It also shows good compliance with various microfabrication techniques, such as soft lithography or molding.

On the other hand, there are some properties that limit the use of PDMS and motivate the search for alternatives. The absorption of hydrophobic molecules is a drawback that negatively affects the results of toxicity, efficacy, and also PK/PD (pharmacokinetics/pharmacodynamics) predictions. It is also fluorescent to some degree and unsuitable for working with organic solvents.

There are increasing attempts to improve the properties of PDMS-made chips by surface modifications using plasma treatment, UV treatment, and coating. There are various coatings that can reduce the surface energy of PDMS; those include some metals/metal oxides.

One of the oldest materials in the development of microfluidic devices is glass. In general, there are three types of glass used in this field: (i) soda lime, (ii) quartz, and (iii) borosilicate. They are a mixture of silicon dioxide (SiO2), the base material of glass, with other oxides, such as CaO and MgO.

Many advantages have been reported on the use of glass in microfabrication, and OOCs in particular, such as transparency, resistance to mechanical stress, hydrophilicity, and biocompatibility. In addition, glass has been reported to have lower drug absorptivity compared to PDMS.

On the other hand, one major problem that can lead to channel plugging is the low gas permeability of glass. Therefore, special care must be taken in the design and fabrication, e.g., by the use of bubble traps/removers. Glass has high cost of fabrication and is time-consuming.

However, there are certain topics for which the use of glass microfluidics is highly recommended, such as the prediction of PK and PD for drug testing and can be advantageous in anaerobic studies.

Recently, thermoplastics have been increasingly proposed for the fabrication of microfluidic devices due to the limitations of PDMS and glass-based chips

There are interesting properties that make thermoplastic polymers attractive for OOCs, including low cost, low density, biocompatibility, and easy fabrication. As they have linear and branched molecules, they are more resistant to pressure and temperature fluctuations, which also makes them chemically stable and suitable for biomedical/biochemical studies. The most used are polymethylmethacrylate (PMMA) or copolymers (COC).

On the other hand, there are some limitations in the use of thermoplastic polymers: (i) not all manufactured polymers are transparent, which makes microscopic observation or imaging impossible; (ii) some have strong autofluorescence properties and are not suitable for detection purposes; (iii) they have poor gas permeability, which has a negative impact on long-term cell culture (such as OOCs).

OoC: Fabrication Methods

BOTTOM-UP

the microstructures need to be considered and the cells are seeded into a microenvironment (usually hydrogels) to develop their vascular networks

TOP-DOWN

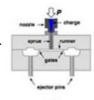
the microstructure (microvessels) is created and then the cells are seeded.

BOTH

Sometimes a hybrid approach is taken that includes both the bottom-up and the top-down approaches

Elastomers

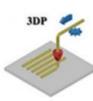
Soft-lithography


- Combination of photolithography and molding
- Suitable for elastomeric materials

Hot Embossing

- Requires master mold fabrication
- Suitable for polymeric materials

Polymers

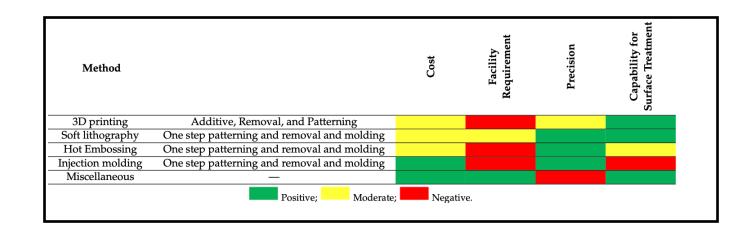

Injection Molding

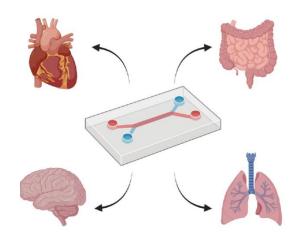
- Requires master mold fabrication
- Low-cost high precision microfabrication suitable for batch production

3D Printing

- Supports both additive and subtractive manufacturring
- Used for master preparation

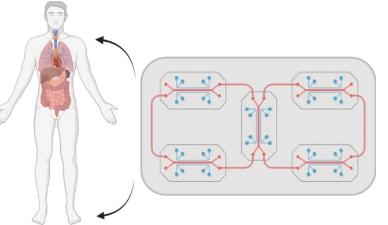
Elastomers


Thermoplastic materials



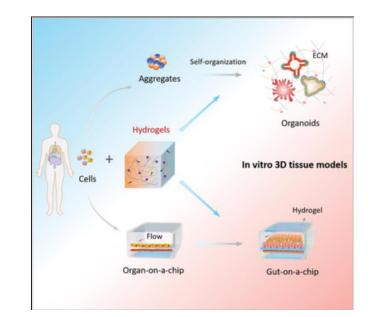
Creative Methods

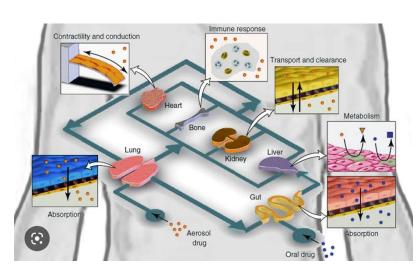
- Easy implementation methods without high cost facilities
- Suitable for preliminary experiments


Single organ chips

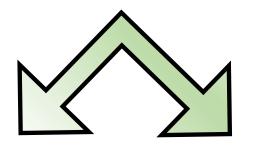
Organ-level physiology and functionality Disease modeling Toxicological assessment

Hydrogels are another new material in the field of OoCs. They are mainly used as bio-scaffolds for cell culturing which is close to the extracellular matrix (ECM)

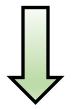

Tissue-tissue interface
Biomechanical motions
Multiple cell types
Fluid exchange
Permeable barriers
Vascularization
Innervation



Interconnected organ chips


PK/PD modeling Systemic modeling of diseases Drug screening Personalized medicine

Trends in Biotechnology



OoC: Key features for setting up OoC

TECHNICAL

BIOLOGICAL

Cell source
Cell scaffolds

Understanding tissue composition and scaffold or ECM influence cellular fuctions and architecture

Cell source

PRIMARY CELLS: The clear advantage of using cells from human donors is that the cells capture the phenotype of the mature adult state

iPS CELLS: solution to cell sourcing difficulties for tissue chips. Allow the obtention of isogenic cell lines for genetic disorders

Cell scaffolds

It is important to reconstitute a physiological environment, conductive to cell growth.

The choice of the decellular scaffolds or hydrogels (naturale or synthetic) shuold be tested as function of the tissue type

OoC applications

MODELLING DISEASES

Modelling organs and tissues from individual donors (healthy and diseased)

TOXICITY

Assessing response to therapeutics with known or unknown mechanisms of action

MODELLING CELL RESPONSE TO STIMULI

Investigating the responses of these tissues to environmental perturbations

OoC: Toxicity assessment

Current methods:

1. High-throughput cell culture assays

Limitation:

the method cannot replicate a complex systemic response to a compound

2. Animal models which can model complex responses

Limitation:

- the method may not provide an accurate prediction of effects in humans as anatomic and physiological aspects may hugely differ among different animals. Only for prediction studies about absorbtion, distribution, metabolism and excretion (ADME) of chemical substances
- The method is not applicable to predict toxicity of large molecules (mw 900Da) characterizing new interesting active biological compounds

Difficulty Translating findings from animals to humans can be seen in high-profile phase I clinical trials

The use of OoC might allow to overcame some of the above limitations

Example of toxicity assessment with OoC

For the heart, which is an important target organ of toxicity, a number of heart-on-a-chip systems have been developed that model the complex matrices of cardiomyocytes, (cardiac) fibroblasts, endothelial cells and vasculature that interact in vivo in a highly ordered manner, which can be easily perturbed by drugs, drug—drug interactions or off-target side effects.

Heart-on-a-chip, specifically, cardiac valves, have been bioengineered to assess the off-target cardiac side effects of drugs that influence dopamine/ serotonin production/reuptake (pergolide). Pergolide is used in clinical treatment for psychiatric disorders such as Parkinson disease

https://www.youtube.com/watch?v=CpkXmtJOH84&ab_channel=TED

OoC: Disease modelling in vitro

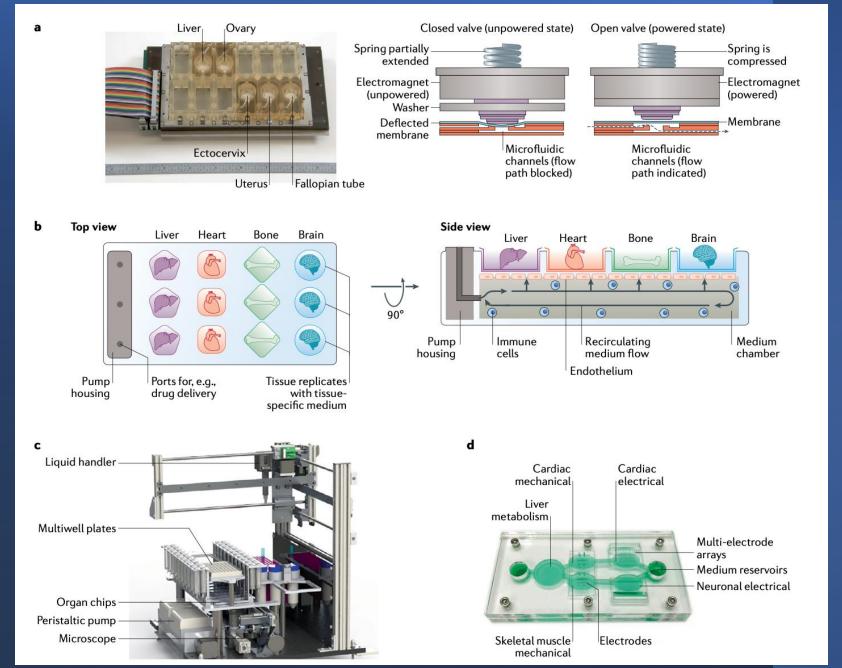
With iPS

Advantages: High plasticity and differentiation potential rendering broad disease modelling application Limitations: The difficulty to produce and adeguate number of mature, differentiated cells with the necessary purity of many tissues.

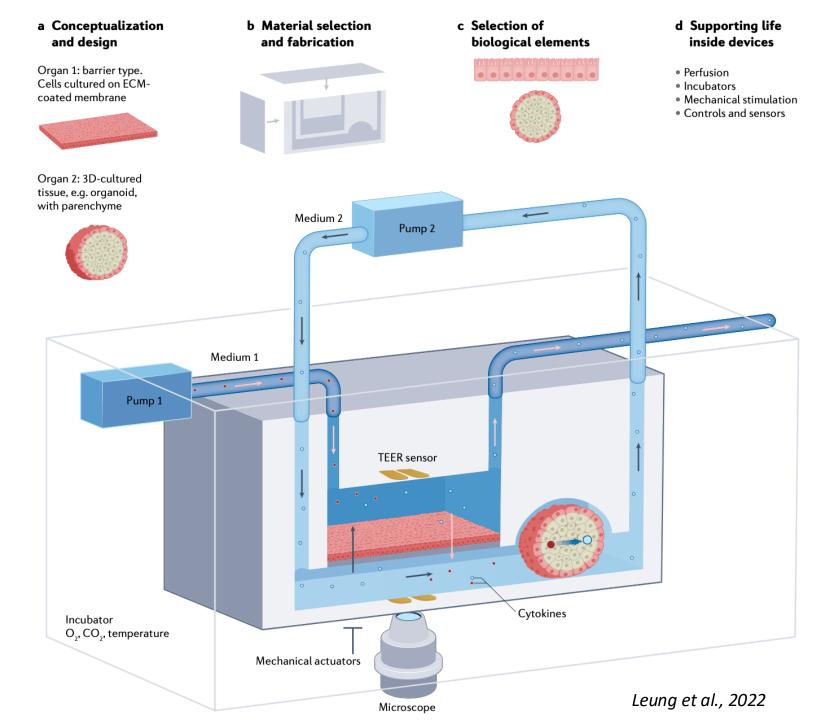
With tumor cells

Advantages: accurate modelling

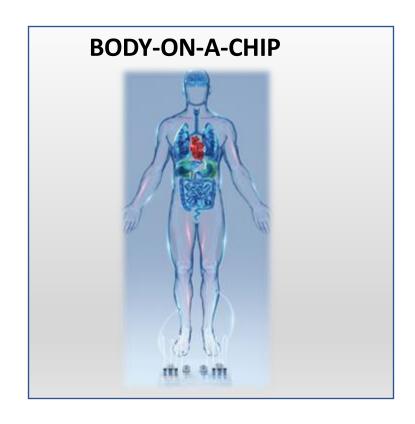
Limitation: low plasticity. Need of the specific cellular model for the targeted tumor


PATIENT-ON-A-CHIP or YOU-ON-A-CHIP

TARGETED Disesease modeling (and also therapy) with chip devices bearing patient-derived primary or iPS cell derivates



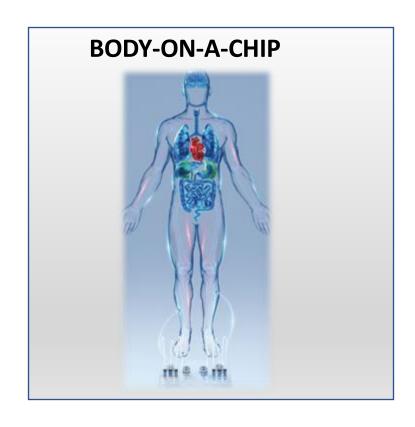
mOoC:
Systems linking multi-organ systems


Example: a generic 2-organ system

mOoC: Aspects to be considered

- biological scaling
- maintenance of sterility when building or connecting tissue modules
- use of a common medium
- incorporation of bubble traps
- control of varying flow rates

Current models of mOoC


Edington et al., 2018

10-organ 'physiome on a chip' modeling the distribution of in vitro pharmacokinetics and endogenously produced molecules.

Novak et al., 2020

A robotic system maintained the viability and organ-specific functions of eight vascularized, two-channel organ chips (intestine, liver, kidney, heart, lung, skin, blood-brain barrier and brain) for 3 weeks in culture

The Ongoing Challenge for mOoC

However...

A number of organs and tissues are necessarily missing from even the most complex series of linked OoCs, necessitating the need to account for missing organs

How can a linked platform model important diurnal or endocrine fluctuations (which affect cell and drug metabolism) if tissues producing or responding to those cues are absent?

A creation of complex engineered 'microformulators' to formulate, deliver and remove culture medium at defined time intervals, simulating the function of missing organs

Bibliografy

Leung, C.M., de Haan, P., Ronaldson-Bouchard, K. et al. A guide to the organ-on-a-chip. Nat Rev Methods Primers 2, 33 (2022). https://doi.org/10.1038/s43586-022-00118-6

Low LA, Mummery C, Berridge BR, Austin CP, Tagle DA. Organs-on-chips: into the next decade. Nat Rev Drug Discov. 2021 May;20(5):345-361. doi: 10.1038/s41573-020-0079-3. Epub 2020 Sep 10. PMID: 32913334.

Tajeddin A, Mustafaoglu N. Design and Fabrication of Organ-on-Chips: Promises and Challenges. Micromachines (Basel). 2021 Nov 25;12(12):1443. doi: 10.3390/mi12121443. PMID: 34945293; PMCID: PMC8707724.

Singh et al., 2022 Journey of organ on a chip technology and its role in future healthcare scenario https://doi.org/10.1016/j.apsadv.2022.100246

Edington, C. D. et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies. *Sci. Rep.* 8, 4530 (2018). Multi-organ microfluidic 'physiome-on-a-chip' platform modelling up to 10 organs for 4 weeks with pharmacokinetic analysis of diclofenac metabolism, noting general design and operational principles for multi-organ platforms.

Novak, R. et al. Robotic fluidic coupling and interrogation of multiple vascularized organ chips. *Nat. Biomed. Eng.* 4, 407–420 (2020). Multi-organ linked system for up to 10 OoCs for 3 weeks in automated culture and perfusion machine capable of medium addition, fluidic linking, sample collection and in situ microscopy.