TE in vitro studies

Scaffolds

- promote cell-biomaterial inter- actions, cell adhesion, and extracellular matrix (ECM) deposition;
- permit sufficient transport of gases, nutrients, and regulatory factors to allow cell survival, proliferation, and differentiation;
- biodegrade at a controllable rate that approximates the rate of tissue regeneration under the culture conditions of interest; and
- provoke a minimal degree of inflammation or toxicity in vivo

Bioreactors

Bioreactors are essential in tissue engineering because:
-they provide an in vitro environment mimicking in vivo conditions for the growth of tissue substitutes
-they enable systematic in-vitro studies of the responses of living tissues to various mechanical and biochemical cues

Closely -controlled culture conditions (biological, physical, and mechanical)

Closer in vitro replication of native tissues through bioreactor technologies

Bioreactors

For example, ligaments and tendons are dense connective tissues dominated by fibroblasts. It is known that rapid turnover of collagens in the matrix of ligaments and tendons is essential.

ECM in tendons and ligaments reacts to mechanical stress (axial stretch/compression) by a molecular adaptation. In healing ligaments and tendons, mechanical loading has been shown to affect the organization of collagen fibers and alignment of fibroblasts.

B) and C) show details of bioreactor chamber with constructs.

Drive tissue development by mimicking the native physical environment

A) Image of stimulator and bioreactor chamber assembly.

Classification of bioreactors

Bioreactors can also be classified in:

• Shaken bioreactors (rotating, lift, spinner flask, orbital shaker, etc)

• Bioreactor for applying physical stimuli (shear, pressure, stretch, compression, etc)

Physical stimuli that the bioreactor is able to perform depend on the functional requirements of the tissue to be engineered

Specific mechanical forces, which are known to be important modulators of cell physiology, might increase the biosynthetic activity of cells in bioartificial matrices and, thus, possibly improve or accelerate tissue regeneration in vitro

Shaken bioreactors

- •La cultura è agitata meccanicamente.
- •L'agitazione ha come scopo quello di permettere alle cellule l'adesione a strutture come scaffold, e migliorare il trasporto dei soluti.
- •L'agitazione può essere studiata o dimensionata per imporre stimoli di intensità nota

Shaken bioreactors: spinner flask

- Usato per mantenere in sospensione le cellule evitando che si depositino sul fondo del contenitore colonizzando gli scaffold che vengono tenuti sospesi grazie ad appositi supporti
- Molto usate per la colonizzazione di scaffold porosi

 Vengono usate anche dopo la colonizzazione per stimolare le culture (Shear Stress)

Bioreactors for physical stimuli

quantification of physiologic loading conditions in living tissue

≁

development of systems able to impose physiologic loading on tissue explants to verify maintenance in vitro of the biosynthetic activity of cells development of culture systems able to mimic the local mechanical environment on cells within engineered tissue

≁

Bioreactors for physical stimuli

- E' possibile applicare alle culture stimoli specifici
- La stimolazione è nota, modellata e finemente controllabile
- Si possono applicare diverse tipologie di stimolazione:
- Shear stress
- Pressione idrostatica
- Compressione
- Trazione
- Torsione
- Pressione differenziale ...

LigaGen L30-4C Chamber

LumeGen V60 Chamber: 6VC System

LumeGen V60 Chamber

Different kind of stimulation

TE In vitro preparation

Scaffolds sterilization

Category	Technique	Inactivation level	Mycobacteria	Vegetative bacteria	Bacteria spores	Nonenveloped virus	Enveloped virus	Prions	Fungal
Heat	Heat treatment	High	✓	√	\checkmark	\checkmark	✓	\checkmark	~
Irradiation	Gamma	High	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
	E-beam	High	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
	UV	Medium		\checkmark			\checkmark		
Plasma	Plasma	High	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Chemical	EtO	High	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
sterilization	Peracetic acid	High		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Ethanol	Medium	\checkmark	\checkmark			\checkmark		\checkmark
	lodine	Medium		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Novel	sCO ₂			\checkmark	\checkmark	\checkmark	\checkmark		
techniques	Antibiotics Freeze-drying	Low		√					

Table 1. Microorganism inactivation ability of different sterilization techniques.

UV: ultraviolet; EtO: ethylene oxide; sCO_2 : supercritical carbon dioxide.

Method	Method	Advantages	Disadvantages
Heat	Heat treatment	Simple, fast, effective, high penetration ability, no toxic residues	High temperature, affect the structural properties of biodegradable polymers
Irradiation	Gamma	High penetration ability, low temperature, effective, easy to control, no residue	Induce structural properties changes, dose rate is lower than electron beams, long time
	E-beam	Low temperature, easy to control, no residue, fast	Induce structural properties changes, electron accelerator needed, low penetration ability
	UV	Fast, low temperature, low cost, no toxic residues	Not effective, induce structural and biochemical properties changes of biodegradable polymers under long exposure duration
Plasma	Plasma	Low temperature, improved cell interaction, increasing wettability on surface of biodegradable polymers, fast	May cause changes in chemical and mechanical properties of polymers, leave reactive species
Chemical treatment	EtO	Effective, low temperature	Induce structural property change, leave toxic residue, flammable, explosive, carcinogenic
	Peracetic acid	Low temperature, effective	Structural and biochemical properties change, residual acidic environment
	Ethanol	Low temperature, low cost, no complex equipment, no toxic residue, fast	Not effective, structural and biochemical property change of scaffolds
	Iodine	Low temperature, no structural property change, fast	Affect biochemical property
Novel techniques	sCO ₂	No toxic residue, no biochemical property change	May affect porosity and morphology of scaffolds
	Antibiotics	Convenient, simple	Harmful residue, not effective
	Freeze- drying	Low temperature, no structure property change, no toxic residue	Not effective, may affect the biochemical properties of scaffold