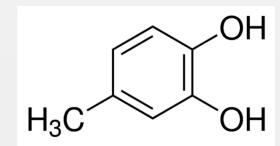
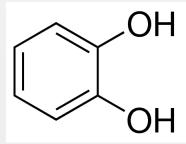
Protocollo sperimentale:

Pesare circa 6 g di uva del vitigno Nero Antico (Gessopalena), dopo aver tolto la buccia, si taglia la polpa e si sospende in 1 ml di tampone McIlvaine (0.1 M acido citrico/0.2 M Na₂HPO₄) pH 5.0, si omogeneizza in ghiaccio fino ad ottenere una soluzione omogenea. La soluzione ottenuta si centrifuga per circa 5 minuti a 13000xg, si raccoglie il sopranatante (nostro campione) evitando di toccare il pellet.

L'attività catecolasica del PPO è valutata spettrofotometricamente, registrando a T ambiente, per circa 7 minuti, l'aumento dell'assorbanza a 400 nm.


L'attività enzimatica si calcola conoscendo la variazione di assorbanza nel tempo alla lunghezza d'onda di 400 nm.

Substrati per la polifenolossidasi


$$attivit\grave{a}\ cresolasica \qquad PPO + O_2$$

$$OH \qquad Benzochinone$$

$$attivit\grave{a}\ catecolasica$$

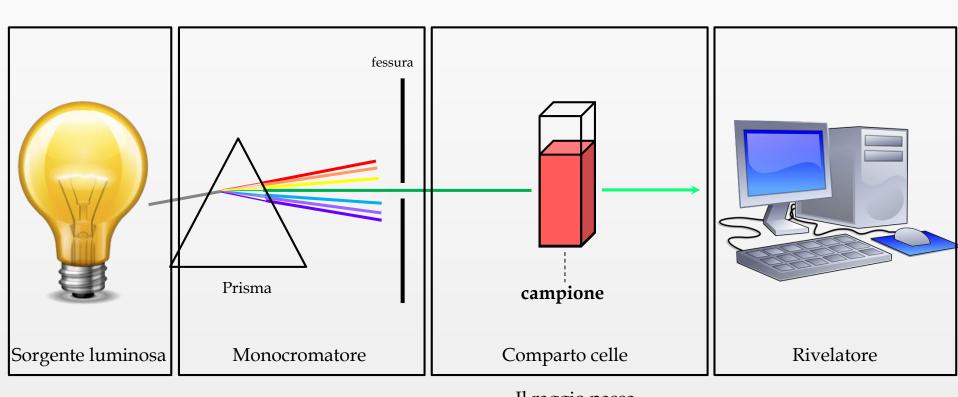
Diversi substrati per l'attività catecolasica:

4-Methylphenol o *p*-Cresol

4-Methylcatechol

Pirocatecolo (catechol)

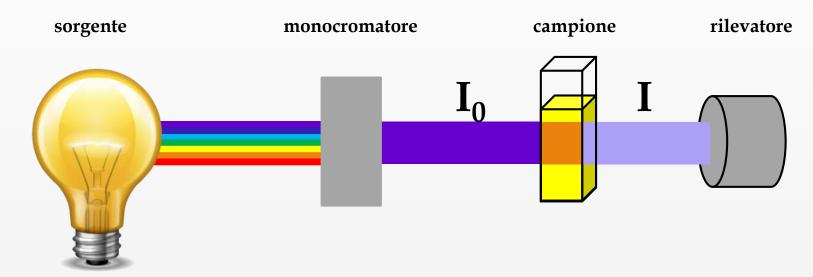
attività cresolasica


attività catecolasica

Metodo spettrofotometrico

Occorre che substrato e prodotto abbiano un diverso assorbimento in qualche zona dello spettro (visibile-ultravioletto)

$$\begin{array}{c|c} OH & \\ \hline PPO + O_2 & \\ \hline o\text{-Difenolo} & \\ \hline incolore & \\ \end{array}$$


Spettrofotometro a singolo raggio

Luce: Visibile/ultraviol etto La radiazione proveniente dal monocromatore è inviata al campione Il raggio passa attraverso il campione e fuoriesce con l'intensità trasmessa (I campione)

Il computer registra l'intensità trasmessa

Relazione tra concentrazione ed assorbimento di una sostanza ad una certa lunghezza d'onda

Legge di lambert-Beer: $A = LogI_o/I = \varepsilon_{\lambda}cd$

L'assorbanza è proporzionale sia alla concentrazione della sostanza assorbente sia allo spessore dello strato attraversato.

- **A** = Assorbanza, di solito viene chiamata densità ottica (OD, *Optical Density*).
- ε = Coefficiente di estinzione molare (dm³ mol-¹ cm-¹) della sostanza che assorbe luce alla lunghezza d'onda λ , con un cammino ottico di 1 cm.
- \mathbf{c} = concentrazione molare (moli/L) della soluzione che assorbe la luce.
- **d** = cammino ottico della radiazione nella soluzione (o spessore).

Per determinare la velocità della reazione enzimatica:

Sfruttiamo la legge di Lambert-Beer

$$A = \mathcal{E} C d \longrightarrow \Delta A = \varepsilon \Delta C d$$

$$\Delta C (mol/L) = \frac{\Delta A}{\min x \ \varepsilon \frac{L}{mol \ x \ cm}} x \ cm$$

In base alle legge di Lambert-Beer, occorre conoscere il coefficiente di estinzione molare (ε) del pirocatecolo (chinone) a 400 nm che rappresenta l'assorbanza di una soluzione con concentrazione 1 M e cammino ottico unitario (1 cm).

$$\varepsilon = 1417 \, mol/L \, (M)$$

 $\varepsilon = 1,417 \, mmol/L \, (mM)$

 $\varepsilon = 0.001417 \,\mu mol/L \,(\mu M)$

Ricordate che:

1 mol/L = 1 mmol/mL

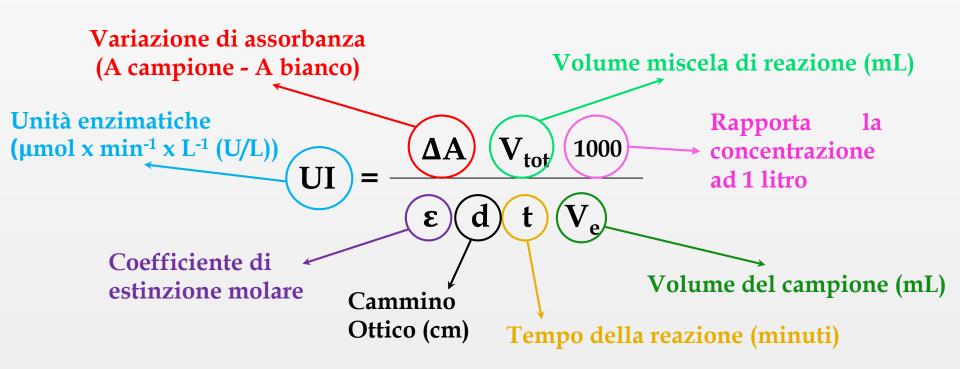
 $1 \, mmol/L = 1 \, \mu mol/mL$

 $1\mu mol/L = 1 nmol/mL$

Ai fini pratici si utilizza la concentrazione c in mmol/L. Per il pirocatecolo a 400 nm, ε x d = 1,417 mmol/L (μ mol/mL)

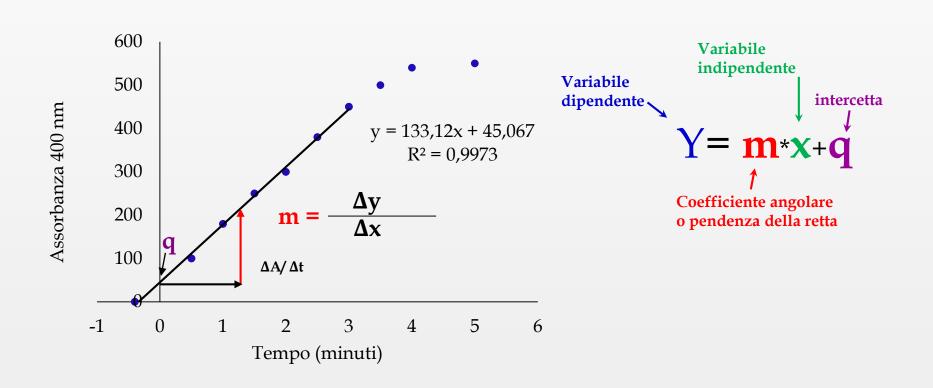
Estimated Molar Extinction Coefficients for the Quinone Products of Seven o-Diphenolic Substrates^a

Substrate	рН	Wave- length (nm)	€ (M ⁻¹ cm ⁻¹)	s.	п	$S_{Y,y}$	95% C.L.	Re- ported	References
Pyrocatechol	5.86.8	390	1417	15	8	0.0028	48	1400%	Dawson and Tarpley (7)
								1330° 1830°	Mason (8) Mason (8)
3.4-Dihydroxy phenylacetic acid	5.8-6.8	390	1311	30	8	0.0032	95		
4-tert-Butyl- catechol	5.8-7.8	400	1150	18	12	0.0037	57		
4-Methyl-	5.8-7.8	412	1010	22	12	0.0065	70		
catechol	5.8-6.8	400	1400	32	8	0.0036	101	1350	Mayer et al.
	7.8	495	2140	31	4	0.0036	99		(3)
L- D ора	5.8-6.8	480	3388	25	8	0.0018	80	3715 ⁶ 3467 ^c	Mason (9)
	5.8-6.8	305	9181	100	8	0.0070	318	9350%	Mason (9)
3,4-Dihydroxy-	5.8-7.8	412	1124	15	12	0.0036	102		
hydrocinnamic acid	7.8	495	2295	32	4	0.0022	48		
Dopamine	5.8-6.8	465	2455	20	8	0.0076	64	2511°	Palmer (17)
	5.8 - 6.8	300	8968	127	8	0.0072	404	8912°	Palmer (17)


[&]quot;Calculations are based on five initial substrate concentrations with four replicates each per pH. Substrate replicates (n) are pooled when pH has no significant effect on peak product absorbance at a given wavelength. The 95% confidence limits (C.L.) define the upper confidence limit when added to ϵ and the lower limit when subtracted from it.

^b Enzymatically prepared quinone.

^c Quinone prepared with silver oxide in anhydrous ether.


Determinazione dell'unità enzimatica (UI)

Corrisponde alla quantità di enzima che converte 1 µmole di reagente nel prodotto in 1 minuto, nelle condizioni di reazione standard (ottimali)

Calcolo del \(\Delta A/\)min

Substrato utilizzato catecolo e lettura dell'assorbanza a 400 nm

Protocollo di lavoro

Preparare il substrato alla concentrazione di 0,1 M: pesare la quantità corrispondente in grammi pari a 0,1 M di catecolo e sciogliere in tampone McIlvaine, pH 5,0.

Preparare l'inibitore alla concentrazione di 50 mM: pesare la quantità corrispondente in grammi pari a 50 mM di acido ascorbico e sciogliere in tampone McIlvaine, pH 5,0.

M = moli/L

Protocollo di lavoro

Bianco	
Substrato pirocatecolo (0,1 M)	1 mL

Attività PPO				
Substrato pirocatecolo (0,1 M)	900 μL			
Succo d'uva	100 μl			

Inibizione dell'attività PPO*				
Succo d'uva	100 μL			
Inibitore (acido ascorbico 50 mM)	50 μL			
Substrato pirocatecolo (0,1 M)	850 μL			

^{*} Una volta aggiunto l'inibitore al succo d'uva, incubare per circa 30 minuti ed infine aggiungere il substrato.

CALCOLO DELLA VELOCITÀ INIZIALE DELLA REAZIONE:

 $A = C \times \varepsilon \times d$ (legge di Lambert-Beer) $\Delta A/\Delta t$ (assorbanza/min) = variazione di assorbanza al minuto ε = coefficiente di estinzione molare per il catecolo = 1417 (mol⁻¹ L cm⁻¹) d = cammino ottico = 1 cm

Calcolare le μ moli di prodotto formate in 1 mL di miscela di reazione: dividere il valore di $\Delta A/\min$ per il coefficiente di estinzione molare (μ moli/mL) del catecolo ($\lambda_{400~\rm nm}$ = 1,42 μ moli⁻¹ mL cm⁻¹) e per il cammino ottico (1 cm).

μmoli prodotto formato/mL =
$$\frac{\Delta A}{1,42 \mu moli^{-1} mL cm^{-1} x cm}$$

Calcolare le unità di attività enzimatica/mL (UI) di soluzione saggiata, tenendo conto dei μ L di omogenato di uva utilizzati per il saggio. (Una unità enzimatica è la quantità di enzima che converte in prodotto una μ mole di substrato per minuto nelle condizioni ottimali di pH e temperatura per il saggio).

(Una unità enzimatica è la quantità di enzima che converte in prodotto una µmole di substrato per minuto nelle condizioni ottimali di pH e temperatura per il saggio).

Precauzioni nei dosaggi enzimatici

- Substrati e tamponi devono essere di alta purezza;
- L'enzima purificato non deve contenere composti che interferiscono con il dosaggio;
- L'enzima deve essere stabile;
- Controllo di pH e temperatura;
- La velocità deve essere costante nell'intervallo considerato (v_0)