FUTURE@IBPM 2022

Protein structure prediction:

Is AlphaFold the solution to the folding problem?

Bioinformatics@IBPM

Discussing projects Sharing skills Generating

knowledge

Teresa Colombo, Veronica Morea, Allegra Via

Ph.D. students: Chiara Pacelli, Gianmarco Pascarella

Department of Biochemical Sciences «A. Rossi Fanelli»

(https://pdb101.rcsb.org/learn/videos/what-is-a-protein-video)

Proteins

Folding Problem

Proteins

Sequence and structure databases

(https://pdb101.rcsb.org/learn/videos/what-is-a-protein-video)

IBPM Annual The «folding problem» Meeting 2022/02/1-2 **Proteins** «Given a protein sequence, what 3D structure will it assume?» **Folding Problem Protein model** accuracy assessment **Protein Protein structure prediction methods => 3D models** structure prediction methods How accurate How accurate are protein models? are protein models? How accurate is my model? Protein 3D model (M) with 3D structure of target (T) comparison

Proteins

Folding Problem

Protein model accuracy assessment

> **Protein** structure prediction methods

How accurate

Protein model accuracy assessment

3D model (M) with 3D structure of target (T) comparison

Proteins

Folding Problem

Protein model accuracy assessment

> Protein structure prediction methods

How accurate are protein models?

How accurate is

Future perspectives Acknowledge ments

Protein model accuracy assessment

3D model (M) with 3D structure of target (T) comparison CASP: «Critical Assessment of Structure Prediction»

Proteins

Folding Problem

Protein model accuracy assessment

> Protein structure prediction methods

How accurate are protein models?

How accurate is my model?

Future perspectives

ments

Protein model accuracy assessment

3D model (M) with 3D structure of target (T) comparison

CASP: «Critical Assessment of Structure Prediction»

✓ Double-blind:

- Predictors: «blind» to Target proteins 3D structures
- Assessors: «blind» to Predictors identity
- ✓ World-wide:
 - Predictors: majority of groups active in the field
- ✓ Long-standing:
 - Every two years since 1994

«Gold-standard» Protein Structure Prediction Assessment

Peers

Funding Agencies

Issue: Statistical Significance?

Protein model accuracy assessment

Proteins

Folding Problem

Protein model accuracy assessment

> Protein structure prediction methods

How accurate are protein models?

How accurate is my model?

Future perspectives Acknowledge

CASP: «Gold Standard» Assessment

	CASP	Proteins J.	Targets (T) Groups		Models			
el	Year–Round	Year-Vol.	Seq	3D	All	3D	All	3D
	1994–01	1995–23	35	30	40	30	200	200
	1996–02	1997–29	40	25	70	60	2,000	900
	1998–03	1999–37	45	40	100	60	4,000	2,000
	2000–04	2001–45	45	40	160	110	10,000	5,000
	2002–05	2003–53	70	60	220	180	30,000	25,000
	2004–06	2005–61	90	70	210	170	40,000	25,000
	2006–07	2007–69	100	95	250	180	65,000	50,000
	2008–08	2009–77	130	120	240	160	80,000	60,000
	2010-09	2011–79	130	120	250	170	90,000	60,000
	2012–10	2014-82	160	100	210	150	70,000	50,000
	2014–11	2016-84	210	90	210	140	60,000	40,000
	2016–12	2018-86	150	70	190	130	55,000	40,000
	2018–13	2019-87	110	75	190	110	60,000	35,000
	2020–14	2021–89	90	70	220	150	70,000	45,000
	2022–15							
		Issue: Statistical S	Significance	e?	OTEIN DATA BANK	Total: ~1	86,000 Yea	ar: ~14,000

Folding Problen Protein model

assessment

Protein structure prediction methods

How accurate are protein models?

How accurate is my model?

Future perspectives Acknowledge ments

Protein structure prediction methods

CASP: many different protein structure prediction methods

Protein

structure

prediction

methods

Acknowledge ments

Protein structure prediction methods

Template-Based Modelling (TBM)

The lower the RMSD value, the higher the structure similarity Based on **Evolutionary Information** 3.0 (Homology or Comparative modelling) $RMSD = \sqrt{1}$ 2.4 Similar δ_i : distance between RMSD (Å) 1.8 amino acid atom *i* of structure A and atom *i* of structure B sequences Usually C_{α} or main-chain 1.2 atoms (N, C_{α} , C, O) 0.6 Drawback: high sensitivity to poorly Similar 3D aligned regions 0.0 20 80 60 40 0 100 structures 1 Angstrom (Å) = 10^{-10} m %age sequence identity = 0.000000001 m

Protein structure

prediction

methods

Protein structure prediction methods

Template-Based Modelling (TBM)

Based on Evolutionary Information (Homology or Comparative modelling)

> Similar amino acid sequences

Similar 3D structures

<u>If</u> Sequence of Target is ≈ Sequence of Template(s) <u>And</u> 3D Structure of Template(s) is known

Build 3D Model of Target:

- 1) Align sequence of Target and sequence(s) of Template(s)
- 2) Copy co-ordinates of conserved regions from 3D structure of Template(s) to Model of Target
 - 3) Use other methods to model non conserved regions
- \downarrow Only protein regions similar to already known ones
- Known structures cluster into ~800 folds (~1,000 predicted)

↑ Known Model Accuracy

Acknowledge ments

Proteins

- **Folding Problem**
- Protein model accuracy assessment
 - Protein structure prediction methods
- How accurate are protein models?
- How accurate is my model?

Future perspectives Acknowledge ments

Protein structure prediction methods

Template Free (TF) 1: Ab initio methods

Based on Chemical-physical principles

Use

- 1) Molecular Dynamics (MD) / stochastic methods => generate different conformations
- 2) Energy minimization (EM) => identify local lowest energy conformation (native structure)
- 3) Empirical energy functions (force fields)

$$E = E_{\rm covalent} + E_{\rm noncovalent}$$

$$E_{
m covalent} = E_{
m bond} + E_{
m angle} + E_{
m dihedral}$$

 $E_{
m noncovalent} = E_{
m electrostatic} + E_{
m van \ der \ Waals}$

Acknowledge ments

Protein structure prediction methods

How accurate are protein models?

CASP1 (1994): The First Results

Folding Problem

Proteins

- Protein model accuracy assessment
 - Protein structure prediction methods

How accurate are protein models?

How accurate is my model?

Future perspectives Acknowledge

1) Template free methods (TFM): no useful 3D models

- 2) Template-based methods (TBM): high quality models
 - Template identification
 - Correct Target-Template sequence alignment production
 - Target-Template structurally conserved regions only (copying from Nature)

Disappointing: Protein Folding Problem not solved (despite claims)

Invaluable:

- 1) First objective assessment of methods accuracy
- 2) Promoted cross-fertilization of ideas
- 3) Stimulated research on method development/improvement

(https://predictioncenter.org/decoysets2019/description.cgi?casp=CASP1)

How accurate are protein models?

IBPM Annual

Meeting

2022/02/1-2

Fair use, https://en.wikipedia.org/w/index.php?curid=65998083

How accurate are protein models?

Proteins

Folding Problem

Improvements until CASP12

Protein model accuracy	CASP Year–Round	Proteins Year–Vol.	CASP13 (2018)	<u>CASP14 (2</u>	<u>2020)</u>
assessment Protein structure prediction methods How accurate are protein models? ow accurate is my model? Future perspectives	1994-01 1996-02 1998-03 2000-04 2002-05 2004-06 2006-07 2008-08 2010-09 2012-10 2014-11 2016-12 2018-13 2020-14	1995–23 1997–29 1999–37 2001–45 2003–53 2005–61 2007–69 2009–77 2011–79 2014–82 2016–84 2018–86 2019–87 <u>2021–89</u>	Science The Guardian The New York Times DeepMind blog Forbes M. Alquraishi blog	Science The Guardian The New York Times DeepMind blog Fortune Nature Nature CNBC news Bloomberg Financial Post MIT Technology Review CASP Press Release	The Telegraph Daily Mail Tech Crunch Venture Beat New Scientist SciTech Daily Eureka Alert News Medical MedCity News BBC news The Verge

Proteins

Folding Problem

Protein model

How accurate are protein models?

Ca-Ca distance from Target < 1 Å < 2 Å < 4 Å < 8 Å > 8 Å (Model) > 8 Å (Target)

How accurate are protein models?

TBM: Best Models Much better than Best template & ≈ Experimental Structure

Proteins

Folding Problem

How accurate are protein models?

TBM: Best Models Much better than Best template & ~ Experimental Structure

Easy Target: T1034-D1 (156 a.a.) **Protein model** 10 3 R difference, A Distance Cutoff, LO. P0 100 110 120 130 140 150 30 40 50 _ 60 70 80 20 5 How accurate Ŗ -3 are protein -4 models? -5 Residue 0 20 80 40 60 100 0 Percent of Residues (CA) Other Models GDT-TS = 87-9 **Best-template: 6FRH A** Best model (AlphaFold2) GDT-TS = 94 (https://predictioncenter.org/casp14/results.cgi)

Proteins

How accurate are protein models?

TFM: Best Models with no template ≈ Experimental Structure

Proteins

Folding Problem

Protein model

How accurate are protein models?

TFM: Best Models with no template ≈ Experimental Structure

Difficult Target: T1038-D1 (189 a.a.)

Percent of Residues (CA)

Future perspectives Acknowledge ments

How accurate

are protein

models?

Other Models GDT-TS = 32-7

Best-template: 6IIC_B

Best model (AlphaFold2) GDT-TS = 87

How accurate are protein models?

Proteins	Prediction		CASP2-12	CASP13-14	
Folding Problem	Methods	CASP1 (1994)	(1996-2016)	(2018-2020)	
Protein model accuracy assessment Protein	Template-based (TBM)	Best models only as good as the best template structure	Some of best models include loops	Consistent models quality ≈ experimental structures	
structure prediction methods	Evolutionary (TFM)	-	Sporadically good results	Consistent models quality ≈ experimental structures	
How accurate are protein	Ab initio (TFM)	no useful results	Sporadically loops & refinement	Sporadically loops & refinement	
How accurate is my model?	Protein Folding Problem	far from being solved	far from being solved	«giant leap forward» <i>BUT:</i> Unpredicted regions? (~1/3)	
Future perspectives				Different proteins? Human intervention? Theoretical understanding?	
Acknowledge					

How accurate is «my» model?

Variables

- Folding Problem
- Protein model accuracy assessment
 - Protein structure prediction methods
- How accurate are protein models?
- How accurate is my model?
 - Future perspectives Acknowledge ments

- 1) Program
- 2) Human intervention
- 3) Predicted accuracy
- 4) Homologous structure
- 5) Specific protein
- 6) Other features

How accurate is «my» model?

Folding Problem

Protein model accuracy assessment

3)

4`

5)

6)

- Protein structure prediction methods
- How accurate are protein models?

How accurate is my model?

Future perspectives Acknowledge ments

Yaxis: Sum of Zscores Program Human intervention **Predicted accuracy** TBM/TFM, TFM) **Homologous structure Specific protein** Xaxis: Group number **Other features** AlphaFold2 **Baker** Zscore Automatic evalutation: GDT-TS Ca

Variables

Zscore Assessors: additional parameters (*e.g.*, side-chains, steric clashes, quality prediction)

How accurate is «my» model?

Variables

- are protein models?

How accurate is my model?

Future perspectives **Acknowledge** ments

Program Human intervention 2) **Predicted accuracy** 3) **Specific protein** 5) **Other features** 6)

Human Experts better than best programs

Homologous structure

Zscore: GDT-TS Ca

Best programs better than non expert users

Zscore: additional parameters (e.g., side-chains, steric clashes, quality prediction)

How accurate is «my» model?

Variables

CASP Assessment

(B-factor column)

T-M distances

AlphaFold2

not in this

category

Predicted Accuracy Values

compared with measured

- **Folding Problem**
- Protein model accuracy assessment
 - Protein structure prediction methods

How accurate are protein models?

How accurate is my model?

Future perspectives Acknowledge ments

Program **Human intervention** 3) **Predicted accuracy Homologous structure** 4` **Specific protein** 5) Other features 6)

Very high
High
Low
Very low (regions

AlphaFold2

Predicted Accuracy

may be unstructured)

Group

https://predictioncenter.org/casp14/qa_corr.cgi

How accurate is «my» model?

Acknowledge ments

How accurate is «my» model?

IBPM Annual

Meeting

2022/02/1-2

ments

How accurate is «my» model?

Proteins

- **Folding Problem**
- Protein model accuracy assessment
 - Protein structure prediction methods
- How accurate are protein models?

How accurate is my model?

Future perspectives Acknowledge ments

Program Human intervention Predicted accuracy Homologous structure Specific protein Other features

AlphaFold2 not these categories

Variables

Accuracy Estimation

for overall models, domains and residues

Refinement

Model improvement (Feig or Baker)

Assembly (with CAPRI)

protein-protein, subunit-subunit, and domain-domain interactions

Data Assisted

- e.g., crosslinking data, SAXS, NMR

Biological Relevance

- answers to biological questions (e.g., experimental structure determination, function determinants)

Protein structure prediction methods: AlphaFold2

Proteins

Folding Problem

Protein model accuracy assessment

> Protein structure prediction methods

How accurate are protein models?

How accurate is my model?

Future perspectives Acknowledge ments

Previous Template Free MSA RR SSE N ... () 🔨 Frag ments

Ab Energy initio calculations

CASP14: best for 88/97 Targets & accuracy ≈ experimental structures

Al system developed by DeepMind (https://deepmind.com/)

Deep <u>learning</u> method – trained on >170.000 3D structures (AlphaFold1: 29,000) – 2 main modules: **MSA** (red) and **RR** (green) – reciprocal feed (e.g., correlated mutations in large MSAs => contact maps => distance maps); <u>relevant data</u> are brought together and <u>irrelevant data</u> are filtered out ("attention algorithm") – first amino acid clusters, then clusters joining – **SSE** down-tuning (overfitting in AlphaFold1) – **no fragment** libraries – "**Ab initio**" energy refinement (AMBER): last step, only slight adjustments

Protein Models (https://alphafold.ebi.ac.uk/)

- ~50 proteomes (human, parasites and model organisms)
- SwissProt
- Aiming at UniRef90 (1,000,000 sequences)

Prediction Server

(https://colab.research.googl e.com/github/deepmind/alph afold/blob/main/notebooks/Al phaFold.ipynb)

Source code

(https://github.com/deepmind /alphafold)

By DeepMind - Original publication: DeepMind blog: AlphaFold: a solution to a 50-year-old grand challenge in biology Immediate source: https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology, Fair use, https://en.wikipedia.org/w/index.php?curid=65993510

Future perspectives Acknowledge

ments

Xaxis:

Group number

Proteins

Folding Problem

Protein model accuracy assessment

> Protein structure prediction methods

How accurate are protein models?

How accurate is my model?

Future perspectives

Acknowledge ments

Protein Structure Prediction

CASP15 (2022)

- Running (https://predictioncenter.org/news.cgi#409)
- Proposed changes (e.g., add RNA, dynamics)
- Experimentalists contribution essential for methods assessment and improvement

AlphaFold

 Expected to further improve: GDT-TS ≈ 100 on all Targets?

Folding Problem:

- A.I. provides accurate models for most proteins
- Ab initio principles not closer to being understood
- A.I. «black box» opening may help

Artificial intelligence (A.I.)

Future Perspectives

A.I.: "intelligence demonstrated by machines"

Intelligence: "ability to perceive the environment and take actions that maximize the chance of achieving goals"

A.I. ultimate goal: general (human-like) intelligence, i.e., ability to solve any problem

A.I. impact huge in specific fields since 2015

- biological sciences (AlphaFold2: Protein Structure Prediction)
- Deepmind: disease diagnosis, energy saving, web search (Google)
- Recommendation (Amazon, Netflix, YouTube)
- Human speech (Siri, Alexa)
- Self-driving cars (Tesla)

Acknowledgements

Proteins Folding Problem Protein model accuracy assessment

> Protein structure prediction methods

How accurate are protein models?

How accurate is my model?

Future perspectives

Acknowledge ments

John Moult University of Maryland CASP founder and organizer

Cyrus Chothia (1942-2019) Arthur M. Lesk (Pennsylvania State University) Pioneering work on protein 3D structure analysis and prediction

Anna Tramontano (1957-2017) CASP organizer and assessor

CASP organizers, predictors, assessors and

3D structure providers:

please, provide 3D structures to next CASPs!!!

Tavolo di lavoro del CNR su A.I.

Caudai C (ISTI), Galizia A (IMATI), Geraci F, Le Pera L (IBIOM-IBPM ->ISS), Morea V, Salerno E (ISTI), Via A, Colombo T.

"A.I. applications in functional genomics"

Comput Struct Biotechnol J (2021) 19: 5762-5790

Gianmarco Pascarella help with talk slides and AlphaFold2 use

How accurate are protein models?

Proteins

Folding Problem

Protein model accuracy assessment

> Protein structure prediction methods

How accurate are protein models?

How accurate is my model?

Future perspectives Acknowledge ments CASP: 3D model (M) with 3D structure (T: Target) comparison

Structure Similarity Measure: GDT-TS

(Global Distance Test– Total Score)

GDT_TS = (GDT_P1 + GDT_P2 + GDT_P4 + GDT_P8) / 4

High GDT-TS values => High Model Quality

GDT-TS = 90

GDT-TS = 80

GDT-TS = 70

GDT-TS = 50

IBPM Annual

References

