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is strictly better than another for every choice the opponent might make. (To
distinguish from weak dominance, the form of dominance where one strategy
does strictly better than another for every choice by the opponents is sometimes
called strict dominance.) Once again, the answer to this question must be settled
empirically; without going into detail, I simply assert that weak dominance, at
least in some games, does not do nearly aswell as strict dominance, and iterated
weak dominance can do quite poorly. Be wary of analyses you see that invoke
weak dominance.
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Figure 2.9. Weak dominance. Row 1 weakly dominates Row 2. Having elim-
inated Row 2 by weak dominance, iterated dominance eliminates Column 1,
yielding the prediction that the players would choose Row 1, Column 2.

2.3. Backward Induction in
Simple Extensive-Form Games

Have a look at the game depicted in Figure 2.10. This is a four-player extensive-
form game in which there are no information sets and nomoves by nature. The
lack of information sets is particularly relevant: This means that whenever a
player is called upon to move, he or she knows precisely what happened in
earlier moves and (so) precisely where in the game tree things stand.5
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Figure 2.10. A simple extensive-form game. Payoffs are given in the order
Paul’s first, then John’s, George’s, and finally Ringo’s. Because this game has
no information sets (or moves by nature), we can use backward induction to get
a game-theoretic prediction as to what will happen. See the text for details.

Suppose that Paul begins by choosing Y and John follows this with a choice
of b. It is Paul’s turn tomove again: If Paul chooses k, Paulwill get a payoff of 4,
while choosingmwill give Paul a payoff of 2. It makes sense, for this reason, to

5 The technical term for extensive-form games of this type is games of complete and perfect infor-
mation.



Backward induction 

- This is a four-player extensive-form game in which there are no information 
sets and no moves by nature.  

- The lack of information sets is particularly relevant: This means that 
whenever a player is called upon to move, he or she knows precisely what 
happened in earlier moves and (so) precisely where in the game tree things 
stand.  

-



Backward Induction

Suppose that Paul begins by 
choosing Y and John follows 
this with a choice of b.  

It is Paul’s turn to move again: 

• If Paul chooses k, Paul will 
get a payoff of 4,  

• While choosing m will give 
Paul a payoff of 2.
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Backward Induction
It makes sense to suppose that Paul, 
put in this position, will choose k.  

Similarly, if Paul chooses Y and John 
chooses c, Ringo has a choice of x, 
for a payoff to him (Ringo) of 3, or y, 
which brings him 1.  

So, the analysis goes, if Paul 
chooses Y, John reasons: “If I 
choose a,I will get 3. If I choose b, 
Paul will choose k and I’ll get 4. If I 
choose c, Ringo will choose x as the 
better option for him, which gives 
me 2. So my best option is b.”
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Figure 2.10. A simple extensive-form game. Payoffs are given in the order
Paul’s first, then John’s, George’s, and finally Ringo’s. Because this game has
no information sets (or moves by nature), we can use backward induction to get
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Suppose that Paul begins by choosing Y and John follows this with a choice
of b. It is Paul’s turn tomove again: If Paul chooses k, Paulwill get a payoff of 4,
while choosingmwill give Paul a payoff of 2. It makes sense, for this reason, to
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Backward induction 

And now Paul reasons: ”If I choose Y, John 
will reason as above and choose b, and I 
will then choose k, and so I’ll get 4.  

My other option is X.  

With this choice, George is given the move, 
and I anticipate that he’ll choose B (4 for 
George), since A gives George only 2.  

So, if I choose Y, I anticipate getting 4.  

If I choose X, I anticipate getting 2. My best 
choice is Y.”
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Backward Induction 

So,  if we think that the players see the game as we do and reason in the 
manner just suggested, we predict Paul will choose Y, John will choose b, and 
Paul will choose k. 

This is backward induction applied to this simple game.



Backward Induction 

Try Backward Induction for the Sam and Jan game as an exercise:

14 2. Noncooperative Game Theory

Tables of this sort are inadequatewhen there aremore than two players, and
other means are needed to present the data.

In some games, for every strategy profile, the sum of the payoffs to the
players is constant. Such games are called constant-sum games. Old time game-
theory books would take the constant to be zero and call them zero-sum games.
Constant- (or zero-) sum games give rise to some interesting theoretical devel-
opments, but we don’t explore them, because most interesting game-theoretic
models of economic situations are not constant sum.

Extensive-Form Games
In extensive-form games, an alternative way to depict (model) a competitive
situation, the emphasis is on the dynamic back-and-forth tactics of the players.
The second version of the Sam and Jan game provides an ideal example.

In Figure 2.3, you see an extensive-form representation of the second Sam
and Jan game. There are nodes (one open circle and some filled-in circles); labels
on each node, where each node is labelled with the name of one of the players;
moves, which are depicted by arrows leading from one node to another node,
with labels on the arrows that give the name of the particular move; and, at
the end of each sequence of moves (or each path from the open circle, which is
where the game begins, to the “end” of the game), payoffs for the players.

The open circle is where the game begins: Janmoves first, so his name labels
this node; he chooses what happens there. He has three choices, hence there are
three arrows coming out of the this node; the labels are Old Pros, Art Museum,
and Cafeen. Each of these arrows points to a (solid, hence not-initial) node
labelled Sam. Sam, then, has a choice of Old Pros, Art Museum, or Cafeen,
in each of three cases: after Jan has chosen Old Pros; after Jan has chosen Art
Museum; and after Jan has chosen Cafeen. And that (Sam’s choice in response)
ends this game, so after each of the nine arrows representing possible choices-
in-response by Sam, we have payoff vectors; in this diagram, Sam’s payoff is
given first and Jan’s payoff is given second.

(5, 5)(4, 3) (1, 3) (2, 2)(4, 2) (3, 6)(2, 1)
(6, 4) (1, 1)

Jan

Old Pros Art Museum Cafeen

Sam SamSam

Art 
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Museum
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Figure 2.3. An extensive-form representation of the variation on the Sam and
Jan game, in which Jan moves first and Sam responds. Sam’s payoffs are listed
first, then Jan’s.

One important rule in depicting games in this fashion is that the diagram
must never cycle back on itself: No path of arrows beginning at any node can



Backward Induction 

- The key to applying backward induction is that there are no information sets  

- What do you do if you reach a node where the player moving is indifferent 
between two or more options, but it matters to other players which choice is 
made?  

- Finally, this technique works as long as the game can consist of no more 
than some finite number of moves by players.



Should we believe in backward induction? 

Problem: backward induction is weak in revealing players’ preferences.  

Have a look at a famous game.  

Have the game played in class. 



Should we believe in backward induction? 
The ultimatum game

There are two players, A and B.  

A moves first and chooses to be either greedy or fair.  

If A is fair, each side gets $5.  

If A is greedy, B must:  

a) accept A’s greed, giving $9 to A and $1 to B 

b) or reject A’s offer, which gives $0 to both.  



Should we believe in backward induction? 
The ultimatum game

• Represent the game on the blackboard in extensive form 

• Actually play the game 

• Have the students make predictions 

• Social preferences



Should we believe in backward induction? 

- Players 1 and 2,  

- One dollar is put on the table.  

- Player 1 has the first move; she can either take the dollar, leaving Player 2 with 
nothing, or say “I pass.”  

- If she passes, a second dollar is put on the table, and it is Player 2’s turn to take 
the money, leaving Player 1 with nothing, or to say “I pass.” If Player 2 passes, a 
third dollar is put on the table, and we go back to Player 1. And so on, and so 
on.  

- This continues until either one of the players takes the money off the table, 
ending the game, or the amount of money on the table reaches $10. 

The Centipede game



Should we believe in backward induction? 
The Centipede game

- When $10 is reached, it is Player 2’s turn:  

- He can take the $10 or say “Not yet.”  

- If he says “Not yet,” four five-dollar bills are added to the pot, for a total of $30  

- now Player 1 makes the final choice: She can say “I want it all” or she can say 
“$15 for each.”  

- And whatever she says is how the game ends. 
-



Should we believe in backward induction? 
The Centipede game

Backward induction says that Player 1 will take the $1 at the start of the game 

Is this what you would do if you were Player 1, playing against one of your 
classmates? 



Should we believe in backward induction? 
The Centipede game

Even if money is everything to the players with very high probability, a lot of 
stages in the game where the potential benefits to the players grow if they 
trust each other, can overthrow the logic of backward induction.  

Backward induction is premised on every player knowing for certain what will 
happen for the rest of the game. That can be a fairly heroic premise. 
•



Nash 
Equilibrium



John Nash 



Nash Equilibrium

Economists employ dominance and iterated dominance, both strict and weak, 
whenever they can.  

But, in many economic contexts this does not get all the way to a predicted 
outcome.  

And in extensive-form games, backward induction can be at least difficult and, 
in some cases, impossible to apply; information sets can intefere.  

In such cases, the analysis turns to Nash equilibria. 
•



Nash Equilibrium

Let’s go back to Sam and Jan: 

2. Noncooperative Game Theory 9

In each of the nine cells in the table are two numbers. These numbers assign
utilities or payoffs to the nine possible outcomes (where is Sam andwhere is Jan),
corresponding to the preferences for the two just outlined: larger utilities or
payoffs are more preferred outcomes for the individual. The first number in
each cell is Sam’s payoff, the second is Jan’s. Please note that:

• In the rankings givenpreviously, six andnot nine outcomes are ranked. This
is because of an implicit (now explicit) assumption that, if the other person
is somewhere else, it does not matter to Sam or Janwhere is that somewhere
else. Therefore, if Sam is at Old Pros (row 1), Sam gets the same payoff (4)
whether Jan is at the art museum or at Cafeen. Of course, Jan’s payoff does
depend on which of these prevails.

• The rankings are an ordinal ranking of the outcomes. The translation in
Figure 2.1 into numerical utilities is consistent with those rankings, but the
exact numbers are otherwise entirely arbitrary; I simply assigned 6 to the
best option, 5 to the second best, and so forth.

6,4 4,3 4,2
2,1 5,5 2,2
1,1 1,3 3,6

Old Pros Art Museum Cafeen
Old Pros

Art Museum
Cafeen

Sam’s choice

Jan’s choice

Figure 2.1. The situation facing Sam and Jan. As described in the text, Sam
and Jan must decide independently whether to go to Old Pros, the art museum,
or Cafeen. Sam’s choice determines the row, and Jan’s choice determines the
column. The two numbers in the cell are Sam’s payoff first and then Jan’s.

Now for an assumption that is critical to the story: Sam and Janmust choose
independently where to go, without knowing what the other party has done.
Can they consult (say, by cell phone) before making their choices? I leave this
question open for now.

Sam Is Not Going to Cafeen. Is Jan?
Canwe say, based on what we have done so far, what will happen? Canwe say
where Jan or Sam will go? Can we say for sure what will not happen?

If—and this is a big if in applications of game theory—we have the payoffs
of Sam right, we can be fairly sure that Sam is not going to Cafeen. No matter
what Jan does, Sam is better off going to Old Pros than to Cafeen.

Can we say anything more? Suppose—and this is a big suppose—Jan is
familiar enough with Sam to know Sam’s payoffs for the nine outcomes. Then
Jan should conclude, just as we did, that Sam is not going to Cafeen. Once
there is no chance of this, Jan’s payoffs—if we have them right—are such that
he prefers the art museum with or without Sam to being at Cafeen without



Nash Equilibrium

The strategy profile in which Sam chooses Old Pros and Jan chooses Old Pros 
is a Nash equilibrium. Each is playing a best response to what the other person 
is doing. 
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Now for an assumption that is critical to the story: Sam and Janmust choose
independently where to go, without knowing what the other party has done.
Can they consult (say, by cell phone) before making their choices? I leave this
question open for now.

Sam Is Not Going to Cafeen. Is Jan?
Canwe say, based on what we have done so far, what will happen? Canwe say
where Jan or Sam will go? Can we say for sure what will not happen?

If—and this is a big if in applications of game theory—we have the payoffs
of Sam right, we can be fairly sure that Sam is not going to Cafeen. No matter
what Jan does, Sam is better off going to Old Pros than to Cafeen.
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Nash Equilibrium 

Suppose Sam chooses the art museum. Jan’s best response is the art mu- 
seum, to which Sam’s best response is the art museum. This is another Nash 
equilibrium. 
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Nash Equilibrium 

And suppose Sam chooses Cafeen. Jan’s best response is Cafeen. But Sam’s 
best response to this is Old Pros. So Sam choosing Cafeen is not part of a Nash 
Equilibrium. 
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and Jan must decide independently whether to go to Old Pros, the art museum,
or Cafeen. Sam’s choice determines the row, and Jan’s choice determines the
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Now for an assumption that is critical to the story: Sam and Janmust choose
independently where to go, without knowing what the other party has done.
Can they consult (say, by cell phone) before making their choices? I leave this
question open for now.

Sam Is Not Going to Cafeen. Is Jan?
Canwe say, based on what we have done so far, what will happen? Canwe say
where Jan or Sam will go? Can we say for sure what will not happen?

If—and this is a big if in applications of game theory—we have the payoffs
of Sam right, we can be fairly sure that Sam is not going to Cafeen. No matter
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familiar enough with Sam to know Sam’s payoffs for the nine outcomes. Then
Jan should conclude, just as we did, that Sam is not going to Cafeen. Once
there is no chance of this, Jan’s payoffs—if we have them right—are such that
he prefers the art museum with or without Sam to being at Cafeen without



Nash Equilibrium 

Let’s have a formal definition:  

For a strategic-form game, a Nash equilibrium is a strategy profile such that no 
player, by changing his or her part of the strategy profile unilaterally, can 
improve his or her payoff.


