# Drug Design for Membrane Proteins The Endocannabinoid System

The in vivo biological activity of eCBs is under metabolic control, whereby catabolic enzymes play a prominent role. Among them, fatty acid amide hydrolase (FAAH), an integral membrane enzyme that hydrolyses the amide bond of AEA, and also the ester bond of 2-AG, is a key regulator of eCB signalling. The accessibility of human and rat recombinant FAAH enzymes, and the availability of X-ray structures, has recently boosted drug discovery efforts on FAAH. Hence, a better understanding of the key factors able to modulate the eCB concentration by regulating FAAH catalytic activity will allow not only to decipher basic molecular details of a variety of physiological processes, but also to develop more effective therapeutics against different human diseases, such as pain, anxiety, and epilepsy.

# The history of the (endo)cannabinoids



#### Di Marzo, 2006

# The endocannabinoids



2-AG

# The endocannabinoid system



# **Biological functions of endocannabinoids**



From Maccarrone & Dainese, et al., Annual Review of Nutrition, (2010).

#### saturated fatty acids



# The biochemistry of lipids in Drug Design monounsaturated fatty acids



#### The biochemistry of lipids in Drug Design polyunsaturated fatty acids



#### Triglyceride



1-Stearoyl, 2-linoleoyl, 3-palmitoyl glycerol, a mixed triacylglycerol







Individual units are wedge-shaped (cross-section of head greater than that of side chain)



(a)





Individual units are cylindrical (cross-section of head equals that of side chain)



#### The cell membranes

They define the outer boundaries of cells and regulate the traffic of molecules across these borders. In eukaryotic cells divide the interior space into discrete compartments, segregating in their specific internal components and processes.



resistant

flexible

self-sealing

selectively permeable

Support for cellular processes



**Mitochondrial membrane** 

Plasma Membrane

#### table 12-1

| Major Components of Plasma | Membranes in | n Various | Organisms |
|----------------------------|--------------|-----------|-----------|
|----------------------------|--------------|-----------|-----------|

|                               | Components (% by weight) |              |        |              |                                 |
|-------------------------------|--------------------------|--------------|--------|--------------|---------------------------------|
|                               | Protein                  | Phospholipid | Sterol | Sterol type  | Other lipids                    |
| Human myelin sheath           | 30                       | 30           | 19     | Cholesterol  | Galactolipids, plasmalogens     |
| Mouse liver                   | 45                       | 27           | 25     | Cholesterol  |                                 |
| Maize leaf                    | 47                       | 26           | 7      | Sitosterol   | Galactolipids                   |
| Yeast                         | 52                       | 7            | 4      | Ergosterol   | Triacylglycerols, steryl esters |
| Paramecium (ciliated protist) | 56                       | 40           | 4      | Stigmasterol |                                 |
| E. coli                       | 75                       | 25           | 0      | 1            | 200                             |
|                               |                          |              |        |              |                                 |

The relative amounts of lipids and proteins vary depending on the membrane type and reflect the differences of their biological functions



# Dietary lipids affect cell membrane composition

Dietary lipids are used as an energy source, as a structural component in the membranes of cells (cholesterol and phospholipids), as structural components of a small fraction of the proteins in the cell. In the case of cholesterol, for the synthesis of detergents that facilitate digestion and absorption of dietary lipids, and for the synthesis of steroid hormones.

# Dietary lipids affect cell membrane composition

| Number of<br>carbons | Number of<br>double bonds | Common name  | Systematic name                                                                             | Formula                                                                                                                  |
|----------------------|---------------------------|--------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 12                   | 0                         | Laurate      | n-Dodecanoate                                                                               | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>10</sub> COO <sup>-</sup>                                                        |
| 14                   | 0                         | Myristate    | n-Tetradecanoate                                                                            | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>12</sub> COO <sup>-</sup>                                                        |
| 16                   | 0                         | Palmitate    | n-Hexadecanoate                                                                             | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>14</sub> COO <sup>-</sup>                                                        |
| 18                   | 0                         | Stearate     | n-Octadecanoate                                                                             | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>16</sub> COO <sup>-</sup>                                                        |
| 20                   | 0                         | Arachidate   | n-Eicosanoate                                                                               | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>18</sub> COO <sup>-</sup>                                                        |
| 22                   | 0                         | Behenate     | n-Docosanoate                                                                               | $CH_3(CH_2)_{20}COO^-$                                                                                                   |
| 24                   | 0                         | Lignocerate  | n-Tetracosanoate                                                                            | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>22</sub> COO <sup>-</sup>                                                        |
| 16                   | 1                         | Palmitoleate | $cis$ - $\Delta^9$ -Hexadecenoate                                                           | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>5</sub> CH=CH(CH <sub>2</sub> ) <sub>7</sub> COO <sup>-</sup>                    |
| 18                   | 1                         | Oleate       | $cis$ - $\Delta^9$ -Octadecenoate                                                           | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>7</sub> CH=CH(CH <sub>2</sub> ) <sub>7</sub> COO <sup>-</sup>                    |
| 18                   | 2                         | Linoleate    | $cis, cis-\Delta^9, \Delta^{12}$ -<br>Octadecadienoate                                      | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>4</sub> (CH=CHCH <sub>2</sub> ) <sub>2</sub> (CH <sub>2</sub> ) <sub>6</sub> COO |
| 18                   | 3                         | Linolenate   | all-cis- $\Delta^9$ , $\Delta^{12}$ , $\Delta^{15}$ -<br>Octadecatrienoate                  | CH <sub>3</sub> CH <sub>2</sub> (CH=CHCH <sub>2</sub> ) <sub>3</sub> (CH <sub>2</sub> ) <sub>6</sub> COO <sup>-</sup>    |
| 20                   | 4                         | Arachidonate | all- $cis$ - $\Delta^5$ , $\Delta^8$ , $\Delta^{11}$ , $\Delta^{14}$ -<br>Eicosatetraenoate | $CH_3(CH_2)_4(CH=CHCH_2)_4(CH_2)_2COO$                                                                                   |

# The essential fatty acids: eicosanoid precursors

**Linoleate 18:2**  $\triangle$  9,12 (9,12-Octadecadienoic acid)

,0

 $\begin{array}{l} \alpha-\text{Linolenate } 18:3 \ \Delta \ 9,12,15 \\ (9,12,15\text{-}Octade catrienoic acid) \end{array}$ 



| Linoleic acid 18:2 ω-6                             | Linolenic acid 18:3 ω-3                 |  |  |  |  |
|----------------------------------------------------|-----------------------------------------|--|--|--|--|
| ↓ Unsaturation,                                    | elongation ↓                            |  |  |  |  |
| Arachidonic acid 20:4 ω-6                          | Eicosapentaenoic acid 20:5 ω-3<br>(EPA) |  |  |  |  |
| $\downarrow$ Elongation, Unsaturation $\downarrow$ |                                         |  |  |  |  |
| Docosapentaenoic acid<br>22:5 ω-6                  | Docosahexaenoic acid (DHA)<br>22:6 ω-3  |  |  |  |  |

# Medium content in fatty acids and vitamin E in different oils and fats

| Oil/<br>fat | saturated mon | Tocopherols<br>mg/100 g |    |      |
|-------------|---------------|-------------------------|----|------|
| Olive oil   | 16            | 72                      | 9  | 18   |
| Corn oil    | 15            | <mark>31</mark>         | 50 | 35   |
| Soybean oil | 14            | 23                      | 59 | 18   |
| Butter      | 49            | 24                      | 3  | 2    |
| Lard        | 43            | 43                      | 12 | N.D. |

#### The main mono-unsatured fatty acid in olive oil is oleic acid.

Oleate 18:1 ∆9 9-Octadecenoic acid











#### PHOSPHOLIPIDS

Most of the lipids in the bilayer can be more precisely described as phospholipids, i.e. lipids featuring a phosphate group at one end of each molecule. Phospholipids are typically **hydrophilic** at their phosphate ends and hydrophobic along their lipid tail regions. In each layer of a plasma membrane, the hydrophobic lipid tails are oriented inwards and the hydrophilic phosphate groups are aligned so that they face outwards, either toward the aqueous cytosol of the cell or toward the external environment. Thus, phospholipids tend to spontaneously aggregate, whenever they are exposed to water.















# Dynamics of the membrane lipids in biological membranes

lipidica e dalla temperatura.

#### table 12-2

#### Fatty Acid Composition of *E. coli* Cells Cultured at Different Temperatures

|                                                | Percentage of total fatty acids* |       |       |       |  |
|------------------------------------------------|----------------------------------|-------|-------|-------|--|
|                                                | 10 °C                            | 20 °C | 30 °C | 40 °C |  |
| Myristic acid (14:0)                           | 4                                | 4     | 4     | 8     |  |
| Palmitic acid (16:0)                           | 18                               | 25    | 29    | 48    |  |
| Palmitoleic acid (16:1)                        | 26                               | 24    | 23    | 9     |  |
| Oleic acid (18:1)                              | 38                               | 34    | 30    | 12    |  |
| Hydroxymyristic acid                           | 13                               | 10    | 10    | 8     |  |
| Ratio of unsaturated to saturated <sup>†</sup> | 2.9                              | 2.0   | 1.6   | 0.38  |  |

Source: Data from Marr, A.G. & Ingraham, J.L. (1962) Effect of temperature on the composition of fatty acids in *Escherichia coli*. J. Bacteriol. 84, 1260.

\*The exact fatty acid composition depends not only on growth temperature but on growth stage and growth medium composition.

<sup>5</sup>Calculated as the total percentage of 16:1 plus 18:1 divided by the total percentage of 14:0 plus 16:0. Hydroxymyristic acid was omitted from this calculation.



#### THE PHOSPHOLIPID BILAYER



# Melting temperature varies as a function of length and unsaturation of fatty acids

**TABLE 12.3** The melting temperature of phosphatidyl choline containing different pairs of identical fatty acid chains

| Number Number<br>of of double<br>carbons bonds |   | Fat         |                                   |                              |
|------------------------------------------------|---|-------------|-----------------------------------|------------------------------|
|                                                |   | Common name | Systematic name                   | $T_{\rm m}(^{\circ}{\rm C})$ |
| 22                                             | 0 | Behenate    | n-Docosanote                      | 75                           |
| 18                                             | 0 | Stearate    | n-Octadecanoate                   | 58                           |
| 16                                             | 0 | Palmitate   | n-Hexadecanoate                   | 41                           |
| 14                                             | 0 | Myristate   | n-Tetradecanoate                  | 24                           |
| 18                                             | 1 | Oleate      | $cis$ - $\Delta^9$ -Octadecenoate | - 22                         |



#### LIPID BILAYER PHASE STATES

The bilayer can adopt a solid gel phase state at lower temperatures ... ... but it undergoes phase transition to a fluid state at higher temperatures



#### **BIOLOGICAL MEMBRANES: The fluid mosaic model**



According to the fluid mosaic model of S. J. Singer and G. Nicolson (1972) the **plasma membrane** is a **fluid** structure with a "**mosaic**" of proteins embedded in or attached to a bilayer of

#### lipids.

#### Fluid mosaic model of membrane structure



functional asymmetry

# Protein/lipid interactions in biological membranes

With the hydration shell... and an integral protein ( $\beta$ -rhodopsin)



# Unspecific effects on GPCRs due to overall properties of the membrane: the hydrophobic mismatch



Sadik & Dainese et al., 2013



Myristoylation increases the tendency of a protein to become associated with membranes although it usually appears accompanied by other post-translational modification such as palmitoylation or by a poly-basic signal.

Palmitoylation is generally accepted to be a reversible and modulable modification. Very frequently, palmitoylated proteins are targeted to caveolae/rafts.

Protein prenylation occurs in proteins of great biological significance, such as the Ras and Rho small GTPases and is frequently a prerequisite for the subsequent protein palmitoylation. Both farnesylated (15 carbons added) or geranygeranylated (20 carbons added) proteins are associated with intracellular membranes. It is essentially an irreversible modification.

Some cellular proteins, such as the morphogen hedgehog are known to become modified through the addition of a cholesterol moiety, a process completely indispensable for biological activity.


•Glycosylphosphatidylinositol anchors (GPI) link proteins to the outer leaflet

•Fatty acylation or prenylation links protein to inner leaflet

### Protein/lipid interactions in biological membranes



### **Compartmentalization of proteins**



Some proteins are anchored to the internal structures that prevent the lateral diffusion



### Protein/lipid interactions in biological membranes

However, the plasma membranes contain different lateral compartmentalization that can be classified as:
(a) protein-protein complexes;
(b) pickets and fences, formed by the actin-based cytoskeleton;
(c) <u>lipid rafts</u>.



Schematic drawing of epidermal growth factor receptor (EGFR, ErbB1, Her1) molecules on a lipid bilayer. A tetramer (front), two dimers (right) and a monomer in its tethered form (left background) are shown.

[More at: http://www.theochem.unistuttgart.de/kaestn er/gallery.html] Fibroblast cells showing cytoskeleton

# The "lipid rafts"





Lipid rafts (LRs) Liquid ordered phase (Lo)



<u>Lipid rafts and B-cell activation</u> Susan K. Pierce Nature Reviews Immunology 2, 96-105 (February 2002)

**Lipid rafts** are sphingolipid- and cholesterol-rich membrane microdomains in the outer leaflet of the plasma membrane. The plasma membrane is composed primarily of sphingolipids, (glycerol)phospholipids and cholesterol. Sphingolipids differ from most phospholipids in that they have long, largely saturated acyl chains that allow them to pack tightly in a bilayer, forming a gel phase in which there is very little lateral movement or diffusion. The gel phase of the sphingolipids is altered by the association with cholesterol, which condenses the packing of the sphingolipids by occupying the spaces between the acyl chains. As а consequence, cholesterol-containing sphingolipid microdomains exist in a liquid-ordered phase that is significantly more fluid than the gel phase.



### Science. 2010 Jan 1;327(5961):46-50. Lipid rafts as a membraneorganizing principle Lingwood D, Simons K



**Fig. 2.** Hierarchy of raft-based heterogeneity in cell membranes. **(A)** Fluctuating nanoscale assemblies of sterol- and sphingolipid-related biases in lateral composition. This sphingolipid/sterol assemblage potential can be accessed and/or modulated by GPI-anchored proteins, certain TM proteins, acylated cytosolic effectors, and cortical actin. Gray proteins do not possess the chemical or physical specificity to associate with this membrane connectivity and are considered non-raft. GPL, glycerophospholipid; SM, sphingomyelin. **(B)** Nanoscale heterogeneity is functionalized to larger levels by lipid- and/or protein-mediated activation events (e.g., multivalent ligand binding, synapse formation, protein oligomerization) that trigger the coalescence of membrane order—forming lipids with their accompanying selective chemical and physical specificities for protein. This level of lateral sorting can also be buttressed by cortical actin. **(C)** The membrane basis for heterogeneity as revealed by the activation of raft phase coalescence of membrane traffic, multivalent clustering of raft lipids can amplify the functional level to a microscopic membrane phase. Membrane constituents are laterally sorted according to preferences for membrane order and chemical interactions.

### Science. 2010 Jan 1;327(5961):46-50. **Lipid rafts as a membrane-organizing principle** <u>Lingwood D</u>, <u>Simons K</u>



**Fig. 3.** The lubrication of a raft TM protein by lipid. Membrane proteins bind and/or enrich certain lipids through chemical and physical specificities. These lipids may themselves exhibit sphingolipid/ sterol assemblage potential. In this scheme, a TM raft protein (light blue) specifically interacts with sterol and GSL, an interaction that lubricates its inclusion to and the assembly of functionalized (coalesced) raft membrane.



**Fig. 1.** Evolution of the raft concept for subcompartmentalization in cell membranes. A bold H indicates hydrogen bonding. VSV, vesicular stomatitus virus; DRMs, detergent-resistant membranes; GUV, giant unilamellar vesicle; *m/z*, mass/charge ratio; SPT, single-particle tracking; FCS, fluorescence correlation spectroscopy; FRET, fluorescence resonance energy transfer; STED, stimulated emission depletion; FPALM, fluorescence photoactivation localization microscopy.

Science. 2010 Jan 1;327(5961):46-50. Lipid rafts as a membraneorganizing principle Lingwood D, Simons K



# Specific lipid-lipid interaction modulating the diffusion and transport of endocannabinoids



Dainese E, Oddi S, Bari M, Maccarrone M. Modulation of the endocannabinoid system by lipid rafts. Curr Med Chem. 2007;14(25):2702-15.

### MD shows that the presence of cholesterol enhance the flip-flop rate of AEA



## LRs are an ideal platform for GPCRs signaling

Table 1 | Examples of G-protein-coupled receptors that localize in lipid raft/caveolae before ('pre-agonist') and/or after ('post-agonist') treatment with agonists

|                                               | Pre-agonist | Post-agonist |
|-----------------------------------------------|-------------|--------------|
| Endothelin (ETA and ETB)                      | +           | +            |
| Cholecystokinin (CCK)                         |             | +            |
| Muscarinic cholinergic                        | +           | +            |
| Bradykinin (B1 and B2)                        | +           | +            |
| Lysophosphatidic acid (LPA-1)                 | +           |              |
| Angiotensin II (AT-1)                         |             | +            |
| $\beta_1$ - and $\beta_2$ -adrenergic         | +           |              |
| $P_2Y(P_2Y_1)$                                | +           |              |
| Adenosine A1                                  | +           | +            |
| Sphingosine 1-phosphate (EDG-1)               | +           | +            |
| Smoothened/patched                            | +           |              |
| Serotonin (5HT <sub>2A</sub> )                | +           |              |
| Calcium-sensitive                             | +           |              |
| α <sub>1</sub> -Adrenergic (α <sub>1B</sub> ) | +           |              |
| Chemokine CCR2                                |             | +            |
| Metabotropic glutamate (mGlu1)                | +           |              |
| Gonadotrophin-releasing                       |             | +            |
| hormone (GnRH)                                |             |              |
| Oxytocin                                      | +           |              |
| Growth-hormone releasing hormone              |             | +            |
| Dopamine [D <sub>1</sub> ; D(1A)]             | +           | +            |
| Neurokinin 1                                  | +           |              |
| $\mu$ -Opioid receptor                        | +           |              |



### (Allen et al., 2007)



### (MCD)

### <u>Modulation of ECS by membranes</u> Effect of plasma membrane cholesterol on CB receptors function

|                           | Treatment         |                   |                                   |                                   |
|---------------------------|-------------------|-------------------|-----------------------------------|-----------------------------------|
|                           | Choleste          | erol depletion    | Cholesterol e                     | enrichment                        |
| Receptor                  | Binding           | Signaling         | Binding                           | Signaling                         |
| CB1R                      | 1                 | 1                 | $\downarrow$                      | $\downarrow$                      |
| CB2R                      | $\leftrightarrow$ | $\leftrightarrow$ | $\longleftrightarrow$             | $\leftrightarrow$                 |
| β <sub>2</sub> -AR        | 1                 | 1                 | $\downarrow$                      | $\downarrow$                      |
| Serotonin <sub>1A</sub> R | 1                 | <b>↑</b>          | $\downarrow$ or $\leftrightarrow$ | $\downarrow$ or $\leftrightarrow$ |

*Current Medicinal Chemistry, 2010, 17, 1487-1499 1487* **Interaction of Endocannabinoid Receptors with Biological Membranes** E. Dainese, S. Oddi and M. Maccarrone

### Putative cholesterol binding sites in CBRs: Cholesterol Recognition Aminoacid Consensus (CRAC)

| (dD OD       | NCHARDATER DOCETH COMPANY AND                   | 200 |
|--------------|-------------------------------------------------|-----|
| CBZR         | NSMVNPVIIALRSGEIRSSAHHULAHWKKUVR                | 344 |
| CB1R         | NSTVNPIIYALRS <mark>k</mark> DLRHAFRSMFPSCEGTAQ | 420 |
| $\beta_2 AR$ | NSGFNPLIYC-RSPDFRIAFQELLCLRR                    | 346 |
| SerR         | NSL <b>lnp</b> VIYAYFNKDFQNAFKKIIKCKF           | 417 |

#### **Transmembrane helix 7**

CB1R



Oddi & Dainese et al., 2011

CRAC seq: V/L-X<sub>1-4</sub>-Y-X<sub>1-4</sub>-K/R



# FRAP analysis of CB1-GFPR





#### CB1R: WT versus K402G (\*\*p < 0.05 versus WT)







### Functionality and intracellular distribution of WT and K402G CB1-GFPR



# Quantitative colocalization of CB1-GFPR and filipin (cholesterol binder) on the plasma membrane



|                 |             | DRM            | Pearson's                  | Intensity               |
|-----------------|-------------|----------------|----------------------------|-------------------------|
| Receptor        | M/T ratio   | remnant<br>(%) | correlation<br>coefficient | correlation<br>quotient |
| CB1-GFPR        | 0.12 ± 0.02 | 20 ± 5         | 0.733 ± 0.039              | 0.390 ± 0.016           |
| CB1(K402G)-GFPR | 0.09 ± 0.02 | $25 \pm 5$     | 0.560 ± 0.040*             | 0.274 ± 0.032*          |

\*p < 0.05 vs. CB<sub>1</sub>-GFPR.

### $\beta_2$ -AR and CB1 receptors share putative palmitoylation sites







#### Palmitate residue

### Putative palmitoylation site in CB1R



### Cys415 palmitoylation is involved in targeting CB1 receptor to the plasma membrane



| Protein          | Pearson's Correlation Coefficie | Overlap Coefficient | Intensity Correlation<br>Quotient |
|------------------|---------------------------------|---------------------|-----------------------------------|
| CB1-GFPR         | $0.74\pm0.08$                   | $0.74\pm0.07$       | $0.214 \pm 0.035$                 |
| CB1(C415A)-GFI   | $0.27 \pm 0.07*$                | $0.27 \pm 0.04*$    | $0.046 \pm 0.009*$                |
| *p < 0.01 versus | CB1R-GFP Oddi & Dair            | nese et al., 2012   |                                   |

### Lipid-lipid and lipid-protein interactions: trafficking of AEA as a control point of its signalling



Maccarrone, Dainese & Oddi, 2011

### STUDIES OF FAAH-LIPIDS INTERACTIONS BY COMBINING Fluorescence Resonance Energy Transfer (FRET), Small Angle X-ray Scattering (SAXS) and *in silico* APPROACHES



### **SMALL ANGLE X-RAY SCATTERING**



### **Direct structural parameters and 3D modeling**











# Studies by SAXS: conformational changes of biological macromolecules



**Protein-ligand interactions** 

### **Basics of a SAXS curve**



- Features throughout the curve relate to shape
- At low resolution, can approximate particle as a homogenous body of electron density
- larger the object, the faster the I(q) decay



#### DAMMY ATOMS MODELING



# Determination of the oligomerization state of FAAH in solution by small angle X-ray scattering (SAXS)



Determination of the oligomerization state of FAAH in solution by small angle X-ray scattering (SAXS)



Membrane lipids dissociate these oligomers and stabilize FAAH dimer



# FAAH activity is strongly increased by membranes containing AEA and cholesterol



\*\*p < 0.01 versus CTRL

### Subcellular distribution of proteins: Protein trafficking

| Target                | Signal                                                  |
|-----------------------|---------------------------------------------------------|
| Nucleus               | -KKXK or -(K/R) <sub>2</sub> -X <sub>10-12</sub> -(K/R) |
| Peroxisome            | -SKL-COO <sup>-</sup>                                   |
| Mitochondrion         | N-terminal amphipathic helix                            |
| Endoplasmic reticulum | -KDEL-COO <sup>-</sup> (ER retention)                   |

\*The "/" means that either K or R is required.
### Subcellular distribution of proteins: Protein trafficking



### Subcellular distribution of proteins: How lipids affect Protein trafficking?



- **a**, Cone-shaped surfactant resulting in **b**, normal micelles.
- **c**, Champagne cork shaped surfactant resulting in **d**, reverse micelles with control of their size by the water content.
- e, Interconnected cylinders. f, Planar lamellar phase. g, Onion-like lamellar phase.

## Study of FAAH/membrane interaction by FRET



# Higher membrane affinity of FAAH to ER membranes containing AEA and cholesterol



Dainese E et al., (2014) Membrane lipids are key modulators of the endocannabinoid-hydrolase FAAH. Biochem J. 457(3):463-472.

#### **Confocal analysis of the cellular localization of FAAH**



| 1 drameter                                          |             |            |             |             |
|-----------------------------------------------------|-------------|------------|-------------|-------------|
| Pearson's correlation coefficient (R <sub>r</sub> ) | 0.69 ± 0.03 | 0.43 ±0.02 | 0.51 ± 0.05 | 0.10 ± 0.02 |

Dainese E et al., (2014) Membrane lipids are key modulators of the endocannabinoid-hydrolase FAAH. Biochem J. 457(3):463-472.

# Molecular Dynamics (MD) of the full binding trajectory of AEA into the FAAH active site



Dainese E et al., (2014) Membrane lipids are key modulators of the endocannabinoid-hydrolase FAAH. Biochem J. 457(3):463-472.

#### MD simulations show that cholesterol facilitates the binding of AEA to FAAH by opening the membrane port





Dainese E et al., (2014) Membrane lipids are key modulators of the endocannabinoid-hydrolase FAAH. Biochem J. 457(3):463-472.

#### FAAH enzymatic activity: a complex enzyme



Using also a FAAH(dimer):inhibitor 1:0.5 stoichiometry we obtained a full inhibition of FAAH activity SAXS revealed that at a FAAH:URB597 1:0.5 stoichiometry the inhibitor induces a conformational change leading to a more compact form of FAAH





# The latter form of FAAH has a reduced membrane binding affinity



| sample           | Kd (µM)   |  |
|------------------|-----------|--|
| FAAH             | 67 ±10    |  |
| FAAH +<br>URB597 | 272 ± 27* |  |

\*p < 0.0001 *versus* FAAH+URB597



# Phe432 was proposed to be involved in the activation of AEA necessary for the hydrolysis



Palermo et al., European Journal of Medicinal Chemistry 91 (2015) 15-26

#### Phe432Ala mutation reduces the FAAH specific activity but not the effect of URB597



\*p < 0.0001 *versus* Mut1

# Trp 445 is a fully buried residue proposed to be involved in the inter-subunit interaction



Di Venere & Dainese et al., 2011 Dainese et al., 2014



#### Trp445Tyr mutation do not alter FAAH specific activity but impairs the effect of inhibitor





<sup>#</sup>p < 0.01 *versus* FAAH

\*p < 0.01 *versus* FAAH and Mut2

FAAH Specific Activity

## FAAH shows a relative monomer orientation allowing the entrance of AEA from the membrane ports of each subunit



$$FAAH_0 + nAEA \stackrel{K}{\Leftrightarrow} FAAHn$$

$$Y = \frac{[AEA]^n}{K + [AEA]^n}$$

Y= fraction of the ligand-binding sites on the enzyme which are occupied by the substrate

 $log\left(\frac{Y}{1-Y}\right) = -\log K + n_{Hill} \log [AEA]$  The Hill equation

n<sub>Hill</sub> > 1: positively cooperative binding n<sub>Hill</sub> < 1: negatively cooperative binding n<sub>Hill</sub> = 1: non-cooperative binding

#### FAAH enzymatic activity: an allosteric enzyme?



FAAH K = 14.8  $\pm$  3  $\mu$ M n<sub>Hill</sub> = 1.5  $\pm$  0.2 The Cys269Ser mutation was introduced in a region of FAAH where structural changes occur upon substrate/inhibitor binding



The FAAH Cys269Ser mutation behaves as a built-in inhibitor reducing the catalytic activity but not the n<sub>Hill</sub> value



#### FAAH-C269S K = $16.5 \pm 3 \,\mu\text{M}$ n<sub>Hill</sub>= $1.6 \pm 0.2$

#### The Trp445Tyr mutation completely impairs FAAH cooperativity



FAAH-W445Y K = 14.0  $\pm$  3  $\mu$ M n<sub>Hill</sub>= 0.9  $\pm$  0.2\*

\*p < 0.01 *versus* FAAH

#### MD simulation of the AEA hydrolysis by FAAH



MD simulation suggests the involvement of a conformational change of a specific loop allowing the exit of ethanolamine



MD simulations confirm the cooperative behaviour of FAAH: the AEA binding to one subunit facilitates the access of another molecule of substrate into the other subunit



# n-3 fatty acids behave as heterotropic effectors of FAAH increasing both the catalytic activity and membrane binding affinity



# Progesteron is also able to activate FAAH and to increase its membrane binding affinity to membrane



### FAAH behaves as an allosteric enzyme

#### **T-STATE**



- compact form
- lower catalytic activity
- lower membrane binding affinity
- induced by inhibitors

#### **R-STATE**



- relaxed form
- higher catalytic activity
- higher membrane binding affinity
- induced by heterotropic effectors

Trp445Tyr mutation impairs the inter-subunit functional interaction leading to a non allosteric FAAH

www.nature.com/scientificreports



natureresearch

Corrected: Author Correction

### OPEN The endocannabinoid hydrolase FAAH is an allosteric enzyme

Enrico Dainese<sup>1,7\*</sup>, Sergio Oddi<sup>2,3,7</sup>, Monica Simonetti<sup>1</sup>, Annalaura Sabatucci<sup>1</sup>, Clotilde B. Angelucci<sup>3</sup>, Alice Ballone<sup>4</sup>, Beatrice Dufrusine<sup>1</sup>, Filomena Fezza<sup>5</sup>, Gianni De Fabritiis<sup>4</sup> & Mauro Maccarrone<sup>2,6\*</sup>

#### Fatty acid binding proteins studied as drug targets



Maccarrone, Dainese & Oddi, 2011

### **CONCLUSIONS 1**

CRAC seems to be one of the structural determinants responsible for the interaction of CB1 receptor with membrane cholesterol, and for the effect of this lipid on receptor signalling;

Palmitoylation of cysteine 415 may be used by cells to direct CB1 targeting to cholesterol-rich subdomains of the plasma membrane, thus influencing, directly or indirectly, its interaction with some G proteins;

In the presence of AEA and cholesterol embedded within the membrane FAAH shows an increased enzymatic activity probably due to a specific effect of cholesterol, that is able to open the access to the active site of the enzyme.

### **Future directions**

These data imply the development of new high throughput screening assays of FAAH taking into account the role of specific membrane lipids in testing new drugs.

Open avenue to develop new classes of inhibitors by adding to their molecules specific lipids able to increase their diffusion within the membrane and to increase their accessibility to the FAAH enzyme.

The proposed allosteric control of FAAH implies the possibility to discover and design new nonsubstrate molecules able to modulate FAAH activity and to potentiate or attenuate the efficacy of FAAH inhibitors;

Understanding how lipids can modulate or even lead signal transduction to different targets and outcomes will possibly give rise to a brand new area of scientific inquiry with huge impact on human health and disease, well-beyond endocannabinoids themselves.

#### Take home messages

Membrane lipids composition of cell membranes affect the subcellular localization of membrane proteins;

CRAC seems to be one of the structural determinants responsible for the interaction of GPCRs with membrane cholesterol, and for the effect of this lipid on receptor signalling;

Palmitoylation of GPCRs, and in particular cysteine 415 in CB1 may be used by cells to direct CB1 targeting to cholesterol-rich subdomains of the plasma membrane, thus influencing, directly or indirectly, its interaction with some G proteins;

In the presence of AEA and cholesterol embedded within the membrane FAAH shows an increased enzymatic activity probably due to a specific effect of cholesterol, that is able to open the access to the active site of the enzyme.

Understanding how lipids can modulate ECS system is giving rise to innovative lead compound with therapeutic potential and huge impact on human health and disease.