DIAGNOSTICA PER I BENI CULTURALI

MEDIA, ARTI, CULTURE, SPETTACOLO (LM-65)

Università di Teramo

Cecilia Paolini Università di Teramo

XRF E I COLORI

Dipartimento di Scienze della Comunicazione

Nei dipinti su tela e tavola la presenza di piombo è sistematica, spesso già a partire dagli strati preparatori. Il pigmento impiegato più frequentemente è la biacca, che come bianco serviva anche a schiarire le campiture a base di altri pigmenti. Per questo motivo è difficile caratterizzare l'impiego di altri pigmenti per il quale il piombo è l'unico elemento determinabile attraverso l'XRF (Litargirio, Massicot e Minio). Per lo stesso motivo non risulta possibile verificare l'esistenza di una correlazione tra piombo e stagno in relazione ai gialli. Nello studio di dipinti murali deve essere posta particolare attenzione nella ricerca e nell'identificazione del piombo, anche in piccoli quantitativi, poiché tale presenza è identificativa dell'impiego di stesure a secco; possono costituire un'eccezione i pigmenti gialli quali quelli costituiti da stannati e/o antimoniati di piombo, in quando essi erano compatibili anche con le tecniche dell'affresco.

Biacca (Bianco) Litargirio e Massicot (giallo) Minio (Rosso)

Energia delle righe d'interesse:

Lα: 10.50

Lβ: 12.62

Lγ: 14.76

Piccole quantità di composti di ferro si trovano ovunque, in particolare negli intonaci e nella preparazione a gesso e colla dei dipinti su tavola. In contenuti significativi il ferro è presente, come unico elemento pesante, in tutta una serie di pigmenti in uso fin dall'antichità, che quindi non possono essere esattamente individuati con la sola XRF. I colori di Marte fanno parte di un gruppo costituito da pigmenti di origine artificiale. Spesso sono determinabili, in associazione a campiture caratterizzate da elevati contenuti di ferro, impurezze di altri elementi, quali titanio, che tuttavia, per la loro genericità non sono utili per operare un'ulteriore discriminazione.

Per quanto riguarda le impurezze di arsenico, determinate su standard di riferimento realizzati con terra di Siena pura (in quella bruciata sono meglio distinguibili), è impossibile individuare la loro presenza in strati pittorici originali perché in essi i contenuti di piombo, riconducibile alla biacca, sempre presente nei dipinti su tela e tavola, ne impediscono la determinazione a livelli così minimi.

La Terra d'Ombra è individuabile attraverso il riscontro della presenza congiunta di manganese; mentre per la Terra Verde, si nota la presenza congiunta di cromo e nichel.

Blu di Prussia
Ocre (giallo, rosso)
Terre (giallo, verde, bruno)
Colori di Marte (giallo,
rosso, nero, viola...)

Energia delle righe d'interesse:

Kα: 6.40

Κβ: 7.06

Solfuro di mercurio rosso; le misure di fluorescenza non permettono di stabilire se il pigmento sia di origine minerale (cinabro) o artificiale (vermiglione). La possibilità di determinare impurezze associate al mercurio, quali zinco, cadmio e bario, potrebbe essere utile per stabilirne l'origine naturale.

La presenza di mercurio può essere indicativa anche dell'oro musivo (solfuro di stagno) in quanto l'elemento era impiegato in amalgama con lo stagno per la produzione del pigmento.

Su alcuni dipinti medievali eventuali elementi decorativi costituiti in metallo dorato, quali per esempio castoni, lamine, cornici... possono essere caratterizzati dalla presenza di mercurio, in questo caso dovuta alla tecnica di doratura del metallo con amalgama di Au/Hg.

Cinabro e Vermiglione (rosso)

Energia delle righe d'interesse:

La: 9.95

Lβ: 11.87

Lγ: 13.83

Il Giallo di Napoli è un composto di Piombo e Antimonio; tradizionalmente è stato impiegato dal XVIII secolo, ma sempre più frequenti sono i riscontri su dipinti del XVII secolo, con rare ma significative segnalazioni anche su dipinti di XVI. Il Giallo di Roma è un composto di Piombo, Stagno e Antimonio; è tipico della tavolozza cromatica del XVII secolo, a partire soprattutto dal secondo decennio. In dipinti eseguiti a Roma attorno agli anni '20/'30 del XVII secolo sembra che il rapporto stechiometrico tra stagno e antimonio tenda a stabilizzarsi attorno all'unità. Solo raramente sono stati individuati all'interno della stessa opera sia Giallo di Roma che Giallolino (composto da piombo e stagno). In dipinti del XVI secolo o dei primi anni del secolo successivo, è stato rilevato che il rapporto stechiometrico tra stagno e antimonio può differire sensibilmente dall'unità, valore teorico desumibile dalla formula del composto.

Giallo di Napoli (Pb, Sb) Giallo di Roma (Pb, Sn, Sb)

Energia delle righe

d'interesse:

Kα: 26.24

Κβ: 29.73

La: 3.60

Lβ: 3.97

Lγ: 4.35

PIGMENTI A BASE DI ANTIMONIO

LETTURA XRF

È presente come unico elemento pesante in tutta una serie di pigmenti verdi e azzurri antichi e moderni. La possibilità di individuare la presenza di impurezze di altri elementi può essere utile a caratterizzare un'origine naturale del pigmento. Gli elementi che possono essere generalmente associati come impurezze minerali di rame sono: antimonio, arsenico, bario e zinco. Spesso piccole quantità di pigmenti a base di rame si trovano nelle tonalità scure di quasi tutti i colori, a testimonianza che uno di questi pigmenti è stato impiegato per scurire la tonalità del colore. Nel caso di campiture nere occorre tenere presente che a volte piccole quantità di verdegris possono essere state aggiunte come essiccante al nero d'avorio, come indicato nella trattatistica del XVII secolo.

Pigmenti verdi e azzurri antichi e moderni

Energia delle righe d'interesse:

Kα: 8.04

Κβ: 8.90

La prima riga dell'arsenico è sovrapposta alla prima del piombo e , data la piccola differenza di energia, non è possibile discriminare i due contributi. Le misure XRF non permettono di stabilire la presenza di arsenico sia da attribuire all'orpimento, al pararealgar, o al realgar. Solo la colorazione dell'area in esame può, in alcuni casi, portare a escludere uno di questi pigmenti. In alcuni casi orpimento e realgar possono essere associati, a partire dai minerali. Impurezze di realgar possono essere associate anche ad altri solfuri, come il cinabro. La presenza di arsenico come dovuta a uno dei tre solfuri (orpimento, pararealgar, realgar) in presenza congiunta con elevati quantitativi di pigmenti a base di piombo o rame è da escludere, poiché questi pigmenti, in presenza di solfuri, tendono a virare in nero a causa della reazione del piombo e del rame con lo ione solfuro. Tale incompatibilità è nota gia nel Medioevo. Soltanto se i pigmenti a base di solfuri di arsenico sono impiegati in tecniche a olio e in strati pittorici distinti possono essere compatibili con piombo e rame. L'uso del Verde di Scheele e del Verde Smeraldo è poco frequente perché altamente tossici (impiegati praticamente solo nel XX secolo). Il verde di Scheele non può essere letto come verde a base di rame mescolato con orpimento perché incompatibile poiché il pigmento si trasforma in solfuro di rame e scurisce.

Smalto azzurro
Orpimento (giallo)
Pararealgar (giallo)
Realgar (rosso)
Verde di Scheele
Verde smeraldo

Energia delle righe d'interesse:

Kα: 10.53

Κβ: 11.73

PIGMENTI A BASE DI ARSENICO

È stata verificata l'associazione di impurezze di zinco a verdi a base di rame, insieme a impurezze di arsenico e/o antimonio. La presenza del solo zinco in corrispondenza di campiture verdi caratterizzate da rame potrebbe essere indicativa sia dell'impiego di rosasite, sia di un pigmento artificiale realizzato usando ottone come ingrediente per ottenere il composto di rame, pratica attestata in alcuni ricettari medievali.

Il riconoscimento della natura artificiale o minerale del pigmento può essere effettuato grazie al riscontro della presenza di impurezze costituite da altri elementi chimici (arsenico/antimonio), che difficilmente sarebbero spiegabili in un pigmento ottenuto usando come ingrediente un ottone, e alla valutazione dei contenuti di zinco in rapporto a quelli di rame.

Bianco di Zinco
Giallo di zinco (in
associazione con cromo)
Litopone (in associazione
con Bario)

Energia delle righe d'interesse:

Kα: 8.63

Κβ: 9.57

Impurezze di cromo sono individuabili in gialli a base di piombo anche nei dipinti antichi. Se, nella campitura gialla, è congiunto lo stronzio, si parla di Giallo limone (cadmio e stronzio) identificato nel 1860. Il Rosso e l'Arancione sono entrati in uso a metà del XIX secolo, mentre il Viridian (ossido di cromo idrato) è databile dal 1859, mentre il Verde Cromo (ossido di cromo anidro) dal 1862. Verde Cromo e Viridian sono indistinguibili in XRF

Giallo cromo
Rosso e arancione cromo
Verde cromo
Viridian

Energia delle righe d'interesse:

Kα: 5.41

Κβ: 5.95

Blu ceruleo: stannato di cobalto, inizio XIX secolo, presenza di stagno.

Blu cobalto: alluminato di cobalto, 1802.

Azzurro di smalto: usato a partire dal XV secolo. Contiene ossidi di Ca,

Ba, Na, Mg, Ni, Fe, Cu, Al.

Giallo di Cobalto: cobaltonitrito di potassio, 1848, presenza di potassio

solo se il pigmento è steso puro, altrimenti il potassio è scarsamente

leggibile.

Rosso di Cobalto: ossidi di cobalto e magnesio (non identificabile). Fine

XIX secolo.

Verde di Cobalto: ossidi di cobalto e zinco, metà XIX, presenza di zinco.

Viola di Cobalto: fosfato o arseniato di cobalto, 1859, presenza di

arsenico.

Blu ceruleo

Blu cobalto

Azzurro di smalto

Giallo di Cobalto

Rosso di Cobalto

Verde di Cobalto

Viola di Cobalto

Energia delle righe

d'interesse:

Kα: 5.41

Κβ: 5.95

PIGMENTI A BASE DI COBALTO

È legato esclusivamente a pigmenti di origine moderna: la sua individuazione su dipinti antichi indica la presenza di restauri e ridipinture. Il Giallo è stato utilizzato a partire dal primo quarto del XIX secolo; il Rosso è stato scoperto nel 1890 e commercializzato nel 1910. Il Rosso è individuabile attraverso la presenza congiunta di cadmio e selenio.

Giallo di Cadmio Rosso di Cadmio

Energia delle righe d'interesse:

Κα: 23.08

Κβ: 26.10

La: 3.13

Lβ: 3.43

Lγ: 3.72

È utilizzato formalmente dopo il 1916/1919, anche se sperimentazioni partirono dalla fine del XIX secolo. L'eventuale associazione a elevati contenuti di bario indica che è stato usato con una base di solfato di bario e/o di calcio per ridurre l'assorbimento di olio. Impurezze di titanio sono state determinate con una certa sistematicità in alcune terre e ocra, in particolare quelle di colore tendente al giallo bruno; tale dato è coerente con l'associazione di titanio ad alcuni minerali di ferro. La stessa caratteristica si riscontra in corrispondenza di alcune dorature; anche in questo caso, il titanio è associato a un pigmento a base di ferro (bolo), impiegato negli strati preparatori della doratura.

Bianco di Titanio

Energia delle righe d'interesse:

Kα: 4.51

Κβ: 4.93

Impurezze di titanio, a livello di tracce, come anche di manganese, cromo e nichel, si trovano nella clorite che, insieme alla glauconite e alla celadonite, interviene nella composizione della Terra Verde.

PIGMENTI A BASE DI TITANIO