Il convegno nasce dall'esperienza maturata dall'associazione Una Quantum inc. durante la manifestazione "CIRCUITI". L'idea del progetto è mossa dal desiderio di coinvolgere il pubblico e di promuovere l'inserimento all'interno del proprio sistema di valori il patrimonio o una parte del patrimonio nella quale ci si identifica.

L'attenzione ai metodi, allo sviluppo e alle pratiche di gestione del patrimonio è caratteristica propria dell'Associazione Una Quantum inc. che ha contribuito allo sviluppo di due Plugin di QGIS, Pyarchinit e ArcheoloGis e dal 2021 promulga la diffusione di Extended Matrix framework FOSS del CNR per la documentazione e la ricostruzione 3D del patrimonio archeologico.

Una Quantum partecipa attivamente e annualmente alla vita delle comunità professionali (convenzione con la Confederazione Italiana Archeologi), accademiche (convenzione con Digilab Sapienza e partecipazione annuale al convegno internazionale ArcheoFOSS) e con i principali centri di ricerca (Extended Matrix initiative) offrendo la propria esperienza nell'ambito dei Sistemi Informativi Geografici e con altre tecnologie Free Libre and Open Source.

A questo che è il risultato della pubblicazione del primo convegno internazionale di Una Quantum è seguito a dicembre 2022 il secondo convegno internazionale di studi dedicati. Il presente lavoro è quindi l'inizio di un fertile solco che inizia a dare i suoi primi frutti.

Atti del Convegno

Una Quantum 2021

Nuove Tecnologie open source per la gestione dei beni, delle attività culturali e del turismo

16-17 Dicembre 2021, Sala della Fortuna, Museo Nazionale Etrusco Villa Giulia, Roma

a cura di Paolo Rosati - Eloisa Casadei

Atti

source per la gestione dei beni, delle attività culturali e del turismo

11.00€

Atti del Convegno Una Quantum 2021

Nuove Tecnologie open source per la gestione dei beni, delle attività culturali e del turismo 16-17 Dicembre 2021, Sala della Fortuna, Museo Nazionale Etrusco Villa Giulia, Roma

a cura di Paolo Rosati - Eloisa Casadei

Il presente convegno è stato realizzato grazie al contributo della Direzione Generale Educazione, Ricerca e Istituti Culturali

Si ringrazia Virtutim srls per l'indispensabile supporto alla pubblicazione:

I saggi pubblicati nel presente volume sono stati valutati da due referee anonimi esterni alla redazione in modalità double blind peer review, ogni articolo ha ricevuto due processi di revisione, le schede di valutazione sono disponibili scrivendo all'indirizzo: info@unaquantum.com.

Si ringraziano per la revisione:

Roberto Montagnetti, Marco Raul Marini, Enzo Cocca, Julian Bogdani, Emanuel Demetrescu, Paola La Torre, Matteo Serpetti, Livia Tirabassi, Davide Mastroianni, Lorenzo Fornaciari, Daniele Bursich, Bruno Fanini, Augusto Palombini, Domizia D'Erasmo, Valentina Oselini e Nicola Luciani.

Questo lavoro è coperto da Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence https://creativecommons.org/licenses/by-nc-nd/4.0/

Copyright

Edizioni Archeoares

Immagine di copertina

La copertina è stata creata da Giulio Oddone, rappresenta un'epigrafe presa com emblema grafico dei Beni Culturali e il titolo della conferenza Una Quantum.

Elaborazione copertina Giulio Oddone (2022) Elaborazione Grafica Edizioni Arheoares

I edizione gennaio 2022

ISBN

9788899822873

Indice

Prefazione Eloisa Casadei, Paolo Rosati	5
Musei	9
1. Museologia, innovazione e associazionismo (anni 2017 - 2022) Mariflora Caruso	11
2. Virtual Tour 360°: ETRU Martina Frau, Valerio De Luca	27
3. Dalle persone al dato le potenzialità della profilazione dei pubblici nell'esperienza di "People First" <i>Silvia Rossi</i>	41
4. OsPaC: valorizzazione e sostenibilità dei Beni Culturali nel territorio laziale <i>Laura Leopardi</i> , <i>Saverio Giulio Malatesta</i>	53
Territorio e Tursimo	61
5. Droni commerciali con sensori termici e multispettrali per il telerilevamento archeologico a bassa quota <i>Gabriele Ciccone</i>	63
6. Il "progetto Amiternum", l'archeologia come motore di progresso sociale Alfonso Forgione	83
7. Percorso tattile dell'Appia Antica Aurora Palermo, Alessandro Spadaro	95
Siti Archeologici	107
8. Applicazioni di Machine Learning per l'analisi di immagini satellitari nella ricerca archeologica e per il patrimonio culturale <i>Alessia Brucato</i>	109
9. The Ebla GIS: An Example of Reverse Archaeology Agnese Vacca, Paolo Rosati	125
10. Per una rivalutazione del sito preistorico del tardo Eneolitico del Monte della Stella nel Cilento: studio delle fonti documentarie e bibliografiche, survey e tecnologie avanzate <i>Antonio Capano, Davide Finizio, Pasquale Ferdinando Giuliani Mazzeo</i>	135
11. Archeologia dei paesaggi: dalla ricerca sul campo alla gestione dei dati con strumenti FOSS durante il lock-down. Il caso di Agrigento <i>Giuseppe Guarino, Eleonora Iacopini</i>	157

Prefazione

Paolo Rosati, Eloisa Casadei

Questo che abbiamo l'onore di presentare è il primo volume degli Atti del Convegno Una Quantum - Nuove Tecnologie open source per la gestione dei beni, delle attività culturali e del turismo. Il convegno si è tenuto a Roma il 16-17 Dicembre 2021, ospitato nella prestigiosa sala della Fortuna di Villa Giulia, sede del Museo ETRU di Roma.

Il convegno è stato finanziato dalla Direzione Generale Educazione, Ricerca e Istituti Culturali del MIC. Si coglie l'occasione per ringraziare il Direttore Dott. Valentino Nizzo e il Direttore Generale della DG-ERIC il Dott. Mario Turetta per il supporto fondamentale a questa iniziativa di alto spessore culturale.

Sin dalle sue origini nel 2014 Una Quantum ha avuto una vocazione biunivoca, la diffusione delle tecnologie open source per lo studio e la valorizzazione dei Beni Culturali. Un compito chiaro e preciso che ha posto sin da subito in primo piano una naturale vocazione alla valorizzazione delle capacità, dell'entusiasmo e delle potenzialità dei giovani studenti e ricercatori. Inclusività, democrazia, apertura, accessibilità, cultura sono i cinque pilastri intorno ai quali è stata costruita la vita associativa di questi primi sette anni di attività. Il volume qui presentato è la prima pietra fondante di un edificio culturale fatto di condivisione del sapere libero nell'ambito dell'Umanesimo Digitale. Quale sarà la grandezza e la resistenza di questo edificio sarà il tempo a dircelo. Sarà compito dei curatori dei successivi appuntamenti annuali del convegno quello di portare avanti la costruzione di una linea editoriale, semplice, comprensibile, altruista, volta ad enfatizzare le caratteristiche di ogni autore. Includere e indirizzare gli autori, insegnare ai neofiti, attendere comprendere e intervenire in aiuto di chi è in difficoltà, dovranno essere i paradigmi del futuro lavoro di pubblicazione nel pieno spirito associativo, al di fuori di logiche politiche, di mercato, di moda, d'interesse. L'attività portata avanti da Una Quantum e presentata in questo volume risponde ad una esigenza reale e concreta espressa dalla società contemporanea, non da ultimo il settore dei Beni Culturali. La necessità di integrare i propri sistemi di ricerca e innovazione con tecnologie digitali in grado di colmare un pesante gap tra mondo degli specialisti e grande pubblico; il bisogno di migliorare l'accessibilità alla cultura aggiornando i propri sistemi di fruizione sfruttando le nuove metodologie open source; così come l'urgenza di elaborare sistemi per la raccolta e la gestione dei dati e tecniche di machine learning capaci di integrare e migliorare il lavoro sul campo. Questi i grandi temi su cui si interrogano oggi gli specialisti dei Beni Culturali e sui quali Una Quantum da sempre opera instancabilmente nel pieno rispetto dei valori del mondo non-profit, e di cui questo lavoro vuole esserne una sintesi.

Nel momento in cui scriviamo la presente prefazione, si è appena concluso il secondo convegno Una Quantum e abbiamo quindi osservato attentamente e da vicino la crescita del "seme" piantato lo scorso anno, abbiamo assistito alla crescita scientifica e personale di alcuni autori, abbiamo notato il germogliare di nuove ricerche, la maturità di partenariati e temi, il vasto scibile coperto e gli interessi toccati. Tutto questo ci dà la prova di aver giustamente creduto nell'impresa e di aver seminato in uno dei tanti solchi fertili tracciati nel campo di Una Quantum. Le modalità di costruzione e implementazione del convegno sono state realizzate velocemente, migliorate, contestualizzate, la *call* è stata aperta e i risultati sono stati considerevoli sotto ogni punto di vista.

Il volume che vi presentiamo è diviso in tre sessioni: Musei, Territorio e Turismo, Siti Archeologici; consta di 11 articoli che toccano vari campi dello scibile ma che sono accomunati da un ampio respiro, dal momento che i casi studio presentati non si riferiscono ad un ambito ristretto. Metodi e tecniche sono spesso ampiamente utilizzati, vengono sperimentati sul campo e provengono spesso dalla "farina del nostro stesso sacco". Leggendo gli atti si nota la densità dalla vasta quantità di sapere tecnico-scientifico che Una Quantum insegna pubblicamente dal 2014 all'interno dei propri corsi; è stata scattata in questo volume un'immagine realistica di quanto è stato costruito negli anni e di come evolveranno le discipline Umanistiche Digitali. Nella sessione Musei si inizia con Museologia, innovazione e associazionismo (anni 2017 - 2022), un dettagliato resoconto di Mariflora Caruso sulle attività intercorse tra Una Quantum e diversi istituti culturali della Regione Lazio. Si tratta di un ampio lavoro che riassume in maniera sintetica metodologie, strumenti, attività, idee ed eredità di un lungo impegno dell'autrice come *project manager* museale per Una Quantum tra il 2017 e 2020. Si continua con il contributo di Valerio de Luca e Martina Frau dal titolo Virtual Tour 360°: ETRU che valorizza il rapporto tra l'Associazione e il Museo che ha ospitato il convegno e racconta le modalità e tecnologie utilizzate per la realizzazione del complesso supporto virtuale alla visita e il suo impatto, la sua funzione di ausilio alla riapertura degli spazi museali durante il periodo più duro della Pandemia. Segue il contributo di Silvia Rossi Dalle persone al dato, le potenzialità della profilazione dei pubblici nell'esperienza di "People First", un compendio eccezionalmente chiaro, squisitamente scritto e ottimamente strutturato a descrizione del progetto dell'autrice chiamato "People First", eseguito per la profilazione del pubblico del Museo ETRU, altra interessante sponda di contatto con il Museo che ha ospitato il convegno. La sessione è chiusa da Laura Leopardi e Saverio Giulio Malatesta con OsPaC: valorizzazione e sostenibilità dei Beni Culturali nel territorio laziale una presentazione dell'Osservatorio dei progetti di valorizzazione del patrimonio culturale con particolare focus per la Regione Lazio e l'operato del Distretto Tecnologico Culturale; il lettore troverà qui le origini, metodi e sviluppi del censimento.

Nella sessione Territorio e Turismo si comincia con Gabriele Ciccone che ha scritto un articolo dal titolo Droni commerciali con sensori termici e multispettrali per il telerilevamento archeologico a bassa quota onorando il volume di un vasto compendio bibliografico aggiornato sul tema. Questo lavoro sarà certamente apprezzato e considerato come uno dei più importanti contributi sulla materia in questi anni, sia per la lucidità con la quale l'autore affronta le problematiche tecnologiche più complesse, sia per i risultati raggiunti, sia per il pieno utilizzo di metodi e strumenti costantemente condivisi dall'autore con l'intera comunità di Una Quantum e con l'Università di Tor Vergata. L'articolo che segue del Prof. Alfonso Forgione ha come titolo Il "progetto Amiternum", l'archeologia come motore di progresso sociale, ed evidenzia la connaturata vocazione alla valorizzazione del patrimonio archeologico da parte dell'Università degli Studi dell'Aquila. Amiternum si fregia di essere uno degli scavi meglio comunicati e più studiati del centro Italia. I risultati sono il merito di una attenzione costante verso il patrimonio culturale, considerato come un organismo da curare a 360°, di una spiccata sensibilità dell'autore per l'Archeologia Pubblica e dell'aver sviluppato nel corso degli anni metodi e tecniche originali sempre aggiornate e in continuo avanzamento. Nella sessione Siti Archeologici, il prezioso contributo di Alessia Brucato dal titolo Applicazioni di Machine Learning per l'analisi di immagini satellitari nella ricerca archeologica e per il patrimonio culturale

confronta le tecnologie più aggiornate di telerilevamento e ne analizza potenzialità e limiti a seconda del contesto di utilizzo, focalizzando il discorso in particolare su sensori per l'acquisizione di dati, l'uso di immagini da dataset open access, lo sviluppo di algoritmi dedicati, l'avanzamento della capacità computazionale dei microprocessori. L'applicazione di questi sistemi in una realtà territoriale vasta e complessa come quella analizzata dall'autrice mettono in risalto l'accuratezza della ricerca e l'attendibilità dei risultati proposti. Il caso di studio presentato da Agnese Vacca e Paolo Rosati nel loro contributo dal titolo The Ebla GIS: An Example of Reverse Archaeology propone una metodologia di gestione dei dati per lo scavo archeologico che ad oggi rappresenta uno dei sistemi più all'avanguardia nel panorama italiano e internazionale; grazie al progetto Ebla 2.0, gli autori hanno sperimentato con successo un database relazionale associato ad una piattaforma GIS per la gestione dei dati di scavo di un sito dalla storia archeologica così complessa come il sito di Ebla (Tell Mardikh, Siria). Segue lo studio dal titolo Per una rivalutazione del sito preistorico del tardo Eneolitico del Monte della Stella nel Cilento: studio delle fonti documentali e bibliografiche, survey e tecnologie avanzate presentato da Antonio Capano, Davide Finizio e Pasquale Ferdinando Giuliani Mazzeo; il contributo si concentra sull'utilizzo del software GIS open source, mettendo in evidenza tutte le potenzialità dello strumento informatico per la ricostruzione dei sistemi di vita nell'antichità, utilizzando metodologie come la Visibility Analysis e Least Cost Path Analysis. Infine, a chiusura del volume, presentiamo al lettore l'articolo dal titolo Archeologia dei paesaggi: dalla ricerca sul campo alla gestione dei dati con strumenti FOSS durante il lock-down. Il caso di Agrigento. In questo contributo, gli autori Giuseppe Guarino ed Eleonora Iacopini illustrano il lavoro magistrale svolto dagli studenti dell'Univeristà di Bologna per la realizzazione di una piattaforma geografica per la condivisione e l'analisi dei dati da telerilevamento incrociati a dati raccolti sul campo, per elaborare una classificazione delle tracce e delle anomalie. Con questi contributi si è voluto mettere in risalto il ruolo essenziale dei dati aperti e della loro condivisione come presupposto imprescindibile per il progresso scientifico, nel campo della ricerca e della valorizzazione del patrimonio storico-archeologico. L'obiettivo finale del volume è quello di presentare al pubblico di specialisti nel settore dell'archeologia e dei beni culturali un palinsesto di casi studio perfettamente scalabili e riadattabili a diversi contesti. Si vuole quindi rispondere alla richiesta di trasformazione digitale presentando un portfolio di soluzioni Free Libre e Open Source che possano a tutti gli effetti diventare buone pratiche per tutti coloro che lavorano nel panorama culturale.

P.R., E.C.

Territorio e Turismo

5. Droni commerciali con sensori termici e multispettrali per il telerilevamento archeologico a bassa quota

Gabriele Ciccone, Dipartimento di Storia, Patrimonio culturale, Formazione e Società. Università di Roma Tor Vergata. cccgrl01@uniroma2.it

Abstract

Il campo dell'aerofotografia archeologica è stato rivoluzionato negli ultimi anni dall'introduzione dei droni. Recentemente, la miniaturizzazione dei sensori fotografici termici e multispettrali e la conseguente diminuzione di peso e costo, ha permesso la loro applicabilità sui droni, aprendo nuovissime potenzialità anche nel campo del telerilevamento a bassa quota. Nell'ambito del progetto di dottorato "Flying off-site: nuove metodologie di indagine per l'analisi dei paesaggi storici medievali", è stato possibile analizzare lo stato dell'arte e testare una serie di nuovi droni commerciali termici e multispettrali, al fine di valutare il potenziale nell'individuazione di elementi archeologici non visibili in superficie.

Parole Chiave

UAV; telerilevamento a bassa quota; immagini termiche; immagini multispettrali; aerofotografia archeologica

1. Introduzione

L'utilizzo di sensori termici e multispettrali nel campo dell'aerofotografia archeologica non è una novità recente. Già dagli anni '70 del secolo scorso, infatti, gli archeologi sono a conoscenza delle potenzialità delle immagini termiche a infrarossi per l'individuazione di strutture non visibili in superficie, concentrazione di materiale o elementi del paesaggio come strade, confini dei campi coltivati, paleoalvei, ecc. (Tabbagh 1977; Tabbagh 1979; Périsses 1980; Périsses, Tabbagh 1981) Solo dieci anni più tardi, l'introduzione dei primi satelliti civili per il telerilevamento, ha spinto un numero sempre maggiore di ricercatori a utilizzare immagini multispettrali per fini di ricerca archeologica (Verhoven 2012). Nonostante l'utilizzo abbastanza precoce di questi sensori, tale metodologia è rimasta a lungo appannaggio di un ristretto numero di ricercatori. I motivi principali vanno riscontrati nel costo eccessivo delle missioni e nella scarsa risoluzione dei sensori (aviotrasportati inizialmente, poi applicati ai satelliti) che ne limitò l'uso esclusivamente per l'individuazione di grandi elementi archeologici.

Tutto questo è cambiato negli ultimissimi anni: la miniaturizzazione dei sensori e la conseguente diminuzione di peso e costo, ha reso possibile la loro installazione sui droni, permettendo di creare nuove potenzialità nel campo del telerilevamento a bassa quota.

I vantaggi di avere tali sensori nel *payload* di un drone sono principalmente individuabili nella diminuzione dei costi di missione, in una maggiore risoluzione rispetto alle immagini satellitari e nella possibilità di programmare missioni di volo molto rapidamente e tecnicamente in qualsiasi momento, riuscendo più facilmente a sfruttare le finestre temporali maggiormente indicate rispetto ai sensori utilizzati. Questo sta

permettendo di allargare l'utilizzo di immagini termiche e multispettrali ad un pubblico di ricercatori molto più ampio e in contesti diversi, premettendo di intraprendere ricerche di telerilevamento archeologico con una velocità e facilità di utilizzo impensabili fino a pochi anni fa.

2. Stato dell'arte

Forse il primo esempio di un UAV (*Unmanned Aerial Vehicle*) risale addirittura al 350 a.C., quando Archita di Taranto, filosofo e matematico greco, inventò una colomba meccanica di legno con propulsore a vapore e movimenti controllati da fili (Prudkin, Breunig 2019, 12). Poco altro si sa di questa prima invenzione, mentre maggiori dettagli abbiamo sul primo utilizzo di un mezzo volante senza equipaggio in età moderna. Esattamente come tutte le altre innovazioni nel campo dell'aerofotografia, anche l'introduzione di droni è strettamente legata a scopi militari. Il primo esempio moderno risale infatti al luglio del 1849, quando Franz von Uchatius, generale dell'esercito austro-ungarico e brillante inventore, utilizzò circa duecento palloni ad aria calda, carichi di esplosivo, per bombardare Venezia. Lo scopo era quello di sferrare un primo attacco alla città mantenendo però l'esercito al riparo dai cannoni difensivi, peccato che venti più forti del previsto spinsero una parte dei palloni oltre la città facendoli finire proprio sulle prime file dell'esercito austro-ungarico (Bartsch, Coyne, Gray 2017, 20-21). Per oltre un secolo lo sviluppo e l'uso di droni si limitò dunque all'ambito militare e solo alla fine degli anni '70 del secolo scorso sono iniziati i primi utilizzi di UAV per scopi civili. Il primo esempio di UAV non militare riportato in una rivista scientifica è infatti del 1979, quando Przybilla e Wester-Ebbinghaus utilizzarono un drone ad ala fissa per analisi fotogrammetriche (Przybilla, Wester-Ebbinghaus 1979).

Il primo esempio di drone espressamente commerciale venne progettato nel 1991 da Mike Dammars della società Roswell Flyer, e messo in commercio solo nel 1999 al costo di 350 \$. Ma l'utilizzo di materiali non estremamente resistenti ne limitò il mercato al mondo degli appassionati di modellismo, che iniziarono da subito a modificarlo sostituendo le parti meno resistenti con elementi in fibra di carbonio. Il legame con il mondo del modellismo rimase comunque sempre importante anche negli anni successivi.

Nel 2010, la prima società ad allontanarsi dalla nicchia del modellismo, per aprirsi ad un'area di consumatori molto più ampia, fu la francese Parrot che presentò all'International CES di Las Vegas l'AR.Drone, vendendone in pochi anni circa mezzo milione.

Nel 2013 la DJI presentò il primo modello di Phantom, un UAV *entry-level*, che aveva il vantaggio di avere una facilità di utilizzo estremamente maggiore rispetto a qualsiasi altro drone presente sul mercato in quel momento. L'anno successivo la DJI introdusse nel mercato il Phantom 2 Vision +, il loro primo modello con camera integrata (i modelli precedenti erano predisposti per alloggiare *action cameras* di terze parti, come la GoPro) e nel 2015 diventava ormai la società di droni commerciali più grande al mondo, grazie anche alle vendite del nuovo Phantom 3.

Attualmente l'intero mercato dei droni commerciali è nettamente in espansione, al punto che l'*European Drones Outlook Study* prevede per il 2050 oltre 7 milioni di UAV ufficialmente operativi all'interno dei confini comunitari (SESAR3 2017, 4).

Nell'ultimo decennio, i nuovi droni, sempre più contenuti nelle dimensioni e nel costo e performanti dal

punto di vista della componentistica, stanno rivoluzionando numerose e differenti attività: dagli studi ecologici sul cambiamento climatico all'agricoltura di precisione (Barbedo, 2019; Manfreda *et alii*, 2018; Srivastava, 2019), dalle analisi topografiche a quelle geomorfologiche (Hugenholtz *et al.* 2013), dall'industria cinematografica e televisiva alle indagini forensi (Cappelletti *et al.* 2019; Evers, Masters 2018).

Tra le attività profondamente rivoluzionate dall'impiego degli UAV rientra a pieno titolo anche la ricerca archeologica, questo perché l'utilizzo degli UAV "offer a long-desired opportunity to fill a gap in the range and detail of low-altitude photography" (Campana 2018, 61) permettendo un più facile e qualitativamente migliore utilizzo della fotografia aerea archeologica a bassa quota.

L'estrema versatilità degli UAV e la facilità di impiego sono i motivi per cui il loro utilizzo in archeologia sta trasformando diversi settori della ricerca: dalla semplice documentazione fotografica aerea in corso di scavo (Seitz, Altenbach 2012) (ora possibile in tempi rapidi e anche più volte nello stesso giorno), al rilievo fotogrammetrico di siti e monumenti (Rinaudo *et al.* 2012; Smith, Passone 2014), dal raggiungimento di siti difficilmente accessibili, all'individuazione di nuovi elementi archeologici (con l'impiego di sensori attivi e passivi) (Salgado Carmona *et al.* 2020 ; Fiorini, Materazzi 2017; Casana *et al.* 2017; Uribe *et al.* 2015; Agudo *et al.* 2018).

Sono dei primi anni Duemila le attività pionieristiche di utilizzo di droni per fini archeologici.

Negli stessi anni, ad esempio, in Cina venne sperimentato l'utilizzo di un UAV per il rilievo di diversi templi e torri (Jang *et al.* 2004). Mentre nel 2007, durante il *XXI International CIPA Symposium*, tenutosi a ottobre ad Atene, vennero presentati due progetti di rilievo e mappatura di siti archeologici tramite UAV: nel primo progetto, svolto in Italia, veniva testato un prototipo di UAV, denominato "Pelican", per la mappatura del sito archeologico di Augusta Bagiennorum (Bendea *et al.* 2007); mentre nel secondo, veniva descritto l'impiego di un drone per la restituzione fotogrammetrica del palazzo macedone di Vergina-Aegae, situato nel nord della Grecia (Patias *et al.* 2007).

Gli anni che seguirono videro un moltiplicarsi quasi esponenziale dell'utilizzo di UAV nel campo archeologico, ma quasi esclusivamente finalizzato alla mappatura e alla ricostruzione 3D fotogrammetrica di siti archeologici e monumenti. A evidenziare questa iniziale prerogativa dell'uso di droni con finalità esclusivamente fotogrammetriche è il numero speciale della rivista della SAA (*Society for American Archaeology*) del marzo 2016, dedicato esclusivamente all'impiego di droni in campo archeologico, che non presenta alcun articolo sull'utilizzo di UAV per finalità di telerilevamento di elementi archeologici non visibili (Naleimaile *et al.* 2016), nonostante i recenti lavori che, seppur ancora pochi, proprio nei primi anni del secondo decennio del Duemila stavano dimostrando l'importanza e la versatilità dei droni nell'individuazione di nuovi elementi archeologici.

Un primo ed interessante lavoro in questo campo è infatti del 2013, quando il CNRS in collaborazione con l'Università di Tolosa, nell'ambito del progetto *Archeodrone*, sperimentò l'utilizzo di un UAV equipaggiato con camera termica nei pressi dell'insediamento romano di Saint-Bertrand De-Comminges (Francia del sud) (Poirier *et al.* 2013). Altrettanto importante è stato il lavoro svolto dal dipartimento di antropologia del Dartmouth College, che ha testato le potenzialità di un UAV con camera termica su quattro differenti siti (in New Mexico, Illinois, Cipro e Iraq) (Casana *et al.* 2017; Casana *et al.* 2014).

In Spagna, importanti contributi sullo sviluppo di questa metodologia di indagine arrivarono dall'Universidad de Zaragoza dove, una collaborazione tra diversi dipartimenti ha permesso di testare e comparare diversi sensori multispettrali (Uribe *et al.* 2015) e termocamere (Agudo *et al.* 2018) per l'analisi degli insediamenti romani della media valle dell'Ebro.

Del 2018 è invece uno studio del Dipartimento di archeologia e antropologia dell'Università di Bristol, in collaborazione con la National University of Mongolia, che testimonia come una ricognizione aerea tramite UAV abbia permesso di individuare un monastero buddista in Mongolia, poi confermato da analisi geofisiche e ricognizioni sul campo (Myagmar *et al.* 2018).

In Italia, se da un lato sono sempre più numerosi i lavori che testimoniano l'importanza dei droni nella documentazione fotografica e fotogrammetrica di scavo, meno si è fatto inizialmente per testarne le potenzialità di un utilizzo sistematico al di fuori dell'area di scavo. Una prima ricerca archeologica di questo genere sul suolo italiano venne svolta dal Dipartimento di Archeologia della Universiteit Gent, durante il Potenza Valley Project, nella prima metà degli anni duemila. In questo caso si utilizzò una fotocamera modificata per registrare nel vicino infrarosso, applicata ad un *helikite* (Vermeulen *et al.* 2006). Mentre è del 2017 il primo impiego di un UAV con sensore multispettrale con lo scopo di individuare nuovi elementi archeologici nell'area di Gravisca (Fiorini, Materazzi 2017).

Ad oggi, le ricerche principali in questo campo arrivano dal Laboratorio di Archeologia dei Paesaggi e Telerilevamento dell'Università di Siena che fa capo al Prof. Campana, il cui ambito di indagine più recente si concentra proprio sull'utilizzo di metodologie di indagine non invasive (tra cui anche i sensori applicati agli UAV) per ricostruire il "continuum archeologico" (Campana 2018; Campana, Forte 2017); dal progetto di ricerca di E. Minucci del XXXIII ciclo di dottorato del Dipartimento Asia, Africa e Mediterraneo (DAAM) dell'Università degli Studi di Napoli "L'Orientale"; e dai lavori svolti da F. Materazzi (Materazzi, Pacifici 2020; Materazzi, Pacifici 2022).

Questi pochi, ma importanti lavori, stanno dimostrando come l'utilizzo di sensori termici e multispettrali applicati agli UAV, possano avere ottime potenzialità e prospettive di sviluppo davvero interessanti nel campo del telerilevamento archeologico, accendendo, nel recentissimo periodo, un sempre maggiore interesse metodologico nell'utilizzo del drone come mezzo per individuare nuovi elementi archeologici. Emblematica, nell'evidenziare questo maggiore interesse, è una recente ricerca sullo stato dell'arte svolta dall'Università degli Studi di Torino: tramite l'analisi dei risultati ottenuti indagando, sulle piattaforme online (Google Scholar, Scopus, Researchgate, ecc.), 65 differenti combinazioni di termini inerenti l'utilizzo di UAV in archeologia, sono emersi oltre 300 risultati di articoli, capitoli di libri o *papers* di conferenze. Da questa prima ricerca sono stati scremati tutti i record doppi o inerenti all'utilizzo dei droni con finalità fotogrammetrica o di semplice documentazione aerea, arrivando ad un numero di 68 records per 78 differenti studi relativi all'utilizzo del drone per il telerilevamento archeologico, pubblicati tra il 2012 e il 18 Giugno 2020 (Adamopoulos, Rinaudo 2020, 3-4).

Un numero che, seppur ancor minore rispetto agli studi sull'uso aerofotogrammetrico, è decisamente incoraggiante. Dall'analisi di questi recenti lavori si evincono, da un lato, le potenzialità di questa nuova tecnologia, ma dall'altro, è palese come l'utilizzo dei droni avvenga spesso in un momento temporale puntuale, quasi ca-

suale, più legato a fattori esterni che ad una ricerca sistematica di un determinato utilizzo del drone nel campo del telerilevamento. Questo fa sì che siano evidenti alcune difficoltà nell'individuare il periodo migliore in cui effettuare i voli e nel riconoscere con sicurezza determinati tipi di anomalie del terreno, evidenziando come ci sia bisogno di un numero sempre maggiore di casi di studio e di ricerche sistematiche, in modo da incrementare il livello dei confronti possibili e limitare le incertezze nell'interpretazione dei dati.

Proprio in un'ottica di analisi sistematica di questa più recente metodologia di indagine non invasiva, si è deciso, nell'ambito del progetto di dottorato *Flying off-site: nuove metodologie di indagine per l'analisi dei paesaggi storici medievali*, di testare differenti sensori di ultima generazione, applicati ai droni, al fine di valutare il reale potenziale per l'individuazione di elementi archeologici non visibili in superficie.

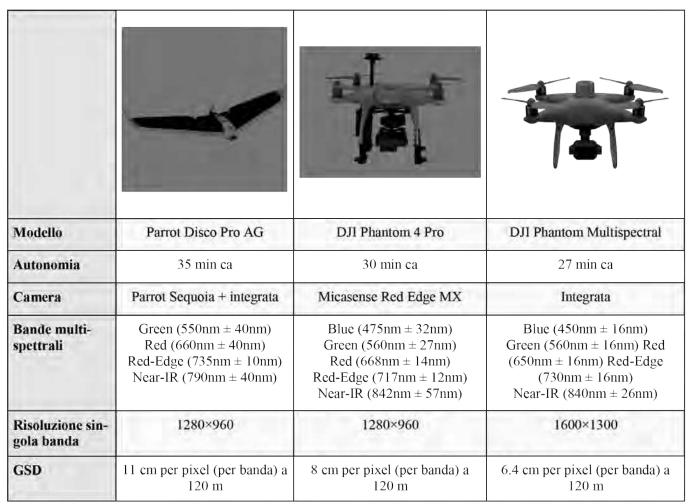
3. Metodologia

I sensori applicabili ai droni si dividono in due categorie: sensori passivi e sensori attivi (Campana 2017, 279). Si definiscono passivi tutti i sensori che si limitano a registrare la radiazione solare riflessa, in determinate lunghezze d'onda dello spettro elettromagnetico. Tra i sensori passivi distinguiamo: i canonici sensori fotografici RGB (Red, Green, Blue) che registrano le onde elettromagnetiche visibili ad occhio umano (tra i 380 e i 750 nm ca.); i sensori multispettrali e iperspettrali, che registrano la radiazione solare riflessa nelle bande spettrali non percepibili all'occhio umano (nel primo caso, i sensori multispettrali registrano dalle 5 alle 12 fasce di larghezza di banda piuttosto grandi; mentre nel secondo, un sensore iperspettrale riesce a registrare dalle 100 alle 200 fasce spettrali di larghezza più ridotta, fino ad arrivare ad acquisire per ogni pixel l'intero spettro elettromagnetico) (Minucci 2018, 98-99); infine, l'ultima categoria di sensori passivi riguarda le camere termiche che registrano la lunghezza d'onda della luce nell'infrarosso termico (tra i 7.5 e i 13 μm).

Si definiscono invece sensori attivi quelli che inviano un segnale verso l'oggetto da rilevare e ne registrano la risposta di ritorno. Tra i sensori attivi si distinguono il LiDAR (*Light Detection and Ranging oppure Laser Imaging Detection and Ranging*) e il SAR (*synthetic apertura radar*), sistema attivo a microonde.

3.1 Analisi preliminare

La prima fase della ricerca si è concentrata sull'analisi dell'edito in materia di utilizzo degli UAV per il telerilevamento archeologico e la conseguente individuazione di più droni con differenti sensori, al fine di valutare
le problematiche e le potenzialità effettive. Essendo la ricerca concentrata sul potenziale dei droni commerciali, ossia quegli UAV che rientrano in una fascia di prezzo accessibile ad un utente medio, come può essere
una medio-piccola equipe archeologica universitaria, o una società o cooperativa archeologica privata, si è
deciso di concentrare la ricerca su UAV equipaggiati con sensori multispettrali e termici, escludendo i droni
con sensori iperspettrali o attivi il cui costo è ancora molto oltre la fascia di accessibilità individuata.


Per quanto riguarda l'UAV con sensore multispettrale, dopo un'analisi dei dispositivi utilizzati nei progetti puntuali finora editi, sono stati individuati e analizzati tre differenti UAV commerciali (tab.1):

- Parrot Disco Pro Ag: drone ad ala fissa con camera Parrot Sequoia+ integrata, con sensore multispettrale che registra in 4 bande differenti.

- DJI Phantom 4 con camera Micasense RedEdge MX: drone multirotore con 4 eliche e sensore multispettrale che registra in 5 bande differenti.
- DJI Phantom Multispectral: drone multirotore con 4 eliche e sensore multispettrale integrato che registra in 5 bande differenti.

Il Parrot Disco Pro Ag è l'unico, tra gli UAV analizzati in questa fase, ad essere ad ala fissa e se da un lato presenta il vantaggio di una maggiore autonomia e la capacità di mappare 80 ha di terreno con un solo volo, dall'altro registra una banda multispettrale in meno rispetto agli altri due sensori e ha inoltre il valore più alto di GSD (*Ground Simple Distance*), equivalente ad un minor dettaglio dell'immagine registrata.

Le proprietà rilevate tra le due diverse configurazioni del DJI Phantom, risultano piuttosto bilanciate e non eccessivamente divergenti da far emergere un UAV come nettamente migliore rispetto all'altro. In questo caso, la decisione di propendere per il DJI Phantom Multispectral, come UAV da utilizzare nelle successive fasi di ricerca, si è principalmente basata sul fatto di essere una soluzione integrata, in modo da evitare di dover aggiungere adattatori ed altri elementi non previsti dal produttore del drone.

Tab. 1 Specifiche dei tre UAV con sensore multispettrale analizzati.

Anche per quanto riguarda l'UAV con camera termica è stato inizialmente analizzato quanto edito, per arrivare, in un primo momento, ad individuare i seguenti droni tra cui scegliere il più indicato:

- DJI Mavic 2 Enterprise Dual: drone multirotore con 4 eliche e camera termica FLIR LEPTON 3.5.

- Evo II Dual: drone multirotore con 4 eliche e camera termica FLIR BOSON
- Parrot ANAFI Thermal: drone multirotore con 4 eliche e camera termica FLIR LEPTON 3.5.

In questo caso, è innegabile la migliore qualità del sensore termico FLIR BOSON, installato nel *payload* dell'UAV Evo II Dual, con una risoluzione quattro volte maggiore rispetto alla FLIR LEPTON 3.5, camera termica comune sia al DJI Mavic 2 Enterprise Dual che al Parrot ANAFI Thermal. A determinare però l'esclusione dell'Evo II Dual è stata, in particolare, la difficoltà del produttore nel riuscire a venderlo sul mercato italiano ed europeo prima della metà del 2020, e in secondo luogo ovviamente anche il costo di lancio, al limite della fascia di prezzo considerata e circa tre volte maggiore del diretto concorrente della DJI e cinque volte maggiore di quello della Parrot. Escluso l'Evo II Dual, e considerando l'omogeneità nella camera termica, si è passati al test di volo sul campo per determinare quale UAV fosse migliore. A seguito di questo test si è deciso di scegliere il DJI Mavic 2 Enterprise Dual, sia per l'autonomia di volo maggiore che per peso e robustezza dell'UAV, determinanti una migliore stabilità durante il volo in condizioni ventose. Nel corso dell'anno 2021 è stato immesso nel mercato un nuovo drone con camera termica, rientrante nella fascia di prezzo considerata: il DJI Mavic 2 Enterprise Advanced. Tale drone risulta essere un'evoluzione del precedente modello DJI, e presenta un sensore termico radiometrico con una risoluzione di 640 x 512 pixel, che fa si che tale drone risulti, al momento, la migliore soluzione commerciale, compresa nella fascia di prezzo considerata da questo progetto, per le indagini termiche.

		代学	X	THE STATE OF THE S
Modello	DЛ Mavic 2 Enter- prise Dual	Evo II Dual	Parrot ANAFI Thermal	DЛ Mavic 2 Enterprise Advanced
Autonomia	31 min ca	38 min ca	26 min ca	31 min ca
Camera	FLIR LEPTON 3.5	FLIR BOSON	FLIR LEPTON 3.5	Microbolometro VOx non raffreddato, radio- metro, integrato
Banda spet- trale	8-14 μm	7.5 - 13.5 μm	8-14 μm	8-14 μm
Interasse	12 µm	12 μm	12 µm	12 µm
Risoluzione	160x120	640x512	160x120	640x512px 30Hz

Tab. 2 Specifiche dei quattro UAV con sensore termico analizzati.

3.1 Fase di test sul sito di controllo

L'area scelta per testare i droni individuati è il sito del Pianoro di Veio, nella provincia di Roma. Tra i differenti motivi che hanno indotto a questa preferenza innanzitutto, la grande mole di dati presenti per l'area, frutto di ricerche decennali concluse o ancora in corso, svolte da differenti scuole e ricercatori, che ne fanno uno dei siti maggiormente studiati nel centro Italia. In particolare, per quanto riguarda l'aspetto metodologico, quello che qui maggiormente interessa, il confronto dei dati multispettrali e termici sia con le interpretazioni delle anomalie individuate dal Prof. Guaitoli (Guaitoli 2015; Guaitoli 2016), che con i dati della prospezione magnetometrica estensiva effettuata dal Prof. Campana (Campana 2017, 107-112; Campana 2018), ed infine con le più recenti analisi da drone portate avanti dall'insegnamento di Etruscologia ed Antichità Italiche dell'Università di Roma La Sapienza, ha permesso una costante e istantanea valutazione sull'efficacia dei risultati. In secondo luogo, tale sito è stato scelto anche per la sua conformazione attuale. Il pianoro dove insisteva l'abitato di Veio si presenta infatti come una vasta area di ca. 190 ha, nella quasi totalità ancora priva di edifici moderni, suddivisa in differenti campi utilizzati, in alcuni casi, per il pascolo di ovini e, nella maggior parte degli altri, per la coltivazione di diverse tipologie di colture erbacee. Tutto ciò ha permesso di analizzare il potenziale dei sensori in relazione sia ad un utilizzo estensivo che in base ai differenti tipi di vegetazione sorvolati.

Inoltre, nella scelta del sito, è stata valutata anche la sua vicinanza e facilità di raggiungimento, che hanno permesso di effettuare voli in maniera costante e ripetuta.

3.1.1 Parametri dei voli multispettrali

I voli multispettrali hanno coperto l'intera area del Pianoro. Dopo numerose prove con differenti percentuali di sovrapposizione delle immagini e diverse quote, si è scelto di impostare tutte le missioni con un'altezza di volo di 70 m, una velocità di percorrenza di 5 m/s con modalità di scatto in *hovering*, un *overlap* longitudinale del 70% e laterale del 60%, e una risoluzione a terra preventivata di 3,7 cm per pixel. Queste impostazioni sono risultate essere un ottimo compromesso tra il tempo impiegato, in un'ottica di analisi estensiva di aree di grandi dimensioni, e l'accuratezza del dato. In media, le missioni hanno avuto una durata di 20 minuti e 58 secondi, corrispondenti ad un'autonomia di una batteria, in condizioni di volo ottimali (con un massimo di durata di 29 minuti e 22 secondi della missione di volo numero 7, corrispondente ad un'autonomia di una batteria e mezzo). Tali impostazioni di volo hanno restituito poi, a causa delle differenze altimetriche di alcune aree, una risoluzione a terra reale media di 3,4 cm per pixel, con una differenza massima tra i due estremi di 3,08 e 3,86 cm per pixel. Per l'elaborazione delle immagini sono stati utilizzati 20 differenti indici vegetativi (tab.3).

¹ Si definiscono Indici Vegetativi (*Vegetation Indices*, VIs) le formule matematiche che determinano la condizione fisiologica della vegetazione sulla base delle loro caratteristiche di riflessione e assorbimento di varie bande dello spettro elettromagnetico.

Indice di Vegetazione	Formula matematica		
NDVI (Normalized Difference Vegetation Index)	(NIR – red)/(NIR + red)		
GNDVI (Green Normalized Difference Vegetation Index)	(NIR – green)/(NIR + green)		
BNDVI (Blue Normalized Difference Vegetation Index)	(NIR – blue)/(NIR + blue)		
SR (Simple Ratio)	NIR/red		
EVI (Enhanced Vegetation Index)	2.5 (NIR – red)/(NIR +6 red – 7.5 blue +1)		
NDRE (Normalized Difference Red Edge)	NIR-RedEdge /NIR+ RedEdge		
NDGI (Normalized Difference Greenness Index)	green -red / green + red		
GRVI (Green Red Vegetation Index)	NIR/green		
DVI (Difference Vegetation Index)	NIR/red		
Chlgreen	(NIR/green) - 1		
NDRER (Normalised Difference Red-Edge/Red)	(RedEdge - red) / (RedEdge + red)		
VARI (Visible Atmospherically Resistant Index)	(green-red)/(green+red-blue)		
NLI (Non Linear Vegetation Index)	NIR ² - red / NIR ² + red		
GEMI (Global Environment Monitoring Index)	n*(1-0.25n)* (red -0.125) / (1-red) $n=[2*(NIR^2-red^2) + 1.5NIR + 0.5red] / (NIR+red+0.5)$		
OSAVI (Optimised Soil Adjusted Vegetation Index)	1.5(NIR-red) / (NIR+red+0.16)		
MCARI (Modified Chlorophyll Absorption in Reflectance Index)	((Red Edge – red) – 0.2 * (Red-Edge green)) * (Red Edge/red)		
TCARI (Transformed Chlorophyll Absorption Ratio Index)	3 * ((RedEdge - red) - 0.2* (RedEdge - green) * (RedEdge / red))		
TCARI/OSAVI	(3 * ((RedEdge - red) - 0.2* (RedEdge - green) * (RedEdge / red)))/ (1+ 0.16)*(NIR - red)/ (NIR + red + 0.16)		
NDWI (Normalized Difference Water Index)	(green - NIR) / (green + NIR)		
WDRVI01 (Wide Dynamic Range Vegetation Index)	(0.1* NIR -red) / (0.1* NIR +red)		

Tab. 3 Elenco degli Indici Vegetativi utilizzati.

I voli sono iniziati in data 05 Agosto 2020 e sono proseguiti circa ogni due settimane, nei periodi in cui i terreni risultavano coperti da vegetazione, mentre la distanza tra i voli è aumentata nei periodi successivi alla fresatura e all'aratura dei terreni, oppure nei mesi in cui i terreni sono totalmente privi di vegetazione. Fino al mese di luglio 2021 sono state effettuate 94 missioni di volo, in 16 diversi momenti dell'anno. Nei mesi di aprile e maggio i voli hanno interessato l'intera area del pianoro, mentre negli altri mesi si è volato principalmente sui terreni che presentavano una vegetazione idonea, spontanea o comunque molto bassa. Infine, nei mesi in cui i terreni erano del tutto spogli, sono state effettuate solo missioni di volo nell'area centrale (Fig. 1), dove si situano il grosso delle anomalie individuate da Guaitoli e Campana.

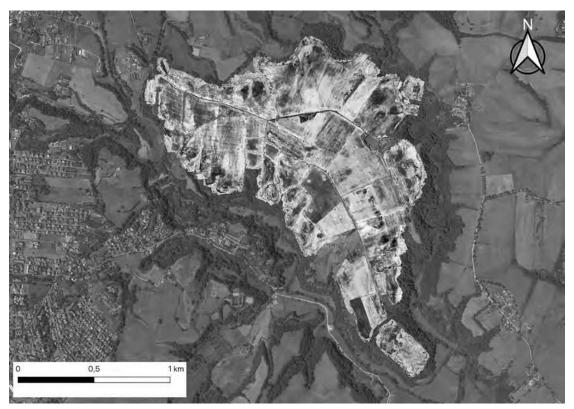


Fig. 1 Area del Pianoro di Veio. Voli multispettrali effettuati nel mese di Maggio 2021. Elaborazione dell'indice NDVI.

3.1.2 Parametri dei voli termici

Per quanto riguarda invece i voli con camera termica, questi si sono concentrati solo sull'area centrale del Pianoro (Fig. 2) e sono stati effettuati in diversi momenti dell'anno (con assenza e presenza di vegetazione) e in diversi momenti della giornata, al fine di valutare il potenziale al variare della temperatura.

A differenza dei test multispettrali, per quanto riguarda le analisi termiche, sono stati utilizzati due differenti droni: in una prima fase, con voli effettuati principalmente di notte, è stato utilizzato il DJI Mavic 2 Enterprise Dual; mentre successivamente è stato utilizzato il DJI Mavic Enterprise Advanced.

Avendo i due droni differenti sensori termici, sono state utilizzate diverse impostazioni di scatto:

Con il primo drone, a causa della bassa risoluzione delle immagini termiche ricavate dalla camera termica FLIR LEPTON 3.5, dopo diverse prove si è scelto di effettuare voli aventi strisciate con una sovrapposizione del 90% tra gli scatti, sia lateralmente che longitudinalmente, ad una quota di 40 metri con un GSD di 51.25 cm/px.

I voli con il secondo tipo di drone, sono stati invece effettuati ad una quota di 80 m, con un GSD di 10.48 cm/px con velocità di percorrenza di 3.2 m/s e un *overlap* laterale del 55% e longitudinale del 65%.

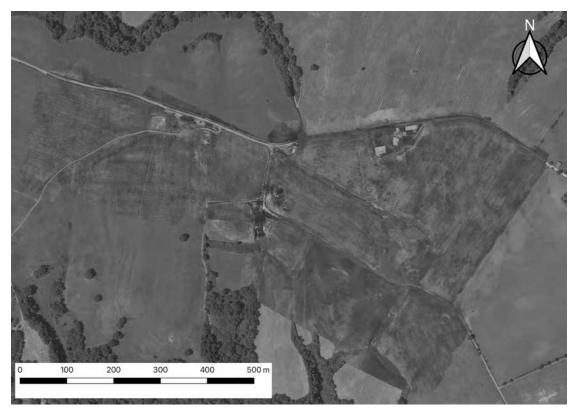


Fig. 2 Area centrale del Pianoro di Veio. Voli con camera termica.

3.2 Analisi termiche e multispettrali in altre aree della ricerca

Una volta completati i voli di test sull'area del Pianoro di Veio, i droni sono stati utilizzati in differenti aree di ricerca al fine sia di continuare una valutazione del potenziale dei sensori termici e multispettrali in ambienti pedologici e vegetativi differenti, sia di individuare nuovi elementi archeologici non visibili in superficie. I voli si sono concentrati quindi sulle seguenti aree di indagine: loc. Stracciacappe (Campagnano di Roma – RM), Castronovo di Sicilia (PA), loc. Antiche Mura (Jesolo – VE).

3.2.1 Loc. stracciacappe (campagnano di roma – rm)

L'area di Stracciacappe, situata a nord est del lago di Martignano, lungo il confine tra il Comune di Roma e quello di Campagnano, è il luogo in cui insisteva il *castrum* di *Stirpe Cappe* di cui oggi resta solo la torre ed un lacerto murario in parte crollato (Vendittelli 1989; Ciccone 2012, 74-130). L'area, oggi principalmente lasciata alla crescita di vegetazione spontanea per il pascolo di ovini ed equini, è stata analizzata sia tramite sensore termico che multispettrale. L'indagine multispettrale ha ricoperto anche parte del bacino del lago prosciugato a partire dal 1923, per un'estensione intera di copertura multispettrale di 196.5 ha (Fig. 3).

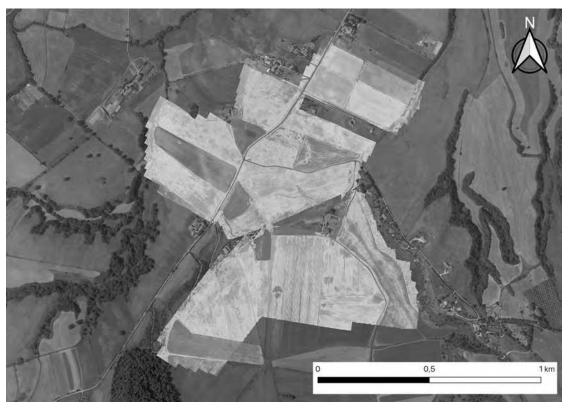


Fig. 3 Area di Stracciacappe. Voli multispettrali effettuati nel mese di Maggio 2020. Elaborazione dell'indice NDVI.

3.2.2 Castronovo di sicilia (pa)

Castronovo di Sicilia è un comune della Sicilia centro-occidentale, situato in prossimità dell'attuale SS189 (Palermo-Agrigento). L'area dell'attuale comune vanta testimonianze archeologiche che vanno dall'età preistorica all'età moderna senza soluzione di continuità (Maurici 2000; Castrorao Barba 2016; Carver, Molinari 2018). In questa zona sono stati effettuati voli con drone multispettrale in differenti località, per una copertura totale di ca. 156 ha (Fig. 4), il drone termico è stato utilizzato solo in alcuni campi specifici, per un confronto diretto con il dato multispettrale.

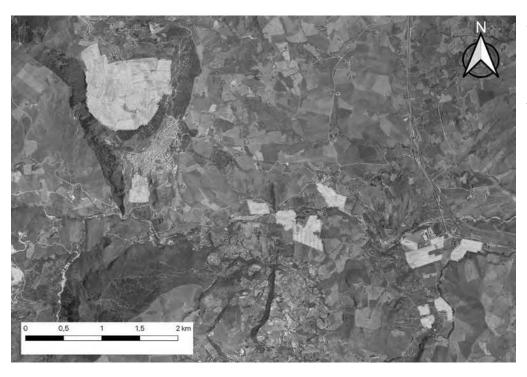


Fig. 4 Area di Castronovo di Sicilia. Voli multispettrali effettuati tra aprile e maggio 2020. Elaborazione dell'indice NDRE.

3.2.3 Loc. antiche Mura (jesolo – ve)

L'area in esame è situata a nord dell'attuale comune di Jesolo, dove insistono i resti archeologici dell'insediamento di *Equilum* (Gelichi, Cadamuro, Cianciosi 2018; Grosso 2021). I voli, limitati al drone con sensore multispettrale hanno coperto un'area di ca. 135 ha, e sono stati effettuati in diversi mesi degli anni 2020 e 2021, in modo da sorvolare i differenti campi nei periodi più adatti in base alle vegetazioni presenti (principalmente grano, soia, mais ed erba medica). Nuovi voli sono in programma nel 2022, sia con sensore multispettrale che termico, e l'interpretazione delle immagini sono in buona parte ancora in corso.

4. Risultati

Le indagini multispettrali sono risultate piuttosto efficienti, individuando un gran numero di anomalie, non visibili tramite semplici immagini RGB, sia nell'area test del Parco di Veio che nell'area del Monte Kassar (Castronovo di Sicilia). Il confronto con i dati da aerofotografia nel visibile (Guaitoli 2015; Guaitoli 2016) e con i dati magnetometrici (Campana,2018, 107-112; Campana 2019) del Pianoro di Veio, hanno evidenziato un'efficacia del drone multispettrale nell'individuare la quasi totalità delle tracce relative alla viabilità e un gran numero di tracce relative a edifici (Ciccone, cs) (Fig. 5).

Anche sull'area del Monte Kassar il sensore multispettrale è stato in grado di individuare l'unico tratto delle mura della fortificazione bizantina oggi scomparso, oltre ad una serie di anomalie interpretabili come elementi di viabilità interna, un edificio di grandi dimensioni e un numero maggiore di tracce interpretabili come edifici minori (Fig. 6). Il sensore multispettrale è risultato particolarmente utile anche all'individuazione di anomalie geologiche, come ad esempio a Castronovo di Sicilia per l'analisi degli argini del Fiume Platani o a Stracciacappe per lo studio dell'effettiva dimensione del bacino del lago prima della fase di bonifica.

Meno performante è risultato invece il drone con sensore termico, in particolare per quanto riguarda il primo dei due analizzati. I voli nell'area centrale del Pianoro di Veio, effettuati di giorno su terreni privi di vegetazione, hanno permesso l'individuazione solo di alcune anomalie riferibili alla viabilità principale. Per quanto riguarda poi i voli notturni, teoricamente i più utili all'individuazione di anomalie termiche sul suolo privo di vegetazione (Scollar *et al.* 1990; Casana *et al.* 2014; Hill *et al.* 2020), la scarsa risoluzione del sensore ha comportato l'impossibilità iniziale nell'allineare le foto scattate, mediante qualsiasi software di rilievo fotogrammetrico, al fine di ricavarne un'ortofoto da analizzare. Questo problema è stato risolto tramite l'elaborazione di un workflow che permette di unire le immagini RGB e IR (termiche), in formato JPG, in singole immagini in quattro bande (R, G, B, IR) in formato TIFF, al fine di riuscire ad elaborare le immagini TIFF con i software di fotogrammetria per la ricostruzione del rilievo 3D e la successiva elaborazione dell'ortofoto, da cui infine estrarre la banda relativa all'immagine termica (Ciccone, 2021; Khelifi, Ciccone *et al.* 2021). Nonostante questo, le ortofoto ricavate presentano un eccessivo rumore (dovuto alla bassa risoluzione del sensore), che rende complicato individuare anomalie di medio piccole dimensioni. Al contrario, il secondo drone termico utilizzato, sicuramente migliorato nella risoluzione della camera, non

sul più recente drone con camera termica, per valutarne l'efficacia anche su terreni ricoperti di vegetazione.

presenta i problemi di allineamento evidenziati dal primo, dando quindi migliori risultati per quanto riguarda i voli notturni. Nell'ambito del progetto di ricerca sono previsti, tra la primavera e l'estate del 2022, ulteriori test

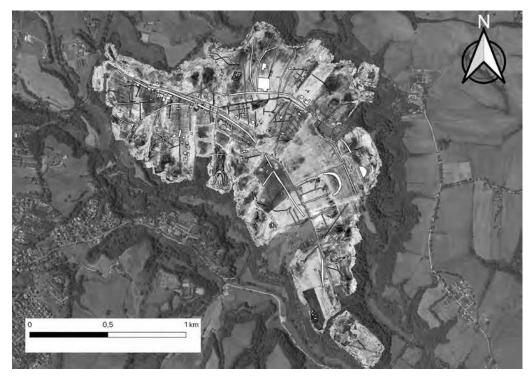


Fig. 5 Area del Pianoro di Veio. In bianco le anomalie individuate nell'anno di test.

Fig. 6 Area del Monte Kassar (Castronovo di Sicilia, PA). In bianco le anomalie individuate da drone multispettrale, relative alla fortificazione di età bizantina. In nero le aree di scavo del progetto SicTransit. In grigio le mura della fortificazione bizantina, in larga parte ancora visibili.

5. Conclusioni

Le missioni di volo, effettuate nei primi due anni di ricerca, hanno evidenziato innanzitutto una maggiore applicabilità del sensore multispettrale rispetto a quello termico, la cui minore risoluzione e le difficoltà dei voli notturni ne fanno, al momento, un metodo meno efficiente rispetto al drone con camera multispettrale². Per quanto riguarda l'analisi multispettrale, i voli effettuati nell'area test del Pianoro di Veio, confrontati con quelli svolti nelle altre aree di ricerca, dimostrano come sia di fondamentale importanza una buona conoscenza del tipo di vegetazione sorvolato e del suo stato fenologico. Se i test nell'area di Veio hanno mostrato, infatti, come sia stato il mese di maggio il più indicato per analizzare campi di grano, erba medica ed altri erbai misti, le analisi svolte a Jesolo hanno invece mostrato come su campi di soia o mais, la cui semina, e di conseguenza anche la crescita, avviene generalmente in un momento più avanzato dell'anno, il periodo migliore per un'analisi multispettrale sia tra settembre e ottobre. In ogni caso, è importante sottolineare come fattori stagionali (più o meno abbondanza di pioggia in inverno, temperature più o meno alte in primavera) possano determinare delle situazioni non ideali anche nei mesi più adatti o, al contrario, causare condizioni più favorevoli in periodi teoricamente meno indicati. Il confronto delle anomalie individuate a Veio a maggio del 2021 con quelle riscontrate, sempre da drone con sensore multispettrale, da Materazzi nella stessa area nel maggio del 2017 (Materazzi, Pacifici 2020; Materazzi, Pacifici 2022) hanno evidenziato come le condizioni vegetative del 2021 risultassero meno buone rispetto a quelle del 2017. Anche per questo motivo è quindi fondamentale prevedere, già in fase di impostazione del progetto di telerilevamento multispettrale da drone, voli in diversi momenti dell'anno, in modo da aumentare le possibilità di avere una copertura maggiore delle anomalie presenti. Indicativo, è stato ad esempio il caso di una traccia già conosciuta da analisi precedenti (Guaitoli 2105; Materazzi, Pacifici 2021), individuata nel lato ovest nel mese di ottobre 2020, mentre tra maggio e giungo del 2021 risultava visibile solo nella parte est (Fig. 7).

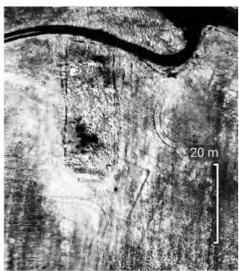


Fig. 7 Particolare dell'anomalia conosciuta relativa ad un edificio romano in opera reticolata. Da sinistra verso destra, indice vegetativo NDVI nei mesi di ottobre 2020, maggio 2021 e giugno 2021.

² Nella speranza che i prossimi test sul più recente drone con camera termica possano smentire questa prima impressione.

Inoltre, sempre nell'area test del Pianoro di Veio, il confronto con i dati dell'analisi geofisica fatta dal Campana (Campana 2018, 107-112; Campana 2019) ha permesso di evidenziare come i risultati dei test multispettrali non si discostino in maniera consistente dai dati magnetometrici, i quali risultano sicuramente più densi in buona parte del pianoro, ma meno dettagliati e chiari in altre aree. In alcuni casi si è visto come il drone multispettrale abbia permesso di individuare anomalie non visibili dal magnetometro (Ciccone, cs). In conclusione, è possibile sostenere che l'utilizzo di un drone con camera multispettrale per il telerilevamento archeologico sia un nuovo metodo di indagine non invasiva estremamente efficiente. Anche dal punto di vista del costo, in termini sia economici che di tempo, è da evidenziare come rispetto, ad esempio, il drone multispettrale utilizzato in questa ricerca ha un prezzo dalle quattro alle dieci volte inferiore rispetto a quello di un magnetometro; mentre, per quanto riguarda il tempo impiegato per coprire l'intera area di ca. 190 ha del Pianoro di Veio, ci sono voluti solo due giorni di voli (a maggio con 5 batterie, ricaricate una volta durante la giornata, per un totale quindi di 20 batterie utilizzate) a differenza di un periodo di tempo che può andare da diverse settimane a diversi mesi per una ricognizione geofisica.

Per tutti questi motivi è possibile, e auspicabile, che l'indagine multispettrale da drone diventi sempre più accessibile nel campo archeologico e quindi utilizzata da un numero sempre più ampio di ricercatori. Questo permetterebbe inoltre di avere sempre maggiori confronti con terreni e quindi vegetazioni diverse, contribuendo ad affinare e migliorare costantemente questa nuova metodologia. Tuttavia, nonostante i grandi vantaggi evidenziati, è importante evitare che questa metodologia possa fagocitare altri metodi di telerilevamento in quanto, come dimostrato dal confronto sia con la magnetometria nel sito test di Veio e in loc. Antiche Mura a Jesolo, sia con le fotografie aeree e satellitari per tutte le aree di indagine, solo l'eterogeneità del dato può portare ad una migliore e più completa analisi dei paesaggi storici.

Bibliograifa

Agudo, Paula Uribe, Pajas, Jorge Angás, Pérez-Cabello, Fernando, Redón, Jaime Vicente, Lebrón, Beatriz Ezquerra. 2018. "The Potential of Drones and Sensors to Enhance Detection of Archaeological Crop Marks: A Comparative Study Between Multi-Spectral and Thermal Imagery." *Drones* 2: 29.

Adamopoulos, Efstathios, Rinaudo, Fulvio. 2020. "UAS-Based Archaeological Remote Sensing: Review, Meta-Analysis and State-of-the-Art." *Drones* 4(3): 46.

Barbedo, Jayme Garcia A. 2019. "A Review on the Use of Unmanned Aerial Vehicles and Imaging Sensors for Monitoring and Assessing Plant Stresses." *Drones* 3(2): 40.

Bartsch, Ron, Coyne, James, Gray, Katherine. 2017. *Drone in Society. Exploring the strange new world of unmanned aircraft*. London, New York: Routledge.

Bendea, Horea Iosif, Chiabrando, Filiberto, Toniolo, Fabio Giulio and Marenchino, Davide 2007. *Mapping of archaeological areas using a low-cost UAV the Augusta Bagiennorum Test site*. XXI International Symposium, Athens, Greece.

Campana, Stefano. 2017. "Emptyscapes: filling an 'empty' Mediterranean landscape at Rusellae, Italy." *Antiquity* 91(359): 1223-1240.

Campana, Stefano. 2018. *Mapping the Archaeological Continuum. Filling 'empty' Mediterranean Landscapes*. New York: Springer.

Campana, Stefano, Forte, Maurizio. 2017. *Digital Methods and Remote Sensing in Archaeology. Archaeology in the Age of Sensing*. New York: Springer.

Cappelletti, Chiara, Boniardi, Marco, Casaroli, Andrea, De Gaetani, Carlo Iapige, Passioni, Daniele, Pinto, Livio. 2019. "Forensic Engineering Survey with UAV Photogrammetry and Laser Scanning Techniques." In Cardaci, Alessio, Fassi, Francesco Remondino, Fabio (a cura di), *International Archives of Photogrammetry, Remote Sensing and Spatial Information Science, Vol. XLII-2/W9, 8th International Workshop 3D-ARCH - 3D Virtual Reconstruction and Visualization of Complex Architectures, 6 - 8 February 2019, Bergamo (Italy)*: 227-234. Hannover: ISPRS https://doi.org/10.5194/isprs-archives-XLII-2-W9-227-2019 Carver, Martin Osvald Hugh, Molinari, Alessandra. 2018. "Insediamenti e cultura materiali nell'area di Castronovo di Sicilia. Secoli VI-XIII." In Rosa Maria Carra Bonacasa, Emma Vitale (a cura di) *Studi in memoria di Fabiola Ardizzone 2. Scavi, Topografia e Archeologia del paesaggio*, 29-52. Palermo: Quaderni Digitali di Archeologia Postclassica.

Casana, Jesse, Kantner, John, Wiewel, Adam, Cothren, Jackson. 2014. "Archaeological aerial thermography: a case study at the Chaco-era Blue J community, New Mexico." *Journal of Archaeological Science* 45: 207-219.

Casana, Jesse, Wiewel, Adam, Cool, Autumn, Hill, Austin Chad Hill, Fisher, Kevin D., Laugier, Elise J. 2017. "Archaeological Aerial Thermography in Theory and Practice." *Advances, Archaeological Practice* 5 (4): 310-327.

Castrorao Barba, Angelo. 2016. "Ricognizioni archeologiche nel territorio di Castronovo di Sicilia (Palermo): aggiornamento di siti noti e nuovi dati." *Notiziario Archeologico della Soprintendenza di Palermo* 5/2016: 1-19.

Ciccone, Gabriele. 2012. "Un'indagine di "evaluative archaeology" nella Campagna Romana: i casi di Stirpa Cappe e Tor Maggiore, Tesi di Laurea Magistrale in Archeologia, Filologia e Letterature e Storie dell'antichità, Università di Roma Tor Vergata.

Ciccone, Gabriele. 2022. *Un'indagine di archeologia aerea a bassa quota sul Pianoro di Veio: un anno di voli con drone multispettrale*. In Atti del III Convegno Internazionale di Archeologia Aerea: Lecce.

Evers, Rykker, Masters, Peter. 2018. "The Application of Low-Altitude near-Infrared Aerial Photography for Detecting Clandestine Burials Using a UAV and Low-Cost Unmodified Digital Camera." In Forensic Science International, 289: 408–18.

Fiorini, Lucio, Materazzi, Filippo. 2017. "Un Iseion a Gravisca? Fotogrammetria, telerilevamento multispettrale da APR e dati archeologici per una possibile identificazione." *FOLD&R FastiOnLine documents* & research 396: 1-23.

Gelichi, Sauro, Cadamuro, Silvia, Cianciosi, Alessandra. 2018. *IN LIMINE. Storie di una comunità ai margini della laguna*. Siena: All'insegna del Giglio.

Guaitoli, Marcello. 2015. "Veio: osservazioni sulla topografia della città, in Novità nella ricerca archeologica a Veio." *Atlante di Topografia Antica* 25: 83-89.

Guaitoli, Marcello. 2016. "Veio: osservazioni preliminari sulla topografia della città." *Atlante tematico di topografia antica* 26: 177-214.

Grosso, Simone. 2021. "Remote Sensing a nord della laguna veneta: il caso di Equilum (Jesolo, VE)." Tesi di Laurea Magistrale in Archeologia, Dipartimento scienze storiche e dei beni culturali, Università di Siena. Hill, Austin Chad, Laugier, Elise Jakoby, Casana, Jesse. 2020. "Archaeological Remote Sensing Using Multi-Temporal, Drone-Acquired Thermal and Near Infrared (NIR) Imagery: A Case Study at the Enfield Shaker Village, New Hampshire." *Remote Sensing* 12(4): 690.

Hugenholtz, Chris. H., Whitehead, Ken, Barchyn, Thomas E., Brown, Owen, Moorman, Brian J., Leclair, Adam, Hamilton, Tayler, Riddell, Kevin. 2013. "Geomorphological mapping with a small unmanned aircraft system (sUAS): feature detection and accuracy assessment of a photogrammetrically-derived digital terrain model." *Geomorphology* 194: 16-24.

Jang, Ho S., Lee, Jong C., Kim, Myung S., Kang, In J., Kim, Cha K. 2004. "Construction of national cultural heritage management system using rc helicopter photographic surveying system." *International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS Congress* 35: 473-478.

Khelifi, Adel, Ciccone, Gabriele, Altaweel, Mark, Basmaji, Tasnim, Ghazal, Mohammed. 2021. *Autonomous Service Drones for Multimodal Detection and Monitoring of Archaeological Sites*. Applied Sciences 11(21): 10424, https://doi.org/10.3390/app112110424

Manfreda, Salvatore, et al. 2018. "On the Use of Unmanned Aerial Systems for Environmental Monitoring." *Remote Sensing* 10(4): 641.

Materazzi, Filippo, Pacifici, Marco. 2020. "Novità dall'area urbana di Veio. Telerilevamento multispettrale da drone e indici di vegetazione: nuovi strumenti per l'identificazione dei crop-mark dall'area di Campetti." *Scienze dell'Antichità* 26(1): 95-98.

Materazzi, Filippo, Pacifici, Marco. 2022. "Archaeological crop marks detection through drone multispectral remote sensing and vegetation indices: A new approach tested on the Italian pre-Roman city of Veii." *Journal of Archaeological Science: Reports*, 41, 103235, https://doi.org/10.1016/j.jasrep.2021.103235

Maurici, Ferdinando. 2000. Problemi di storia, archeologia e topografia medievale nel territorio di Castronovo di Sicilia in provincia di Palermo, Atti II Giornate Internazionali di Studio sull'area Elima. 1997. Pisa- Gibellina: 755-776.

Minucci, Eleonora. 2018. "Apr e Droni nella moderna ricerca archeologica: un primo approccio." *Newsletter di Archeologia CISA* 9: 91-114.

Myagmar, Erdene, Webber, Henry, Parkes, Geoffrey, Pecchia, Vito, Horton, Mark. 2018. "A Buddhist monastery revealed by UAV survey and ground-penetrating radar in eastern Mongolia." *Antiquity* 92(363): 1-7 DOI: https://doi.org/10.15184/aqy.2018.104

Naleimaile, Sean, Gutiérrez, Gerardo, Searcy, Michael, Mark, Robert K., Billo, Evelyn, Parcero-Oubiña, Cesar. 2016. "Drones in archaeology." *The Magazine of the Society for American Archaeology* 16 (2).

Patias, Petros, Saatsoglou-Paliadeli, Chrysoula, Georgoula, Olga, Pateraki, Mimina, Stamnas, Anastasios. And Kyriakou, Nikolaos. 2017. "Photogrammetric documentation and digital representation of the macedonian palace in Vergina-Aegae." *CIPA, XXI International CIPA Symposium*, Athens, CIPA

Périsset, Marie-Claude. 1980. "Prospection Thermique de Subsurfaces: Application á l'Archéologie." Tesi di Dottorato, L'Université Pierre et Marie Curie, Paris.

Périsset, Marie-Claude, Tabbagh, Alain. 1981. "Interpretation of Thermal Prospection on Bare Soils." *Archaeometry* 23(2):169–187.

Poirier, Nicolas, Calastrenc, Carine, Hautefeuille, Florent. 2013. "Low Altitude Thermal Survey by Means of an Automated Unmanned Aerial Vehicle for the Detection of Archaeological Buried Structures." *International Journal of Archaeological Prospection* 20(4): 03-307. <10.1002/arp.1454> <hal-00844459>

Przybilla, Heinz-Jürgen, Wester-Ebbinghaus, Wilfried. 1979. Bildflug mit ferngelenkten Kleinflugzeug. Bildmessung und Luftbildwesen. Zeitschrift fuer Photogrammetrie und Fernerkundung. Karlsruhe: Herbert Wichmann Verlag.

Prudkin, Gonzalo, Breunig, Fábio Marcelo. 2019. *Drone e ciência. Teoria e aplicações metodológicas. Volume I.* Santa Maria: Manancial.

Rinaudo, Fulvio, Chiabrando, Filiberto, Lingua, Andrea Maria, Spanò, Antonia Teresa. 2012. "Archaeological site monitoring: UAV photogrammetry can be an answer." *International Archives Photogrammetry, Remote Sensing and Spatial Information Science* 39(B5): 583–588.

Salgado Carmona, Jpsé Ángel, Quirós, Elia Rosado, Mayoral, Victorino, Charro Lobato, Cristina. 2020. "Assessing the Potential of Multispectral and Thermal UAV Imagery from Archaeological Sites. A Case Study from the Iron Age Hillfort of Villasviejas Del Tamuja (Cáceres, Spain)." *Journal of Archaeological Science: Reports* 31: DOI: 10.1016/j.jasrep.2020.102312

Scollar, Irwin., Tabbagh, Alain, Hesse Albert, Herzog Irmela. 1990. *Archaeological Prospecting and Remote Sensing*. *Topics in Remote Sensing* 2. Cambridge: Cambridge University Press.

Seitz, Christian, Altenbach, Holger. 2012. "Project ARCHEYE. The quadricopter as the archaeologist's eye." *ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences* 38-1/C22: 297–302.

SESAR3. 2017. Single European Sky ATM Research 3 Joint Undertaking, *European drones outlook study* : *unlocking the value for Europe*, Publications Office.

Smith, Neil, Passone, Luca, Al-Said, Said, Al-Fahran, Mohamed, Levy, Thomas E. 2014. "Integrated Data Capture, Processing, and Dissemination in the al-Ula Valley, Saudi Arabia." *Near Eastern Archaeology* 77(3): 176-181.

Srivastava, Kshitij, Bhutoria, Jain, Aman, Sharma, Jyoti K., Sinha, Aakasha, Pandey, Prem Chandra. 2019. "UAVs Technology for the Development of GUI Based Application for Precision Agriculture and Environmental Research." *Remote Sensing Applications: Society and Environment* 16: 100258, DOI: https://doi.org/10.1016/j.rsase.2019.100258

Tabbagh, Alain. 1977. "Sur la Détermination du Moment de Mesure Favorable et l'Interprétation des Résultats en Prospection Thermique Archéologique." *Annales de Géophysique* 33: 243–254.

Tabbagh, Alain. 1979. "Prospection Thermique Aéroportée du Site de Prepou." *Revue d'archéométrie* 7: 11–25. Uribe, P., Pérez-Cabello, F., Bea, M., De La Riva, J., Martín-Bueno, M., Sáenz, C., Angás, J. 2015. "Aerial mapping and multi-sensors approaches from remote sensing applied to the Roman archaeological heritage."

ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-5(W4): 461-467, DOI:

10.5194/isprsarchives-XL-5-W4-461-2015

Vendittelli, Marco. 1989. "La famiglia Curtabraca. Contributo alla storia della nobiltà romana del Duecento." *Mélanges de l'École Française de Rome, Moyen Âge* 101(1): 157-174.

Verhoeven, Geert J.. 2012, "Near-Infrared Aerial Crop Mark Archaeology: From Its Historical Use to Current Digital Implementations." *Journal of Archaeological Method and Theory* 19(1): 132–60.

Vermeulen, Frank, Hay, S, Verhoeven, Geert. 2006. "Potentia: An integrated survey of a roman colony on the Adriatic coast." *Papers of the British School at Rome «PBSR»* 74: 203–236.