Rappresentazione dei numeri naturali ed interi

Prof.ssa Lucia Migliorelli

lmigliorelli@unite.it

Corso di Sistemi multimediali e web per il turismo

Dipartimento di Scienze Politiche, Università di Teramo

Agenda

- Numeri naturali
- Numeri interi

Numeri Naturali

Numeri naturali in varie basi

- Quando scriviamo un numero, di solito usiamo il sistema decimale (base 10). È quello che impariamo a scuola: le cifre vanno da 0 a 9 e il valore del numero dipende dalla posizione delle cifre (unità, decine, centinaia, ecc.).
- Ma i computer non ragionano in base 10: utilizzano la base 2 (binario), cioè si servono solo delle cifre 0 e 1. Ogni cifra binaria si chiama bit.
- Oltre al binario e al decimale, in informatica è molto comune anche la base 16 (esadecimale), perché permette di rappresentare numeri binari molto lunghi in modo più compatto e leggibile. In esadecimale le cifre vanno da 0 a 9, poi si usano le lettere A, B, C, D, E, F per rappresentare i valori da 10 a 15.

Numeri naturali in varie basi

250 in base 10, in base 2 e in base 16 (A=10, B=11, C=12, ... F=15):

Esempio – metodo pratico

Conversione in base due del numero 13 in base dieci

```
13 : 2 = 6 resto 1
```

6:2 = 3 resto 0

3:2 = 1 resto 1

1:2 = 0 resto 1 -> **STOP** (Poiché il quoziente è 0)

La conversione binaria di 13 possiamo ottenerla scrivendo da <u>sinistra a destra i resti</u> presi <u>dal</u> <u>basso verso l'alto</u>

$$(13)_{10} = (1101)_2$$

Esempio – metodo pratico (1)

Come prova <u>convertiamo 1101 da base due a base dieci</u>. La posizione di ogni bit da destra verso sinistra ci informa dell'esponente da applicare alla base 2, a partire da zero.

$$(1101)_2 = (1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0)_{10} =$$

= $(8 + 4 + 0 + 1)_{10} = (13)_{10}$

$$(1101)_2 = (13)_{10}$$

Esempio – metodo pratico (2)

Torniamo al numero 250...

Esponente									
	1	1	1	1	1	0	1	0	$ \begin{bmatrix} 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 250 \end{bmatrix} $
	2								- 2 0 × 2 1 × 2 0 × 2 -250

- 250÷2=125, resto **0**
- 125÷2=62 resto **1**
- 62÷2=31, resto **0**
- 31÷2=15, resto **1**
- 15÷2=7, resto **1**
- 7÷2=3, resto **1**
- 3÷2=1, resto **1**
- 1÷2=0, resto **1**

11111010

Esempio – metodo pratico (3)

Torniamo al numero 250...

- 250÷16=15, resto **10**
- 15÷16=0 resto **15**

Esempio – metodo pratico (4)

15-0-15

DECIMALE	Esadecimale	BINARIO
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	→ A	1010
11	В	1011
12	С	1100
13	D	1101
14	Е	1110
15	F	1111

Aritmetica modulare – modulo 2^N

I numeri naturali sono <u>infiniti</u>, ma la <u>memoria</u> di un elaboratore digitale è <u>finita</u>!

Se usiamo N bit, possiamo rappresentare solo un numero finito di valori $\{0, ..., 2^N - 1\}$

- N=3 bit \rightarrow posso rappresentare 2³=8 valori: da 0 a 7
- N=4 bit \rightarrow posso rappresentare $2^4 = 16$ valori: da 0 a 15

Posto che si riservino N bit per rappresentare i numeri naturali in un elaboratore digitale, possiamo rappresentare qualunque numero naturale M con la convenzione $\underline{\text{emodulo } 2^N}$

A cosa serve?

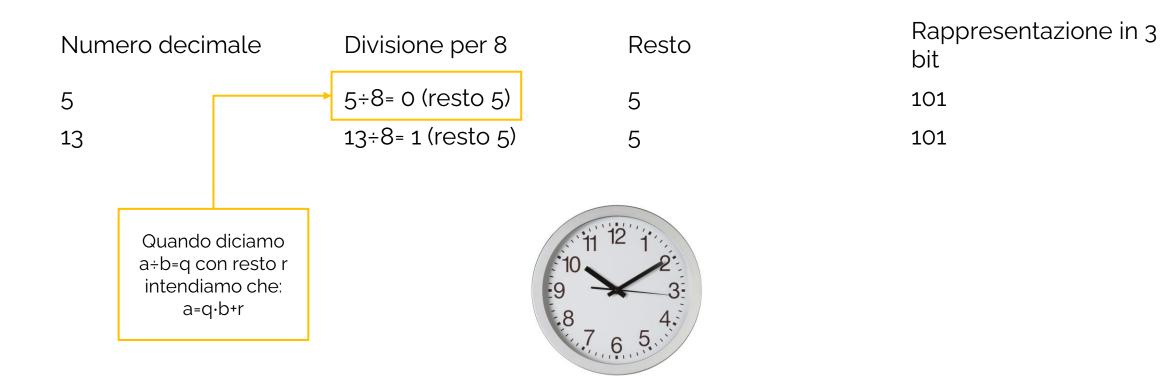
Quando un numero è troppo grande, il computer conserva solo il resto della divisione per $2^{
m N}$

Ovvero, due numeri che differiscono di un multiplo di 2^N hanno la stessa rappresentazione

Aritmetica modulare – modulo 2^N

Quando un numero è troppo grande, il computer conserva solo il resto della divisione per $2^{\rm N}$

Ovvero, due numeri che differiscono di un multiplo di $2^{\rm N}$ hanno la stessa rappresentazione



Esempio Modulo 2^N (1)

Supponiamo di lavorare con N=3, cioè con 3 bit. In questo caso $2^N=2^3=8$

Dec	Bin	Dec	Bin	Dec	Bin
0	000	8	000	16	000
1	001	9	001	17	001
2	010	10	010	18	010
3	011	11	011	19	011
4	100	12	100	20	100
5	101	13	101	21	101
6	110	14	110	22	110
7	111	15	111	23	111

Nella tabella i numeri da 8 a 23 non sono rappresentati con 3 bit.

Quello che si vede è solo una troncatura della loro rappresentazione binaria completa.

Esempio:8 in binario è 1000 (serve almeno 4 bit!)

Se si taglia il primo bit e si tengono solo gli ultimi 3 → si ottiene 000

Esempio Modulo 2^N (2)

Supponiamo di lavorare con N=3, cioè con 3 bit. In questo caso $2^N=2^3=8$

Se uso 3 bit, il computer riesce a contare fino a 7, poi riparte da 0

Bin	Dec	Bin	Dec	Bin
000	8	000	16	000
001	9	001	17	001
010	10	010	18	010
011	11	011	19	011
100	12	100	20	100
101	13	101	21	101
110	14	110	22	110
111	15	111	23	111
	000 001 010 011 100 101 110	000 8 001 9 010 10 011 11 100 12 101 13 110 14	000 8 000 001 9 001 010 10 010 011 11 011 100 12 100 101 13 101 110 14 110	000 8 000 16 001 9 001 17 010 10 010 18 011 11 011 19 100 12 100 20 101 13 101 21 110 14 110 22

Nella tabella i numeri da 8 a 23 non sono rappresentati con 3 bit.

Quello che si vede è solo una troncatura della loro rappresentazione binaria completa.

Esempio:8 in binario è 1000 (serve almeno 4 bit!)

Se si taglia il primo bit e si tengono solo gli ultimi 3 → si ottiene 000

Addizione numeri naturali (1)

Nei numeri naturali l'addizione e la sottrazione sono operazioni sempre definite.

- Se faccio 25+10=35 ottengo un nuovo numero naturale.
- Se faccio 35–10=25 ottengo ancora un numero naturale.

Non ci sono limiti: i naturali sono infiniti

Un computer usa i bit per rappresentare i numeri.

- Con 8 bit si possono rappresentare solo i numeri naturali da 0 a 255 $(2^8 1)$
- Quindi non tutti i naturali sono rappresentabili: c'è un vincolo di memoria.

Addizione numeri naturali (2)

Addizione con 8 bit (overflow)

- Se il risultato resta tra 0 e 255 → nessun problema.
- Se il risultato supera 255 \rightarrow il numero non «sarebbe» più rappresentabile con 8 bit. In questo caso il computer lavora in modulo 2^8 : il risultato "riparte da 0".
- 100+50=150→ rappresentabile.
- 200+100=300 → (???)

Addizione numeri naturali (3)

Addizione con 8 bit (overflow)

- Se il risultato resta tra 0 e 255 → nessun problema.
- Se il risultato supera 255 → il numero non «sarebbe» più rappresentabile con 8 bit. In questo caso il computer lavora in modulo 2⁸: il risultato "riparte da 0".
 - 100+50=150→ rappresentabile.
 - 200+100=300 \rightarrow 300÷256= 1 (resto 44) \rightarrow il pc memorizza 44

Addizione numeri naturali (4)

```
5+3=8
```

```
0101 (5)
+ 0011 (3)
-----
1000 (8)
```

13+7?

Addizione numeri naturali (5)

```
5+3=8
```

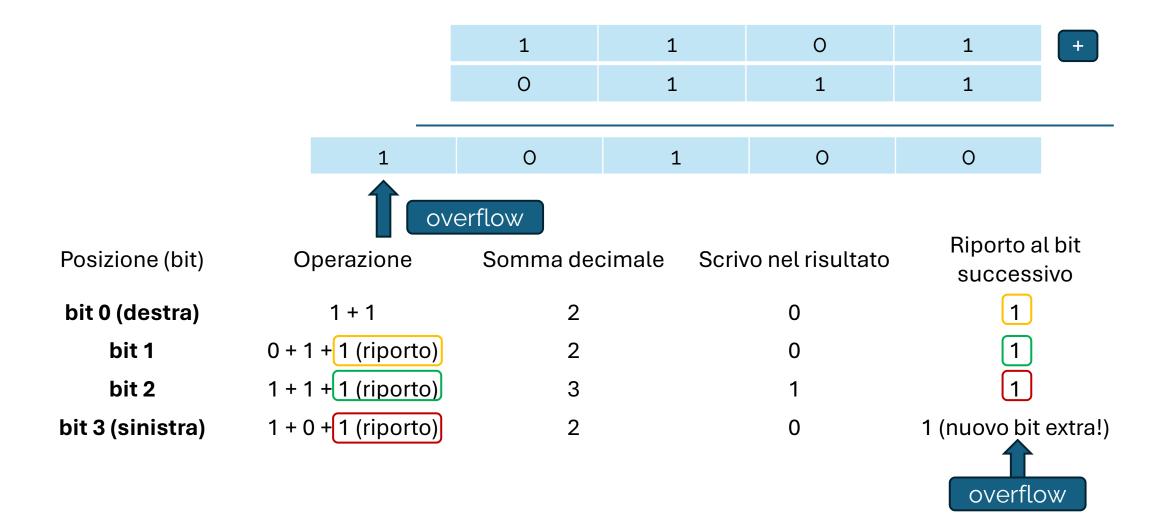
```
0101 (5)
+ 0011 (3)
-----
1000 (8)
```

13+7?

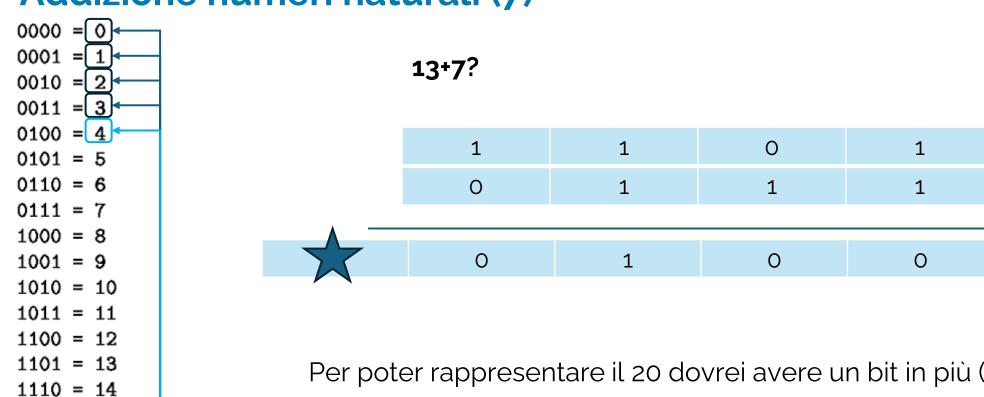
1101 + 0111 -----1 0100 (5 bit!)

Addizione numeri naturali (6)

13+7?



Addizione numeri naturali (7)



Per poter rappresentare il 20 dovrei avere un bit in più (5).

Su 4 bit «tronco» il bit di overflow ottenendo $(0100)_2$ = $(4)_{10}$

Aritmetica modulare

Osservazioni

Questi 8 bit: 01000001 non dicono *da soli* se rappresentano un numero, una lettera, o un colore. Sono solo una sequenza di 0 e 1.

Il significato dipende dal *programma* che li legge.

Interpretazione Significato

Intero senza segno (decimale) 65

Carattere ASCII A

Colore (canale rosso) intensità 65/255 ≈ 25% rosso

```
x = 0b01000001 ### il prefisso 0b serve solo per dire che sto scrivendo un numero in base 2

print(int(x))

print(chr(x))

65
A
```

Numeri interi

Numeri interi in un elaboratore digitale – modulo e segno

Come rappresentare i numeri interi {..., -2, -1, 0, 1, 2, ...} in un elaboratore digitale?

La soluzione più semplice sarebbe quella di codificarli esattamente come i numeri naturali, riservando **il bit più a sinistra per rappresentare il segno** (0 = positivo, 1 = negativo).

Questa codifica è detta modulo e segno e consiste nell'usare **un bit per il segno**, lasciando **gli altri bit a rappresentare il valore assoluto del numero intero...**

Modulo e segno

Tale codifica però include una **doppia** rappresentazione dello o che può essere fonte di ambiguità.

Per questo, la codifica in modulo e segno, che sarebbe esprimibile come

$$codifica(x) = \begin{cases} x & se \ x \ge 0 \\ |x| + 2^{N-1} & se \ x \le 0 \end{cases}$$

non viene usata. La tabella a lato mostra la codifica modulo e segno con 4 bit (N = 4)

Decimale	Mod e segno
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000
-0	1000
-1	1001
-2	1010
-3	1011
-4	1100
-5	1101
-6	1110
-7	1111
-8	_

Numeri interi in un elaboratore digitale - complemento a 1

Come rappresentare i numeri interi {..., -2, -1, 0, 1, 2, ...} in un elaboratore digitale?

Un'altra soluzione sarebbe codificare gli **interi positivi come i numeri naturali** e i numeri negativi come il **complemento a 1** (cioè l'inversione di tutti i bit) dei positivi.

Es: 4 potrebbe essere codificato come 0100, mentre -4 come 1011

Complemento a 1

Anche tale codifica però include una **doppia** rappresentazione dello o che può essere fonte di ambiguità.

Nemmeno la codifica basata sul complemento è adatta per rappresentare i numeri interi in un elaboratore digitale

Decimale	Compl. a 1
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000
-0	1111
-1	1110
-2	1101
-3	1100
-4	1011
-5	1010
-6	1001
-7	1000
-8	_

Numeri interi in un elaboratore digitale – notazione traslazionale

Come rappresentare i numeri interi {..., -2, -1, 0, 1, 2, ...} in un elaboratore digitale?

Una soluzione al problema delle codifiche in modulo e segno e in complemento a 1 è traslare verso l'alto tutti i valori che possono essere inclusi su N bit.

$$codifica(x) = \begin{cases} 2^{N-1} + |x| & se \ x \ge 0 \\ 2^{N-1} - |x| & se \ x \le 0 \end{cases}$$

In questo modo la codifica non è più ambigua: sia 0 che -0 sono rappresentati come 2^{N-1}

Se si sta centrando l'intervallo degli interi intorno a 2^{N-1} . Per esempio, con **N** = **4 bit** \rightarrow 2^{N-1} = 8:

Lo zero viene codificato come 8.

- I positivi (1, 2, 3, ...) stanno sopra 8: 9,10,11
- I negativi (-1, -2, -3, ...) stanno sotto 8: 7,6,5

Risolvo l'ambiguità dello 0

Notazione traslazionale

Se ho a disposizione 4 bit per la rappresentazione devo decidere quali numeri interi associare a queste $(2^4=16)$ combinazioni.

Nella codifica in traslazione, si sceglie di far partire la numerazione dal numero più negativo possibile.

16 valori=da-8 (numero più piccolo rappresentabile) fino a +7 (numero più grande rappresentabile)

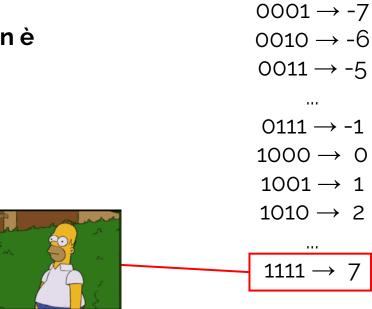
Rappresentazione in binario dei numeri naturali (lo 0 è il minor numero rappresentabile)

Rappresentazione in binario dei numeri interi in notazione traslazionale (in questo caso il -8 è il minor numero rappresentabile)

Notazione traslazionale

Un metodo «intuitivo» è partire a contare dal minimo numero rappresentabile (con N = 4 bit tale numero è -8) e ad ogni incremento si aggiunge 1 (-8 = 0000, -7 = 0001, -6 = 0010, ...).

Tuttavia, la somma algebrica di due numeri traslati **non è** la traslazione della somma



 $0000 \rightarrow -8$

1111 non è la codifica in traslazione di -1! Nemmeno questa codifica si usa per gli interi.

Numeri interi in un elaboratore digitale – complemento a 2

Come rappresentare i numeri interi {..., -2, -1, 0, 1, 2, ...} in un elaboratore digitale?

I numeri interi in un elaboratore digitale sono <u>universalmente rappresentati con la codifica in</u> «<u>complemento a 2</u>», definita come segue

$$codifica(x) = \begin{cases} x & se \ x \ge 0 \\ 2^N - |x| & se \ x \le 0 \end{cases}$$

In altre parole, su N bit, gli interi positivi sono rappresentati esattamente come i naturali, gli interi negativi sono rappresentati come $2^N - |x|$

Complemento a 2 (1)

Si noti che su 4 bit (N = 4) nel caso di «-0» la rappresentazione sarebbe $2^N - |x|$ e cioè (16)₁₀ = $(10000)_2$.

Ma con 4 bit non posso scrivere 5 cifre, quindi -0 non esiste: rimane solo 0000

Ecco perché in complemento a 2 lo zero è unico.

Inoltre la somma algebrica di due numeri in complemento a 2 restituisce il risultato già correttamente codificato!

Decimale	Compl. a 2
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000
-0	0000
-1	1111
-2	1110
-3	1101
-4	1100
- 5	1011
-6	1010
-7	1001
-8	1000

Codifica binaria dei naturali

```
0000 = 0
0001 = 1
0010 = 2
0011 = 3
0100 = 4
0101 = 5
0110 = 6
0111 = 7
1000 = 8
1001 = 9
1010 = 10
1011 = 11
1100 = 12
1101 = 13
1110 = 14
1111 = 15
```

Complemento a 2 (2)

Esempio

7+3=10 (10 non è rappresentabile con 4 bit, → con 4 bit posso rappresentare i numeri da -8 a 7)

Calcolo in binario

- 7 (0111)
- 3 (0011)
- 7+3 → 0111+0011=

0111

+ 0011

1010

Decimale	Compl. a 2
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000
-0	0000
-1	1111
-2	1110
-3	1101
-4	1100
-5	1011
-6	1010
-7	1001
-8	1000

Complemento a 2 (3)

Esempio

7+3=10 (10 non è rappresentabile con 4 bit, → con 4 bit posso rappresentare i numeri da -8 a 7)

Calcolo in binario

- 7 (0111)
- 3 (0011)
- 7+3 → 0111+0011=

0111

+ 0011

Questo è l'**overflow**: il risultato "sfora" l'intervallo e diventa un numero negativo.

Decimale	Compl. a 2
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000
-0	0000
-1	1111
-2	1110
-3	1101
-4	1100
-5	1011
-6	1010
-7	1001
-8	1000

Complemento a 2 (4)

Perché in complemento a 2 lo sforo (overflow) trasforma +10 in -6?

Con 4 bit possiamo rappresentare solo i numeri da -8 a +7

Quindi il numero +10 **non entra** in questo intervallo. Ma il circuito HW fa la somma comunque, cioè calcola:

7+3=10 (mod16, perché con 4 bit lavoro in **modulo 24=16**).

Ora 10 in binario a 4 bit è

- 10:2=5 resto 0
- 5:2=2 resto 1
- 2:2=1 resto 0
- 1:2=0 resto 1 \rightarrow (10)₁₀=(1010)₂ \rightarrow Questo non viene letto come +10 perché??

Complemento a 2 (5)

Perché in complemento a 2 lo sforo (overflow) trasforma +10 in -6?

Con 4 bit possiamo rappresentare solo i numeri da -8 a +7

Quindi il numero +10 **non entra** in questo intervallo. Ma il circuito HW fa la somma comunque, cioè calcola:

7+3=10 (mod16, perché con 4 bit lavoro in **modulo 24=16**).

Ora 10 in binario a 4 bit è

- 10:2=5 resto 0
- 5:2=2 resto 1
- 2:2=1 resto 0
- 1:2=0 resto 1 \rightarrow (10)₁₀=(1010)₂ \rightarrow Questo non viene letto come +10 perché?? L'estremo massimo rappresentabile è +7. **Come interpreto (1010 in complemento a 2)?**

Complemento a 2 (6)

Perché in complemento a 2 lo sforo (overflow) trasforma +10 in -6?

(10)₁₀=(1010)₂→ Questo non viene letto come +10 perché?? L'estremo massimo rappresentabile è +7. **Come interpreto (1010 in complemento a 2)?**

- Se il bit più a sinistra (MOST SIGNIFICANT BIT MSB) è 0 allora il numero è positivo
- Se il bit più a sinistra è 1 allora il numero è negativo

Nel nostro caso il numero è negativo (1010)

Come calcolo il valore di 1010 in complemento a 2?

Metodo 1) <u>1010=(-1)x2³+0x2²+1x2¹+0x2⁰=-8+0+2+0=-6</u>

Metodo 2) si parte sapendo che il numero 1010 è negativo dato il MSB

- Inverto i bit 1010 -> 0101 (è il complemento a 1 che aveva un problema di rappresentazione dello
 o)
- Aggiungo 1 \rightarrow 0101+1=(0110)₂=(6)₁₀
- Il MSB (bit più a sinistra) era 1 → quindi il numero era negativo⇒ -6

Complemento a 2 (7)

Perché in complemento a 2 lo sforo (overflow) trasforma +10 in -6?

Qual è la connessione tra +10 e -6?

Cioè:

$$10 \equiv -6 \pmod{16}$$

Complemento a 2 (8)

Ci sarebbe un metodo 3 per il complemento a 2 di un intero negativo

- Data la rappresentazione binaria di un numero positivo
- Esamino il numero bit per bit da destra verso sinistra
- Per scrivere il complemento a 2 del numero negativo lascio ogni bit invariato fino al primo 1 compreso
- Inverto tutti i bit che seguono il primo 1 da destra verso sinistra.

Numero decimale	Binario positivo	Metodo classico (inverti +1)	Metodo intuitivo (copia fino a 1, poi inverti)	Risultato finale	
-1	(1 ₁₀) 0001	Inverti → 1110, +1 → 1111	Copio 1 → 1, resto invertito → 111	1111	
-2	(2 ₁₀) 0010	Inverti → 1101, +1 → 1110	Copio 10 → 10, resto invertito → 11	1110	
-8	(8 ₁₀) 1000 (*)	Inverti → 0111, +1 → 1000	Caso limite: direttamente 1000	1000	

Complemento a 2 – esempio (1)

Esempio: <u>-2 rappresentato su 4 bit (N = 4)</u>

L'intero positivo $(2)_{10}$ in base due vale $(0010)_2$

Applicando da destra verso sinistra quanto spiegato nella slide precedente per il «complemento a 2» in un elaboratore digitale si ha che $(-2)_{10} = (1110)_2$. Applicando a 0010 passaggio per passaggio quanto descritto:

_ _ _ 0

_ _ 1 0

_110

1110

Complemento a 2 – esempio (2)

Esempio: -5 rappresentato su 4 bit (N = 4)

L'intero positivo $(5)_{10}$ in base due vale $(0101)_2$

Applicando il «complemento a 2» si ha che $(-5)_{10} = (1011)_2$. Applicando a 0101 passaggio per passaggio quanto descritto:

_ _ _ 1

_ _ 1 1

_ 0 1 1

1011

Quando un numero viene rappresentato con un numero limitato di bit, non tutti i valori sono possibili. Questo può creare due tipi di errori:

Overflow

Succede quando il risultato di un'operazione è **troppo grande** per essere contenuto nei bit disponibili.

Esempio: con 8 bit il massimo rappresentabile è 255.

Se faccio 130+150=280, 280 non sta nell'intervallo, è troppo grande!

Underflow

Succede quando il risultato è **troppo piccolo** per essere rappresentato.

Esempio: con i soli numeri interi, 25/50=0,5 non può essere scritto (perché 0,5 non è un intero). L'unico risultato possibile è 0.

Con 8 bit posso rappresentare:

- Interi positivi da 0 a 255
- Interi con segno da -128 a +127

Supponiamo di dover rappresentare interi positivi (0,..., 255)

11111111=(255)₁₀

255+1=??? → servirebbero 9 bit

Es 1

Con 8 bit posso rappresentare:

- Interi positivi da 0 a 255
- Interi con segno da -128 a +127

Supponiamo di dover rappresentare interi positivi (0,..., 255)

11111111=(255)₁₀

(255+1)₁₀=100000000 →il 9* bit «trabocca» e viene scartato quindi rimane 00000000 ovvero: se ho a disposizione 8 bit il computer mi restituisce 0 anziché 256. Si tratta di overflow: il risultato non ci sta nei bit e «riparte da capo», come se i numeri fossero un cerchio

Es. 2

Con 8 bit posso rappresentare:

- Interi positivi da 0 a 255
- Interi con segno da -128 a +127

Supponiamo di dover rappresentare interi con segno (-128,..., +127)

01111111=(127)₁₀

(127+1) 10=10000000 → il risultato è negativo come si evince dal primo bit che è destinato al segno (-128)

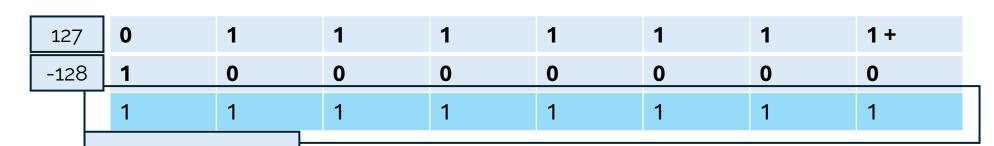
Es. 3

Con 8 bit posso rappresentare:

- Interi positivi da 0 a 255
- Interi con segno da -128 a +127

Supponiamo di dover rappresentare interi con segno (-128,..., +127)

Che valore è? -1



Es. 3

Con 8 bit posso rappresentare:

- Interi positivi da 0 a 255
- Interi con segno da -128 a +127

Supponiamo di dover rappresentare interi con segno (-128,..., +127)

01111111=(127)₁₀ (127-128)₁₀

0	1	1	1	1	1	1	1+
1	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1

Complemento a 2

- inverto) 0000000
- Sommo 1) 00000001 → il binario positivo è 1)

Es. 3

Con 8 bit posso rappresentare:

- Interi positivi da 0 a 255
- Interi con segno da -128 a +127

Supponiamo di dover rappresentare interi con segno (-128,..., +127)

0	1	1	1	1	1	1	1+
1	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1

Non c'è overflow perché -1 è perfettamente rappresentabile in 8 bit!