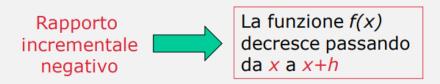


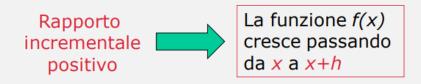
Definizioni: punto interno e rapporto incrementale

Sia I un intervallo non vuoto. Diciamo che $x_0 \in I$ è **interno** ad I se $\exists r > 0 : (x_0 - r, x_0 + r) \subset I$. Inoltre, $I \subseteq D_f$ (la funzione è definita per ogni punto di I).

Siano $f: I \to \mathbb{R}$ e $x_0 \in I$, interno ad I. Dato $h \in \mathbb{R}$, $h \neq 0$, chiamiamo **rapporto incrementale** di f relativo a x_0 e all'incremento h il quoziente:

$$\frac{f(x_0+h)-f(x_0)}{h}$$

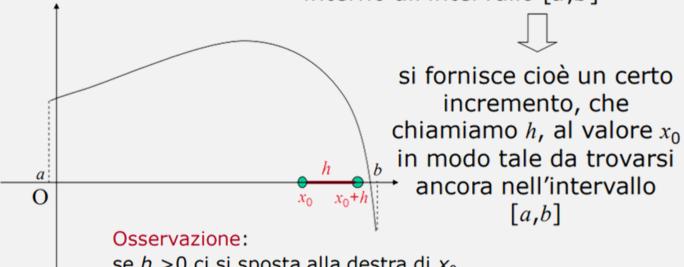




Incremento della variabile x

Sia assegnata una funzione f(x) in un intervallo [a,b] e sia x_0 un fissato punto interno all'intervallo [a,b].

Si passi dal punto x_0 ad un altro punto interno all'intervallo [a,b]



se h > 0 ci si sposta alla destra di x_0 se h < 0 ci si sposta alla sinistra di x_0

Il passaggio da x_0 ad x_0+h lungo l'asse delle ascisse viene detto

incremento della variabile x

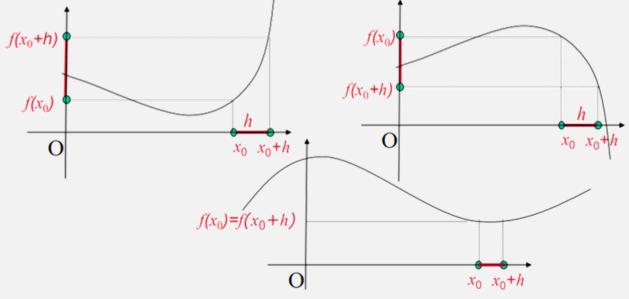
e coincide col valore $h=(x_0+h)-(x_0)$

Incremento della funzione f(x)

Le immagini mediante f dei punti x_0 e $x_0 + h$ sono rispettivamente $f(x_0)$ ed $f(x_0 + h)$

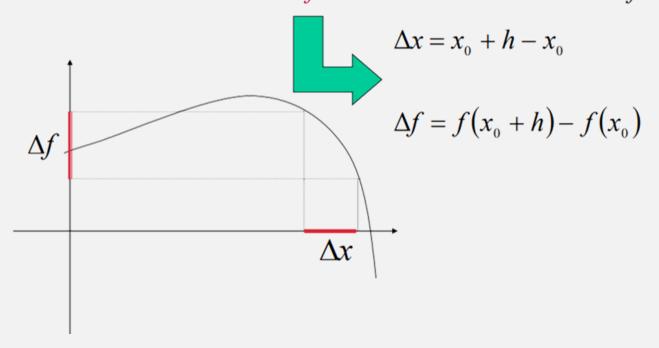
La differenza $f(x_0 + h) - f(x_0)$ tra i valori che la funzione assume nel passare da x_0 ad $x_0 + h$ si chiama incremento della funzione f Calcoliamo il valore dell'incremento della funzione f nel passaggio da x_0 ad x_0+h con $x_0 < x_0+h$

- se $f(x_0) < f(x_0+h)$, incremento positivo, f cresce passando da x_0 ad x_0+h
- se $f(x_0) > f(x_0+h)$, incremento negativo, f decresce passando da x_0 ad x_0+h
- -se $f(x_0)=f(x_0+h)$, incremento nullo, f è costante passando da x_0 ad x_0+h



Rapporto incrementale

L'incremento della variabile x viene indicato col simbolo Δx L'incremento della funzione f viene indicato col simbolo Δf



Il rapporto tra l'incremento della variabile x nel passaggio da x_0 ad x_0+h e l'incremento della funzione f viene detto

rapporto incrementale

della funzione f relativo al passaggio da x_0 ad x_0+h

$$\frac{\Delta f}{\Delta x} = \frac{f(x+h) - f(x)}{h}$$

Il rapporto incrementale esprime la "variabilità di f " relativamente ad un certo intervallo

Definizioni: derivata

Sia assegnata una funzione f(x) in un intervallo [a, b] e sia x_0 un fissato punto interno all'intervallo [a, b].

Si definisce derivata della funzione f(x) nel punto x_0 il limite, se esiste ed è finito, del rapporto incrementale di f nel passaggio da x ad x + h, al tendere a zero dell'incremento h della variabile indipendente x:

$$D(f(x_0)) = \frac{df(x_0)}{dx} = f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Derivata della funzione f nel punto x

Definizioni: derivata

$$D(f(x_0)) = \frac{df(x_0)}{dx} = f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

La derivata di una funzione f(x) in un punto x_0 interno all'intervallo di definizione, quando esiste, è un **numero**.

Se f(x) è definita in un intervallo [a, b], agli estremi a e b dell'intervallo si può parlare solo di derivata rispettivamente destra e sinistra.

Si dice che una funzione f(x) è **derivabile** in un intervallo [a, b] se è derivabile in ogni punto dell'intervallo [a, b] e se ammette derivata destra in a e derivata sinistra in b.

Esempio.

Verificare la derivabilità della funzione $f(x) = x^2$ nel punto $x_0 = 2$.

$$\frac{f(x_0+h)-f(x_0)}{(x_0+h)-x_0} = \frac{(2+h)^2 - (2)^2}{h} = \frac{4+4h+h^2 - 4}{h} =$$

$$= \frac{h^2 + 4h}{h} = h + 4 \implies \lim_{h \to 0} h + 4 = 4$$

La funzione $f(x) = x^2$ risulta derivabile in $x_0 = 2$: f'(2) = 4

Derivabilità e continuità

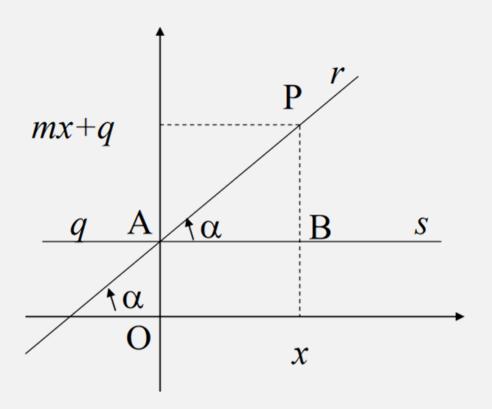
Se f(x) è derivabile in un punto $x_0 \in (a, b)$, allora f(x) è continua in x_0

Nei punti di discontinuità una funzione non può ammettere derivata.

Cioè, se f(x) non è continua in un punto $x_0 \in (a, b)$, allora f(x) non è derivabile in x_0

Ricordiamo:

Nel piano cartesiano, consideriamo una retta r non parallela all'asse delle ordinate di equazione y = mx + q, con m coefficiente angolare e q termine noto



La retta r: y = mx + q forma l'angolo α con l'asse x e il punto A ha coordinate A = (0, q).

Il generico punto P sulla retta r ha coordinate P = (x, mx + q).

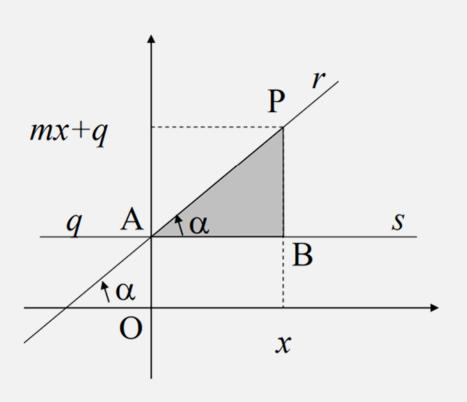
Sia s la retta passante per il punto A e parallela all'asse delle ascisse.

Infine, indichiamo con B il punto di intersezione tra la retta s e la perpendicolare da P all'asse delle ascisse, di coordinate B(x,q).

L'angolo $PAB = \alpha$

Ricordiamo:

Significato geometrico del coefficiente angolare di una retta



$$A = (0,q)$$

$$P(x, mx + q)$$

$$B(x,q)$$

$$PAB = \alpha$$

Consideriamo il triangolo rettangolo in B:

$$\frac{BP = AP \, sen \, \alpha}{AB = AP \, cos \, \alpha} \qquad \frac{BP}{AB} = \frac{AP \, sen \, \alpha}{AP \, cos \, \alpha} = \frac{sen \, \alpha}{cos \, \alpha} = tan \, \alpha$$

$$\Rightarrow \frac{BP}{AB} = tan \, \alpha$$

$$BP = (mx + q) - q = mx$$

$$AB = (x)-0=x$$

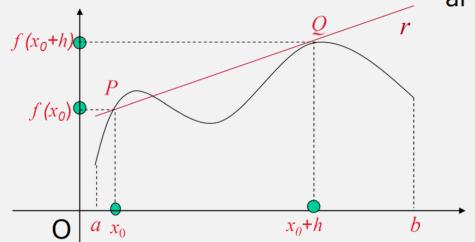
$$BP = mx$$

$$AB = mx$$

$$\Rightarrow \frac{BP}{AB} = m$$

Sia assegnata una funzione f(x) derivabile in un intervallo [a,b] e sia x_0 un fissato punto interno all'intervallo [a,b]. Si passi dal punto x_0 ad un altro punto $x_0 + h$ interno all'intervallo [a,b] in modo tale da potere considerare i corrispondenti valori di f.

indichiamo i due punti appartenenti al grafico di f con:



$$P(x_0, f(x_0))$$

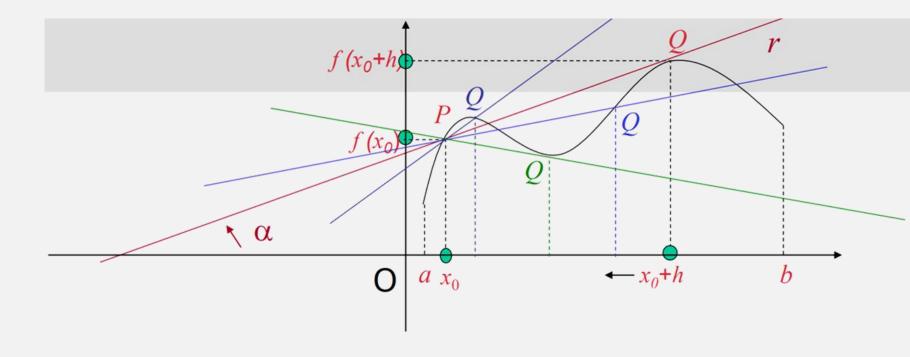
$$Q(x_0 + h, f(x_0 + h))$$

Sia r la retta passante per P e Q e che forma un angolo α col semiasse positivo delle x

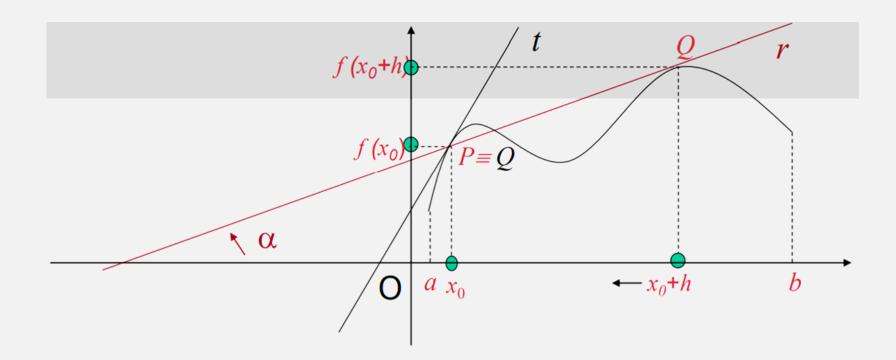
Da un punto di vista geometrico, quando $h \to 0$ il punto $P(x_0, f(x_0))$ rimane fisso, mentre il punto $Q(x_0 + h, f(x_0 + h))$ si muove verso il punto P lungo la curva grafico della funzione f.

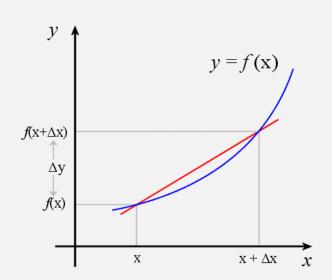
Contemporaneamente, spostandosi il punto Q verso il punto P, la retta passante per P e Q varia, in particolare in termini di pendenza \rightarrow varia il suo coefficiente angolare

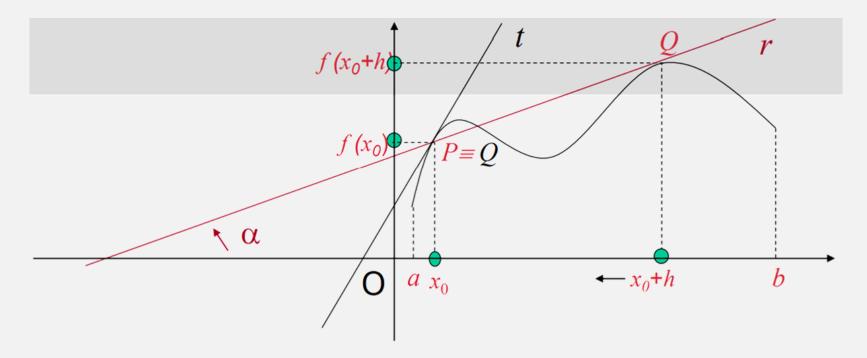
Da un punto di vista geometrico, quando $h \to 0$ il punto $P(x_0, f(x_0))$ rin $P(x_0, f(x_0))$ si muove verso il punto $P(x_0, f(x_0))$ si muove verso il punto $P(x_0, f(x_0))$ rin Dontemporaneamente, spostandosi il punto $P(x_0, f(x_0))$ rin Dont



Tali variazioni per $h \to 0$ terminano quando il punto Q raggiunge il punto P, cioè quando la retta passante per P e Q si assesta su una posizione limite che è individuata dalla retta tangente t al grafico della funzione f nel punto di ascissa x_0 (cioè il punto P)







Quindi, indicando con α l'angolo che la retta tangente forma con il semiasse positivo delle x e con m_t il suo coefficiente angolare:

$$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = \lim_{h\to 0} \tan \alpha = \lim_{h\to 0} m_r \iff f'(x_0) = \tan \alpha = m_t$$

Quindi, in definitiva, se α è l'angolo che la retta tangente al grafico della funzione f nel punto di ascissa x_0 forma con semiasse positivo delle ascisse e se m_t è il suo coefficiente angolare, risulta che:

$$f'(x_0) = \tan \alpha = m_t$$

Cioè:

La derivata $f'(x_0)$ della funzione f nel punto x_0 è uguale al coefficiente angolare m_t della retta tangente al grafico della funzione f nel punto $P(x_0, f(x_0))$

Conclusioni.

L'esistenza della derivata di una funzione f in un punto x_0 è legata:

- \succ all'esistenza della retta tangente al grafico di f nel punto di ascissa x_0
- \succ al fatto che il coefficiente angolare della retta tangente deve essere finito, essendo $f'(x_0)=m_t$

In particulare, essendo $f'(x_0) = \tan \alpha = m_t$, richiedere che il coefficiente angolare della retta tangente t al grafico di f sia finito equivale a richiedere che $\alpha \neq \frac{\pi}{2}$

$$\alpha \to \frac{\pi}{2} \Longrightarrow \tan \alpha \to \pm \infty$$

La retta tangente al grafico della funzione f in un punto di ascissa x_0 non può essere parallela all'asse delle ordinate affinché la funzione f sia derivabile nel punto x_0

Se f è una funzione derivabile in un punto x_0 , allora nel punto di coordinate $(x_0, f(x_0))$ il suo grafico ammette una retta tangente non parallela all'asse delle ordinate

Una funzione derivabile in un intervallo, è una funzione il cui grafico è dotato di retta tangente in ogni suo punto

Derivate delle funzioni elementari

Se f è derivabile in ogni punto dell'intervallo (a, b), allora è possibile considerare una nuova funzione che ad ogni punto $x \in (a, b)$ associa il valore della derivata f'(x)

$$x \in (a,b) \to f'(x) \in \mathbb{R}$$

Tale funzione viene detta funzione derivata e si indica con il simbolo f'(x)

Derivate delle funzioni elementari: funzione costante

Sia data la funzione costante f(x) = k.

Vediamo quanto vale la derivata della funzione costante $\forall x \in \mathbb{R}$:

$$\frac{f(x+h) - f(x)}{h} = \frac{k-k}{h} = \frac{0}{h} = 0$$

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} 0 = 0$$

$$Dk = 0, \forall x \in \mathbb{R}$$

Derivate delle funzioni elementari: funzione costante

$$Dk = 0, \forall x \in \mathbb{R}$$

Il risultato appena trovato ha un'interpretazione geometrica: il grafico della funzione costante f(x) = k è una retta parallela all'asse delle ascisse

In ogni punto, la retta tangente coincide con il grafico della funzione

Il coefficiente angolare della retta tangente è

$$m_t = 0, \forall x \in \mathbb{R}$$
 (infatti, $\tan 0 = 0$)

Derivate delle funzioni elementari: funzione lineare

Sia data la funzione bisettrice f(x) = x.

Vediamo quanto vale la derivata della funzione costante $\forall x \in \mathbb{R}$:

$$\frac{f(x+h) - f(x)}{h} = \frac{x+h-x}{h} = \frac{h}{h} = 1$$

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} 1 = 1$$

$$Dx = 1, \forall x \in \mathbb{R}$$

Derivate delle funzioni elementari: funzione lineare

$$Dx = 1, \forall x \in \mathbb{R}$$

Il risultato appena trovato ha un'interpretazione geometrica: il grafico della funzione f(x) = x è la retta bisettrice del I e III quadrante

In ogni punto, la retta tangente coincide con il grafico della funzione

Il coefficiente angolare della retta tangente è

$$m_t = 1, \forall x \in \mathbb{R}$$
 (infatti, $\tan \frac{\pi}{4} = 1$)

Derivate delle funzioni elementari: funzione potenza

Sia data la funzione $f(x) = x^{\alpha}$, $\alpha \in \mathbb{R}$, x > 0.

Si può verificare che la derivata di tale funzione $\forall x \in \mathbb{R}^+$:

$$Dx^{\alpha} = \alpha x^{\alpha-1}, \forall x > 0, \forall \alpha \in \mathbb{R}$$

Esempio.

$$f(x) = x^2$$
 nel punto $x_0 = 2$

$$\frac{f(x_0 + h) - f(x_0)}{(x_0 + h) - x_0} = \frac{(2+h)^2 - (2)^2}{h} = \frac{4+4h+h^2-4}{h} = \frac{h^2+4h}{h} = h+4$$

$$\Rightarrow \lim_{h \to 0} h + 4 = 4$$

La funzione $f(x) = x^2$ è derivabile in $x_0 = 2$ e f'(2) = 4

Derivate delle funzioni elementari: funzione potenza

Sia data la funzione $f(x) = \sqrt{x} = x^{\frac{1}{2}}$.

Ricordiamo: $Dx^{\alpha} = \alpha x^{\alpha-1}$

$$f(x) = x^{\frac{1}{2}} \to f'(x) = \frac{1}{2}x^{\frac{1}{2}-1} = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2}\frac{1}{x^{\frac{1}{2}}} = \frac{1}{2\sqrt{x}}$$

$$D\sqrt{x} = \frac{1}{2\sqrt{x}}, \forall x \in \mathbb{R}^+$$

Derivate delle funzioni elementari: funzione potenza

Sia data la funzione $f(x) = \frac{1}{x} = x^{-1}$.

Ricordiamo: $Dx^{\alpha} = \alpha x^{\alpha-1}$

$$f(x) = x^{-1} \to f'(x) = -1x^{-1-1} = -x^{-2} = -\frac{1}{x^2}$$
$$D\frac{1}{x} = -\frac{1}{x^2}, \forall x \in \mathbb{R}^+$$

Derivate delle funzioni elementari: regole di derivazione

$$Da^x = a^x \log a$$

$$De^x = e^x$$

$$D\log_a x = \frac{1}{x} \cdot \frac{1}{\log a}$$

$$D\log x = \frac{1}{x}$$

$$D \sin x = \cos x$$

$$D\cos x = -\sin x$$

Derivate delle funzioni elementari

f(x)	f'(x)
k	0
\boldsymbol{x}	1
x^n	nx^{n-1}
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$	$a_1 + 2a_2x + \dots + na_nx^{n-1}$
$\log_a x$	$\frac{1}{x} \cdot \log_a e = \frac{1}{x} \cdot \frac{1}{\ln a}$
$\log_e x$	$\frac{1}{x} \cdot \log_e e = \frac{1}{x}$
a^x	$a^x \log_e a = a^x \cdot \frac{1}{\log_a e}$
e^x	$e^{x}\log_{e}e=e^{x}$

f(x)	f'(x)
sin x	cos x
cos x	$-\sin x$
tan x	$\frac{1}{\cos^2 x} = 1 + \tan^2 x$
arcsin x	$\frac{1}{\sqrt{1-x^2}}$
arccos x	$-\frac{1}{\sqrt{1-x^2}}$
arctan x	$\frac{1}{1+x^2}$
x	$\frac{x}{ x } = \frac{ x }{x}$
f(x)	$f'(x) \operatorname{con} f(x) > 0$ $-f'(x) \operatorname{con} f(x) < 0$

Esercizi. Calcolare la derivata delle seguenti funzioni

1.
$$f(x) = x^7$$
 $f'(x) = 7x^{7-1} = 7x^6$

2.
$$f(x) = x^{-2}$$
 $f'(x) = -2x^{-2-1} = -2x^{-3}$

3.
$$f(x) = x^{\pi}$$
 $f'(x) = \pi x^{\pi - 1}$

4.
$$f(x) = 4$$
 $f'(x) = 0$

5.
$$f(x) = \sqrt[3]{x^2}$$
 $f'(x) = \frac{2}{3}x^{\frac{2}{3}-1} = \frac{2}{3}x^{-\frac{1}{3}}$

6.
$$f(x) = \frac{1}{\sqrt{x}}$$
 $f'(x) = -\frac{1}{2}x^{-\frac{1}{2}-1} = -\frac{1}{2}x^{-\frac{3}{2}} = -\frac{1}{2\sqrt{x^3}}$

7.
$$f(x) = x^{-2}$$
 $f'(x) = -2x^{-2-1} = -2x^{-3}$

8.
$$f(x) = 3^x$$
 $f'(x) = 3^x \log_e 3$

9.
$$f(x) = \log_5 |x|$$
 $\frac{1}{|x|} \cdot \log_5 e = \frac{1}{x} \cdot \frac{1}{\ln 5}$

10.
$$f(x) = e$$
 $f'(x) = 0$

Derivata seconda – n-esima

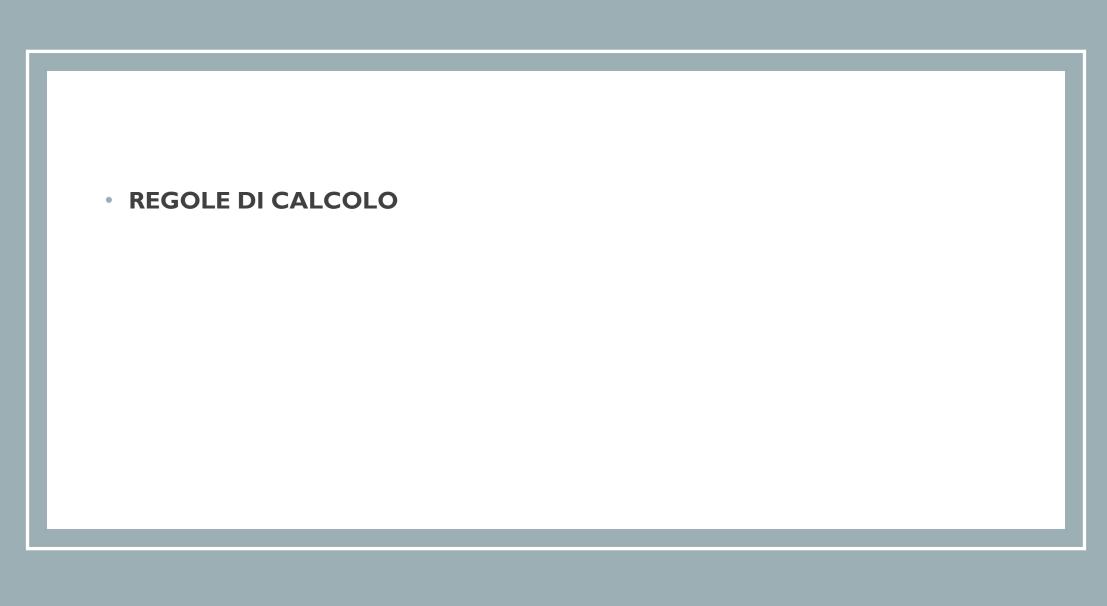
A questo punto, ha senso chiedersi se la funzione derivata f'(x) è a sua volta derivabile in un punto oppure in tutto l'intervallo (a,b). In caso affermativo, chiameremo **derivata seconda** la derivata di f' e la indicheremo:

$$D^2f(x)$$

In modo analogo, si definiscono le funzioni derivata terza f'''(x), derivata quarta $f^{IV}(x)$, e di ordine ancora superiore, in generale derivata n-esima:

$$f^n(x)$$

$$D^n f(x)$$



Regole di calcolo delle derivate (somma, prodotto, rapporto)

Se $f:(a,b)\to\mathbb{R}$, $g:(a,b)\to\mathbb{R}$ sono due funzioni derivabili in (a,b)

$$f \pm g$$
, $f \cdot g$, $\frac{f}{g}$, $(\cos g \neq 0)$

Sono derivabili in (a, b) e valgono le seguenti formule:

$$\blacktriangleright$$
 $(f \pm g)' = f' \pm g'$

$$\triangleright (f \cdot g)' = f' \cdot g + f \cdot g' \rightarrow (k \cdot f)' = k \cdot f'$$

$$\geqslant \left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2} \to \left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$$

Esercizi. Calcolare la derivata delle seguenti funzioni

$$f(x) = 4x^2 + 4$$

$$\frac{d}{dx}(4x^2) + \frac{d}{dx}(4) =$$

$$f'(x) = 4 \cdot 2x^{2-1} + 0 = 8x$$

$$f(x) = -x^{-2} + 3x^3$$

$$\frac{d}{dx}(-x^{-2}) + \frac{d}{dx}(3x^3) =$$

$$f'(x) = -2x^{-2-1} + 3 \cdot 3x^{3-2} = 2x^{-3} + 9x$$

$$f(x) = \sqrt{x} + x^{2/3}$$

$$\frac{d}{dx}(\sqrt{x}) + \frac{d}{dx}(x^{\frac{2}{3}})$$

$$f'(x) = \frac{1}{2}x^{-1/2} + \frac{2}{3}x^{-1/3} = \frac{1}{2x^{1/2}} + \frac{2}{3x^{1/3}}$$

Esercizi. Calcolare la derivata delle seguenti funzioni

$$f(x) = \log x - e^x$$

$$\frac{d}{dx}(\ln x) - \frac{d}{dx}(e^x)$$

$$f'(x) = \frac{1}{x} - e^x$$

$$f(x) = x \cdot e^x$$

$$e^x \frac{dx}{dx} + x \frac{d}{dx} (e^x)$$

$$e^{x} \frac{dx}{dx} + x \frac{d}{dx} (e^{x})$$

$$f'(x) = 1 \cdot e^{x} + x \cdot e^{x} = e^{x} + xe^{x}$$

$$(f \cdot g)' = f' \cdot g + f \cdot g'$$

$$f(x) = x^2 \cdot (x+1)$$

$$(x+1)\frac{d}{dx}x^2 + x^2\frac{d}{dx}(x+1)$$

$$f'(x) = 2x \cdot (x+1) + x^2 \cdot (1) = 2x^2 + 2x + x^2 = 3x^2 + 2x$$

$$f(x) = \frac{x-1}{x}$$

$$\frac{\frac{d}{dx}(x-1)\cdot x - \frac{dx}{dx}(x-1)}{x^2}$$

$$f'(x) = \frac{1 \cdot x - 1 \cdot (x - 1)}{x^2} = \frac{1}{x^2}$$

$$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2} \to \left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$$

Regole di derivazione

f(x)	f'(x)
$[f(x)]^{\alpha}$	$\alpha \cdot f(x)^{\alpha-1} \cdot f'(x)$
$\sqrt{f(x)}$	$\frac{1}{2\sqrt{f(x)}} \cdot f'(x)$
$\frac{1}{f(x)}$	$-\frac{1}{f^2(x)}\cdot f'(x)$
$\alpha^{f(x)}$	$\alpha^{f(x)}\log\alpha\cdot f'(x)$
$e^{f(x)}$	$e^{f(x)} \cdot f'(x)$
$\log_a f(x)$	$\frac{1}{f(x)} \cdot \frac{1}{\log a} \cdot f'(x)$
$\log f(x)$	$\frac{1}{f(x)} \cdot f'(x)$