

Validation of chemical analysis for contaminants in foods : general aspects and practical examples

Validation

Establishing documented evidence that provides a high degree of assurance that a specific process will consistently produce a product meeting its pre-determined specifications and quality attributes

“Validation of an analytical procedure is the process by which it is established, by laboratory studies, that the performance characteristics of the procedure meet the requirements for its intended use.”

There are many reasons for the need to validate analytical procedures. Among them are **regulatory requirements, good science, and quality control requirements.**

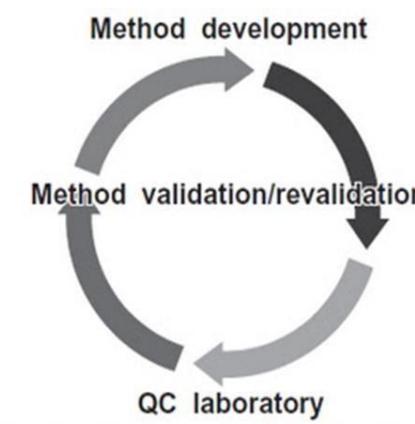


FIGURE 1 Life cycle of analytical method.

Typical validation characteristics which should be considered are:

- 1) Accuracy**
- 2) Precision**
- 3) Specificity**
- 4) Linearity**
- 5) Range**
- 6) Detection Limit**
- 7) Quantitation Limit**
- 8) Robustness/Ruggedness**
- 9) Noise**
- 10) Trueness**
- 11) Sensitivity**

Classifications of residues (contaminants)

Directive 96/23/CE

GROUP A — Substances having anabolic effect and unauthorized substances

- (1) Stilbenes, stilbene derivatives, and their salts and esters
- (2) Antithyroid agents
- (3) Steroids
- (4) Resorcylic acid lactones including zeranol
- (5) Beta-agonists
- (6) Compounds included in Annex IV to Council Regulation (EEC) No 2377/90 of 26 June 199

Classifications of residues (contaminants)

GROUP B — Veterinary drugs and contaminants

Dir. 96/23/CE

**(1) Antibacterial substances,
including sulphonamides, quinolones**

(2) Other veterinary drugs

(a) Anthelmintics

(b) Anticoccidials, including
nitroimidazoles

(c) Carbamates and pyrethroids

(d) Sedatives

(e) Non-steroidal anti-inflammatory
drugs (NSAIDs)

(f) Other Pharmacologically active
substances

**(3) Other substances
and environmental contaminants**

(a) Organochlorine
compounds including PCBs

(b) Organophosphorus
compounds

(c) Chemical elements

(d) Mycotoxins

(f) Others

(e) Dyes

DECISION 2002/657/CE

Art. 1

The Decision states the rules for the analytical methods for the official methods of analysis

Art. 3

EU member states guarantee that the official samples will be assayed with analytical methods

- with documented instructions;
- following this the rules of this Decision;
- validated according to the Decision.

DECISION 2002/657/CE

Art. 6

The output of an analysis will be considered non-compliant if the decision limit (CC_a) is exceeded with a confirmatory method

1. If a permitted limit has been established for a substance, the decision limit is the concentration above which it can be decided with a statistical certainty of $1 - \alpha$ that the permitted limit has been truly exceeded.

2. If no permitted limit has been established for a substance, the decision limit is the lowest concentration level at which a method can discriminate with a statistical certainty of $1 - \alpha$ that the particular analyte is present.

For substances listed in Group A of Annex I to Directive 96/23/EC, the α error shall be 1 % or lower. For all other substances, the α error shall be 5 % or lower.

DECISION 2002/657/CE

Classification of analytical methods

Screening methods

Only those analytical techniques, for which it can be demonstrated in a documented traceable manner that they are validated and have a **false compliant rate of < 5 %** (β -error) **at the level of interest** shall be used for screening purposes in conformity with Directive 96/23/EC. In the case of a suspected non-compliant result, this result shall be confirmed by a confirmatory method.

Confirmatory methods

Confirmatory methods for organic residues or contaminants shall provide information on the chemical structure of the analyte. Consequently methods based only on chromatographic analysis without the use of spectrometric detection are not suitable on their own for use as confirmatory methods. However, if a single technique lacks sufficient specificity, the desired specificity shall be achieved by analytical procedures consisting of suitable combinations of clean-up, chromatographic separation(s) and spectrometric detection.

Table 1

Suitable confirmatory methods for organic residues or contaminants

Measuring technique	Substances Annex 1 96/23/EC	Limitations
LC or GC with mass-spectrometric detection	Groups A and B	Only if following either an on-line or an off-line chromatographic separation Only if full scan techniques are used or using at least 3 (group B) or 4 (group A) identification points for techniques that do not record the full mass spectra
LC or GC with IR spectrometric detection	Groups A and B	Specific requirements for absorption in IR spectrometry have to be met
LC-full-scan DAD	Group B	Specific requirements for absorption in UV spectrometry have to be met
LC -fluorescence	Group B	Only for molecules that exhibit native fluorescence and to molecules that exhibit fluorescence after either transformation or derivatisation
2-D TLC - full-scan UV/VIS	Group B	Two-dimensional HPTLC and co-chromatography are mandatory
GC-Elektron capture detection	Group B	Only if two columns of different polarity are used
LC-immunogram	Group B	Only if at least two different chromatographic systems or a second, independent detection method are used
LC-UV/VIS (single wavelength)	Group B	Only if at least two different chromatographic systems or second, independent detection method are used.

DECISION 2002/657/CE

Table 9

Classification of analytical methods by the performance characteristics that have to be determined

		Detection limit CC β	Decision limit CC α	Trueness/recovery	Precision	Selectivity/ specificity	Applicability/ ruggedness/ stability
Qualitative methods	S	+	-	-	-	+	+
	C	+	+	-	-	+	+
Quantitative methods	S	+	-	-	+	+	+
	C	+	+	+	+	+	+

S = screening methods; C = confirmatory methods; + = determination is mandatory.

DECISION 2002/657/CE

Common criteria for analytical methods

Specificity/selectivity

Ability of a method to selectively detect the analyte. Interferences from the matrix must be studied with similar compounds and metabolites.

Recovery

Amount (%) of the analyte that is recovered during the analytical procedure, a recovery factor for each sample lot must be applied

DECISION 2002/657/CE

Performance criteria

Trueness

Trueness means the closeness of agreement between the average value obtained from a large series of test results and an accepted reference value. Trueness is usually expressed as bias. Calculated using certified reference material or fortifying samples

mass fraction	Tolerated range
$\leq 1 \mu\text{g/kg}$	da -50% a $+20\%$
$> 1 \mu\text{g/kg} \div 10 \mu\text{g/kg}$	da -30% a $+10\%$
$\geq 10 \mu\text{g/kg}$	da -20% a $+10\%$

DECISION 2002/657/CE

Performance criteria for analytical methods

Precision

Relative standard deviation (CV%), includes repeatability and reproducibility intra-lab

Concentration ($\mu\text{g/kg}$)	CV%
1	(*)
10	(*)
100	23
200	21
500	18
1000	16

DECISION 2002/657/CE

Ruggedness/robustness

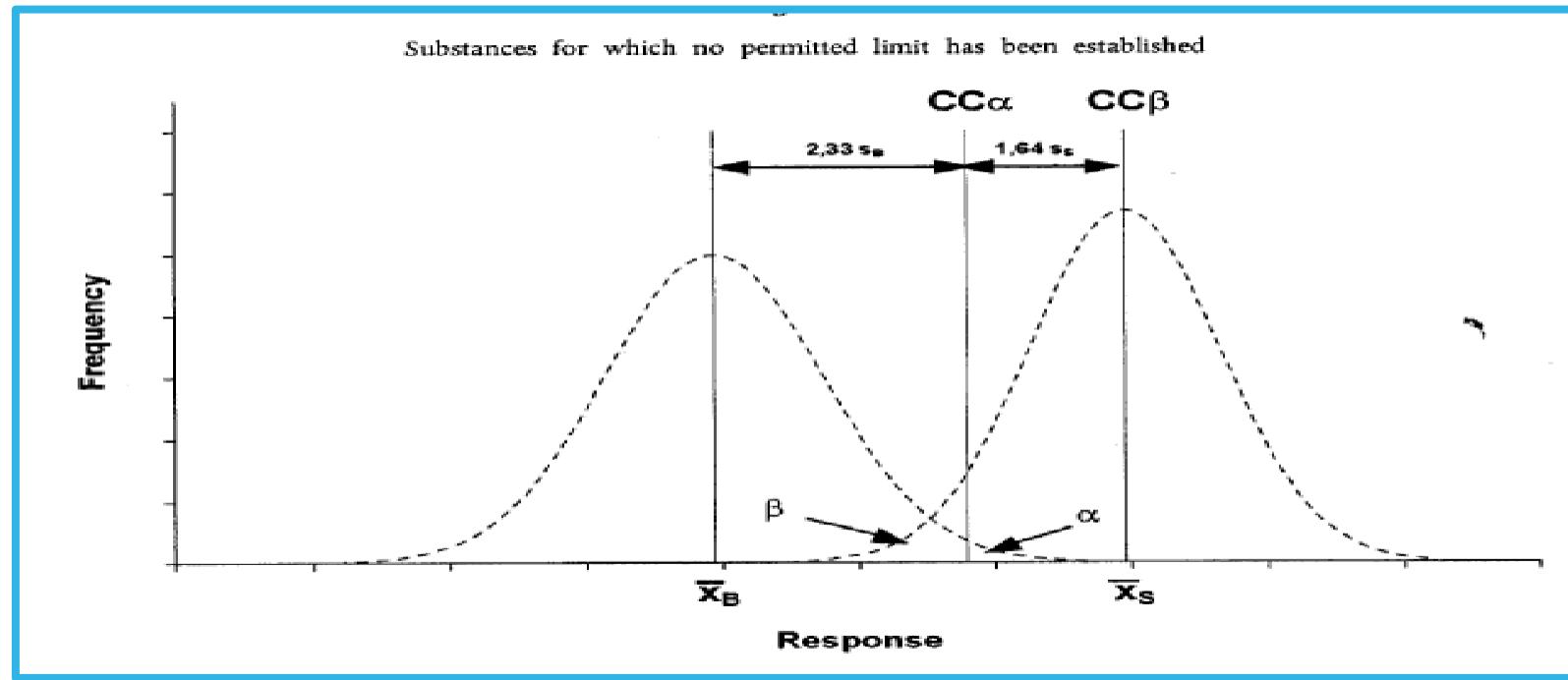
Ruggedness means the susceptibility of an analytical method to changes in experimental conditions which can be expressed as a list of the sample materials, analytes, storage conditions, environmental and/or sample preparation conditions under which the method can be applied as presented or with specified minor modifications. For all experimental conditions which could in practice be subject to fluctuation (e.g. stability of reagents, composition of the sample, pH, temperature) any variations which could affect the analytical result should be indicated.

Stability of the analyte in solution and in the sample

DECISION 2002/657/CE

Calibration curve

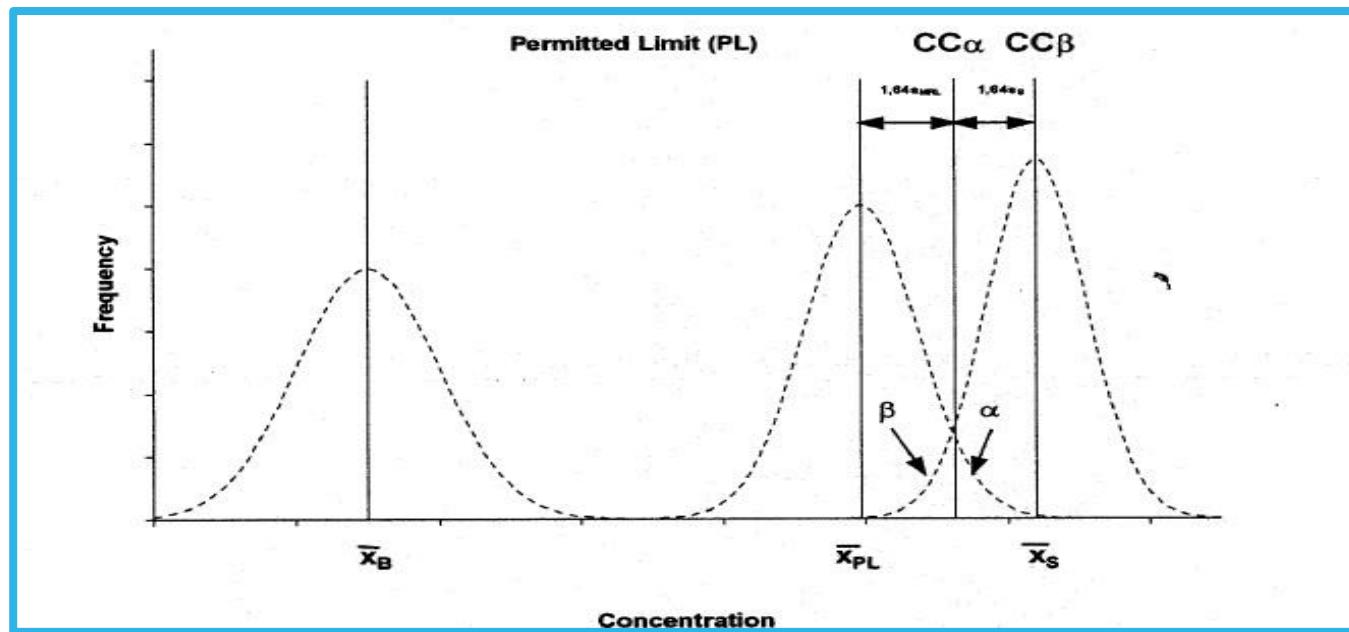
5 levels (including zero).


Establish acceptability criteria i.e

- ✓ determination coefficient $r^2 \geq 0.990$;
- ✓ ratio y/x ; for each point the y/x ratio should be in the average $(y/x) \pm 10\%$

DECISION 2002/657/CE

CC α : compounds with no MRL simplified approach


20 blank samples . Calculate the signal to noise ratio at the retention time of the analyte
 $CC\alpha = 3 S/N$.

DECISION 2002/657/CE

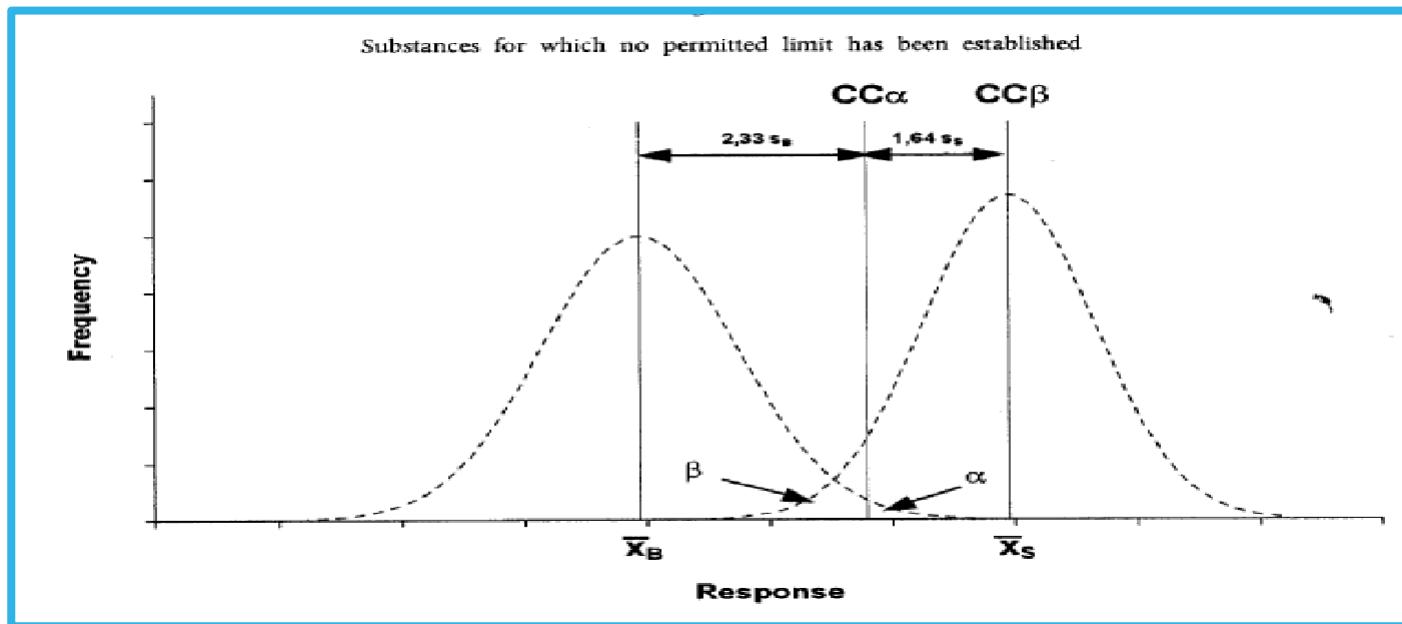
CC α : compounds with MRL simplified approach

Use 20 blank samples fortified at MRL, the concentration at MRL + 1.64 the standard deviation is the CC α .

DECISION 2002/657/CE

Detection capability (CC β)

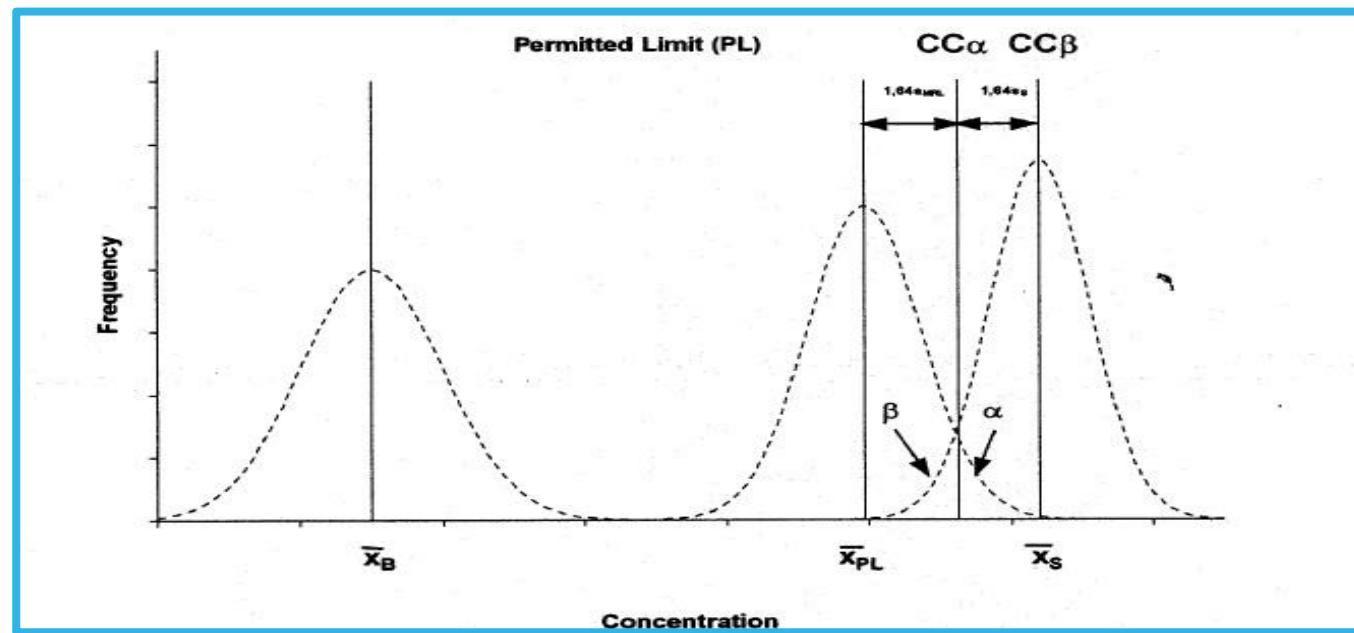
Detection capability (CC β) means the smallest content of the substance that may be detected, identified and/or quantified in a sample with an error probability of β . In the case of substances for which no permitted limit has been established, the detection capability is the lowest concentration at which a method is able to detect truly contaminated samples with a statistical certainty of $1 - \beta$.


In the case of substances with an established permitted limit, this means that the detection capability is the concentration at which the method is able to detect permitted limit concentrations with a statistical certainty of $1 - \beta$.

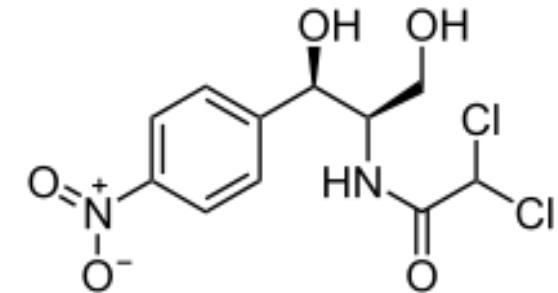
Beta (β) error means the probability that the tested sample is truly non-compliant, even though a compliant measurement has been obtained (false compliant decision).

DECISION 2002/657/CE

CC β : compounds with no MRL simplified approach


20 blank samples fortified at the decision limit. CC β is the concentration of CC α + 1.64 the standard deviation of the intra-laboratory reproducibility ($\beta = 5\%$).

DECISION 2002/657/CE


CC β : compounds with MRL simplified approach

20 blank samples fortified at the decision limit. CC β is the concentration of CC α + 1.64 the standard deviation of the intra-laboratory reproducibility ($\beta = 5\%$).

Validation of a screening ELISA method for bacteriostatic antibiotic chloramphenicol CAP*

- CC β ;
- Precision;
- Specificity/Selectivity;
- Robustness/Stability

minimum required performance limit (MRPL),
CAP (0,3 µg/kg) (meat, aquaculture, eggs, milk, honey)

*Gently provided by Dr. Scorticlini IZSM Giuseppe Caporale, Teramo

Validation of ELISA for CAP

Sample preparation

CAP extraction from meat (muscle), eggs and honey has been achieved with acetone/dichloromethane (1:1, v/v), followed by a purification on alumina SPE (muscle and egg) or C₁₈ (honey).

milk samples were treated in 2 different ways as suggested by the producer of the CAP ELISA kit (Euro-Diagnostica B.V).

50 µl of the final solution have been used in the ELISA.

Validation plan

CC_B: 20 blanks for each type of sample (muscle, egg, honey, milk) added at the MRPL (0,3 µg/kg)*.

Specificity/Selectivity: 20 representative blank samples for each type (bovine, ovine, swine, poultry species included in the National Residues Plan) + egg milk honey from different sources and production process. Samples of bovine muscle fortified have been fortified with 0,3 µg/kg di CAP and with tiamphenicol (TIF) e Florfenicol (FF), at concentrations correspondent at their (MLR) for the muscle and 5 x LMR (50-250 µg/kg for TIF and 200-1000 µg/kg for FF), *

*S. Hooijerink et al. *Analytica Chimica Acta* 483 (2003) 51

*S. Impens et al. *Analytica Chimica Acta* 483 (2003) 153.

Validation

Precision/Recovery: for each type of matrix, fortified 18 blanks at 0,30-0,45-0,60 µg/kg (6 replicates each level).

LOD/LOQ: 3 x SD of the blank (LOD) 10 x SD of the blanks (LOQ) *.

Robustness: Youden* approach introducing “minor changes” in some parameters of the extraction procedure to 7 variables shown in **Table**.

Variable selezionata	Unità	Abbrev. ^a	Livello “alto”	Livello “basso”
% Diclorometano miscela estrazione	%	A,a	55	45
% Metanolo miscela eluente SPE	%	B,b	85	75
Età cartuccia SPE	-	C,c	Vecchia	Nuova
Modalità eluizione SPE	-	D,d	Sempre bagnata ^b	Lasciata asciugare ^c
Volume eluizione SPE	ml	E,e	6.5	5.5
Temperatura evaporazione estratto finale	°C	F,f	55	45
Modalità evaporazione estratto finale	-	G,g	A secco, subito ripreso	A secco + 5 min

*EURACHEM Guide, The Fitness for Purpose of Analytical Methods, 1998.

*W.J. Youden, E.H. Steiner. Statistical Manual of AOAC (Association of Official Analytical Chemists), (1975) 33.

Robustness

8 samples added with CAP at 0,3 µg/kg. Recovery was evaluated according to the following experimental design .

Variabile	Esperimento ≠							
	1	2	3	4	5	6	7	8
% Diclorometano miscela estrazione	A	A	A	A	a	a	a	a
% Metanolo miscela eluente SPE	B	B	b	b	B	B	b	b
Età cartuccia SPE	C	c	C	c	C	c	C	c
Modalità eluizione SPE	D	D	d	d	d	d	D	D
Volume eluizione SPE	E	e	E	e	e	E	e	E
Temperatura evaporazione estratto finale	F	f	f	F	F	f	f	F
Modalità evaporazione estratto finale	G	g	g	G	g	G	G	g
Risultato osservato	s	t	u	v	w	x	y	z

CC β - LOD -LOQ

CAP was detected in all samples: CC β was then $< 0,3 \mu\text{g/kg}$, the method is then able to detect CAP at the MRPL with an error $\beta < 0,05$ (**Tabella 3**).

Parametro	Uova	Muscolo	Miele	Latte ^c	Latte ^d
Media bianchi ($\mu\text{g/Kg}$) ^a	0,0047	0,0074	0,025	0,082	0,041
LOD ($\mu\text{g/Kg}$)	0,0076	0,018	0,063	0,22	0,11
LOQ ($\mu\text{g/Kg}$)	0,014	0,044	0,151	0,54	0,28
Recupero \pm SD (%) ^b	70,9 \pm 8,2	78,3 \pm 13,7	98,6 \pm 16,3	83,1 \pm 19,5	106,4 \pm 9,8
CC β ($\mu\text{g/Kg}$)	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3

^a 20 representative blanks

^b 20 blanks fortified at RMPL (0,3 $\mu\text{g/kg}$)

^c Procedure a)

^d Procedure b)

Precision/Recovery

CV (5,5-17,3%) and mean recovery (78,2-107,5%) were satisfactory for all the matrices/concentrations

Cochran test and ANOVA dimostrated that precision and recovery did not vary in the 0,3-0,6 µg/kg range ($p=0,05$).

^a 6 replicates for each level

^b Total data 18 replicates at 3 levels

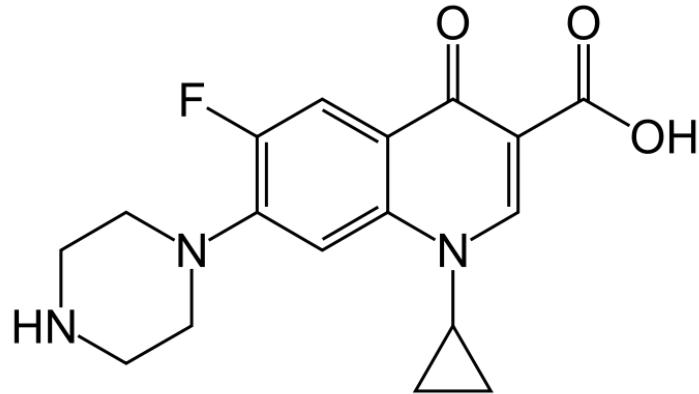
Matrice	Livello aggiunta ^a (µg/Kg)	Ripetibilità (CV%)	Recupero (%)
Uova	0,30	5,5	80,6
	0,45	11,8	78,2
	0,60	15,9	89,7
	Globale^b	13,0	82,8
Muscolo	0,30	6,7	78,2
	0,45	6,5	91,7
	0,60	12,8	88,7
	Globale^b	9,7	88,0
Miele	0,30	16,9	96,2
	0,45	10,3	103,0
	0,60	17,3	98,9
	Globale^b	14,7	99,4
Latte	0,30	10,7	96,2
	0,45	7,4	103,0
	0,60	13,5	107,5
	Globale^b	10,6	105,0

Robustness

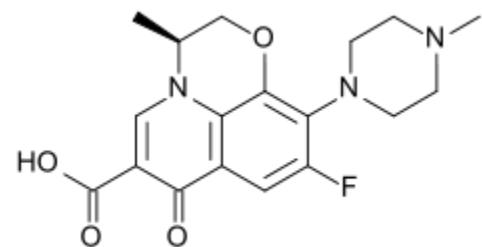
Data obtained from high level and low levels were subtracted to the mean value obtained, the difference was expressed as % recovery . The critical t value (2-sided) was acceptable in all cases

Variabile	Differenza (D) % Recupero (valore assoluto)	Valore di t
% Diclorometano miscela estrazione	5,3	0,55
% Metanolo miscela eluente SPE	7,1	0,73
Età cartuccia SPE	5,3	0,55
Modalità eluizione SPE	5,0	0,52
Volume eluizione SPE	3,6	0,37
Temperatura evaporazione estratto finale	14,5	1,50
Modalità evaporazione estratto finale	0,8	0,08

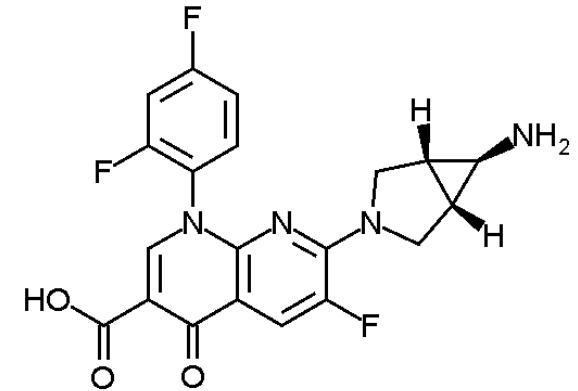
$$t = \frac{\sqrt{n} \cdot |D|}{\sqrt{2} \cdot S D}$$


n = 4 (number of replicates per level/parameter) and CV = 13,7% (t critical value (2-sided) = 2,09, v = 20-1, 95% probability

Specificity>Selectivity


No relevant effect for the samples added with TIF and FF on the CAP data.
For milk liquid/liquid extraction with etil-acetate was selected because more reproducible.

The method is validated !


Quinolones in animal feed category B1

cyprofloxacin

levofloxacin

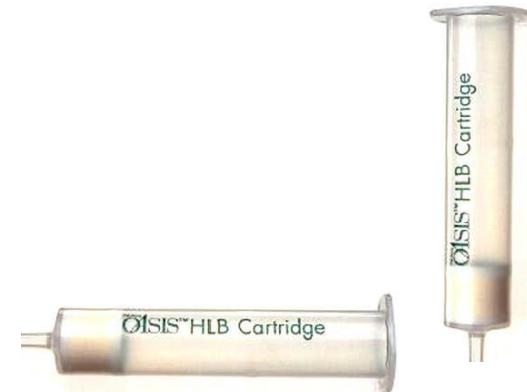
trovafloxacin

Quinolones: Reg. (UE) n. 37/2010

Analite	Specie ^a	MLR (μ g/kg)
Danofloxacin	bovine, ovine, poultry other species	200 100
Difloxacin	bovine, ovine, poultry , swine other species	400 300
Enrofloxacin	All the species	100
Flumequin	bovine, ovine, poultry, swine, fish	200 400 600
Marbofloxacin	bovine, swine	150
Oxolinic Acid	All the species	100
Sarafloxacinn	Salmonidae	30

^a not for species producing eggs for human consumption

*analytical procedure**


EXTRACTION^a: 5 g of sample + 20 ml (+20 ml) di methanol/phosphoric acid 1% (40:60, v/v);
20 ml dried under at 50°C to evaporate methanol.

PURIFICATION: OASIS HLB (500mg/3ml) conditioned with 2 ml methanol and 2 ml water;
wash with 5 ml metafphosphoric acid 1% and 5 ml water ;
eluition with 5 ml di 30% ammonia /methanol (5:95, v/v).

ENRICHMENT: solvent evaporation and dilution in 0.1% formic acid

INSTRUMENTAL Analysis: HPLC-MS/MS.

- ^a on muscle samples 100 µg/kg norfloxacin-d5 (SI) are added;
on eggs 10 µg/kg norfloxacin-d5

HPLC-MS/MS

HPLC Column: X-TERRA C18 100 x 2,1 mm, 3,5 µm, Waters

Flow rate 0.2 ml/min, injection volume 10 µl

Source API - ESI +

Analyser Quadrupole

MRM (Multi Reaction Monitoring) modality

Two fragmented ion for each analyte

Quantitative analysis on higher intensity ion

Gradient

time (min)	acetonitrile	formic acid 0.1%
0	2	98
5	70	30
9	70	30
10	2	98
25	2	98

Instrumental Linearity

5 concentration levels \times 3

Levels selected according to the validation levels established for each type of sample

Calibration curves built using analyte area/IS area vs concentration

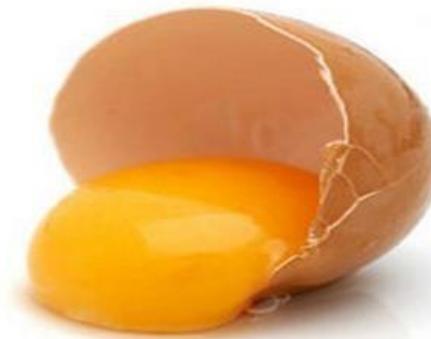
fortification levels muscle

Analyte	0.5 LMR (µg/kg)	1 LMR (µg/kg)	1.5 LMR (µg/kg)
Marbofloxacin	75	150	225
Ciprofloxacin	50	100	150
danofloxacin ^a	50	100	200
Enrofloxacin	50	100	150
difloxacin ^b	150	300	400
oxolinic acid	50	100	150
flumequin ^c	200	400	600

^a MLR danofloxacin 100-200 µg/kg

^b MLR difloxacin 300-400 µg/kg

^c MLR flumequin 200-400-600 µg/kg


fortification levels muscle unauthorised compounds

Analyte	C_0 ($\mu\text{g}/\text{kg}$)	$2 C_0$ ($\mu\text{g}/\text{kg}$)	$3 C_0$ ($\mu\text{g}/\text{kg}$)
norfloxacin	10	20	30
lomefloxacin	10	20	30
sarafloxacin	10	20	30
Nalidixic acid	10	20	30

Fortified levels eggs

Quinolones are not allowed even in traces in eggs

fortified levels 5-10-20 $\mu\text{g}/\text{kg}$ for all the analytes

Validation Plan

Validation plan	
Procedure	n.repetitions/ levels
I	6
II	6
III	6

- Verification of the normality of the data - test Shapiro Wilk test
- Verification of outliers - Grubbs test
- Variance analysis (ANOVA)
- Recoveries calculated by calibration curve in solvent
- CV%
- Calibration curves in matrices

Validation data muscle

Analyte	fortified level (μ g/kg)	Recovery% (n=18)	CV (%RSD) n=18
marbofloxacin	75-150-225	97-103-99	11-9-4
norfloxacin	10-20-30	97-102-99	16-14-8
Ciprofloxacin	50-100-150	98-102-99	12-10-5
Danofloxacin	50-10-200	<u>91-107</u> -99	<u>23</u> -16-7
Lomefloxacin	10-20-30	95-105-98	13-12-7
Enrofloxacin	50-100-150	100-100-100	9-8-5
Sarafloxacin	10-20-30	98-101-99	7-8-5
Difloxacin	150-300-400	98-102-99	8-8-10
Oxolinic acid	50-100-150	99-101-96	7-9-11
nalidixic acid	10-20-30	99-101-100	11-10-7
flumequin	200-400-600	97-103-99	13-12-7

Validation data eggs

Analyte	fortified level (μ g/kg)	Recovery% (n=18)	CV (%RSD) n=18
marbofloxacin	5-10-15	100-99-100	8-9-7
norfloxacin	5-10-15	101-99-100	5-4-3
ciprofloxacin	5-10-15	98-102-99	9-9-5
danofloxacin	5-10-15	100-100-100	17-17-14
lomefloxacin	5-10-15	96-104-99	11-9-11
enrofloxacin	5-10-15	99-101-100	12-15-11
sarafloxacin	5-10-15	<u>95-105-98</u>	16-13-10
difloxacin	5-10-15	96-104-98	18-15-12
oxolinic acid	5-10-15	100-100-100	20- <u>21</u> -13
Nalidixic acid	5-10-15	102-98-101	17-16-16
flumequin	5-10-15	100-100-100	13-12-17

Calculation of $CC\alpha$ and $CC\beta$ for compounds with MLR

$$\underline{CC\alpha = MLR + 1.64 SD_{r,MLR}}$$

where $SD_{r,MLR}$ is the intra-laboratory standard deviation at MRL

$$\underline{CC\beta = CC\alpha + 1.64 SD_{r,CC\alpha}}$$

where $SD_{r,CC\alpha}$ is the intra-laboratory standard deviation at $CC\alpha$. We are assuming that DS between MLR e $CC\alpha$ increases linearly with concentration, (CV% is constant). Thus:

$$\underline{CC\beta = CC\alpha + 1.64 (CV\%_{pooled} \times CC\alpha / 100)}$$

where $CV\%_{pooled}$ is the combination of CV% observed at MRL and CV% at 1.5 LMR

Calculation of $CC\alpha$ and $CC\beta$ for unauthorised compounds

$$\underline{CC\alpha = C_0 + 2.33 DS_{r,C_0}}$$

where DS_{r,C_0} is the intra-lab standard deviation at the C_0 level

$$\underline{CC\beta = CC\alpha + 1.64 DS_{r,CC\alpha}}$$

where $DS_{r,CC\alpha}$ intra-lab standard deviation at $CC\alpha$. intra-lab standard deviation We are assuming that DS between C_0 and $CC\alpha$ increases linearly with concentration, thus:

$$\underline{CC\beta = CC\alpha + 1.64 (CV\%_{\text{pooled}} \times CC\alpha / 100)}$$

where $CV\%_{\text{pooled}}$ is the combination of $CV\%$ at C_0 and $CV\%$ at $2C_0$

CC α and CC β

Analyte	Muscle		eggs	
	CC α	CC β	CC α	CC β
marbofloxacin	173	194	6.0	6.8
norfloxacin	14	17	5.6	6.1
ciprofloxacin	116	132	6.0	6.9
danofloxacin	126	151	6.9	8.8
lomefloxacin	13	16	6.3	7.5
enrofloxacin	113	126	6.4	7.7
sarafloxacin	32	35	6.9	8.7
difloxacin	339	390	7.1	9.2
oxolinic acid	115	135	7.4	9.8
nalidixic acid	13	15	7.0	9.0
flumequin	234	282	6.6	8.0

Robustness

Minor changes :

- 7 potential critical factors ;
- Tests were run on 8 negative fortified samples, using Youden approach, each parameter was varied within 10%;
- Compounds were fortified at MRL or C_0 ;

Robustness - experimental design on muscle

selected parameter	Unit	High/low	Centered value	High	low
%MeOH in the extraction mixture	%	A,a	40	44	36
T of enrichment	°C	B,b	50	55	45
SPE OASIS lot	-	C,c	-	080A38157A	084038263A
pH washing SPE	pH	D,d	3.0	3.1	2.9
% ammonia in elution mixture	%	E,e	5.0	5.5	4.5
Volume of the elution mixture	ml	F,f	5.0	5.5	4.5
% of formic acid in mobile phase	%	G,g	0.10	0.11	0.09

The method was robust CV was similar in all cases to intra-lab CV

Micotoxins

L 70/12

EN

Official Journal of the European Union

9.3.2006

**COMMISSION REGULATION (EC) No 401/2006
of 23 February 2006**

**laying down the methods of sampling and analysis for the official control of the levels of
mycotoxins in foodstuffs**

(Text with EEA relevance)

Pesticides

ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED

Supersedes Document No. SANTE/11945/2015. Implemented by 01/01/2018

Pesticides

C4 Sample comminution should ensure that the sample is homogeneous enough to ensure that sub-sampling variability is acceptable. If this is not achievable, the use of larger test portions or replicate portions should be considered in order to be able to obtain a better estimate of the true value. Upon homogenization or milling, samples may separate into different fractions, e.g. pulp and peel in the case of fruits, and husks and endosperm in the case of cereals. This fractionation can occur because of differences in size, shape and density. Because pesticides can be heterogeneously distributed between the different fractions, it is important to ensure that the fractions in the analytical test portion are in the same ratio as in the original laboratory sample. It is advisable to store in a freezer a sufficient number of sub-samples or analytical test portions for the number of analyses/repeated analyses that are likely to be required.

Pooling of samples

C5 Pooling of individual samples or sample extracts may be considered as an option for the analyses of commodities with a low frequency of pesticide residues (e.g. organic or animal products), provided that the detection system is sensitive enough. For example, when pooling 5 samples, the limit of quantification (LOQ) or screening detection limit (SDL) must be at least 5 times lower than the reporting limit (RL).

Pesticides

Clean-up, concentration/reconstitution and storage of extracts

C8 A clean-up, or dilution step may be necessary to reduce matrix interferences and reduce contamination of the instrument system leading to an improved selectivity and robustness. Clean-up techniques take advantage of the difference in physicochemical properties (e.g. polarity, solubility, molecular size) between the pesticides and the matrix components. However, the use of a clean-up step in a multi-residue method can cause losses of some pesticides.

C9 Concentration of sample extracts can cause precipitation of matrix-components and in some cases losses of pesticides. Similarly, dilution of the extract with a solvent of a different polarity can also result in pesticide losses because of decreased solubility (e.g. dilution of methanol or acetonitrile extracts with water).

C10 To avoid losses during evaporation steps the temperature should be kept as low as is practicable. A small volume of a high boiling point solvent may be used as a "keeper". Foaming and vigorous boiling of extracts, or dispersion of droplets, must be avoided. A stream of dry nitrogen or vacuum centrifugal evaporation is generally preferable to the use of an air stream for small-scale evaporation, as air is more likely to lead to oxidation or the introduction of water and other possible contaminants.

PESTICIDES

C13 Nowadays, selective detectors for GC (ECD, FPD, PFPD, NPD) and LC (DAD, fluorescence) are less widely used as they offer only limited specificity. Their use, even in combination with different polarity columns, does not provide unambiguous identification. These limitations may be acceptable for frequently found pesticides, especially if some results are also confirmed using a more specific detection technique. In any case, such limitations in the degree of identification should be acknowledged when reporting the results.

PESTICIDES

C17 Multi-level calibration (three or more concentrations) is preferred. An appropriate calibration function must be used (e.g. linear, quadratic, with or without weighing). The **deviation of the back-calculated concentrations of the calibration standards from the true concentrations, using the calibration curve in the relevant region** should not be more than $\pm 20\%$.

C18 Calibration by interpolation between two levels is acceptable providing the difference between the 2 levels is not greater than a factor of 10 and providing the response factors of the bracketing calibration standards are within acceptable limits. The response factor of bracketing calibration standards at each level should not differ by more than 20% (taking the higher response as 100%).

C19 Single-level calibration may also provide accurate results if the detector response of the analyte in the sample extract is close to the response of the single-level calibration standard (within $\pm 30\%$). Where an analyte is spiked to a sample for recovery determination purposes at a level corresponding to the LCL, recovery values $<100\%$ may be calculated using a single point calibration at the LCL. This particular calculation is intended only to indicate analytical performance achieved at the LCL and does not imply that residues $<\text{LCL}$ may be determined in this way.

PESTICIDES

Routine recovery check

C40 Where practicable, recoveries of all target analytes should be measured within each batch of analyses. If this requires a disproportionately large number of recovery determinations, the number of analytes may be reduced. However, it should be in compliance with the minimum number specified in Table 2. This means, that at least 10% of the representative analytes (with a minimum of 5) should be included per detection system.

Table 2. Minimum frequency of recovery checks (quantitative method performance verification)

	Representative analytes	All other analytes
Minimum frequency of recovery checks	10% of representative analytes (at least 5) per detection system, in each batch of analyses	Within a rolling programme to include all other analytes at least every 12 months, but preferably every 6 months
	Within a rolling programme covering all representative analytes as well as representative commodities from different commodity groups, at least at the level corresponding to the reporting limit	At least at the level corresponding to the reporting limit

Table 4. Identification requirements for different MS techniques²

MS detector/Characteristics		Acquisition	Requirements for identification	
Resolution	Typical systems (examples)		minimum number of ions	other
Unit mass resolution	Single MS quadrupole, ion trap, TOF	full scan, limited m/z range, SIM	3 ions	S/N ≥ 3 ^{d)} Analyte peaks from both product ions in the extracted ion chromatograms must fully overlap.
	MS/MS triple quadrupole, ion trap, Q-trap, Q-TOF, Q-Orbitrap	selected or multiple reaction monitoring (SRM, MRM), mass resolution for precursor-ion isolation equal to or better than unit mass resolution	2 product ions	Ion ratio from sample extracts should be within ±30% (relative) of average of calibration standards from same sequence
Accurate mass measurement	High resolution MS: (Q-)TOF (Q-)Orbitrap FT-ICR-MS sector MS	full scan, limited m/z range, SIM, fragmentation with or without precursor-ion selection, or combinations thereof	2 ions with mass accuracy ≤ 5 ppm ^{a, b, c)}	S/N ≥ 3 ^{d)} Analyte peaks from precursor and/or product ion(s) in the extracted ion chromatograms must fully overlap. Ion ratio: see D12

^{a)} preferably including the molecular ion, (de)protonated molecule or adduct ion

^{b)} including at least one fragment ion

^{c)} < 1 mDa for m/z < 200

^{d)} in case noise is absent, a signal should be present in at least 5 subsequent scans

Annex A Commodity groups and representative commodities ⁹

Vegetable and fruits, cereals and food of animal origin

Commodity groups	Typical commodity categories within the group	Typical representative commodities within the category
1. High water content	Pome fruit	Apples, pears
	Stone fruit	Apricots, cherries, peaches,
	Other fruit	Bananas
	Alliums	Onions, leeks
	Fruiting vegetables/cucurbits	Tomatoes, peppers, cucumbers, melons
	Brassica vegetables	Cauliflowers, Brussels-sprouts, cabbages, broccoli
	Leafy vegetables and fresh herbs	Lettuce, spinach, basil
	Stem and stalk vegetables	Celery, asparagus
	Fresh legume vegetables	Fresh peas with pods, peas, mange tout, broad beans, runner beans, French beans
	Fresh Fungi	Champignons, chanterelles
2. High acid content and high water content ¹⁰	Root and tuber vegetables	Sugar beet, carrots, potatoes, sweet potatoes
	Citrus fruit	Lemons, mandarins, tangerines, oranges
	Small fruit and berries	Strawberries, blueberries, raspberries, black currants, red currants, white currants, grapes
3. High sugar and low water content ¹¹	Honey, dried fruit	Honey, raisins, dried apricots, dried plums, fruit jams
4a. High oil content and very low water content	Tree nuts	Walnuts, hazelnuts, chestnuts
	Oil seeds	Oilseed rape, sunflower, cotton-seed, soybeans, peanuts, sesame etc.
	Pastes of tree nuts and oil seeds	Peanut butter, tahina, hazelnut paste
4b. High oil content and intermediate water content	Oily fruits and products	Olives, avocados and pastes thereof
5. High starch and/or protein content and low water and fat content	Dry legume vegetables/pulses	Field beans, dried broad beans, dried haricot beans (yellow, white/navy, brown, speckled), lentils
	Cereal grain and products thereof	Wheat, rye, barley and oat grains; maize, rice wholemeal bread, white bread, crackers, breakfast cereals, pasta, flour.

PESTICIDES