
FOOD SCIENCE ANALYTICS

Multivariate Analysis in Food 
Science
Simplifying complex food data through dimensionality reduction techniques, 
multivariate analysis provides crucial insights for various applications. It 
helps in understanding intricate relationships in sensory analysis (taste, 
texture, aroma), food quality control, ingredient optimization, nutritional 
profiling, consumer preference studies, shelf-life prediction, food 
authentication, and process optimization in food manufacturing.



What is Multivariate Analysis?

Multivariate analysis encompasses a range of statistical methods
designed to analyse multiple variables simultaneously, uncovering 
hidden relationships and patterns within complex datasets.

These techniques are essential across diverse fields, particularly in food 
science:

• Sensory Analysis – understanding taste, texture, and aroma profiles

• Food Quality & Safety – predicting shelf-life and authenticating 
ingredients

• Product Development – optimizing ingredients and understanding 
consumer preferences

• Process Optimization – enhancing efficiency in food manufacturing

Principal Component Analysis (PCA) stands as one of the most 
powerful techniques within this analytical toolkit, offering elegant 
solutions for data simplification.



Understanding Multivariate Data
Multivariate data involves recording multiple measurements or variables for each individual observation. This comprehensive approach allows 
for deeper insights than analyzing variables in isolation, providing a holistic view of complex systems.

Details

VariablesObservations

Dataset

Why Multiple Variables Matter

Food quality, safety, and consumer preference are rarely determined by a single factor. Instead, they result from the complex interplay 
of numerous attributes. Multivariate analysis allows us to uncover these crucial interactions, leading to more robust product
development and quality control strategies.



The Problem with Many Variables
While multivariate data offers rich insights, managing and analysing high-dimensional datasets presents several significant challenges 
in food science applications.

Visualization Challenge

Visualizing complex sensory profiles 
(e.g., taste, texture, aroma across 
many attributes) or hundreds of 
chemical markers in food becomes 
extremely difficult to plot and 
understand when exceeding three 
dimensions.

Computational Complexity

Analyzing extensive datasets from 
food quality control, ingredient 
optimization, or shelf-life prediction 
requires substantial computational 
resources due to the exponential 
growth in calculations with more 
variables.

Interpretation Difficulty

Identifying meaningful patterns and 
relationships from vast data on 
consumer preferences, nutritional 
profiles, or process parameters 
becomes overwhelming as the sheer 
number of interacting variables 
increases.



What Multivariate Analysis Does
In food science, multivariate analysis acts as a powerful bridge, transforming overwhelming datasets from sources like sensory panels 
or quality control into actionable insights. It systematically unravels the inherent complexity of food data to reveal underlying 
structures and relationships crucial for product development and optimization.

Complex Food Data Inputs

Begins with high-dimensional datasets, 
such as extensive sensory analysis 
profiles (taste, texture, aroma), detailed 
nutritional compositions, or 
spectroscopic data from quality control, 
often too complex for intuitive 
interpretation.

Multivariate Techniques Applied

Applies methods like Principal 
Component Analysis (PCA) to identify 
key relationships between food 
attributes, reduce data complexity, and 
preserve crucial information for areas 
like ingredient optimization or shelf-life 
prediction.

Simplified Insights for Food 
Science

Delivers distilled, understandable data, 
enabling better decision-making in areas 
such as consumer preference studies, 
food authentication, or process 
optimization in food manufacturing, by 
uncovering hidden trends and drivers.



Real-World Example: Food Science Applications

Imagine a food company gathering extensive data on its products: 
sensory attributes (taste, texture, aroma), chemical composition, 
processing parameters, and consumer preference scores. Using 
multivariate analysis, food scientists can identify key drivers of 
consumer acceptance, optimize ingredient formulations for desired 
sensory profiles, or detect variations in product quality. This allows 
them to predict shelf-life, ensure food authentication, fine-tune 
manufacturing processes, and tailor nutritional profiles, leading to 
improved product development and consumer satisfaction.



Why Dimensionality 
Reduction?

The Challenge

In food science, data from 
sensory panels, quality control, or 
nutritional profiling often involve 
hundreds of interconnected 
variables (e.g., taste attributes, 
chemical compounds, processing 
parameters), making 
comprehensive analysis and 
interpretation extremely 
complex.

The Solution

Techniques like PCA (Principal 
Component Analysis) identify a 
condensed set of new variables 
(principal components) that 
capture the most significant 
information from these 
numerous food-related variables, 
effectively reducing data 
dimensionality.

The Benefit

This simplification allows food scientists to uncover underlying patterns, 
predict shelf-life, optimize ingredient formulations, ensure food 
authentication, or understand consumer preferences more effectively by 
reducing noise and revealing hidden structures.



PCA in a Nutshell: A Food Science Perspective

In food science, Principal Component Analysis transforms your 
original measurements (e.g., sensory attributes, chemical 
compositions, physical properties) into new, uncorrelated 
variables called principal components.

Each principal component represents a linear combination of 
the original variables, weighted to capture maximum variance 
present in complex food datasets.

The Hierarchy of Components in Food Data

• PC1 – captures the greatest variance, often related to the 
most dominant sensory attribute or chemical profile 
difference (e.g., sweetness vs. bitterness, major flavor 
components).• PC2 – captures the second greatest variance, highlighting 
another significant source of variation (e.g., texture 
differences, secondary aroma notes).

• PC3, PC4... – capture progressively less variance, revealing 
more subtle distinctions in food samples.

By selecting only the top components, food scientists can retain 
most crucial information for applications like sensory analysis 
or quality control, while dramatically reducing the complexity of 
high-dimensional data.



Geometric Intuition of 
PCA in Food Science
Understanding Principal Component Analysis (PCA) becomes 
intuitive when you visualize complex food science data – such 
as sensory attributes, nutritional profiles, or processing 
parameters – as a cloud of points in a multi-dimensional 
space.

Food Data Cloud

Each food product, described by numerous 
attributes (e.g., sweetness, bitterness, firmness, 
pH, moisture), becomes a point in this data cloud, 
revealing inherent patterns of variation.

Identify Key Drivers

PCA then finds the principal directions (axes) that 
capture the most significant variability within this 
food data, such as the primary drivers of 
consumer preference or quality differences.

Simplified Dimensions

These identified directions transform into new 
coordinate axes, allowing us to simplify the 
complex relationships between food attributes 
and gain insights into underlying structures, like 
distinguishing product categories or identifying 
key sensory drivers.



How PCA Works Mathematically in Food Science
01

Compute Covariance Matrix of Food Attributes

Measure relationships between all food attribute pairs (e.g., 
sensory scores, chemical components, texture measurements) to 
understand how they co-vary across different food samples.

02

Eigen-Decomposition of Food Data

Perform mathematical decomposition to extract eigenvalues and 
eigenvectors from the covariance matrix, representing the 
patterns and variations in the food attribute data.

03

Interpret Principal Components

Eigenvectors become principal components (e.g., underlying 
sensory dimensions like 'freshness' or 'richness'); eigenvalues 
quantify the variance explained by each component in the overall 
food characteristics.

04

Project Data for Dimensionality Reduction

Project original complex food attribute data onto the new 
principal components, effectively reducing many variables (e.g., 
numerous ingredient concentrations or consumer preference 
scales) to fewer, more interpretable dimensions for easier analysis 
and visualization.



Eigenvalues and Eigenvectors Explained

The Mathematical Foundation

In PCA, eigenvectors define the new coordinate axes, or 
Principal Components (PCs), representing the directions of 
maximum variance within your complex food dataset. Imagine 
finding the primary 'lines' along which your food samples spread 
out most significantly.

Each eigenvector has a corresponding eigenvalue. This value 
quantifies the amount of variance captured by that specific 
Principal Component. Essentially, it tells you how much 
"information" or variation is explained by that particular 
direction.

Applying to Cheese Samples

Consider analyzing various cheese samples with attributes like 
saltiness, sharpness, aroma, and texture.

• PC1 (largest eigenvalue): This eigenvector might point 
towards "overall intensity." Cheeses that vary most in their 
combined saltiness, sharpness, and potent aroma would 
align strongly with this direction. Its large eigenvalue 
indicates it captures the most significant differences among 
cheeses.• PC2 (second largest eigenvalue): This eigenvector could 
represent a "texture dimension," differentiating cheeses 
based on their firmness versus creaminess. Its smaller 
eigenvalue means it explains less variation than PC1 but still 
highlights an important distinguishing factor.

Key takeaway: Larger eigenvalues correspond to more 
important Principal Components, highlighting the most 
dominant characteristics that differentiate your food products.



Data Preparation and Standardization

In food science, data often comes from varied sources with different 
scales and units – think pH (0-14), moisture content (0-100%), or 
sensory sweetness scores (1-10). Without proper handling, variables 
with inherently larger numerical ranges would disproportionately 
influence PCA, masking the true impact of other important but smaller-
scale attributes.

Standardization, particularly using the z-score method, addresses this 
by transforming each variable to have a mean of zero and a standard 
deviation of one. This places all attributes on an equal footing, ensuring 
each contributes fairly to the analysis.

Where:

• x is an individual data point

• μ is the mean of the variable

• σ is the standard deviation of the variable

CRITICAL: Without standardization, PCA results 
can be heavily biased towards variables with 
larger numerical scales, obscuring genuine 
relationships among food attributes.



Step 1: Linear Combinations of Variables

The Foundation of Principal Components

Each Principal Component (PC) is a new variable formed by 
combining your original food attributes in a weighted sum, 
known as a linear combination.

Here, X represents the original attributes (e.g., sweetness, 
acidity), and w are the weights (loadings) derived from the 
eigenvectors. These weights quantify each attribute's 
contribution to that specific PC.

"Overall Palatability" in Food Science

Imagine a PC1 for a food product defined as:

PC1 = 0.5×sweetness + 0.4×sugar + 0.3×liking - 0.2×bitterness

This PC could represent an "overall palatability" dimension, 
effectively summarizing several sensory traits into a single, 
interpretable score for each food item, allowing for quick 
comparisons.

Weight Interpretation: Positive weights mean an attribute increases with the PC; negative weights indicate it decreases as 
the PC increases.



Step 2: Orthogonality - Independent Dimensions
A fundamental property of Principal Components (PCs) is their orthogonality, meaning they are statistically uncorrelated and 
mathematically perpendicular to one another. This ensures that each PC captures a unique, independent source of variation present in 
your original food data.

PC1

Longest axis: highest variance

PC2

Perpendicular, second highest variance

PC3

Perpendicular, lowest variance

PC1: Flavor Intensity

Captures the largest variation, 
differentiating cheeses by their 
overall sensory strength (e.g., strong 
vs. mild).

PC2: Texture Dimension

Perpendicular to PC1, it explains the 
next most variance, distinguishing 
cheeses based on physical 
characteristics (e.g., firm vs. creamy).

PC3: Aging Characteristics

Orthogonal to both PC1 and PC2, it 
captures the remaining variance, 
highlighting nuances related to 
maturation (e.g., aged vs. fresh 
notes).



Step 3: Projecting Data onto Principal Components
Once the Principal Components (PCs) are defined as new axes, each original food sample, with its many attributes, is transformed by being projected onto these new, lower-
dimensional components. This process assigns a unique "score" to each sample for every PC, effectively translating complex raw data into a more manageable and interpretable 
format.

High-Dimensional Data

Projection Flow

PC1 & PC2 Scores

Understanding the Scores

Each PC score represents how strongly a particular food sample aligns with that 
specific Principal Component. A positive score on PC1, for instance, might indicate a 
strong presence of the characteristics captured by PC1 (e.g., "overall intensity"), while a 
negative score might indicate the opposite.

These scores effectively condense the information from numerous original variables 
into a few meaningful numbers, making it easier to compare and classify food products 
based on their dominant characteristics.

Cheese A Example

Consider a specific cheese sample, Cheese A, defined by several sensory attributes:

• Sweetness = 7

• Sugar = 12%

• Texture = 8

• Bitterness = 2

After projection onto the newly defined Principal Components, Cheese A's 
characteristics are summarized by its PC scores:

• PC1 Score = 4.2

• PC2 Score = -1.5

These scores now represent Cheese A's position in the reduced-dimensional PC space.

These generated PC scores are the foundation for subsequent data visualization, clustering, and further analysis, allowing food scientists to uncover patterns and relationships that 
would be obscured in the original, high-dimensional data.



Choosing How Many Components to Keep

1

Scree Plot (Elbow Method)

Visually inspect a plot of eigenvalues 
in descending order. The "elbow" point, 
where the slope of the curve sharply 
decreases, often indicates the optimal 
number of components to retain 
before the remaining components 
contribute little to explaining variance.

2

Cumulative Variance Explained

Select the minimum number of 
principal components that collectively 
explain a significant portion of the 
total variance in the original data. 
Common thresholds in food science 
are typically between 70-90%, 
ensuring enough information is 
retained for meaningful 
interpretation.

3

Kaiser Criterion

A simple rule of thumb: keep only 
those principal components with an 
eigenvalue greater than 1. Each such 
component explains more variance 
than a single original standardized 
variable, suggesting it captures 
meaningful information.



Interpreting PCA Results: Loadings and Scores

Loadings: Unveiling Component Meaning

Loadings are coefficients that quantify the contribution of each 
original food attribute (e.g., pH, sweetness, texture) to a specific 
Principal Component (PC). High positive or negative loadings 
indicate a strong relationship. For instance, if PC1 has high 
positive loadings for sweetness, sugar content, and consumer 
liking, it reveals PC1 represents a "sweetness/preference" 
dimension. Loadings help us understand WHAT each PC truly 
represents.

Scores: Positioning Food Samples

Scores are the coordinates of each individual food sample in the 
new, reduced Principal Component space. After projecting the 
original data onto the PCs, each sample gets a score for every 
PC. These scores can be plotted to visualize relationships 
between samples, identify clusters of similar products, or 
pinpoint outliers. Scores show us WHERE each food sample falls 
within these newly defined dimensions, aiding in product 
comparison and differentiation.



Understanding the Covariance Matrix

What is Covariance?

In food science, it quantifies how two attributes, like sweetness and consumer 
liking, change together. It reveals if their trends are synchronous or independent 
across different samples.

Positive Covariance

Both variables tend to increase or decrease in tandem. For example, higher sugar 
content often correlates with increased sweetness perception and consumer 
preference in a beverage.

Negative Covariance

As one variable increases, the other tends to decrease. For instance, increased 
bitterness might lead to decreased consumer acceptance and lower overall 
palatability for some products.

The Covariance Matrix

This square matrix organizes all pairwise covariances between food attributes. It's a 
foundational step in PCA, capturing the complete inter-relationship structure of 
your food data.



Visual Example: PCA for Sensory Data

Understanding PCA in Sensory Data

Consider various food samples assessed across multiple sensory 
attributes (e.g., sweetness, bitterness, texture). PCA performs 
the following:

1. PC1 – identifies the primary direction of variation, capturing 
the greatest differences in sensory profiles among food 
samples.

2. PC2 – finds the orthogonal axis capturing the second most 
significant variation, which might relate to other distinct 
sensory characteristics or ingredient contributions.

Key Insight: If a major characteristic (e.g., overall flavor 
intensity or a dominant ingredient) accounts for most 
of the variance, PCA can effectively reduce complex 
multi-dimensional sensory data into a more 
interpretable, lower-dimensional representation.



PCA in Food Science: Practical Applications

Sensory Analysis

Quantifying complex sensory 
attributes of food products to 
identify key drivers of 
perception (taste, texture, 
aroma).

Food Quality Control

Monitoring production 
processes to ensure consistent 
product characteristics and 
detect deviations from quality 
standards.

Nutritional Profiling

Identifying patterns in nutrient 
composition data to optimize 
recipes and assess the 
nutritional impact of food 
products.

Shelf-Life Prediction

Analyzing changes in food 
properties over time to 
accurately forecast product 
freshness, stability, and safety.



Limitations and Considerations in Food Science PCA

Linear Assumptions

PCA assumes linear relationships between food properties 
(e.g., sensory attributes, chemical compositions) and 
maximizes variance. This linearity may not fully capture 
complex non-linear interactions in taste profiles or 
ingredient functionality, potentially oversimplifying real-
world food structures.

Scaling Sensitivity

PCA is sensitive to the measurement scales of different food 
science variables. For instance, combining sensory scores 
(e.g., 1-9 hedonic scale) with chemical concentrations (e.g., 
mg/L) without prior standardization can bias results 
towards variables with larger numerical ranges, thus 
requiring proper preprocessing.

Categorical Data Handling

Direct application of PCA to categorical food science 
variables, such as food types, processing methods, or 
consumer demographics, is not straightforward. 
Preprocessing methods like one-hot encoding or using 
alternative techniques (e.g., Multiple Correspondence 
Analysis) are necessary to integrate such data effectively.

Capturing Nonlinear Patterns

Kernel PCA offers an extension to classical PCA, enabling 
the capture of complex nonlinear patterns inherent in food 
science datasets. This is particularly useful for analyzing 
intricate relationships in sensory perception, ingredient 
interactions, or consumer preference studies where 
responses are often non-linear.



Summary: Why PCA Matters

∞
Simplification

Transforms complex 
multivariate food data 

(e.g., chemical 
composition, sensory 

attributes) into 
interpretable 

components like flavor 
profiles or quality 

markers.

1st
Foundation

A foundational 
technique for advanced 

food science 
applications such as 

sensory analysis, food 
quality control, and 

ingredient 
optimization.

100%
Essential

Mastering PCA unlocks 
deeper insights from 

high-dimensional food 
data, crucial for 

consumer preference 
studies, shelf-life 

prediction, and food 
authentication.

PCA empowers food scientists to visualize, interpret, and model complex food 
data, focusing on the key patterns that determine product quality, consumer 
acceptance, and process efficiency.



Carrot Aroma Analysis: E-
Nose vs. GC-MS
Exploring the comparative advantages of E-Nose and GC-MS technologies for 
comprehensive volatile compound analysis in stored carrots.



E-Nose Technology: Hairpin-
DNA Sensors

1 What is an E-Nose?

A device that mimics the human sense of smell, designed to detect and 
identify volatile compounds and gas mixtures.

2 How hpDNA Sensors Work

They use gold nanoparticles and specific "hairpin" DNA sequences that 
reconfigure upon contact with the analyte, generating a measurable 
signal.

3 Utility in Food Analysis

It offers a rapid, economical, and simple alternative to traditional GC-
MS for monitoring food quality and freshness.

4 Sensor Array

The system employs an array of 8 different hpDNA sequences 
immobilized on quartz crystal microbalances for detailed multi-analyte 
detection.



Experimental Study: General Scheme

Carrot Samples

Fresh blanched carrots prepared for the experiment.

Storage at Different Temperatures

26 days at -18°C, 4°C, 25°C, 40°C to simulate various conditions.

Parallel Analysis

E-Nose (hpDNA sensors) and GC-MS for the detection of volatile compounds.

Data Processing

Principal Component Analysis (PCA) to reduce data complexity.

Results and Discrimination

Identification of the correlation between compounds and storage conditions.



PCA of GC-MS Data: Sample Discrimination

PC1 and PC2 explain 57.01% of total 
variance (PC1: 31.19%, PC2: 25.82%)

Clear separation of samples based on 
storage temperature

Samples at 40°C clearly separated on PC1

Samples at -18°C and 4°C grouped 
together (stable conditions)

Samples at 25°C show temporal evolution: 
days 1-8 vs days 12-26

PC1 discriminates for acetoin, lactamide, 
ethanol (fermentation)

PC2 discriminates for terpenoids (α-
pinene, γ-terpinolene, β-pinene)



E-Nose Data PCA: Comparison with GC-MS

PC1 and PC2 explain 68.89% of the total 
variance (higher than GC-MS!)

Comparable or superior discrimination to 
traditional GC-MS

All samples at 40°C separated in the 4th 
quadrant

Samples at -18°C and 4°C grouped (1st and 
2nd quadrant)

Samples at 25°C for 19 and 26 days 
separated (3rd quadrant)

All 8 hpDNA sensors contribute to 
discrimination

Loadings show that pentamers and 
hexamers have superior performance



Conclusions and Future Perspectives

E-Nose Exceeds Expectations

The hpDNA-based E-Nose 
discriminates samples with 
comparable (or superior) efficacy to 
GC-MS.

Operational Advantages

E-Nose advantages: reduced costs, 
rapid analysis (8 min), ease of use, no 
specialized personnel required.

Long-term Reliability

Excellent stability and reproducibility 
for 3 months of continuous use.

Drift Resistance

No drift issues with high water 
content samples.

Pioneering in Food Analysis

First study demonstrating the use of 
hpDNA for solid food matrix analysis.

Industry Potential

Promising application for industrial 
quality control and shelf-life 
monitoring.

Innovative Monitoring

Innovative tool for monitoring gases 
released by vegetables during storage 
and ripening.



Identifying Cannabis Retailers 
Through Cannabinoid 
Analysis
A groundbreaking study demonstrates how advanced chemical analysis 
combined with multivariate statistics can identify hemp retailers without 
knowing strain, cultivation methods, or geographic origin. Using HPLC-
MS/MS analysis of nine cannabinoids across 161 samples from four Italian 
retailers, researchers achieved 92% classification accuracy.



RESEARCH CONTEXT

The Challenge of Hemp 
Classification

Traditional Limitations

Current hemp classification relies 
primarily on THC and CBD 
concentrations. However, research 
shows that strains with similar 
THC/CBD ratios can have vastly 
different physiological effects on 
humans.

Italian law classifies Cannabis sativa 
L. as fiber-type (THC <0.2% w/w) or 
prohibited drug-type (THC >0.6% 
w/w), but this binary approach 
overlooks the plant's chemical 
complexity.

A More Comprehensive 
Approach

Cannabis sativa L. contains 
numerous bioactive compounds 
including flavonoids, terpenes, 
steroids, and cannabinoids. The 
main cannabinoids include neutral 
forms (THC, CBD, CBC, CBG, CBN, 
CBDV) and acidic forms (THCA, 
CBDA, CBGA).

This study analyzed all nine major 
cannabinoids to create a 
comprehensive chemical fingerprint 
for each retailer.



METHODOLOGY

Research Design and Sample 
Collection
01

Sample Acquisition

161 hemp samples purchased from four Italian retailers (labeled A, B, C, D) across 
three regions: Lombardy (Milan and Mantova), Lazio (Pomezia), and Abruzzo 
(Tortoreto). Samples stored at room temperature in original packaging.

02

Sample Preparation

Each sample homogenized through trituration, crushing, and sieving (1mm). Fine 
powder (10mg) extracted with ethanol using ultrasonic bath for 30 minutes, 
followed by centrifugation and filtration.

03

HPLC-MS/MS Analysis

Samples analyzed using high-performance liquid chromatography coupled with 
tandem mass spectrometry. This method prevents cannabinoid decomposition 
that occurs with traditional GC heating methods.

04

Statistical Analysis

Data processed using univariate analysis (ANOVA), unsupervised PCA, and 
supervised PLS-DA algorithms to identify patterns and classify retailers.



Cannabinoid Profile Analysis 
Results
Box and whisker plots revealed consistent patterns across all retailers: high 
concentrations of CBD and CBDA, with lower levels of other cannabinoids. 
Retailer D showed notably higher THCA and CBGA levels. CBN concentrations 
were particularly elevated in retailers A and B, potentially indicating oxidation 
and inflorescence quality markers.

<0.35%
THC Content

Average THC 
concentration across all 
retailers remained well 
below legal thresholds

9
Cannabinoids 

Analyzed

Six neutral and three 
acidic cannabinoids 

measured per sample

161
Total Samples

Hemp samples analyzed 
from four distinct 

Italian retailers



KEY FINDINGS

Multivariate Analysis Reveals Hidden Patterns

Principal Component Analysis (PCA) revealed that univariate analysis alone could not differentiate retailers due to overlapping 
cannabinoid compositions. However, PCA scores plot showed partial separation, with PC1 accounting for 42.7% variance, PC2 for
15.8%, and PC3 for 14.9% (total 73.4%).

Cannabinoid Correlations

Positive correlations found between 
neutral cannabinoids (THC, CBD, CBC). 
CBDV showed no correlation with 
other compounds. Weak correlation 
between CBG and CBGA due to 
decarboxylation processes.

PLS-DA Performance

Supervised analysis achieved 100% 
explained variance with only 5% 
calibration error and 6% cross-
validation error using eight model 
components. This demonstrated 
excellent discrimination capability.

Classification Accuracy

92% of samples correctly classified in 
both fitting and cross-validation. 
Retailers C and D showed highest 
sensitivity (95-100%), while A and B 
had some misclassifications to retailer 
C.



Implications for Forensic Science
Revolutionary Identification Method

This research proves that comprehensive cannabinoid profiling combined with multivariate statistical analysis can successfully 
identify hemp retailers without requiring information about Cannabis strains, cultivation methods, geographic origin, or storage
conditions.
The study reinforces that categorizing hemp using only THC and CBD is inadequate. The synergistic contribution of all nine 
cannabinoids provides a unique chemical fingerprint for each retailer.

Future Applications

This analytical approach offers a powerful tool for forensic purposes, quality control, and supply chain verification in the rapidly 
growing hemp industry. The methodology could be extended to other botanical products requiring authentication and traceability.

92%

Classification Success

Samples correctly identified by retailer

100%

Variance Explained

By PLS-DA model components

6%

Error Rate

Cross-validation classification error


