FOOD SCIENCE ANALYTICS

Multivariate Analysis in Food
Science

Simplifying complex food data through dimensionality reduction techniques,
multivariate analysis provides crucial insights for various applications. It
helps in understanding intricate relationships in sensory analysis (taste,
texture, aroma), food quality control, ingredient optimization, nutritional

profiling, consumer preference studies, shelf-life prediction, food

authentication, and process optimization in food manufacturing.




What is Multivariate Analysis?

Multivariate analysis encompasses a range of statistical methods
designed to analyse multiple variables simultaneously, uncovering

hidden relationships and patterns within complex datasets.

These techniques are essential across diverse fields, particularly in food

science:

- Sensory Analysis — understanding taste, texture, and aroma profiles

- Food Quality & Safety — predicting shelf-life and authenticating

ingredients

« Product Development - optimizing ingredients and understanding

consumer preferences

- Process Optimization — enhancing efficiency in food manufacturing

Principal Component Analysis (PCA) stands as one of the most
powerful techniques within this analytical toolkit, offering elegant

solutions for data simplification.



Understanding Multivariate Data

Multivariate data involves recording multiple measurements or variables for each individual observation. This comprehensive approach allows
for deeper insights than analyzing variables in isolation, providing a holistic view of complex systems.

Dataset Details

Observations % Variables

[J Why Multiple Variables Matter

Food quality, safety, and consumer preference are rarely determined by a single factor. Instead, they result from the complex interplay

of numerous attributes. Multivariate analysis allows us to uncover these crucial interactions, leading to more robust product
development and quality control strategies.



The Problem with Many Variables

While multivariate data offers rich insights, managing and analysing high-dimensional datasets presents several significant challenges

in food science applications.

Visualization Challenge

Visualizing complex sensory profiles
(e.g., taste, texture, aroma across
many attributes) or hundreds of
chemical markers in food becomes
extremely difficult to plot and
understand when exceeding three

dimensions.

Computational Complexity

Analyzing extensive datasets from
food quality control, ingredient
optimization, or shelf-life prediction
requires substantial computational
resources due to the exponential
growth in calculations with more

variables.

Interpretation Difficulty

Identifying meaningful patterns and
relationships from vast data on
consumer preferences, nutritional
profiles, or process parameters
becomes overwhelming as the sheer
number of interacting variables

increases.



What Multivariate Analysis Does

In food science, multivariate analysis acts as a powerful bridge, transforming overwhelming datasets from sources like sensory panels
or quality control into actionable insights. It systematically unravels the inherent complexity of food data to reveal underlying

structures and relationships crucial for product development and optimization.
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Complex Food Data Inputs Multivariate Techniques Applied Simplified Insights for Food
Science

Begins with high-dimensional datasets, Applies methods like Principal
such as extensive sensory analysis Component Analysis (PCA) to identify Delivers distilled, understandable data,
profiles (taste, texture, aroma), detailed key relationships between food enabling better decision-making in areas
nutritional compositions, or attributes, reduce data complexity, and such as consumer preference studies,
spectroscopic data from quality control, preserve crucial information for areas food authentication, or process
often too complex for intuitive like ingredient optimization or shelf-life optimization in food manufacturing, by

interpretation. prediction. uncovering hidden trends and drivers.



Real-World Example: Food Science Applications

Imagine a food company gathering extensive data on its products:

sensory attributes (taste, texture, aroma), chemical composition,

processing parameters, and consumer preference scores. Using

multivariate analysis, food scientists can identify key drivers of

consumer acceptance, optimize ingredient formulations for desired
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sensory profiles, or detect variations in product quality. This allows
them to predict shelf-life, ensure food authentication, fine-tune
manufacturing processes, and tailor nutritional profiles, leading to

improved product development and consumer satisfaction.




Why Dimensionality
Reduction?

The Challenge The Solution

In food science, data from Techniques like PCA (Principal
sensory panels, quality control, or Component Analysis) identify a
nutritional profiling often involve condensed set of new variables
hundreds of interconnected (principal components) that
variables (e.g., taste attributes, capture the most significant
chemical compounds, processing information from these
parameters), making numerous food-related variables,
comprehensive analysis and effectively reducing data
interpretation extremely dimensionality.

complex.

The Benefit

This simplification allows food scientists to uncover underlying patterns,

predict shelf-life, optimize ingredient formulations, ensure food

authentication, or understand consumer preferences more effectively by

reducing noise and revealing hidden structures.



PCA in a Nutshell: A Food Science Perspective

In food science, Principal Component Analysis transforms your
original measurements (e.g., sensory attributes, chemical

compositions, physical properties) into new, uncorrelated

Population Genetics
3D Principal Component Analysis (PCA)

variables called principal components.

Each principal component represents a linear combination of
the original variables, weighted to capture maximum variance

present in complex food datasets.

The Hierarchy of Components in Food Data

@ Population 1

- PC1 - captures the greatest variance, often related to the _
@ Population 2

most dominant sensory attribute or chemical profile

PC3

® Population 3

difference (e.g., sweetness vs. bitterness, major flavor @ Population 4

. PRBPONFMVes the second greatest variance, highlighting

another significant source of variation (e.g., texture

differences, secondary aroma notes).

- PC3, PCA4... — capture progressively less variance, revealing

more subtle distinctions in food samples.

By selecting only the top components, food scientists can retain
most crucial information for applications like sensory analysis
or quality control, while dramatically reducing the complexity of

high-dimensional data.



Geometric Intuition of
PCA in Food Science

Understanding Principal Component Analysis (PCA) becomes

intuitive when you visualize complex food science data — such

as sensory attributes, nutritional profiles, or processing

parameters — as a cloud of points in a multi-dimensional

sSpace.

Food Data Cloud

Each food product, described by numerous
attributes (e.g., sweetness, bitterness, firmness,
pH, moisture), becomes a point in this data cloud,

revealing inherent patterns of variation.

Identify Key Drivers

PCA then finds the principal directions (axes) that
capture the most significant variability within this
food data, such as the primary drivers of

consumer preference or quality differences.

Simplified Dimensions

These identified directions transform into new
coordinate axes, allowing us to simplify the
complex relationships between food attributes
and gain insights into underlying structures, like
distinguishing product categories or identifying

key sensory drivers.
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How PCA Works Mathematically in Food Science

01

02

Compute Covariance Matrix of Food Attributes

Measure relationships between all food attribute pairs (e.g.,
sensory scores, chemical components, texture measurements) to

understand how they co-vary across different food samples.

03

Eigen-Decomposition of Food Data

Perform mathematical decomposition to extract eigenvalues and
eigenvectors from the covariance matrix, representing the

patterns and variations in the food attribute data.

04

Interpret Principal Components

Eigenvectors become principal components (e.g., underlying
sensory dimensions like 'freshness’ or 'richness'); eigenvalues
quantify the variance explained by each component in the overall

food characteristics.

Project Data for Dimensionality Reduction

Project original complex food attribute data onto the new
principal components, effectively reducing many variables (e.g.,
numerous ingredient concentrations or consumer preference
scales) to fewer, more interpretable dimensions for easier analysis

and visualization.



Eigenvalues and Eigenvectors Explained

The Mathematical Foundation

In PCA, eigenvectors define the new coordinate axes, or
Principal Components (PCs), representing the directions of
maximum variance within your complex food dataset. Imagine
finding the primary 'lines' along which your food samples spread

out most significantly.

Each eigenvector has a corresponding eigenvalue. This value
quantifies the amount of variance captured by that specific
Principal Component. Essentially, it tells you how much
"information" or variation is explained by that particular

direction.

Applying to Cheese Samples

Consider analyzing various cheese samples with attributes like

saltiness, sharpness, aroma, and texture.

- PC1 (largest eigenvalue): This eigenvector might point
towards "overall intensity." Cheeses that vary most in their
combined saltiness, sharpness, and potent aroma would
align strongly with this direction. Its large eigenvalue

indicates it captures the most significant differences among

. Pee£P88cond largest eigenvalue): This eigenvector could
represent a "texture dimension," differentiating cheeses
based on their firmness versus creaminess. Its smaller
eigenvalue means it explains less variation than PC1 but still
highlights an important distinguishing factor.

Key takeaway: Larger eigenvalues correspond to more
important Principal Components, highlighting the most

dominant characteristics that differentiate your food products.



Data Preparation and Standardization

In food science, data often comes from varied sources with different XU

scales and units — think pH (0-14), moisture content (0-100%), or g
sensory sweetness scores (1-10). Without proper handling, variables
with inherently larger numerical ranges would disproportionately Where:

influence PCA, masking the true impact of other important but smaller-

x is an individual data point
scale attributes.

u is the mean of the variable

Standardization, particularly using the z-score method, addresses this o is the standard deviation of the variable

by transforming each variable to have a mean of zero and a standard

deviation of one. This places all attributes on an equal footing, ensuring
[J  CRITICAL: Without standardization, PCA results

can be heavily biased towards variables with

each contributes fairly to the analysis.

larger numerical scales, obscuring genuine

relationships among food attributes.



Step 1: Linear Combinations of Variables

The Foundation of Principal Components "Overall Palatability" in Food Science

Each Principal Component (PC) is a new variable formed by Imagine a PCl1 for a food product defined as:
combining your original food attributes in a weighted sum,

. . . PCl = 0.5xsweetness + 0.4xsugar + 0.3xliking - 0.2xbitterness
known as a linear combination.

This PC could represent an "overall palatability” dimension,
PC= wiXs+ waXot ...+ WpXp effectively summarizing several sensory traits into a single,
o interpretable score for each food item, allowing for quick
Here, X represents the original attributes (e.g., sweetness, )
. . _ comparisons.
acidity), and w are the weights (loadings) derived from the
eigenvectors. These weights quantify each attribute's

contribution to that specific PC.

[J  Weight Interpretation: Positive weights mean an attribute increases with the PC; negative weights indicate it decreases as

the PC increases.



Step 2: Orthogonality - Independent Dimensions

A fundamental property of Principal Components (PCs) is their orthogonality, meaning they are statistically uncorrelated and

mathematically perpendicular to one another. This ensures that each PC captures a unique, independent source of variation present in

your original food data.

PC1

Longest axis: highest variance &

PC2

H Perpendicular, second highest variance

PC3

Perpendicular, lowest variance H

PC1: Flavor Intensity PC2: Texture Dimension PC3: Aging Characteristics
Captures the largest variation, Perpendicular to PCl, it explains the Orthogonal to both PC1 and PC2, it
differentiating cheeses by their next most variance, distinguishing captures the remaining variance,
overall sensory strength (e.g., strong cheeses based on physical highlighting nuances related to

vs. mild). characteristics (e.g., firm vs. creamy). maturation (e.g., aged vs. fresh

notes).



Step 3: Projecting Data onto Principal Components

Once the Principal Components (PCs) are defined as new axes, each original food sample, with its many attributes, is transformed by being projected onto these new, lower-

dimensional components. This process assigns a unique "score" to each sample for every PC, effectively translating complex raw data into a more manageable and interpretable

format.
High-Dimensional Data
Projection Flow
PC1 & PC2 Scores
Understanding the Scores Cheese A Example
Each PC score represents how strongly a particular food sample aligns with that Consider a specific cheese sample, Cheese A, defined by several sensory attributes:

specific Principal Component. A positive score on PCl, for instance, might indicate a
.. . ) o ) . Sweetness = 7
strong presence of the characteristics captured by PC1 (e.g., "overall intensity"), while a

negative score might indicate the opposite. : Sugar =12%

. Texture =8
These scores effectively condense the information from numerous original variables

into a few meaningful numbers, making it easier to compare and classify food products *  Bitterness =2

based on their dominant characteristics. After projection onto the newly defined Principal Components, Cheese A's

characteristics are summarized by its PC scores:

. PC1 Score = 4.2
. PC2 Score =-1.5

These scores now represent Cheese A's position in the reduced-dimensional PC space.

These generated PC scores are the foundation for subsequent data visualization, clustering, and further analysis, allowing food scientists to uncover patterns and relationships that

would be obscured in the original, high-dimensional data.



Choosing How Many Components to Keep

—— —0— —0—

Scree Plot (Elbow Method)

Visually inspect a plot of eigenvalues
in descending order. The "elbow" point,
where the slope of the curve sharply
decreases, often indicates the optimal
number of components to retain
before the remaining components

contribute little to explaining variance.

@ Observed Data
3 p O simulated Data (95th %ile)

Eigenvalue
~

Factor Number

Cumulative Variance Explained

Select the minimum number of
principal components that collectively
explain a significant portion of the
total variance in the original data.
Common thresholds in food science
are typically between 70-90%,
ensuring enough information is
retained for meaningful

internretation.
Cumulative Variance Explained per Principal Component
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Cumulative Percentage of Explained Variance

1 2 3 4 5 6 7 8 9 10 M
Principal Component

Kaiser Criterion

A simple rule of thumb: keep only
those principal components with an
eigenvalue greater than 1. Each such
component explains more variance
than a single original standardized
variable, suggesting it captures

meaningful information.

Scree Plot with Kaiser Criterion
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Interpreting PCA Results: Loadings and Scores

Loadings: Unveiling Component Meaning Scores: Positioning Food Samples

Loadings are coefficients that quantify the contribution of each Scores are the coordinates of each individual food sample in the
original food attribute (e.g., pH, sweetness, texture) to a specific new, reduced Principal Component space. After projecting the
Principal Component (PC). High positive or negative loadings original data onto the PCs, each sample gets a score for every
indicate a strong relationship. For instance, if PC1 has high PC. These scores can be plotted to visualize relationships
positive loadings for sweetness, sugar content, and consumer between samples, identify clusters of similar products, or

liking, it reveals PC1 represents a "sweetness/preference" pinpoint outliers. Scores show us WHERE each food sample falls
dimension. Loadings help us understand WHAT each PC truly within these newly defined dimensions, aiding in product
represents. comparison and differentiation.

Figure 2: Biplot of PCA ;
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Understanding the Covariance Matrix

What is Covariance? Positive Covariance

In food science, it quantifies how two attributes, like sweetness and consumer Both variables tend to increase or decrease in tandem. For example, higher sugar
liking, change together. It reveals if their trends are synchronous or independent content often correlates with increased sweetness perception and consumer

across different samples. preference in a beverage.

Negative Covariance The Covariance Matrix

As one variable increases, the other tends to decrease. For instance, increased This square matrix organizes all pairwise covariances between food attributes. It's a
bitterness might lead to decreased consumer acceptance and lower overall foundational step in PCA, capturing the complete inter-relationship structure of
palatability for some products. your food data.

Covariance Matrix Heatmap
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Visual Example: PCA for Sensory Data

. Understanding PCA in Sensory Data
Biplot
Label . . ,
Consider various food samples assessed across multiple sensory
@ Loadings attributes (e.g., sweetness, bitterness, texture). PCA performs
® PC scores the following:

1. PC1 - identifies the primary direction of variation, capturing
the greatest differences in sensory profiles among food
samples.

2. PC2 - finds the orthogonal axis capturing the second most
significant variation, which might relate to other distinct
sensory characteristics or ingredient contributions.

-3 T T | 1 | [J Key Insight: If a major characteristic (e.g., overall flavor
3 2 A 0 1 2 3 intensity or a dominant ingredient) accounts for most
y g
PC1 of the variance, PCA can effectively reduce complex

multi-dimensional sensory data into a more

interpretable, lower-dimensional representation.



PCA in Food Science: Practical Applications

Sensory Analysis
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TEXTURE W AFTER TASTE W OFF-FLAVOR

Quantifying complex sensory
attributes of food products to
identify key drivers of
perception (taste, texture,

aroma).

Food Quality Control

Monitoring production
processes to ensure consistent
product characteristics and
detect deviations from quality

standards.

Nutritional Profiling

Minera‘ s‘\ssk

Identifying patterns in nutrient
composition data to optimize
recipes and assess the
nutritional impact of food

products.

Shelf-Life Prediction

Food Waste Management: 1960-2018

80,000,000
60,000,000

40,000,000

Tons

20,000,000

0

Year

Click on legend items below to customize items displayed in the chart

Il Recycled Composted [l Other Food Management
I Combustion with Energy Recovery Landfilled

Analyzing changes in food
properties over time to
accurately forecast product

freshness, stability, and safety.



Limitations and Considerations in Food Science PCA

Linear Assumptions

PCA assumes linear relationships between food properties

(e.g., sensory attributes, chemical compositions) and
maximizes variance. This linearity may not fully capture
complex non-linear interactions in taste profiles or
ingredient functionality, potentially oversimplifying real-

world food structures.

Categorical Data Handling

Direct application of PCA to categorical food science
variables, such as food types, processing methods, or
consumer demographics, is not straightforward.
Preprocessing methods like one-hot encoding or using

alternative techniques (e.g., Multiple Correspondence

Analysis) are necessary to integrate such data effectively.

Scaling Sensitivity

PCA is sensitive to the measurement scales of different food
science variables. For instance, combining sensory scores
(e.g., 1-9 hedonic scale) with chemical concentrations (e.g.,
mg/L) without prior standardization can bias results
towards variables with larger numerical ranges, thus

requiring proper preprocessing.

Capturing Nonlinear Patterns

Kernel PCA offers an extension to classical PCA, enabling
the capture of complex nonlinear patterns inherent in food
science datasets. This is particularly useful for analyzing
intricate relationships in sensory perception, ingredient
interactions, or consumer preference studies where

responses are often non-linear.



Summary: Why PCA Matters

0o 1st

Simplification Foundation

Transforms complex A foundational

multivariate food data  technique for advanced
(e.g., chemical food science
composition, sensory applications such as

attributes) into sensory analysis, food

interpretable quality control, and
components like flavor ingredient
profiles or quality optimization.

markers.

100%

Essential

Mastering PCA unlocks
deeper insights from
high-dimensional food
data, crucial for
consumer preference
studies, shelf-life
prediction, and food

authentication.

PCA empowers food scientists to visualize, interpret, and model complex food

data, focusing on the key patterns that determine product quality, consumer

acceptance, and process efficiency.



Carrot Aroma Analysis: E-
Nose vs. GC-MS

Exploring the comparative advantages of E-Nose and GC-MS technologies for

comprehensive volatile compound analysis in stored carrots.




E-Nose Technology: Hairpin-
DNA Sensors

1 What is an E-Nose?

A device that mimics the human sense of smell, designed to detect and

identify volatile compounds and gas mixtures.

«200 —.
2 How hpDNA Sensors Work _ 2004\
They use gold nanoparticles and specific "hairpin" DNA sequences that 2 oo imee
U . —
reconfigure upon contact with the analyte, generating a measurable % c00.] ool
signal. e e
| 8 CTGCAA
-800
3 loec. s . -900 - : . . . v v . . .
Utlllty in Food AnalYSIS O 200 400 600 800 1000 1200 1400 1600

Times (s)
It offers a rapid, economical, and simple alternative to traditional GC-

MS for monitoring food quality and freshness.

4  Sensor Array

The system employs an array of 8 different hpDNA sequences

immobilized on quartz crystal microbalances for detailed multi-analyte

detection.



Experimental Study: General Scheme

. Carrot Samples

Fresh blanched carrots prepared for the experiment.

© Storage at Different Temperatures

26 days at -18°C, 4°C, 25°C, 40°C to simulate various conditions.

| Parallel Analysis
)

E-Nose (hpDNA sensors) and GC-MS for the detection of volatile compounds.

of Data Processing

Principal Component Analysis (PCA) to reduce data complexity.

Results and Discrimination

Identification of the correlation between compounds and storage conditions.



PCA of GC-MS Data: Sample Discrimination

Biplot (axes F1and F2: 57.01 %)
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F1(31.19 %)
PC1 and PC2 explain 57.01% of total Clear separation of samples based on Samples at 40°C clearly separated on PC1
variance (PC1: 31.19%, PC2: 25.82%) storage temperature
Samples at -18°C and 4°C grouped Samples at 25°C show temporal evolution: PC1 discriminates for acetoin, lactamide,
together (stable conditions) days 1-8 vs days 12-26 ethanol (fermentation)

PC2 discriminates for terpenoids (a-

pinene, y-terpinolene, 3-pinene)



E-Nose Data PCA: Comparison with GC-MS

F2(23.74 %)

Biplot (axes F1 and F2: 68.89 %)
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PC1 and PC2 explain 68.89% of the total

variance (higher than GC-MS!)

Samples at -18°C and 4°C grouped (1st and

2nd quadrant)

Loadings show that pentamers and

hexamers have superior performance

Comparable or superior discrimination to
traditional GC-MS

Samples at 25°C for 19 and 26 days
separated (3rd quadrant)

All samples at 40°C separated in the 4th

quadrant

All 8 hpDNA sensors contribute to

discrimination




Conclusions and Future Perspectives

E-Nose Exceeds Expectations

The hpDNA-based E-Nose
discriminates samples with

comparable (or superior) efficacy to
GC-MS.

Drift Resistance

No drift issues with high water

content samples.

Innovative Monitoring

Innovative tool for monitoring gases
released by vegetables during storage

and ripening.

Operational Advantages

E-Nose advantages: reduced costs,
rapid analysis (8 min), ease of use, no

specialized personnel required.

Pioneering in Food Analysis

First study demonstrating the use of

hpDNA for solid food matrix analysis.

Long-term Reliability

Excellent stability and reproducibility

for 3 months of continuous use.

Industry Potential

Promising application for industrial
quality control and shelf-life

monitoring.



Identifying Cannabis Retailers
Through Cannabinoid
Analysis

A groundbreaking study demonstrates how advanced chemical analysis
combined with multivariate statistics can identify hemp retailers without
knowing strain, cultivation methods, or geographic origin. Using HPLC-
MS/MS analysis of nine cannabinoids across 161 samples from four Italian

retailers, researchers achieved 92% classification accuracy.




RESEARCH CONTEXT

The Challenge of Hemp

Classification

Traditional Limitations

Current hemp classification relies
primarily on THC and CBD
concentrations. However, research
shows that strains with similar
THC/CBD ratios can have vastly
different physiological effects on

humans.

Italian law classifies Cannabis sativa
L. as fiber-type (THC <0.2% w/w) or
prohibited drug-type (THC >0.6%
w/w), but this binary approach
overlooks the plant's chemical

complexity.

A More Comprehensive
Approach

Cannabis sativa L. contains
numerous bioactive compounds
including flavonoids, terpenes,
steroids, and cannabinoids. The
main cannabinoids include neutral
forms (THC, CBD, CBC, CBG, CBN,
CBDV) and acidic forms (THCA,
CBDA, CBGA).

This study analyzed all nine major
cannabinoids to create a
comprehensive chemical fingerprint

for each retailer.

TABLE OF CANNABINOIDS

‘m _ THC ‘ _ CBN
H,C ‘O - H,C ‘O oH
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‘ A METHODOLOGY ’

Research Design and Sample
Collection

01

Sample Acquisition

161 hemp samples purchased from four Italian retailers (labeled A, B, C, D) across
three regions: Lombardy (Milan and Mantova), Lazio (Pomezia), and Abruzzo

(Tortoreto). Samples stored at room temperature in original packaging.
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Sample Preparation
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Each sample homogenized through trituration, crushing, and sieving (Imm). Fine

powder (10mg) extracted with ethanol using ultrasonic bath for 30 minutes,
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followed by centrifugation and filtration.

03

HPLC-MS/MS Analysis

Samples analyzed using high-performance liquid chromatography coupled with
tandem mass spectrometry. This method prevents cannabinoid decomposition

that occurs with traditional GC heating methods.

04

Statistical Analysis

Data processed using univariate analysis (ANOVA), unsupervised PCA, and

supervised PLS-DA algorithms to identify patterns and classify retailers.
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Cannabinoid Profile Analysis

Results

Box and whisker plots revealed consistent patterns across all retailers: high

concentrations of CBD and CBDA, with lower levels of other cannabinoids.
Retailer D showed notably higher THCA and CBGA levels. CBN concentrations

were particularly elevated in retailers A and B, potentially indicating oxidation

and inflorescence quality markers.

<0.35% 9

THC Content Cannabinoids
Average THC Analyzed
concentration across all Six neutral and three
retailers remained well acidic cannabinoids
below legal thresholds measured per sample

161

Total Samples

Hemp samples analyzed
from four distinct

Italian retailers



KEY FINDINGS

Multivariate Analysis Reveals Hidden Patterns

A

PC3

Green=A
Rad=
Yellow=C
Blue=D

B

PC3

Principal Component Analysis (PCA) revealed that univariate analysis alone could not differentiate retailers due to overlapping

cannabinoid compositions. However, PCA scores plot showed partial separation, with PC1 accounting for 42.7% variance, PC2 for

15.8%, and PC3 for 14.9% (total 73.4%).

Cannabinoid Correlations

Positive correlations found between

neutral cannabinoids (THC, CBD, CBC).

CBDV showed no correlation with

other compounds. Weak correlation

between CBG and CBGA due to

decarboxylation processes.

PLS-DA Performance Classification Accuracy
Supervised analysis achieved 100% 92% of samples correctly classified in
explained variance with only 5% both fitting and cross-validation.
calibration error and 6% cross- Retailers C and D showed highest
validation error using eight model sensitivity (95-100%), while A and B
components. This demonstrated had some misclassifications to retailer

excellent discrimination capability. C.



Implications for Forensic Science

Revolutionary Identification Method

This research proves that comprehensive cannabinoid profiling combined with multivariate statistical analysis can successfully
identify hemp retailers without requiring information about Cannabis strains, cultivation methods, geographic origin, or storage

conditions.
The study reinforces that categorizing hemp using only THC and CBD is inadequate. The synergistic contribution of all nine

cannabinoids provides a unique chemical fingerprint for each retailer.
Future Applications

This analytical approach offers a powerful tool for forensic purposes, quality control, and supply chain verification in the rapidly

growing hemp industry. The methodology could be extended to other botanical products requiring authentication and traceability.

6%

Classification Success Variance Explained Error Rate

Samples correctly identified by retailer By PLS-DA model components Cross-validation classification error



