Introduction to Partial
Least Squares (PLS)
Regression

A powerful statistical technique for handling complex, high-

dimensional data
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What is Classical Linear Regression?

Scatter Plot of Total Bill vs. Tip

Core Purpose
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Models the relationship between predictor

variables (X) and response variable (Y)

Tip Amount ($)

Key Assumptions

Assumes predictors are independent and fewer in

number than observations

Total Bill Amount ($)

Estimation Method

Uses Ordinary Least Squares (OLS) to estimate

regression coefficients
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Why Do We Need Something More?

Real-world datasets frequently contain numerous, highly correlated
predictors—think of spectroscopic data with hundreds of
wavelengths, genomic studies with thousands of genes, or economic

models with interconnected indicators.

Classical regression simply cannot handle these scenarios effectively.
We need methods that embrace complexity rather than break down

under it.

Goal: Achieve robust prediction and meaningful interpretation

despite multicollinearity and high dimensionality




Principal Component Regression (PCR): How
It Works

Principal Component Regression (PCR) offers an alternative to classical regression by addressing issues like
multicollinearity and high dimensionality. It achieves this through a structured, two-step process primarily focused on

transforming the predictor variables before modeling the response.

» &

Step 1: Principal Component Analysis (PCA) Step 2: Regression of Y on Principal
on X Components

PCA is performed exclusively on the predictor variables (X After extracting a desired number of principal

matrix) to identify a new set of orthogonal (uncorrelated) components, a standard linear regression model is built.
variables called principal components. These components The response variable (Y) is then regressed onto these

are selected to capture the maximum variance within the  selected principal components, effectively using a reduced
predictor space, without any consideration for their and decorrelated set of predictors for the final prediction

relationship with the response variable (Y). model.

Crucially, PCR's component extraction in Step 1 is "unsupervised"—it is driven solely by the variance within X, ignoring

Y until the second, explicit regression step.



PLS vs Principal Component Regression (PCR)

PCR Approach

Finds components that explain variance in X only, without considering Y

Components may not be relevant for prediction

PLS Advantage
Finds components that explain covariance between X and Y simultaneously

Components are specifically optimised for predicting Y
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Partial Least Squares (PLS): How It Works

Unlike Principal Component Regression (PCR), PLS takes a fundamentally different approach to dimension reduction. It’s a supervised method

where the response variable (Y) actively guides the creation of latent components.

Response Variable (Y)

Outcome signals that inform
extraction

Partial Least Squares

Supervised extraction aligning X
andY

Latent Components
Optimized Predictive Model

Extracted factors maximizing
covariance

Model built from covariance-aware
components

PLS works by constructing a set of new latent variables (components) from the predictors (X) that not only explain the variance in X but, more
importantly, also maximize the covariance between X and Y. This ensures that the extracted components are maximally relevant for predicting

the response, directly addressing the limitations of methods that consider X and Y separately.

[J This "supervised" component extraction is what gives PLS its predictive power, especially in the presence of multicollinearity and high-

dimensional data.



Partial Least Squares Regression: The Big Idea

3

Hybrid Approach

Combines the dimensionality
reduction of PCA with the

predictive power of regression

&

Focused Extraction

Finds latent components that
maximally explain the covariance

between X and Y

Jd L
1

Smart Reduction

Reduces dimensionality whilst
maintaining focus on predicting

the response variable



How PLS Works Mathematically

01 02 03

Simultaneous Decomposition Key Components Optimisation Criterion

PLS decomposes both X and Y T represents scores (latent variables), Components (columns of T) are

matrices: X=TPTand Y =TQ" + E P and Q are loadings, E captures extracted to maximise covariance
residuals between X and Y

[J Key Insight: Unlike classical regression, PLS creates new variables (latent components) that are optimal linear

combinations of the original predictors



PLS Matrix Decomposition: Visual Overview

The matrices T, P, and Q form the core of PLS

decomposition.

T (scores matrix) contains the new latent variables or

components. These components capture the essential

information from both the predictor (X) and response

(Y) variables. Each column of T represents a component,

which is a linear combination of the original predictors,

designed to maximize the covariance between X and Y.

P (X loadings matrix) shows the weights or
contributions of each original X variable to each latent

component in T. It describes how the original predictors

Y-loadings relate to these newly formed latent components.
y p
I s =
Iﬁ - l Q (Y loadings matrix) illustrates how the response
—'.—.‘r iI'I:FE variable(s) Y relate to the latent components. It

describes the relationship between Y and the extracted

scores loadings Y-loadings components.
Y2T QT This decomposition allows PLS to effectively reduce

dimensionality while maintaining strong predictive
power, as the components in T are specifically chosen to
explain both the structure within X and predict Y

simultaneously.



Key Differences: PCR vs PLS

While both PCR and PLS address multicollinearity and high dimensionality, their fundamental approaches to component

extraction lead to distinct advantages in different scenarios.

Component

Extraction

Objective

Y's Role

Best For

Predictive Power

Unsupervised; solely based on variance within

predictor variables (X).

To find components that best explain the

variance in X.

Ignored during the component extraction
phase; considered only in the subsequent

regression step.

Situations where understanding the internal
structure of X is paramount, or when Y is not

available for component selection.

Potentially weaker for predicting Y, as
components are not optimized for this

purpose.

Supervised; based on maximizing covariance

between X and response variable (Y).

To find components that best explain both

the variance in X and the covariance with Y.

Actively guides the selection and weighting of
components, ensuring relevance to

prediction.

When the primary goal is robust prediction of
Y, especially in presence of strong

multicollinearity.

Typically stronger for predicting Y, due to

direct optimization for the response variable.

This table highlights why PLS is often preferred in predictive modeling tasks, as its component construction inherently

prioritizes the relationship with the outcome.



PLS1: Single Response Variable

©
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The Focused Approach

PLS1 is designed specifically for modelling one response variable (Y)
at a time. The algorithm extracts latent components that are

optimally tuned to predict that single response.

Simpler interpretation of results

Component extraction focuses on a single prediction task

Most common variant in practical applications



PLS2: Multiple Response Variables

The Multivariate Solution

PLS2 handles multiple response variables (multiple columns in Y
matrix) simultaneously. It extracts components that explain the

covariance structure across all responses at once.

« Useful when responses are conceptually related
« More efficient than running separate PLS1 models

- Captures shared structure across multiple outcomes

drcom;b?m e.com ID 325391831 © Hada Arkanda



Why Preprocess Data?

Scale Matters

Variables measured on different
scales (e.g., kilograms vs
milligrams) can dominate

component extraction unfairly

Centring Benefits

Mean-centering (subtracting the
mean) ensures components
represent variation rather than

absolute values

Standardisation

Scaling to unit variance
(autoscaling) puts all variables on

equal footing for fair comparison



Typical Preprocessing
Steps

1

Step 1: Mean-Centring

Subtract the mean from each variable in both X and Y

matrices

Step 2: Scaling (Optional)

Divide by standard deviation to achieve unit variance if

variables have different measurement scales

Step 3: Data Quality

Handle missing data through imputation or removal,

and identify/address outliers before modelling




Key Outputs and Their Meaning

Number of Components

Balance between model fit and overfitting, typically selected through cross-validation

Scores Plots

Reveal clusters, outliers, and underlying patterns in the data structure

Loadings/Weights

Show variable importance and relationships—which predictors drive the response

Model Quality Metrics

Explained variance (R?) and predicted variance (Q?) indicate fit and predictive ability

5 Regression Coefficients

Used for making predictions on new data, translating back to original variables



Selecting the Number of Components

The number of components is a critical choice in PLS modeling, directly impacting model performance and interpretability.

@
Overfitting
Elbow
Underfitting

Underfitting Overfitting

Using too few components results in an overly simplistic model that fails to Conversely, too many components can cause the model to capture noise and
capture the underlying relationships, leading to high bias and poor predictive specific characteristics of the training data, degrading its ability to generalize
accuracy. to new, unseen data.

Cross-Validation The "Elbow" Rule

The standard method for selection involves splitting data into training and The optimal number of components is often found at the "elbow" point in the
test sets, then evaluating predictive performance (e.g., RMSECV or Q?) for a cross-validation plot, where adding more components provides diminishing

varying number of components. returns or starts to increase the prediction error.



Understanding Scores Plots

Scores plots are a powerful visualization tool in PLS, showing how individual observations are positioned within the
new, reduced dimensional space created by the latent components (the T matrix). By typically plotting the first two or
three components against each other (e.g., Component 1 vs. Component 2), these plots reveal critical patterns and

relationships within your data.

Clusters Outliers

Groups of similar observations, indicating Unusual samples that deviate significantly from the
underlying categories or shared characteristics main data patterns, potentially indicating errors,
within the dataset. unique events, or anomalous behavior.

Trends & Gradients Group Separation

Systematic patterns or gradients in the data, How well different predefined groups (e.g., control
suggesting underlying processes, time-dependent vs. treatment) are distinguished from each other
changes, or concentration shifts. based on their component scores.

Scores plots are invaluable for quality control, identifying problematic samples, and gaining a deeper understanding of

the overall data structure.



Interpreting Loadings and Weights

Loadings and weights are fundamental outputs of a PLS model, providing deep insights into how original variables contribute to the latent

components and influence the prediction of the response variable(s).

Loadings (P Matrix) Weights (W Matrix)

Quantify the contribution of each original Represent the importance of each

predictor variable (X) to the latent predictor variable in constructing the

components. They reveal the direction and components. These components are

strength of the relationship between each specifically designed to maximize the

X variable and a specific component. covariance with the response variable(s)
(Y).

Loadings Plots & Variable Importance

Variable Influence: Identify which variables are most influential in shaping the

latent components and thus the model's predictions.

- Variable Correlation: Variables that plot close together are positively correlated,

while those on opposite sides of the origin are negatively correlated.

«  Group Separation: Understand which variables are responsible for the distinct

clustering or separation observed in the scores plots.

- Key Predictors: Pinpoint the most critical predictors for the response variable by

examining their position relative to the response in a loadings plot.

«  VIP Scores: (Variable Importance in Projection) provide a single metric
summarizing the overall importance of each predictor variable across all
components in the model. Variables with a VIP score greater than 1 are generally

considered significant.

High Absolute Values

A high absolute value for a variable in
either loadings or weights indicates a
strong influence on that particular latent
component, making it a significant driver

for the model.

Loadings
1.0

PC2

Ftactal dimension

-1.0 T i T
1.0 -0.5 0.0 0.5 1.0

PC1



Evaluating Model Quality: R* and Q*

In Partial Least Squares (PLS) modeling, two primary metrics, R? and Q?, are critical for assessing how well your model performs, both in fitting the existing data and

predicting new, unseen data.

R? (R-squared): Explained Variance Q? (Q-squared): Predicted Variance
Measures how well the model fits the training data. It indicates the proportion Measures the predictive ability of the model, typically through cross-
of variance in the dependent variable (Y) that is predictable from the validation. It indicates how well the model predicts new, unseen data points,
independent variables (X). reflecting its generalization power.
«  Range: 0 to 1 (higher is better). -  Range: Typically O to 1 (can be negative for very poor models).
«  R’X:variance explained in predictor matrix X. «  Relationship to R*: Q? should be reasonably close to R? for a robust model.
- R?Y:variance explained in response variable Y. - Overfitting Indicator: A large gap between R?* and Q? suggests the model
- Caution: A high R? alone doesn't guarantee good predictions on new data, is overfitting the training data.
as it can be inflated by overfitting. «  Rule of Thumb: A Q? value greater than 0.5 generally indicates good

predictive ability.

A Moderate prediction (0.60)

High fit (0.90) 2\

R? -
Explained

Q* -
Predicted

Variance Variance

Close values imply

Indicates strong fit 69
g v/ robustness

Together, R? and Q? provide a comprehensive view of model quality, balancing model fit with its ability to generalize to future observations, crucial for reliable

statistical analysis.



Using Regression Coefficients for Prediction

After building a Partial Least Squares (PLS) model, we obtain regression coefficients that translate the model back into

the original variable space, showing how the original X variables relate to the predicted Y variable.

%

Ypredicted - /80 + B1X1 + BZXZ +

Applying Coefficients

Apply these coefficients to new observations (sets
of X variables) to generate predictions for the

response variable (Y).

Magnitude of Effect

The absolute magnitude of a coefficient reflects the
strength of that variable's influence. Larger
absolute values mean a stronger impact on the

predicted Y.

%

%
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Interpreting Effects

Each coefficient (\beta_i) indicates the unique
effect of its corresponding variable (X_i) on the
response. A positive coefficient implies a positive
relationship, while a negative one suggests an

inverse relationship.

Standardization

Coefficients can be standardized or
unstandardized. Standardized coefficients allow for
direct comparison of variable importance,
especially when original variables have different

scales.

Regression coefficients are crucial for making predictions, understanding variable effects, and deploying the PLS model

for real-world applications.



Understanding Overfitting in PLS Models

Overfitting occurs when a Partial Least Squares (PLS) model learns the training data and its random fluctuations too precisely. This leads to exceptional performance on the data it

was trained on, but a dramatic decrease in accuracy when encountering new, unseen data.

—e ——0 — —0—

High R? Low Q7 Poor Test Data Performance Excessive Components
A large disparity between R? (model fit) and Q? The model's predictive accuracy drops significantly Using too many latent components relative to the
(predictive ability), such as R?=0.95 and Q?=0.40, when applied to independent test datasets not used sample size, capturing noise rather than underlying
strongly indicates overfitting. during training. patterns.
Causes of Overfitting Preventing Overfitting
. Too Many Components: Including more latent variables than necessary to explain . Cross-Validation: Systematically use cross-validation to select the optimal
the variance. number of components.
. Small Sample Size: Insufficient data relative to the number of predictor variables, . Balance R? and Q?: Aim for Q? values that are close to R” to ensure generalization.
making the model sensitive to noise. . Simpler Models: Prioritize parsimonious models with fewer components.

»  Lack of Cross-Validation: Not properly validating the model's performance on - More Samples: Increase the sample size if feasible to provide more robust data.

unseen data. . . . . .
. Preprocessing: Apply appropriate data cleaning and scaling to reduce noise.

Fits all noise g g Smooth trend

Generalized

Overfit
Model

Model

High variance %7\ (7 Robust generalization




Cross-Validation: Ensuring Model Reliability

Cross-validation is a critical statistical technique used to evaluate how well a model generalizes to an independent
dataset. It provides an objective assessment of the model's performance on new, unseen data, which is vital for

building robust predictive models, especially in complex multivariate analysis like PLS.

Why it's Essential in PLS Common Cross-Validation Methods

- Prevents Overfitting: Ensures the model doesn't - K-fold Cross-Validation: Data is divided into K
simply memorize training data noise, leading to poor subsets (folds). The model is trained on K-1 folds and
performance on new data. tested on the remaining fold, repeating this process K

- Optimal Component Selection: Helps identify the . 1i@%%-One-Out (LOO): A specific case of K-fold where
ideal number of latent components, balancing model K equals the number of samples, making each sample
complexity and predictive power. a test set once.

- Realistic Performance Estimate: Provides an - Monte Carlo Cross-Validation: Involves repeatedly
unbiased measure of how well the model is expected and randomly splitting the data into training and

to perform on future, unseen observations. validation sets to average out performance estimates.



Cross-Validation Process in PLS
How Cross-Validation Works in PLS:

01 02

03

Data Splitting

The dataset is initially split into distinct training and
validation (or test) sets for each fold or iteration.

corresponding validation set.

04

Model Building & Prediction

A PLS model is built on the training data using a varying

number of components. Predictions are then made on the

Error Calculation

Prediction errors, such as RMSECV (Root Mean Square
Error of Cross-Validation), are calculated for each model

run on the validation set.

05

Iteration & Averaging

Steps 1-3 are repeated across all folds. The prediction errors are then averaged across all

iterations.

Key Metrics from Cross-Validation:

RMSECV (Root Mean Square Error of
Cross-Validation)

A measure of the average magnitude of the
errors. Lower values indicate better predictive generalization.

accuracy.

Q? (Cumulative Predicted Variance)

Indicates the predictive power of the model on

new data. A higher Q* (e.g., >0.5) suggests good

Optimal Component Selection

The number of latent components that yields the lowest average prediction error is

selected as optimal for the final model.

Prediction Error Plots

Visualizations that help identify the optimal
number of components by showing the trend of

prediction error as more components are added.

Split into 5
Folds

Fold 1: Test

Fold 2: Test

Fold 3: Test Fold 4: Test



Practical Tips for
Interpretation

Cross-Validation is Essential
Always use cross-validation to select the optimal number of

components—don't rely on fit statistics alone
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Visualise Your Scores
Examine score plots carefully for clusters, trends, and outliers

that reveal data structure

Understand Variable Importance
Interpret loadings and weights to identify which original

predictors are driving your responses

Watch for Overfitting
If predicted R? (Q?) is substantially lower than R?, your model

may be overfitting—consider fewer components




Summary & Takeaways

Power of PLS Balanced Approach Flexible Variants

PLS regression excels with high- It elegantly balances PLS1 and PLS2 adapt seamlessly
dimensional, collinear data where dimensionality reduction with to single or multiple response
classical methods fail prediction accuracy through variable scenarios

latent components

Critical Practices Actionable Insights

Proper preprocessing and rigorous validation are Rich interpretation tools help translate PLS

essential for building reliable, trustworthy models mathematical results into practical, actionable




FTIR Spectroscopy for Virgin
Olive Oil Quality Analysis

A rapid analytical method combining Fourier Transform Infrared (FTIR)
spectroscopy with Partial Least Squares (PLS) regression for monitoring fatty
acid composition and peroxide value in virgin olive oil. This approach offers a
faster, more cost-effective alternative to traditional chromatographic

methods.



METHODOLOGY

Analytical Workflow

& 2

Sample Collection Reference Analysis
86 virgin olive oil samples from Italian regions (Abruzzo, GC-FID for fatty acid methyl esters and titrimetric method for
Marche, Puglia) across 2006-2007 harvest seasons peroxide value determination
A A
FTIR Spectroscopy Chemometric Analysis

ATR-FTIR spectra acquired (4000-700 cm™, 32 scans/sample, 4 PLS regression models built with spectral pre-treatment and

cm™ resolution) using ZnSe crystal validated using independent sample sets



‘ STATISTICAL APPROACH’

PLS Regression Strategy and Optimization

Why Partial Least Squares?

PLS regression was selected as the multivariate calibration
method because it effectively handles complex spectral data
with multiple overlapping peaks. Unlike univariate methods, PLS
decomposes spectral data into latent variables (LVs) that
capture maximum covariance between spectra and analyte

concentrations.

The method excels with collinear data and can extract useful
information even when spectral features are not easily

detectable by visual inspection.

Model Optimization

Spectral Pre-treatment: Mean-centering applied to all models.

First derivative used for peroxide value to enhance sensitivity.

Latent Variables: Optimal number determined using Haaland
and Thomas criterion («=0.75), ranging from 13-15 LVs for fatty

acids and 10 LVs for peroxide value.

Spectral Ranges: 3033-700 cmm ™ for fatty acids (excluding 2400-
2260 cm ' noise region); full spectrum 4000-700 cm™ for

peroxide value.



Fatty Acid Profile: Calibration Performance

PLS models demonstrated excellent predictive capability for major fatty acid components. The wide concentration ranges in the

sample set (oleic acid 62.0-80.0%, linoleic acid 5.3-15.0%) enabled robust calibration models suitable for diverse olive oil samples.
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Oleic Acid r? Linoleic Acid r? MUFA r? PUFA r?

RMSD: 0.42%, REC: 0.51%, 14 RMSD: 0.39%, REC: 4.64%, 13 RMSD: 0.42%, REC: 0.56%, 14 RMSD: 0.20%, REC: 2.23%, 15
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‘ VALIDATION ’

External Validation and Method Performance
Cross-Validation Strategy

Independent validation sets were used to assess model performance: 25 samples for fatty acid parameters and 10 samples for peroxide value. This

external validation approach provides unbiased assessment of predictive capability.
Recovery Rates

« Oleic acid: 100% recovery, REP 1%

- Linoleic acid: 98% recovery, REP 7%

«  MUFA: 100% recovery, REP 1%

« PUFA:103% recovery, REP 4%

«  SFA: 98% recovery, REP 6%

- Peroxide value: 100% recovery, REP 10%

Regression slopes (0.93-0.98) and intercepts near zero indicate low bias and absence of systematic errors.

Oleic Acid Linoleic Acid MUFA

Recovery rate Recovery rate Recovery rate



Key Findings and Method Advantages

Superior Speed No Sample Preparation

Complete analysis in minutes vs. 30 minutes for titrimetric Direct ATR-FTIR measurement eliminates derivatization and

PV and 1 hour for GC-FID fatty acid analysis extraction steps required by traditional methods

Environmental Benefits Excellent Detection Limits

Virtually no solvent waste produced, making it more LODs: 3.0% (oleic), 0.5% (linoleic), 1.3% (SFA), 3.0% (MUFA),
environmentally friendly than chromatographic techniques 0.3% (PUFA), 1.0 meq O./kg (PV)

The FTIR-PLS method provides results statistically comparable to official procedures while offering significant advantages in
throughput, cost, and environmental impact. First derivative spectral treatment proved essential for peroxide value determination,
achieving expanded measurable range (3.4-15.7 meq O,/kg) compared to previous NIR methods (0-10 meq O,/kg) without requiring

reagent addition.



