
Introduction to Partial 
Least Squares (PLS) 
Regression
A powerful statistical technique for handling complex, high-
dimensional data



What is Classical Linear Regression?

Core Purpose

Models the relationship between predictor 
variables (X) and response variable (Y)

Key Assumptions

Assumes predictors are independent and fewer in 
number than observations

Estimation Method

Uses Ordinary Least Squares (OLS) to estimate 
regression coefficients



Limitations of Classical 
Regression

Multicollinearity

When predictors are highly 
correlated, coefficient 
estimates become unstable 
and unreliable

Dimensionality 
Problem

More predictors than 
observations makes matrix 
inversion mathematically 
impossible

Overfitting Risk

Too many variables lead to excellent fit on training data but 
poor prediction on new observations



Why Do We Need Something More?

Real-world datasets frequently contain numerous, highly correlated 
predictors—think of spectroscopic data with hundreds of 
wavelengths, genomic studies with thousands of genes, or economic 
models with interconnected indicators.

Classical regression simply cannot handle these scenarios effectively. 
We need methods that embrace complexity rather than break down 
under it.

Goal: Achieve robust prediction and meaningful interpretation 
despite multicollinearity and high dimensionality



Principal Component Regression (PCR): How 
It Works
Principal Component Regression (PCR) offers an alternative to classical regression by addressing issues like 
multicollinearity and high dimensionality. It achieves this through a structured, two-step process primarily focused on 
transforming the predictor variables before modeling the response.

Step 1: Principal Component Analysis (PCA) 
on X

PCA is performed exclusively on the predictor variables (X 
matrix) to identify a new set of orthogonal (uncorrelated) 
variables called principal components. These components 
are selected to capture the maximum variance within the 
predictor space, without any consideration for their 
relationship with the response variable (Y).

Step 2: Regression of Y on Principal 
Components

After extracting a desired number of principal 
components, a standard linear regression model is built. 
The response variable (Y) is then regressed onto these 
selected principal components, effectively using a reduced 
and decorrelated set of predictors for the final prediction 
model.

Crucially, PCR's component extraction in Step 1 is "unsupervised"—it is driven solely by the variance within X, ignoring 
Y until the second, explicit regression step.



PLS vs Principal Component Regression (PCR)

PCR Approach

Finds components that explain variance in X only, without considering Y

Components may not be relevant for prediction

PLS Advantage

Finds components that explain covariance between X and Y simultaneously

Components are specifically optimised for predicting Y



Partial Least Squares (PLS): How It Works
Unlike Principal Component Regression (PCR), PLS takes a fundamentally different approach to dimension reduction. It’s a supervised method 
where the response variable (Y) actively guides the creation of latent components.

Partial Least Squares

Supervised extraction aligning X 
and Y

Response Variable (Y)

Outcome signals that inform 
extraction

Latent Components

Extracted factors maximizing 
covariance

Predictor Variables (X)

Measured features guiding 
components

Optimized Predictive Model

Model built from covariance-aware 
components

PLS works by constructing a set of new latent variables (components) from the predictors (X) that not only explain the variance in X but, more 
importantly, also maximize the covariance between X and Y. This ensures that the extracted components are maximally relevant for predicting 
the response, directly addressing the limitations of methods that consider X and Y separately.

This "supervised" component extraction is what gives PLS its predictive power, especially in the presence of multicollinearity and high-
dimensional data.



Partial Least Squares Regression: The Big Idea

Hybrid Approach

Combines the dimensionality 
reduction of PCA with the 
predictive power of regression

Focused Extraction

Finds latent components that 
maximally explain the covariance 
between X and Y

Smart Reduction

Reduces dimensionality whilst 
maintaining focus on predicting 
the response variable



How PLS Works Mathematically
01

Simultaneous Decomposition

PLS decomposes both X and Y 
matrices: X = TPᵀ and Y = TQᵀ + E

02

Key Components

T represents scores (latent variables), 
P and Q are loadings, E captures 
residuals

03

Optimisation Criterion

Components (columns of T) are 
extracted to maximise covariance 
between X and Y

Key Insight: Unlike classical regression, PLS creates new variables (latent components) that are optimal linear 
combinations of the original predictors



PLS Matrix Decomposition: Visual Overview

The matrices T, P, and Q form the core of PLS 
decomposition.

T (scores matrix) contains the new latent variables or 
components. These components capture the essential 
information from both the predictor (X) and response 
(Y) variables. Each column of T represents a component, 
which is a linear combination of the original predictors, 
designed to maximize the covariance between X and Y.

P (X loadings matrix) shows the weights or 
contributions of each original X variable to each latent 
component in T. It describes how the original predictors 
relate to these newly formed latent components.

Q (Y loadings matrix) illustrates how the response 
variable(s) Y relate to the latent components. It 
describes the relationship between Y and the extracted 
components.
This decomposition allows PLS to effectively reduce 
dimensionality while maintaining strong predictive 
power, as the components in T are specifically chosen to 
explain both the structure within X and predict Y 
simultaneously.



Key Differences: PCR vs PLS
While both PCR and PLS address multicollinearity and high dimensionality, their fundamental approaches to component 
extraction lead to distinct advantages in different scenarios.

Component 
Extraction

Unsupervised; solely based on variance within 
predictor variables (X).

Supervised; based on maximizing covariance 
between X and response variable (Y).

Objective To find components that best explain the 
variance in X.

To find components that best explain both 
the variance in X and the covariance with Y.

Y's Role Ignored during the component extraction 
phase; considered only in the subsequent 
regression step.

Actively guides the selection and weighting of 
components, ensuring relevance to 
prediction.

Best For Situations where understanding the internal 
structure of X is paramount, or when Y is not 
available for component selection.

When the primary goal is robust prediction of 
Y, especially in presence of strong 
multicollinearity.

Predictive Power Potentially weaker for predicting Y, as 
components are not optimized for this 
purpose.

Typically stronger for predicting Y, due to 
direct optimization for the response variable.

This table highlights why PLS is often preferred in predictive modeling tasks, as its component construction inherently 
prioritizes the relationship with the outcome.



PLS1: Single Response Variable

The Focused Approach

PLS1 is designed specifically for modelling one response variable (Y) 
at a time. The algorithm extracts latent components that are 
optimally tuned to predict that single response.

• Simpler interpretation of results

• Component extraction focuses on a single prediction task

• Most common variant in practical applications



PLS2: Multiple Response Variables

The Multivariate Solution

PLS2 handles multiple response variables (multiple columns in Y 
matrix) simultaneously. It extracts components that explain the 
covariance structure across all responses at once.

• Useful when responses are conceptually related

• More efficient than running separate PLS1 models

• Captures shared structure across multiple outcomes



Why Preprocess Data?

Scale Matters

Variables measured on different 
scales (e.g., kilograms vs 
milligrams) can dominate 
component extraction unfairly

Centring Benefits

Mean-centering (subtracting the 
mean) ensures components 
represent variation rather than 
absolute values

Standardisation

Scaling to unit variance 
(autoscaling) puts all variables on 
equal footing for fair comparison



Typical Preprocessing 
Steps

1 Step 1: Mean-Centring

Subtract the mean from each variable in both X and Y 
matrices

2 Step 2: Scaling (Optional)

Divide by standard deviation to achieve unit variance if 
variables have different measurement scales

3 Step 3: Data Quality

Handle missing data through imputation or removal, 
and identify/address outliers before modelling



Key Outputs and Their Meaning

1 Number of Components

Balance between model fit and overfitting, typically selected through cross-validation

2 Scores Plots

Reveal clusters, outliers, and underlying patterns in the data structure

3 Loadings/Weights

Show variable importance and relationships—which predictors drive the response

4 Model Quality Metrics

Explained variance (R²) and predicted variance (Q²) indicate fit and predictive ability

5 Regression Coefficients

Used for making predictions on new data, translating back to original variables



Selecting the Number of Components
The number of components is a critical choice in PLS modeling, directly impacting model performance and interpretability.

Underfitting

Elbow

Overfitting

1

Underfitting

Using too few components results in an overly simplistic model that fails to 
capture the underlying relationships, leading to high bias and poor predictive 
accuracy.

2

Overfitting

Conversely, too many components can cause the model to capture noise and 
specific characteristics of the training data, degrading its ability to generalize 
to new, unseen data.

3

Cross-Validation

The standard method for selection involves splitting data into training and 
test sets, then evaluating predictive performance (e.g., RMSECV or Q²) for a 
varying number of components.

4

The "Elbow" Rule

The optimal number of components is often found at the "elbow" point in the 
cross-validation plot, where adding more components provides diminishing 
returns or starts to increase the prediction error.



Understanding Scores Plots
Scores plots are a powerful visualization tool in PLS, showing how individual observations are positioned within the 
new, reduced dimensional space created by the latent components (the T matrix). By typically plotting the first two or 
three components against each other (e.g., Component 1 vs. Component 2), these plots reveal critical patterns and 
relationships within your data.

Clusters

Groups of similar observations, indicating 
underlying categories or shared characteristics 
within the dataset.

Outliers

Unusual samples that deviate significantly from the 
main data patterns, potentially indicating errors, 
unique events, or anomalous behavior.

Trends & Gradients

Systematic patterns or gradients in the data, 
suggesting underlying processes, time-dependent 
changes, or concentration shifts.

Group Separation

How well different predefined groups (e.g., control 
vs. treatment) are distinguished from each other 
based on their component scores.

Scores plots are invaluable for quality control, identifying problematic samples, and gaining a deeper understanding of 
the overall data structure.



Interpreting Loadings and Weights
Loadings and weights are fundamental outputs of a PLS model, providing deep insights into how original variables contribute to the latent 
components and influence the prediction of the response variable(s).

Loadings (P Matrix)

Quantify the contribution of each original 
predictor variable (X) to the latent 
components. They reveal the direction and 
strength of the relationship between each 
X variable and a specific component.

Weights (W Matrix)

Represent the importance of each 
predictor variable in constructing the 
components. These components are 
specifically designed to maximize the 
covariance with the response variable(s) 
(Y).

High Absolute Values

A high absolute value for a variable in 
either loadings or weights indicates a 
strong influence on that particular latent 
component, making it a significant driver 
for the model.

Loadings Plots & Variable Importance

• Variable Influence: Identify which variables are most influential in shaping the 
latent components and thus the model's predictions.

• Variable Correlation: Variables that plot close together are positively correlated, 
while those on opposite sides of the origin are negatively correlated.

• Group Separation: Understand which variables are responsible for the distinct 
clustering or separation observed in the scores plots.

• Key Predictors: Pinpoint the most critical predictors for the response variable by 
examining their position relative to the response in a loadings plot.

• VIP Scores: (Variable Importance in Projection) provide a single metric 
summarizing the overall importance of each predictor variable across all 
components in the model. Variables with a VIP score greater than 1 are generally 
considered significant.



Evaluating Model Quality: R² and Q²
In Partial Least Squares (PLS) modeling, two primary metrics, R² and Q², are critical for assessing how well your model performs, both in fitting the existing data and 
predicting new, unseen data.

R² (R-squared): Explained Variance

Measures how well the model fits the training data. It indicates the proportion 
of variance in the dependent variable (Y) that is predictable from the 
independent variables (X).

• Range: 0 to 1 (higher is better).

• R²X: variance explained in predictor matrix X.

• R²Y: variance explained in response variable Y.

• Caution: A high R² alone doesn't guarantee good predictions on new data, 
as it can be inflated by overfitting.

Q² (Q-squared): Predicted Variance

Measures the predictive ability of the model, typically through cross-
validation. It indicates how well the model predicts new, unseen data points, 
reflecting its generalization power.

• Range: Typically 0 to 1 (can be negative for very poor models).

• Relationship to R²: Q² should be reasonably close to R² for a robust model.

• Overfitting Indicator: A large gap between R² and Q² suggests the model 
is overfitting the training data.

• Rule of Thumb: A Q² value greater than 0.5 generally indicates good 
predictive ability.

R² -
Explained 
Variance

Q² -
Predicted 
Variance

Close values imply 
robustness

Moderate prediction (0.60)

Indicates strong fit

High fit (0.90)

Together, R² and Q² provide a comprehensive view of model quality, balancing model fit with its ability to generalize to future observations, crucial for reliable 
statistical analysis.



Using Regression Coefficients for Prediction
After building a Partial Least Squares (PLS) model, we obtain regression coefficients that translate the model back into 
the original variable space, showing how the original X variables relate to the predicted Y variable.

Applying Coefficients

Apply these coefficients to new observations (sets 
of X variables) to generate predictions for the 
response variable (Y).

Interpreting Effects

Each coefficient (\beta_i) indicates the unique 
effect of its corresponding variable (X_i) on the 
response. A positive coefficient implies a positive 
relationship, while a negative one suggests an 
inverse relationship.

Magnitude of Effect

The absolute magnitude of a coefficient reflects the 
strength of that variable's influence. Larger 
absolute values mean a stronger impact on the 
predicted Y.

Standardization

Coefficients can be standardized or 
unstandardized. Standardized coefficients allow for 
direct comparison of variable importance, 
especially when original variables have different 
scales.

Regression coefficients are crucial for making predictions, understanding variable effects, and deploying the PLS model 
for real-world applications.



Understanding Overfitting in PLS Models
Overfitting occurs when a Partial Least Squares (PLS) model learns the training data and its random fluctuations too precisely. This leads to exceptional performance on the data it 
was trained on, but a dramatic decrease in accuracy when encountering new, unseen data.

1

High R², Low Q²

A large disparity between R² (model fit) and Q² 
(predictive ability), such as R²=0.95 and Q²=0.40, 
strongly indicates overfitting.

2

Poor Test Data Performance

The model's predictive accuracy drops significantly 
when applied to independent test datasets not used 
during training.

3

Excessive Components

Using too many latent components relative to the 
sample size, capturing noise rather than underlying 
patterns.

Causes of Overfitting

• Too Many Components: Including more latent variables than necessary to explain 
the variance.

• Small Sample Size: Insufficient data relative to the number of predictor variables, 
making the model sensitive to noise.

• Lack of Cross-Validation: Not properly validating the model's performance on 
unseen data.

Preventing Overfitting

• Cross-Validation: Systematically use cross-validation to select the optimal 
number of components.

• Balance R² and Q²: Aim for Q² values that are close to R² to ensure generalization.

• Simpler Models: Prioritize parsimonious models with fewer components.

• More Samples: Increase the sample size if feasible to provide more robust data.

• Preprocessing: Apply appropriate data cleaning and scaling to reduce noise.

Overfit 
Model

Generalized 
Model

Robust generalization

Smooth trend

High variance

Fits all noise



Cross-Validation: Ensuring Model Reliability
Cross-validation is a critical statistical technique used to evaluate how well a model generalizes to an independent 
dataset. It provides an objective assessment of the model's performance on new, unseen data, which is vital for 
building robust predictive models, especially in complex multivariate analysis like PLS.

Why it's Essential in PLS

• Prevents Overfitting: Ensures the model doesn't 
simply memorize training data noise, leading to poor 
performance on new data.

• Optimal Component Selection: Helps identify the 
ideal number of latent components, balancing model 
complexity and predictive power.

• Realistic Performance Estimate: Provides an 
unbiased measure of how well the model is expected 
to perform on future, unseen observations.

Common Cross-Validation Methods

• K-fold Cross-Validation: Data is divided into K 
subsets (folds). The model is trained on K-1 folds and 
tested on the remaining fold, repeating this process K 
times.• Leave-One-Out (LOO): A specific case of K-fold where 
K equals the number of samples, making each sample 
a test set once.

• Monte Carlo Cross-Validation: Involves repeatedly 
and randomly splitting the data into training and 
validation sets to average out performance estimates.



Cross-Validation Process in PLS
How Cross-Validation Works in PLS:
01

Data Splitting

The dataset is initially split into distinct training and 
validation (or test) sets for each fold or iteration.

02

Model Building & Prediction

A PLS model is built on the training data using a varying 
number of components. Predictions are then made on the 
corresponding validation set.

03

Error Calculation

Prediction errors, such as RMSECV (Root Mean Square 
Error of Cross-Validation), are calculated for each model 
run on the validation set.

04

Iteration & Averaging

Steps 1-3 are repeated across all folds. The prediction errors are then averaged across all 
iterations.

05

Optimal Component Selection

The number of latent components that yields the lowest average prediction error is 
selected as optimal for the final model.

Key Metrics from Cross-Validation:

RMSECV (Root Mean Square Error of 
Cross-Validation)

• A measure of the average magnitude of the 
errors. Lower values indicate better predictive 
accuracy.

Q² (Cumulative Predicted Variance)

• Indicates the predictive power of the model on 
new data. A higher Q² (e.g., >0.5) suggests good 
generalization.

Prediction Error Plots

• Visualizations that help identify the optimal 
number of components by showing the trend of 
prediction error as more components are added.

Fold 4: TestFold 3: TestFold 2: TestFold 1: Test
Split into 5 

Folds



Practical Tips for 
Interpretation

Cross-Validation is Essential

Always use cross-validation to select the optimal number of 
components—don't rely on fit statistics alone

Visualise Your Scores

Examine score plots carefully for clusters, trends, and outliers 
that reveal data structure

Understand Variable Importance

Interpret loadings and weights to identify which original 
predictors are driving your responses

Watch for Overfitting

If predicted R² (Q²) is substantially lower than R², your model 
may be overfitting—consider fewer components



Summary & Takeaways

Power of PLS

PLS regression excels with high-
dimensional, collinear data where 
classical methods fail

Balanced Approach

It elegantly balances 
dimensionality reduction with 
prediction accuracy through 
latent components

Flexible Variants

PLS1 and PLS2 adapt seamlessly 
to single or multiple response 
variable scenarios

Critical Practices

Proper preprocessing and rigorous validation are 
essential for building reliable, trustworthy models

Actionable Insights

Rich interpretation tools help translate PLS 
mathematical results into practical, actionable 
insights



FTIR Spectroscopy for Virgin 
Olive Oil Quality Analysis
A rapid analytical method combining Fourier Transform Infrared (FTIR) 
spectroscopy with Partial Least Squares (PLS) regression for monitoring fatty 
acid composition and peroxide value in virgin olive oil. This approach offers a 
faster, more cost-effective alternative to traditional chromatographic 
methods.



METHODOLOGY

Analytical Workflow

Sample Collection

86 virgin olive oil samples from Italian regions (Abruzzo, 
Marche, Puglia) across 2006-2007 harvest seasons

Reference Analysis

GC-FID for fatty acid methyl esters and titrimetric method for 
peroxide value determination

FTIR Spectroscopy

ATR-FTIR spectra acquired (4000-700 cm⁻¹, 32 scans/sample, 4 
cm⁻¹ resolution) using ZnSe crystal

Chemometric Analysis

PLS regression models built with spectral pre-treatment and 
validated using independent sample sets



STATISTICAL APPROACH

PLS Regression Strategy and Optimization

Why Partial Least Squares?

PLS regression was selected as the multivariate calibration 
method because it effectively handles complex spectral data 
with multiple overlapping peaks. Unlike univariate methods, PLS 
decomposes spectral data into latent variables (LVs) that 
capture maximum covariance between spectra and analyte 
concentrations.

The method excels with collinear data and can extract useful 
information even when spectral features are not easily 
detectable by visual inspection.

Model Optimization

Spectral Pre-treatment: Mean-centering applied to all models. 
First derivative used for peroxide value to enhance sensitivity.

Latent Variables: Optimal number determined using Haaland 
and Thomas criterion (α=0.75), ranging from 13-15 LVs for fatty 
acids and 10 LVs for peroxide value.

Spectral Ranges: 3033-700 cm⁻¹ for fatty acids (excluding 2400-
2260 cm⁻¹ noise region); full spectrum 4000-700 cm⁻¹ for 
peroxide value.



RESULTS

Fatty Acid Profile: Calibration Performance
PLS models demonstrated excellent predictive capability for major fatty acid components. The wide concentration ranges in the
sample set (oleic acid 62.0-80.0%, linoleic acid 5.3-15.0%) enabled robust calibration models suitable for diverse olive oil samples.

0.99
Oleic Acid r²

RMSD: 0.42%, REC: 0.51%, 14 
latent variables

0.98
Linoleic Acid r²

RMSD: 0.39%, REC: 4.64%, 13 
latent variables

0.99
MUFA r²

RMSD: 0.42%, REC: 0.56%, 14 
latent variables

0.99
PUFA r²

RMSD: 0.20%, REC: 2.23%, 15 
latent variables



VALIDATION

External Validation and Method Performance
Cross-Validation Strategy

Independent validation sets were used to assess model performance: 25 samples for fatty acid parameters and 10 samples for peroxide value. This 
external validation approach provides unbiased assessment of predictive capability.

Recovery Rates

• Oleic acid: 100% recovery, REP 1%

• Linoleic acid: 98% recovery, REP 7%

• MUFA: 100% recovery, REP 1%

• PUFA: 103% recovery, REP 4%

• SFA: 98% recovery, REP 6%

• Peroxide value: 100% recovery, REP 10%

Regression slopes (0.93-0.98) and intercepts near zero indicate low bias and absence of systematic errors.

100%

Oleic Acid

Recovery rate

98%

Linoleic Acid

Recovery rate

100%

MUFA

Recovery rate



Key Findings and Method Advantages

Superior Speed

Complete analysis in minutes vs. 30 minutes for titrimetric 
PV and 1 hour for GC-FID fatty acid analysis

No Sample Preparation

Direct ATR-FTIR measurement eliminates derivatization and 
extraction steps required by traditional methods

Environmental Benefits

Virtually no solvent waste produced, making it more 
environmentally friendly than chromatographic techniques

Excellent Detection Limits

LODs: 3.0% (oleic), 0.5% (linoleic), 1.3% (SFA), 3.0% (MUFA), 
0.3% (PUFA), 1.0 meq O₂/kg (PV)

The FTIR-PLS method provides results statistically comparable to official procedures while offering significant advantages in 
throughput, cost, and environmental impact. First derivative spectral treatment proved essential for peroxide value determination, 
achieving expanded measurable range (3.4-15.7 meq O₂/kg) compared to previous NIR methods (0-10 meq O₂/kg) without requiring 
reagent addition.


