
Classification with 
Multivariate Analysis: 
Focus on PLS-DA
Exploring advanced statistical methods for authenticating food 
products and ensuring quality control through sophisticated data 
analysis techniques.



Why Multivariate Analysis?

Complex Food Data

Multiple variables measured 
simultaneously including 
chemical composition, sensory 
attributes, and spectral 
fingerprints create rich, 
multidimensional datasets.

Capturing Interactions

Traditional univariate methods 
fail to reveal interactions between 
variables and overlook crucial 
patterns hidden within the data 
structure.

Enhanced Accuracy

Multivariate methods reveal 
hidden structures, improving 
classification accuracy and 
providing deeper insights into 
food quality and authenticity.



Key Concepts: Classification vs Clustering

Classification

Supervised learning with predefined, known classes.

• Requires labelled training data

• Predicts class membership for new samples

• Examples: food origin, cultivar identification, quality grading

Clustering

Unsupervised grouping without prior labels.

• Discovers natural groupings in data

• Exploratory pattern recognition

• No predefined categories needed

PLS-DA is a supervised classification method specifically designed for complex, high-dimensional food datasets where variable interactions 
matter.



Supervised Analysis: The Key to Food 
Classification
Supervised analysis is fundamental in PLS-DA to ensure the authenticity and quality of food products, distinguishing 
itself clearly from unsupervised methods.

Guided Learning

Algorithms learn from a "labeled" dataset, where 
desired outcomes (e.g., origin, variety) are already 
known, providing a solid foundation for the model.

Essential Training Data

Requires samples with predefined and known 
categories to build a robust predictive model, such as 
different types of cheese or olive oils.

Prediction of New Samples

Once trained, the model can accurately classify new 
unknown samples, assigning them to previously 
learned categories.

Benefits for Food Safety

Ideal for authentication, fraud identification, or 
quality assessment, offering clear and interpretable 
answers for the food industry.



Achieving Visual Separation in Multivariate Data Analysis
Raw analytical data from complex samples often presents as an intricate mesh of overlapping data points, making direct interpretation and 
classification challenging. Multivariate classification methods like PLS-DA are powerful tools designed to untangle this complexity by transforming 
the data space.

Untangling Raw Data Complexity

Initially, raw data from various samples (e.g., different food origins 
or varieties) typically appears as overlapping clusters in high-
dimensional space. Without transformation, distinguishing distinct 
groups is nearly impossible due to inherent variability and noise.

PLS-DA Transformation Process

Partial Least Squares-Discriminant Analysis (PLS-DA) employs a 
supervised statistical technique. It constructs new latent variables 
(components) that maximize the covariance between the predictors 
(e.g., spectral data) and the response variable (e.g., sample class 
labels). This process systematically identifies patterns that best 
differentiate between defined classes.

Interpreting Latent Variables

In the transformed score plot, the new axes represent these latent 
variables or principal components. These components capture the 
most significant variance related to class separation, allowing the 
data to be visualized in a lower-dimensional space where class 
distinctions become evident.

Measuring Class Separation

Class separation is achieved when samples belonging to different 
categories form distinct, non-overlapping clusters in the score plot. 
The quality of separation can be quantified using metrics like R2Y 
(explained variance of Y) and Q2 (predictive ability), along with 
visual inspection of confidence ellipses or separation boundaries.

Importance of Visual Inspection

Visual inspection of the score plot is crucial for model validation. It 
provides an intuitive understanding of how well classes are 
separated and can reveal outliers or misclassified samples that 
might not be obvious from statistical metrics alone. This visual 
check helps confirm the model's reliability and interpretability.

Distinguishing Good from Poor Separation

Good separation is characterized by tight, well-defined clusters for 
each class with clear boundaries and minimal overlap, indicating a 
robust classification model. Poor separation, conversely, shows 
overlapping or dispersed clusters, suggesting insufficient 
distinction between classes or a need for model refinement.



What is PLS-DA?
01

Supervised Method

Partial Least Squares Discriminant Analysis integrates 
dimensionality reduction with classification capabilities.

02

Class-Focused Separation

Incorporates predefined class labels to maximise 
separation between groups, ensuring discrimination is the 
primary objective.

03

Latent Variable Extraction

Identifies and extracts latent variables that best capture 
class differences in high-dimensional food analysis data.

04

Optimal for Complexity

Particularly effective when the number of variables 
exceeds sample size, a common scenario in modern food 
analysis.



Mathematical Foundations of PLS-DA

Partial Least Squares-Discriminant Analysis (PLS-DA) provides a robust framework for classifying complex food science data by identifying latent 
variables that maximize the covariance between predictor and response matrices. It transforms high-dimensional data into a lower-dimensional space, 
where class separation is optimized for clearer distinction.

1. Matrix Decomposition
PLS-DA decomposes both the predictor matrix (X, e.g., spectral data) and the response matrix (Y, class labels) into scores and loadings, along with 
residual matrices.

Where:

• X: Predictor variables matrix (n samples x p variables)

• Y: Response variables matrix (n samples x m class labels)

• T: X-scores matrix (latent variables from X)

• U: Y-scores matrix (latent variables from Y)

• P: X-loadings matrix (weights for X variables)

• Q: Y-loadings matrix (weights for Y variables)

• E, F: Residual matrices (unexplained variance)

Matrix 
Decomposit
ion (X & Y)

Scores relate
T and U capture shared 

variation

Residuals capture

E and F contain 
unexplained noise

Loadings 
interpret

P and Q define variable 
contributions

Y → U, Q, F
Y-scores (U), Y-loadings 

(Q), Y-residuals (F)

X → T, P, E
X-scores (T), X-loadings 

(P), X-residuals (E)



2. Maximizing Covariance: Unlocking Relationships

At the heart of PLS-DA is the principle of maximizing the covariance between the projected scores of the predictor variables (X) and the response 
variables (Y). This ensures that the latent variables extracted best explain the relationship between the two datasets.

The algorithm identifies optimal projection vectors, w for X and c for Y, to create new scores t and u respectively, such that their covariance is 
maximized.

Here, t and u are column vectors representing the X-scores and Y-scores (latent variables) derived from the original matrices T and U. This 
maximization is achieved through an iterative process, sequentially extracting components that capture the maximum remaining covariance 
between X and Y.

Maximize 
Covariance (t, 

u)

Matrix X

Predictor variables

Strong Relationship

Final output linking t & u

Project to u

Y-scores (u)

Matrix Y

Response variables

Project to t

X-scores (t)

Maximize Covariance

Align t and u



Mathematical Foundations of PLS-DA: Discriminant 
Function and Classification
After extracting the latent variables that maximize covariance, PLS-DA builds a linear regression model between the X-scores (T) and Y-
scores (U). This model defines a discriminant function used to classify samples.

For classification, the response variable Y is typically encoded using dummy variables (e.g., 0 for one class, 1 for another, or one-hot 
encoding for multiple classes). The prediction equation for Ŷ (predicted Y-scores) is derived from this relationship:

New samples are then classified by projecting their data onto the PLS-DA model to obtain their X-scores. These scores are fed into the 
discriminant function to predict their Y-values. Finally, each sample is assigned to the class corresponding to its predicted Y-value (e.g., 
closest to 0 or 1, or highest probability in multi-class scenarios).

Decision Boundary → Class Assignment

Discriminant Function (Predict Ŷ)

Projection to PLS-DA Score Space

New Sample Input



Key Parameters: Selecting Latent Components
The number of latent components (factors) is a critical parameter in PLS-DA, significantly influencing model accuracy and generalization. 
Selecting too few components results in an underfit model, unable to capture essential data patterns. Conversely, too many components 
can lead to overfitting, where the model learns noise in the training data, performing poorly on new, unseen samples.

This optimal number is typically determined through cross-validation. This technique evaluates the model's predictive performance on 
independent subsets of the data, helping to identify the point where predictive ability is maximized without compromising generalizability. 
The aim is to strike a balance between model complexity and robust predictive performance, ensuring the model is both informative and 
reliable.

Underfitting

Increasing

Optimal Point

Overfitting



PLS vs. PLS-DA: Distinguishing Applications
While both Partial Least Squares (PLS) methods leverage latent variables to handle complex data, their application 
differs fundamentally based on the nature of the outcome variable.

PLS Regression: Continuous Prediction

This technique is employed when the outcome variable 
(Y) is continuous and numerical, such as predicting 
sugar content, acidity levels, or a quantitative quality 
score. It focuses on modelling the linear relationship 
between predictor variables and one or more continuous 
responses.

PLS-DA: Categorical Assignment

PLS-DA (Discriminant Analysis) is utilised when the 
outcome variable (Y) is categorical, aiming to classify 
samples into predefined groups, e.g., 'organic vs. 
conventional', 'origin A vs. origin B', or 'fresh vs. spoiled'. 
It transforms the categorical response into a numerical 
format to maximise separation between these distinct 
classes.



Visualising PLS vs. PLS-DA in Action
To better understand the distinct applications, let's look at how PLS Regression and PLS-DA visually represent their 
respective outcomes: continuous predictions versus categorical classifications.



PLS-DA vs PCA: Why PLS-DA for 
Classification?

PCA: Exploratory Analysis

Principal Component Analysis maximises variance in 
the dataset without considering class labels. 
Excellent for exploration but not optimised for 
classification tasks.

PLS-DA: Targeted Classification

PLS-DA maximises covariance between predictors 
and class membership, directly focusing on 
discrimination. Purpose-built for authentication 
where class differences may be subtle.

In food authentication studies where subtle compositional differences determine origin or quality, PLS-DA's supervised 
approach provides superior discriminatory power.



Handling Paired and Complex Designs: 
Multilevel PLS-DA

1

The Challenge

Nutritional intervention studies frequently employ 
paired data from cross-over designs, where 

individuals serve as their own controls.

2

The Solution

Multilevel PLS-DA separates treatment effects from 
individual variation, accounting for within-subject 

correlation structures.

3

The Benefit

Dramatically improves statistical power and 
interpretability in food metabolomics and 

intervention studies.



Model Validation and Avoiding Overfitting

Validation Strategies

• Cross-validation: K-fold and leave-one-out approaches 
assess model stability

• Permutation tests: Confirm that classification is not 
due to chance

• Independent test sets: Evaluate true predictive 
performance

Performance Metrics

• Classification accuracy: Overall correctness

• Sensitivity & specificity: Class-specific performance

• VIP scores: Variable Importance in Projection identifies 
key discriminating variables

Rigorous validation ensures model generalisability 
to new, unseen food samples from production 
environments.



Software for PLS-DA in Food Analysis

Commercial Solutions

SIMCA offers comprehensive 
multivariate analysis. 
MetaboAnalyst provides web-based 
metabolomics tools. MATLAB PLS-
DA Tool includes free GUI.

Open-Source Options

R packages like mixOmics provide 
flexible, scriptable analysis. Python 
libraries offer integration with 
machine learning workflows.

Data Pre-processing

Critical steps include scaling
(standardisation), normalisation, 
and handling missing data 
appropriately before model building.



Best Practices for Food 
Classification Studies

Experimental Design 
Excellence

Implement representative 
sampling strategies across 
production batches, seasons, 
and geographical regions. 
Ensure balanced class sizes 
to prevent bias.

Data Fusion 
Approaches

Combine multiple analytical 
platforms (mass 
spectrometry, spectroscopy, 
chromatography) to capture 
complementary information 
and enhance discrimination.

Contextual Interpretation

Always interpret statistical results within the context of food 
chemistry, production processes, and biological variation for 
meaningful insights.



Conclusion: PLS-DA Empowers Food 
Authentication and Quality Control

Robust Method

Multivariate classification tailored 
for complex, high-dimensional food 

data

Proven Success

Authenticating origin, cultivar, and 
detecting sophisticated 
adulteration

Ongoing Innovation

Advances in sparse methods, data 
fusion, and accessible software 
tools

Practical Integration

Ready for routine food analysis 
workflows

"Integration of PLS-DA in routine analytical workflows supports safer, more transparent food supply chains, 
protecting consumers and legitimate producers alike."



Fingerprinting Alkaloids for Traceability in Lupins
A semi-untargeted UHPLC-MS/MS approach for comprehensive alkaloid profiling and geographical classification of Lupinus albus L. 
samples from four Italian regions.

FOOD CHEMISTRY TRACEABILITY



Methodology: MRM-IDA-EPI Acquisition

Sample Preparation

• Raw L. albus seeds from Abruzzo, Lazio, Campania, and Puglia

• Ground and homogenized samples

• MeOH:H2O extraction followed by SPE clean-up

• 100 samples per region analyzed

Analytical Approach

• UHPLC-QqQ-LIT-MS/MS system

• MRM survey scan with IDA criteria

• Enhanced Product Ion (EPI) experiments

• CFM-ID for in silico MS/MS prediction

The method combined targeted analysis of 6 quinolizidine alkaloids with semi-untargeted identification of 21 additional alkaloids, 
enabling comprehensive alkaloid fingerprinting without requiring all reference standards.



Multivariate Analysis Strategy
01

Data Preparation

Dataset of 400 observations (100 per 
region) with 27 alkaloid variables. 
Percentage conversion applied to ensure 
equal contribution of each variable.

02

Unsupervised HCA

Hierarchical Cluster Analysis combined 
with heatmap to explore data structure 
and natural groupings without predefined 
classes.

03

Supervised PLS-DA

Partial Least Squares Discriminant Analysis 
with 10-fold cross-validation to build 
predictive classification model for 
geographical origin.

Python libraries including pandas, numpy, sklearn, and scipy were used for all statistical processing. Features were standardized by 
removing mean and scaling variance to unity.



Hierarchical Clustering Results

The heatmap revealed distinct clustering patterns across the four Italian 
regions. Abruzzo and Campania samples showed perfect regional grouping, 
indicating homogeneous alkaloid profiles. Lazio and Puglia exhibited mixing in 
clusters, suggesting less region-specific profiles.

Three main alkaloid clusters emerged, each contributing differently to regional 
differentiation and demonstrating the complex chemical variability influenced 
by geographical and environmental factors.

Key Findings

• Perfect clustering for Abruzzo and Campania

• Mixed patterns for Lazio and Puglia

• Three distinct alkaloid clusters identified

• Environmental influence confirmed



PLS-DA Classification Performance

58%
Targeted Approach

Average sensitivity using only 6 standard 
alkaloids - insufficient for accurate 

classification

98%
Semi-Untargeted

Average accuracy using all 27 alkaloids -
dramatic improvement in classification

100%
Abruzzo Samples

Perfect classification achieved with semi-
untargeted approach

The semi-untargeted method using all 27 alkaloid features resulted in significantly improved PLS-DA performance. Key discriminant 
alkaloids included dehydroxymultiflorine (III), hydroxysparteine (III), ammodendrine, angeloyloxymultiflorine, and 
benzoxyloxylupanine (II). Notably, no single targeted feature showed distinct contribution - successful classification resulted from the 
synergistic effect of alkaloids identified through the semi-untargeted method.



Conclusions and Impact

Methodological 
Innovation

First application of MRM-IDA-EPI 
for comprehensive lupin alkaloid 
profiling, enabling identification 
without all reference standards

Geographical Traceability

Successfully distinguished 
samples from four Italian regions 
with high accuracy using alkaloid 
fingerprints

Food Safety Applications

Provides valuable tool for product traceability, quality assessment, and 
consumer information

The integration of semi-untargeted methods with multivariate 
chemometrics proved essential for comprehensive geographical 
classification, demonstrating that targeted approaches alone are 
insufficient for capturing the full chemical variability of lupin alkaloid 
profiles.


