ional biology
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Il materiale di seguito riportato e destinato solo ed
unicamente all’attivita didattica nell’ambito del CdLM
in Biotecnologie della Riproduzione, Universita di
Teramo
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Complicated vs. complex
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Complexity:

non-linearity of interactions:




scaled expression

An example
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unpredictability

Strategies of spinal cord transplantation
and gene therapy
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Butterfly effect




Emergence of proprieties




The whole is more (different) than the
sum of the individual components




Human Genome Project

THE i5 y
HUMAN 7 8
GENOME . &

=

R Aserican Assogiarions e

Begun formally in 1990, the U.S. Human Genome
Project was a 13-year effort coordinated by the
U.S. Department of Energy and the National
Institutes of Health. The project originally was
planned to last 15 years, but rapid technological
advances accelerated the completion date to
2003. Project goals

* jdentify all the approximately 20,000-25,000
genes in human DNA,

* determine the sequences of the 3 billion
chemical base pairs that make up human DNA,

* store this information in databases,
* improve tools for data analysis,

* transfer related technologies to the private
sector, and

* address the ethical, legal, and social issues (ELSI)
that may arise from the project.
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The “Omics” Cascade
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"And that's why we need a computer.”



Computational models in biology and
medicine
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SYNDUSTRY

The news of “Synthia,” the world’s first

human-made species, is just the latest

from a rapidly growing artificial life industry.
Synthetic biology (or “Syn Bio”) aims to
profit from the design and construction

of industrially useful life-forms.

Syn Bio's Big Shots

Global corporations are investing
in synthetic biology labs and

o0 DDDO000 ,
c;“::n::: next 20 .\\\ - @ /'19‘

poars syvtc N G argi TGl et more o e
A - - . i al bio in-house syn bio research  Fyels, ',""'f‘m‘ in
genomics iIs going — . m‘xﬁﬂm p::d(wﬂ withs Ge:’;';tm for drug development. m£u¢ bm:sv-
to become the Sf""""’“‘“ 5’:‘" of California Berkeley; and sugar giant Tate & celebrity bmmn“d:m
p— Ippocts syntietic holds equity stake in Lyle = a fibre called Richard Beanson
biology RYD. Craig Venter's Synthetic Sorona.

standard for making =
anything." - craig venter

Genomics, Inc.

n“‘b

Synthetic Startups ,
N %?i‘;l?jﬁ%ﬁ Proto

A bevy of 'pure play' syn bio g evo
companies is attempting
to design synthetic microbes Gevo Synthetic i (USA) Developing cellular |fe
for fuel, chemicals and drugs. (U Dewionine Mascoma G Ot oo, ProtolLife
Many are university spin-offs. win tpppostfiom  Dewloping (USA) Constructing  Developing s (ltaly) Developing

synthetic  synthetic life forms  synthetic evelo
biofuels. forbiofuels and  biofuels and synthetic living

DNA Synthesis Foundrles N
DNA foundries produce W ! ‘
the raw material for
creating artificial
life: synthetic DNA
(SDNA).
Over 70 DNA
foundries
worldwide manufacture sDNA for genetic engineers
and synthetic biologists. The market for sDNA already
exceeds a billion dollars annually. Even long DNA
sequences - entire genes, for example - can be ordered
over the Internet and delivered within two weeks. The
speed of producing accurate DNA sequences is doubling
every two years and costs are halving even faster.

Published by ETC Group Dec 2007 Artwork by Shtig
www.etcgroup.org et
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What is a model?
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Numerical models
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forecasting model

ECMWF Ensemble & HR Precipitation Probability— 102 hr Forecast

Percentage of members exceeding 2.00 mm




Networks as model
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Image 2.1
The bridges of Kdnigsberg.

From the contemporary map of Konigsberg (now Kaliningrad, Russia) to Fuler's graph. The graph constructed by Euler consists of four nodes (A, B, C,
D), each corresponding to a patch of land, and seven links, each corresponding to a bridge. Euler showed in 1736 that there is no continuous path that
would cross seven the bridges while never crossing the same bridge twice. The people of Konigsberg agreed with him, gave up their fruitless search and
in 1875 they built a new bridge between B and C, increasing the number of links of these two nodes to four. Now only one node was left with an odd
number of links and it became rather straightforward to find the desired path.
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Image 2.3
Real systems of quite different nature can have the same
network representation.

In the figure we show a small subset of (a) the Internet, where routers
(specialized computers) are connected to each other; (b) the Hollywood
actor network, where two actors are connected if they played in the same
movie; (c) a protein-protein interaction network, where two proteins are
connected if there is experimental evidence that they can bind to each
other in the cell. While the nature of the nodes and the links differs wide-
ly, each network has the same graph representation, consisting of N=4
nodes and L= 4 links, shown in (d).
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The link

G protein

Neurotransmitter
binds receptor

GTP binds and
dissociates subunits

Intermediate steps lead
to a messenger that can
open or close ion channels

protein or ion channels directly

? Gy (or Gy, activates effector
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NETWORK NAME

Internet
WWwWw
Power Grid
Mobile-Phone Calls
Email
Science Collaboration
Actor Network

Citation Network
E. coli Metabolism

Yeast Protein Interactions

NODES

routers
webpages
power plants, transformers
subscribers
email addresses
scientists
actors
papers
metabolites

proteins

LINKS

Internet Connections

links

cables

calls

emails

co-authorships

co-acting

citations

chemical reactions

binding interactions

DIRECTED/
UNDIRECTED

Undirected
Directed
Undirected
Directed
Directed
Undirected
Undirected
Directed
Directed

Undirected

N

192,244
325,729
4,941
36,595
57,194
23,133
212,250
449,673
1,039

2,018

L

609,066
1,497,134
6,594
91,826
103,731
186,936
3,054,278
4,707,958
5,802

2,930

K>

2.67
4.60
2.67
251
1.81
16.16
28.78
10.47
5.84

2.90

Table 2.1

Network maps and their basic properties.




Network topology




Wein Meru

Wulns/Ps Gragh
PortsfiPs Graph

Datasg{ Mgmi

LB
¥
L

* i W
®

iy
-y
-
-
-
. T
&

.E




Topological parameters

the number of nodes: which represents the total number of

molecules involved; In an undirected network total number of links, L, can be
expressed as the sum of the node degrees:

|
L= 5;,&5 (1)

Here the 1/2 factor corrects for the fact that in the sum (1)
each link is counted twice.

the number of edges: which represents the total number of
interaction among nods within the network;

the node degree (or connectivity): which indicates how many links
each node has to other nodes; k)= J»L Zf\ i % o

In directed networks we distinguish between incoming de-
gree, k", representing the number of links that point node
i, and outgoing degree, k™' , representing the number of
links that point from the node i to other nodes and the total
degree, k., given by

k.= k" + k™ (8)




the node degree distribution P(k): which represents the
probability that a selected node has exactly k& links;

Nk
p o —
“ N

the clustering coefficient: it is a measure of how the
nodes tend to form clusters: the more the clustering
coefficient i1s higher, the more the presence of clusters

will increase;

C, = 2n/k(k-1),

where n; 1s the number of links
connecting the k; neighbours of
node I to each other




clustering coefficient




the network diameter: which 1s the largest distance
between two nodes:;

the averaged number of neighbours: which 1s the mean
number of connection of nodes;

the characteristic path length: which 1s the expected
distance between two random individuated connected
nodes.



Bath

Shortest Path

PATH: A sequence of nodes such
ihat each node is connected to

the next node along the path by

a link. A path always conzists of n
nodes and 1 - 1 links. The lengith of
a path is defined az the number of
its links, counting multiple edges
multiple times

SHORTEST PATH [geodesic path, dl:
the path with the shortest distance
d between two nodes. We will call
it the distance between two nodes.

DIAMETER (d__): the longest short-
est path in a graph, or the distance
betwesn the two furthest away
nodes.

AVERAGE PATH LENGTH [wgt):
ihe average of the shortest paths

Ayeraps Path Lenpth DEtween all pairs of nodes.

(R -+ hy ax o+l

+ g+ i At

Cycle

Egif.avpiding Fath

Eulerian Fath

Hamiltanian Fath

sfisfofed

CYCLE: a path with the zame start
and £nd node.

SELF-AVOIDING PATH: a path that

does not intersect itself, i.e. the
same node or link does not ocour

twice along the path.

EULERIAM PATH: a path that tra-
wverses each link exacthy onoe.

HAMILTONIAN PATH: a path that
visits each node exactly onee.



multiple networks
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The tripartite recipe-ingrediznt-compound network, in which one set of
nodes are recipes, like Chicken Marsala, the szcond set comresponds to
the ingrediznts each recipe has (like flour, sage, chicken, wine, and butter
for Chicken Marsala), and the third set captures the flavor compounds, or
chemicals that contribute to the taste of a particular ingredient.

Image 2100
Tripartite network.

A projection of the tripartite network, resulting in the ingredient network, often called the flavor network. Each node denotes an ingredient; the node
color indicating the food category and node size reflects the ingredient prevalence in recipes. Two ingredients are conneeted if they share a significant
number of flavor compounds, link thickness representing the number of shared compounds between the two ingredients (After [12]).



