		-		\sim			1 1	/I I		Λ
-	I -		$\boldsymbol{\sim}$	()	(—	111	. /1	IC/	Δ
_				v	\sim		11	v I I	-	\neg

Tratta delle trasformazioni tra energia chimica ed energia elettrica

Alla base ci sono reazioni di ossidoriduzione, cioè con scambio di elettroni tra reagenti e prodotti della reazione

REAZIONI REDOX

Le reazioni di ossido-riduzione avvengono con scambio di elettroni tra un agente ossidante e uno riducente.

 $Oss_1 + Rid_2 \Leftrightarrow Rid_1 + Oss_2$

La tendenza riducente o ossidante di una sostanza dipende dal suo *potenziale redox*.

SCHEMA REAZIONE REDOX

٨	П		ıľ	١.	1	F	R	()	\Box	۱	1	2	(<	1	Г) [Δ	7	L		۱(d	F	-
ı١		ι.	, ,	v	ш		┖	١.	,	IJ	и	١ ١). '	Э I	Ι.	ır	┪	_		ι.	"	v		

Fe+2 + Ce+4 \Leftrightarrow Fe+3 + Ce+3

La reazione avviene con scambio di elettroni lo ione ferro(II) ne perde uno e si ossida e lo ione cerio(IV) lo acquista e si riduce.

Lo ione cerio(IV) è un ossidante e lo ione ferro(II) è un riducente.

Fe+2 ha numero di ossidazione+2

Ce+4 ha numero di ossidazione+4

Fe+3 ha numero di ossidazione+3

Ce+3 ha numero di ossidazione+3

Come assegno i numeri di ossidazione a ioni o molecole poliatomiche? p.es HCI, $KMnO_{4}$, H_2CO_3 , CO_2

NUMERO DI OSSIDAZIONE

Alcuni elementi possono assumere N.O. differente, a seconda della molecola di cui fanno parte.

Fe ha N.O. = +2 in FeO (ossido ferroso), ma → ha N.O. = +3 in Fe2O3 (ossido ferrico).

II N.O. dello zolfo è +4 in SO2 (anidride solforosa),

→ +6 in SO3 (anidride solforica) e in H2SO4

II N.O. dell'azoto è -3 nell'ammoniaca, NH3,

→ +5 nell'acido nitrico HNO3.

REGOLE PER LA DETERMINAZIONE DEL N.O.

- a) Atomi e molecole allo stato elementare $(H_2, N_2, He, S_8) = 0$
- b) Elementi del gruppo $I=\pm 1$; Elementi del Gruppo $II=\pm 2$
- c) Idrogeno = +1, tranne che negli idruri del I e II gruppo (LiH, MgH_2) dove n.o. = -1
- d) Ossigeno = -2, tranne che nei perossidi (-1), superossidi (-1/2) e in F_2O (+2)
- e) Alogeni (gruppo VII) nei composti binari = -1
- f) Qualsiasi ione monoatomico = carica dello ione
- g) La somma dei n.o. in una molecola neutra Σ n.o. = 0, in uno ione poliatomico Σ n.o = carica dello ione

2 SEMIREAZIONI

 $-e^{-} (semireazione \ di \ ossidazione) -$ OSSIDANTE + RIDUCENTE \rightarrow OSSIDANTE + RIDUCENTE RIDOTTO OSSIDATO $+e^{-} (semireazione \ di \ riduzione)$

BILANCIAMENTO DI EQUAZIONI REDOX

Esempio: $MnO_4^- + NO_2^- \Leftrightarrow Mn^{2+} + NO_3^-$

Si scompone la reazione in 2 semireazioni e si bilancia la carica aggiungendo gli elettroni scambiati:

 $MnO_4^- + 5 e \Leftrightarrow Mn^{2+}$ (riduzione) $NO_2^- \Leftrightarrow NO_3^- + 2 e$ (ossidazione)

BILANCIAMENTO DI EQUAZIONI REDOX

Poiché è necessario conoscere la stechiometria della reazione per effettuare un titolazione bisogna saper bilanciare le equazioni redox.

 $\begin{array}{lll} \text{Esempio:} & \text{MnO}_{4} \ + \ \text{NO}_{2} \ \Leftrightarrow \ \text{Mn}^{2+} \ + \ \text{NO}^{3-} \\ \text{Prima si bilancia la carica aggiungendo elettroni:} \end{array}$

 $\begin{array}{lll} MnO_4^{-} + \textbf{5} \ \textbf{e}^{ \cdot} \Leftrightarrow & Mn^{2+} & \text{(riduzione)} \\ NO_2^{-} & \Leftrightarrow & NO_3^{-} + \textbf{2} \ \textbf{e}^{ \cdot} & \text{(ossidazione)} \end{array}$

Poi si bilanciano le gli elettroni scambiati nelle 2 semireazioni In questo esempio si moltiplica la prima semireazione per 5 e la seconda per 2:

2x $MnO_4^- + 8 H^+ + 5 e^- \Leftrightarrow Mn^{2+} + 4 H_2O$ (riduzione)

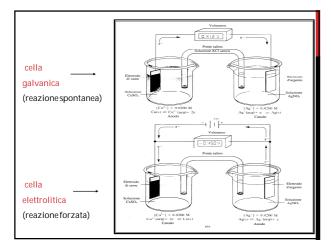
5x $NO_2^- + H_2O \Leftrightarrow NO_3^- + 2 H^+ + 2 e^-$ (ossidazione)

Quindi si ricombinano le 2 semireazioni aggiungendo H+, OH- o H2O (siamo in ambiente acquoso!).

$$2 \text{ MnO}_4^- + 16 \text{ H}^+ + 10 \text{ e} + 5 \text{ NO}_2^- + 5 \text{ H}_2\text{O} \iff$$

$$2 \text{ Mn}^{2+} + 8 \text{ H}_2\text{O} + 5 \text{ NO}_3^- + 10 \text{ H}^+ + 10 \text{ e}$$

che diventa:


$$2 \text{ MnO}_4^- + 6 \text{ H}^+ + 5 \text{ NO}_2^- \iff 2 \text{ Mn}^{2+} + 3 \text{ H}_2^- \text{O} + 5 \text{ NO}_3^-$$

POTENZIALE REDOX

II potenziale redox di una coppia (ridotto/ossidato) viene calcolato mettendolo in relazione a quello $\,$ di una coppia (H_2/H^+) il cui valore viene posto uguale a zero.

Per comprendere i potenziali redox bisogna sapere come funziona una cella elettrochimica. Ne esistono 2 tipi:

- celle galvaniche
- celle <u>elettrolitiche</u>

Ossidazione all'interfaccia elettrodo/soluzione Gli elettrodo/soluzione Gli elettroni si muovono dall'anodo verso il circuito esterno	Pone valino di KCl (see) Riduzione all'interfaccia all'interf

POTENZIALE REDOX

 $2 \ Ag^{\scriptscriptstyle +} \ + \ Cu_s \iff 2 \ Ag_s \ + \ Cu^{\scriptscriptstyle 2+}$

Il valore di potenziale (E) misurato in una cella galvanica è una misura della tendenza della reazione ad avvenire.

II potenziale redox di una coppia viene misurato nei confronti dell'elettrodo di riferimento standard ad idrogeno

→ coppia redox H₂/H+ come riferimento

Questa è una semicella (elettrodo) è costituita da un filo di Pt ricoperto di nero di platino immerso in una soluzione acquosa di ioni H^{\star} con attività unitaria (circa 1 M) su cui viene gorgogliato H_2 alla pressione di 1 atm.

Il <u>potenziale elettrodico standard</u> Eº è definito come il potenziale di un elettrodo con reagenti e prodotti ad attività unitaria nei confronti dell'elettrodo di riferimento standard ad idrogeno

Pt, H $_2$ (p = 1.00 atm) | H $^+$ (a $_{\rm H+}$ = 1.00 M) | | Ag $^+$ (a $_{\rm Ag+}$ = 1.00) | Ag

SHE | | Ag^+ ($a_{Ag^+} = 1.00$) | Ag

 $E^0 = + 0.799 V$

	ı	
	Tabella 15–1 Potenziali elettrodici standard*	
Per convenzione IUPAC	Reazioni Eº a 25 °C, V	
(international union of pure and	$Cl_2(g) + 2e^- \rightleftharpoons 2Cl^-$ +1.359	
applied chemistry) le semireazioni si scrivono nel	$O_1(g) + 4H^* + 4e^- \rightleftharpoons 2H_2O$ +1.229 $Br_2(acq) + 2e^- \rightleftharpoons 2Br^-$ +1.087	
verso della riduzione e il segno	$Br_2(l) + 2e^- \rightleftharpoons 2Br$ +1.065	
del potenziale è uguale alla	$Ag^* + e^- \rightleftharpoons Ag(s)$ +0.799 $Fe^{3*} + e^- \rightleftharpoons Fe^{3*}$ +0.771	-
carica dell'elettrodo confrontato con SHE	$I_{3^{\circ}} + 2e^{-} \rightleftharpoons 3I^{-}$ +0.536 $Cu^{2+} + 2e^{-} \rightleftharpoons Cu(s)$ +0.337	
	$UO_{2}^{*} + 4H^{*} + 2e^{-} \rightleftharpoons U^{4*} + 2H_{2}O$ +0.334	
Il segno in pratica indica se la	$Hg_1Cl_2(s) + 2e^- \rightleftharpoons 2Hg(l) + 2Cl^-$ +0.268 $AgCl(s) + e^- \rightleftharpoons Ag(s) + Cl^-$ +0.222	
riduzione è spontanea rispetto a	$Ag(S_2O_3)^2_2 + e^- \rightleftharpoons Ag(s) + 2S_2O_3^{2-}$ +0.017 $2H^* + 2e^- \rightleftharpoons H_3(g)$ 0.000	
SHE	$AgI(s) + e^- \rightleftharpoons Ag(s) + I^-$ -0.151 $PbSO_4(s) + 2e \rightleftharpoons Pb(s) + SO_4^{2-}$ -0.350	
	$Cd^{2s} + e^- \rightleftharpoons Cd(s)$ -0.403	
	$Zn^{2+} + 2e^- \rightleftharpoons Zn(s)$ -0.763 * Vedi Appendice 4 per un elenco più esteso.	-
		-
FOLIAZIONE	E DI NERST	
EQUAZIONE	- DINEKSI	
Il potenziale di una semicella (elett	rodo) dipende dalle concentrazioni dei	
reagenti		
Si deve utilizzare l'equazione di Ne		-
E = E° - RT	/nF log a _{rid} /a _{ox}	
In pratica si usa questa versione		
	og [rid] / [ox] (a 25°C)	
0.037711 10	ος [α] / [ολ] (α25 ο /	-

 $E^{\circ\prime} = \underline{potenziale} \quad \underline{formale}, \quad misurato \quad empiricamente \quad in \quad determinate \\ condizioni \quad sperimentali, \quad compensa \quad le \quad variazioni \quad di \quad attività \quad e \quad l'effetto \quad di \\ altri equilibri su quello redox.$

ESEMPI

-Elettrodo di platino in soluzione contenente $0.20~M~Fe^{2+}~e~0.05~M~di~Fe^{3+}$

 $E = 0.771 - 0.059/1 \log 0.2/0.05 = 0.771 - 0.035 = 0.736 V$

-Elettrodo di Ag in soluzione contenente 0.05 M di NaCl

[Ag] =
$$K_{sp}$$
 /[CI⁻] = 1.82 × 10⁻¹⁰ / 0.05 = 3.64 × 10⁻⁹

 $E = 0.799 - 0.059 \text{ log } 1/3.64 \times 10^{-9} = 0.299$

Mediante i potenziali redox standard e l'equazione di Nerst è possibile calcolare E generato da una cella galvanica o E richiesto per far operare una cella elettrolitica

I potenziali calcolati si riferiscono a celle in cui non si ha passaggio di corrente! (legge di Ohm $\,E=IR)$

Cu | Cu $^{2+}$ (0.02 M) | | Ag $^{+}$ (0.02 M) | Ag

 $E_{Aq+} = 0.799 - 0.059 \log 1/0.02 = 0.698$

 $E_{Cu2+} = 0.337 - 0.059/2 \log 1/0.02 = 0.286$

 $E_{cella} = 0.698 - 0.286 = 0.412 \text{ V}$

Se voglio far avvenire l'ossidazione dell'Ag e la riduzione del Cu²⁺ (cella elettrolitica) devo fornire almeno 0.412 V alla cella!

COSTANTI DI EQUILIBRIO REDOX

Alla fine di una reazione redox condotta sia in fase omogenea che in una cella elettrochimica le concentrazioni dei reagenti e dei prodotti raggiungono il loro valore di equilibrio. Il potenziale di cella diviene zero! Questo significa che all'equilibrio i potenziali elettrodici per tutte le semireazioni sono uguali

$$Cu_s + 2 \ Ag^+ \Leftrightarrow \ Cu^{2+} + 2 \ Ag_s$$

 $K_e = [Cu^{2+}] / [Ag^+]^2$

 ${\rm E^{\circ}}_{Ag+} \,\, {\rm -E^{\circ}}_{Cu2+} = 0.059/2 \, log \,\, 1 \, / \,\, [Ag^{+}]^{2} \,\, - \,\, 0.059/2 \,\, log \,\, 1 \, / \,\, [Cu^{2+}] =$ $= \ 0.059/2 \, log \ 1 \, / \, [Ag^+]^2 \ + \ 0.059/2 \ log \ [Cu^{2+}] \ / \, 1 \, ,$

guindi

2 (E $^{\circ}_{Ag^{+}}$ - E $^{\circ}_{Cu2^{+}}$) /0.059 = log [Cu $^{2+}$] / [Ag $^{+}$] 2 = log K $_{e}$

 $K_e = 4.1 \times 10^{15}$

2 Fe⁺³ + 3I⁻ \Leftrightarrow 2 Fe²⁺ + I₃⁻ 2 Fe⁺³ + 2e ⇔ 2 Fe²⁺ E° = 0.771 I₃- + 2e ⇔ 3I- $E^{\circ} = 0.536$

 $\mathsf{E}_{\mathsf{Fe3+}} = \mathsf{E^{\circ}_{Fe3+}} \, - \, 0.059/2 \, \mathsf{log} \, [\mathsf{Fe^{2+}}]^2 \, / \, [\mathsf{Fe^{3+}}]^2$ $E_{I3-} = E^{\circ}_{I3-} - 0.059/2 \log [I^{-}]^{3} / [I_{3}^{-}]$

All'equilibrio:

 $2\; ({E^{\circ}}_{Fe3+}\; -\; {E^{\circ}}_{I3-})\; / 0.059 \; = \; log\; [Fe^{2+}]^2 \; /\; [Fe^{3+}]^2 \; + \; log\; [I_3 \cdot] \; /\; [I \cdot]^3 = \; ({E^{\circ}}_{Fe3+}\; -\; {E^{\circ}}_{I3-}) \; / \; ({E^{\circ}}_{I3-}) \; / \; ({E^{\circ}}$ $log [Fe^{2+}]^2 [I_3^{-}] / [Fe^{3+}]^2 [I^{-}]^3$

log $K_e = 2 (0.771 - 0.536) / 0.059 = 7.939$ $K_e = 8.7 \times 10^7$

CURVE DI TITOLAZIONE

Nelle curve di titolazione si grafica il potenziale (E) verso il volume di

Si assume che il sistema sia sempre in equilibrio (reazione molto veloce). Quindi è possibile calcolare E da una delle semireazioni.

In pratica si calcola E usando la semireazione che ha concentrazioni di reagenti e prodotti apprezzabili (semireazione dell'analita prima del punto di equivalenza e del titolante dopo il punto di equivalenza).

Al punto di equivalenza si calcola il potenziale dal rapporto delle concentrazioni della reazione totale e dai potenziali standard .

$$Fe^{+2} + Ce^{+4} \Leftrightarrow Fe^{+3} + Ce^{+3}$$

E°' = 0.68 V (H₂SO₄ 1M) E°' = 1.44 V (H₂SO₄ 1M) $\begin{array}{l} Fe^{+3} + e \Leftrightarrow Fe^{+2} \\ Ce^{+4} + e \Leftrightarrow Ce^{+3} \end{array}$

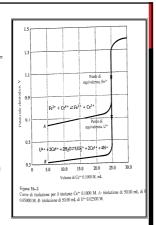
E iniziale; indefinito

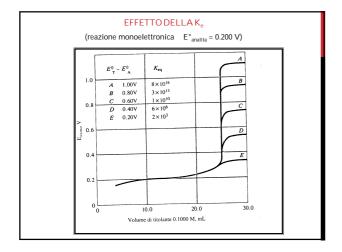
E dopo 10 mL di Ce4+;

 $[Fe^{2+}] = mmol Fe^{2} + - mmol [Ce^{+4}]/V =$ $(50 \times 0.05) - (10 \times 0.1) / 55 = 2 / 55$

 $[Fe^{3+}] = mmol [Ce^{+4}] / V = 0.5 / 55$

 $E = +0.68 - 0.059/1 \log 2 / 0.5 = 0.64 V$


E al punto di equivalenza;


 $[Fe^{2+}] = [Ce^{4+}] e [Fe^{3+}] = [Ce^{3+}]$

 $\begin{array}{l} 2E_{eq} = E^{\circ}{'}_{Ce4+} + \ E^{\circ}{'}_{Fe3+} \text{--} \ 0.059 \, log \\ [Ce^{4+}] \ [Ce^{3+}] \ / \ [Ce^{3+}] \ [Ce^{4+}] \end{array}$

 $E_{eq} = E^{\circ}{}'_{Ce4+} + E^{\circ}{}'_{Fe3+}/2 = (1.44 - 0.68)$ /2 = 1.06

Oltre il punto di equivalenza E si calcola dalla semireazione del Ce

INDICATORI

 $\underline{Indicatori\, specifici.}\,\, p.\,es.\,\, l'amido\, da\, un\, complesso\, blu\, con\, lo\, iodio\, e\, \\ \underline{il\, SCN^\cdot\, rosso\, con\, F}e^{3+}$

<u>Indicatori redox.</u> Rispondono alle variazioni di potenziale del sistema funzionano in modo analogo agli indicatori acido-base

$$In_{ox} + ne \Leftrightarrow In_{red}$$

$$E = E^{\circ} - 0.059/n log [In_{red}] / [In_{ox}]$$

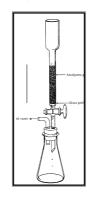
La variazione di colore sarà netta per 2 × 0.059 /n corrispondente alla variazione da 1/10 a 10/1 del rapporto [In $_{\rm red}$] / [In $_{\rm ox}$]

In molti casi nella reazione redox dell'indicatore sono coinvolti H*.

Tipici indicatori redox sono i complessi $\mathrm{Fe^{3+}}$ e derivati della fenantrolina.

<u>Le titolazioni redox sono facilmente rilevabili mediante sistemi potenziometrici!</u>

SEGUE


REAGENTIE TIPI DI TITOLAZIONI REDOX

Spesso è necessario riportare l'analita ad un singolo stato di ossidazione prima di effettuare la titolazione. Se vogliamo titolare utilizzando un ossidante standard dovremo usare un agente riducente <u>ausiliario</u> per l'analita e viceversa. Il reagente ausiliario deve reagire quantitativamente e con l'analita.

Per la riduzione si impiegano metalli quali Zn, Cd, Al, Ni.

 $\begin{array}{lll} & \text{Un } \underline{\text{riduttore Jones}} \ \text{\`e} \ \text{costituito} \ \text{da} \ \text{un amalgama} \\ & \text{di} \ \ \overline{\text{Zn}} \ \ \text{con} \ \ \ \text{Hg}. \ \ \text{L'amalgama} \ \ \text{inibisce} \ \ \text{la} \\ & \text{formazione} \ \text{di} \ \ \text{H}_2 \ \text{per riduzione} \ \text{di} \ \text{H}^*. \end{array}$

Un riduttore Walden è costituito da Ag metallico granulare. Il campione viene passato in soluzione di HCl

Bismutato di sodio. Trasforma il Mn²⁺ in MnO₄

 $\frac{Persolfato~di~ammonlo.}{per~il~MnO_4^-,~Ce^4\cdot e~Cr_2O_7^{2\cdot}} S_2O_8^{2\cdot} + 2e \Leftrightarrow 2~SO_4^{2\cdot} ~~E^\circ = 2.01~V~viene~usato$

Perossido di idrogeno. $H_2O_2 + 2e + 2H^+ \Leftrightarrow 2 H_2O$ $E^\circ = 1.78 \text{ V}$

Le reazioni vengono effettuate in soluzione il reagente in eccesso viene eliminato per filtrazione (bismutato) o portando ad ebollizione (H_2O_2 e $S_2O_8^{2-}$)

RIDUCENTI STANDARD

II maggior problema nell'uso dei riducenti standard è quello dell'ossidazione da parte dell'O $_2$ atmosferico. I più usati sono Fe 2 + (stabile un giorno in acido) e tiosolfito di sodio.

II tiosolfito viene standardizzato con $\,$ KIO $_{\!3}$ (standard primario) e utilizzato con KI. La riduzione da parte di KI dell'analita produce I $_{\!2}$ che viene titolato.

$$\begin{aligned} OCI^{-} + 2 I^{-} + 2 H^{+} &\Leftrightarrow CI^{-} + I_{2} + + H_{2}O \\ &I_{2} + 2 S_{2}O_{3}^{2} &\Leftrightarrow 2 I^{-} + S_{2}O_{4}^{2} \end{aligned}$$

Come indicatore si usa l'amido le cui catene di β -amilosio legano reversibilmente lo iodio e danno un colore blu. Non deve essere presente α -amilosio che da un colore rosso ma lega irreversibilmente.

L'amido deve essere aggiunto poco prima del punto di equivalenza perché si decompone rapidamente in presenza di $I_{\rm 2}$

OSSIDANTI STANDARD

 $\frac{Permanganato\ e\ cerio(IV)}{(intorno\ a\ 1.5\ V)}.\ Possono\ venire\ usati\ per\ lo\ stesso\ tipo\ di\ analiti.\ Le\ differenze\ sono\ nella\ stabilità\ delle\ soluzioni,\ nell'individuazione\ del punto\ di\ equivalenza\ e\ nel\ costo\ dei\ reagenti.$

MnO₄: non è molto stabile in soluzione acquosa perché ossida l'H₂O

 4 MnO_4 + $2 \text{ H}_2\text{O} \Leftrightarrow 4 \text{ MnO}_{2(s)}$ + 3 O_2 + 4 OH^2

Deve essere quindi standardizzato con ossalato di sodio:

 $2\; {\rm MnO_4}^{-} + 5\; {\rm H_2C_2O_4} + 6\; {\rm H^+} \; \Leftrightarrow 2\; {\rm Mn^{2+}} + 10\; {\rm CO_2} + 8\; {\rm H_2O}$

Ha un intenso color porpora e la sua scomparsa può indicare il punto di equivalenza

Ce 4 : è molto stabile, necessita di indicatore (complesso Fe 2 + 1,10-fenantrolina) è più costoso del permanganato.

Dicromato di potassio:

 $Cr_2O_7^{2-} + 14 H^+ + 6 e \Leftrightarrow 2 Cr^{3+} + 7 H_2O$

 $E^{\circ} = 1.33 \text{ V}$

È stabile ed è sufficientemente puro da poter essere utilizzato come standard primario necessita di indicatore (acido difenilammino-solfonico). Viene usato spesso per la titolazione del Fe $^{2+}$.

Iodio

I₃- + 2e ⇔ 3 I-

 $E^{\circ} = 0.536$

È un debole ossidante che serve a titolare riducenti forti. Viene usato soprattutto perché il sistema dispone di un indicatore stabile e reversibile (amido). Deve essere sciolto in soluzioni contenenti KI in cui è ragionevolmente solubile.

 $I_{2(s)} + I \Leftrightarrow I_3$

 $K_s = 7.1 \times 10^{-2}$

Necessita di standardizzazione con tiosolfato di sodio