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The course is split in 4 units

UNIT 1: Univariate analysis
Data, information, models, data types, analytical representation 
of data

Calibration and regression, Introduction to Statistics

Average & Variance

The Normal distribution, theory of measurement errors, the 
central limit theorem and the theorem of Gauss

Maximum likelihood, method of least squares, Generalization of 
the method of least squares

Polynomial regression, non-linear regression, the χ2 method, 
Validation of the model

UNIT 3: Design of Experiments
Basic design of experiments and analysis of the resulting 
data

Analysis of variance, blocking and nuisance variables

Factorial designs

Fractional factorial designs

Overview of other types of experimental designs (Plackett–
Burman designs, D-optimal designs, Supersaturated designs, 
Asymmetrical designs)

Response surface methods and designs

Applications of designed experiments from various fields of 
food science 

UNIT 2: Multivariate analysis
 Correlation

Multiple linear regression

Principal component analysis (PCA)

Principal component regression (PCR) and Partial least squares 
regression - (PLS)

UNIT 4: Elements of Pattern recognition
cluster analysis

Normalization

The space representation (PCA) Examples of PCA

Discriminant analysis (DA) PLS-DA

Examples of PLS-DA



UNIT 2: Multivariate Analysis

Correlation
Multiple linear regression
Principal component analysis (PCA)
Principal component regression (PCR) and 
Partial least squares regression - (PLS)



selective and non-selective measurements

• The measurements can be selective or non-selective
– Selective: the observation is driven by one variable
– Non Selective: The observation is driven by many variables

• The non selective measurements are the objects of the multivariate 
analysis
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Non selective measurements

• Example:
– Spectroscopy

• At a given frequency the absorbance is influenced by more 
than one molecule

– Gas chromatography
• Compounds with similar elution time can contribute to 

chromatographic peak
– Sensors 

• The sensor response is given by the combination of different 
compounds that interfere with the sensors depending on 
concentration and affinity
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Variables and observations space :
selective measurements
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Variables and observations space :
selective measurements
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Multiple Linear Regression

• Multiple linear regression is the most common form of linear regression 
analysis.  As a predictive analysis, the multiple linear regression is used 
to explain the relationship between one continuous dependent variable 
from two or more independent variables.  The independent variables 
can be continuous or categorical .

• Multiple linear regression analysis makes several key assumptions:
• Linear relationship.
• Multivariate normality.
• No or little multicollinearity.
• No auto-correlation.
• Homoscedasticity (The variance around the regression line is the same 

for all values of the predictor variable (X)).
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Multiple Linear Regression
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Multiple Linear Regression

• as for the univariate event we use two steps :
– Calibration: using known Y and X we determine the matrix B (the slope) B
– Procedure: known the matrix B we can have an optimized estimation of X 

by measuring Y

• Calibration:
– Known X and Y the best estimation of B is given by the Gauss-Markov 

theorem :

– If the matrix X has the maximum rank we can calculate the pseudoinverse 
in this way :

• It means that every observation is independent from each other

 BMLR  X  Y

 
BMLR  X T  X 1

 X T Y



MLR meaning 

• In practice BMLR maximize the correlation between X and Y
• Geometrically the Y orthogonal projection In a subspace of X
•  is a matrix in a subspace of X

  
YMLR  X  BMLR  X  X T  X 1

 X T Y  Y

YLS

Y

e

In a linear regression model in which the errors have expectation zero and 
are uncorrelated and have equal variances, the best linear unbiased 
estimator (BLUE) of the coefficients is given by the ordinary least squares 
(OLS) estimator. 



MLR Limitations

• IF the observations of the dependent variable 
are correlated we have to find a method to 
transform them in uncorrelated observations

Regression analysis is concerned with developing the linear regression equation by 
which the value of a dependent variable Y can be estimated given a value of an 
independent variable X. If simple regression analysis is used, the assumptions for this 
technique should be satisfied. The assumption required to develop the linear regression 
equation and to estimate the value of dependent variable by point estimation is: 1. The 
relationship between the two variables is linear. 2. The value of the independent 
variable is a set at various values, while the dependent variable is a random variable. 3. 
The conditional distributions of the dependent variable have equal variances. 
If any interval estimation or hypothesis testing is done, additional required assumptions 
are: 1. Successive observations of the dependent variable are uncorrelated.
2. The conditional distributions of the dependent variable are normal distributions. 



Example
Chlorophyll and anthocyanins in peaches 

using Vis-NIR

• sptectra(Y)
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results

• Matrix coefficient B
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results

• YLS and Y comparison
– Scatter plot: x Axis: true value; y Axis : estimated value
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Principal components analysis (PCA)

Analysis of Variance
PCA and diagonalization of the covariance matrix

Scores and loadings
residual matrix

Applications to image analysis
Applying the multivariate regression: Principal Components Regression (PCR)



Observations space

• Each multivariate measurement is represented 
by a vector in a space to N dimensions

• N is equal to the size of the vector that 
expresses the observation

• The statistical distribution of points (vectors) 
defines the properties of the entire data set.

• For each multivariate data we can define a PDF 
multivariate.

• Important: observations that describe similar 
samples are represented by closest points then 
mutual relation between distance and similarity 
between samples (Hypothesis of pattern 
recognition)
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Multivariate statistics

• the fundamental descriptors for Univariate distribution :
– Average scalar vector
– Variance scalar matrix (covariance matrix)
– ….

• The normal distribution defined in univariate approach it keeps its 
importance in multivariate approach



Covariance matrix

• n probability theory and statistics, a covariance matrix (also known as
dispersion matrix or variance–covariance matrix) is a matrix whose element
in the i, j position is the covariance between the i th and j th elements of a
random vector. A random vector is a random variable with multiple
dimensions. Each element of the vector is a scalar random variable. Each
element has either a finite number of observed empirical values or a finite
or infinite number of potential values. The potential values are specified by
a theoretical joint probability distribution. Because the covariance of the i th
random variable with itself is simply that random variable's variance, each
element on the principal diagonal of the covariance matrix is just the
variance of each of the elements in the vector. Every covariance matrix is
symmetric. In addition, every covariance matrix is positive semi-definite.

• The covariance matrix can be done by : cov(xy)=xTy



Multicollinearity
• Multicollinearity (also co-linearity) is a phenomenon in which two or 

more predictor variables in a multiple regression model are highly 
correlated, meaning that one can be linearly predicted from the others 
with a substantial degree of accuracy. In this situation the coefficient 
estimates of the multiple regression may change erratically in response 
to small changes in the model or the data. Multicollinearity does not 
reduce the predictive power or reliability of the model as a whole, at 
least within the sample data set; it only affects calculations regarding 
individual predictors. That is, a multiple regression model with 
correlated predictors can indicate how well the entire bundle of 
predictors predicts the outcome variable, but it may not give valid 
results about any individual predictor, or about which predictors are 
redundant with respect to others.

• In case of perfect multicollinearity the design matrix  X has less than 
full rank, and therefore the moment matrix  X^(T)*X cannot be 
inverted. Under these circumstances, for a general linear model Y=cX
+ Er, the ordinary least-squares estimator does not exist.



Co-linearity example 
• In an optical spectrum the spectral lines cover a range of wavelengths, this 

interval is generally covered by more spectral channels, so that more 
variables combine to form a spectral line.

• If the line is proportional to a characteristic of the sample (eg. Glucose 
concentration) all the spectral channels related to the line will be 
proportional to the sample characteristic, and then the relative variables 
(columns in the data matrix) will become collinear.

• co-linear variables depend quantitatively by the sample characteristics
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Covariance matrix and co-linearity 

• The co-linearity is expressed by the covariance matrix.
• In case of co-linearity the non-diagonal terms of the covariance matrix 

are nonzero.
• Remove the co-linearity it means manipulating the covariance matrix in 

diagonal form by introducing new latent variables.
• The principal component analysis technique allows, among other 

things, to obtain this result!!



Example of covariance matrix  and points 
probability

– Example of bivariate distribution 
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Multivariate PDF and covariance matrix

• The multivariate distribution only makes sense if the covariance matrix 
describes the parameters correlated with each other, that is, if the 
matrix is not diagonal.

• In fact, for two quantities (x and y) unrelated and independent the 
probability to observe simultaneously the value of x and y is simply the 
product of the two univariate distributions:

 P x,y  P x  P y 
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The covariance matrix in canonical form
• The covariance matrix can be written in diagonal form with an 

appropriate change of the reference system.
• Such a reference system corresponds to the eigenvectors of the 

covariance matrix, ie the main ellipse constructed as quadratic form 
from the covariance matrix itself.

• This operation makes variables uncorrelated  and the PDF as a product 
of the univariate PDF .

• On the other hand the new variables are no longer physical 
observables (object of measurement) but are linear combinations of 
these.

• The new variables are called Principal Components and the set of 
calculation procedures and interpretation of the main components is 
called principal component analysis (PCA)
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Dimension of the data set

• If the variables of a multivariate phenomena have a certain degree of 
correlation then the representative vectors of the phenomenon will 
occupy only a portion of the observation space .

• So a variable of size N will lie in a space of smaller dimension
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Principal Component Analysis

• The purpose of the PCA is the representation of a data set having 
covariance matrix not diagonal and with a space of smaller dimension 
in which the same data are represented by a diagonal covariance 
matrix.

• The diagonalization is achieved with a coordinate rotation in the base 
of the eigenvectors (principal components)

• For each eigenvector it is associated an eigenvalue which corresponds 
to the variance of the associated component. If the original variables 
were partially correlated some eigenvalues have a negligible value.

• In practice the corresponding eigenvectors can be ignored by limiting 
the representation only to eigenvectors with the largest eigenvalues.

• Since the covariance matrix in the base of the main components is 
diagonal, the total variance is the sum of the variances of the individual 
components.



PCA procedure
• Principal component analysis (PCA) is a statistical 

procedure that uses an orthogonal 
transformation to convert a set of observations of 
possibly correlated variables into a set of values 
of linearly uncorrelated variables called principal 
components. The number of principal 
components is less than or equal to the number 
of original variables. This transformation is 
defined in such a way that the first principal 
component has the largest possible variance 
(that is, accounts for as much of the variability in 
the data as possible), and each succeeding 
component in turn has the highest variance 
possible under the constraint that it is orthogonal 
to the preceding components. The resulting 
vectors are an uncorrelated orthogonal basis set. 
PCA is sensitive to the relative scaling of the 
original variables.
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PCA 
• PCA is mostly used as a tool in exploratory data analysis and for making 

predictive models. PCA can be done by eigenvalue decomposition of a data 
covariance (or correlation) matrix or singular value decomposition of a data 
matrix, usually after mean centering (and normalizing or using Z-scores) the 
data matrix for each attribute. The results of a PCA are usually discussed in 
terms of component scores, sometimes called factor scores (the transformed 
variable values corresponding to a particular data point), and loadings (the 
weight by which each standardized original variable should be multiplied to get 
the component score).
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PCA

• PCA is the simplest of the true eigenvector-based multivariate analyses. 
Often, its operation can be thought of as revealing the internal 
structure of the data in a way that best explains the variance in the 
data. If a multivariate dataset is visualized as a set of coordinates in a 
high-dimensional data space (1 axis per variable), PCA can supply the 
user with a lower-dimensional picture, a projection or "shadow" of this 
object when viewed from its (in some sense; see below) most 
informative viewpoint. This is done by using only the first few principal 
components so that the dimensionality of the transformed data is 
reduced.

• PCA is closely related to factor analysis. Factor analysis typically 
incorporates more domain specific assumptions about the underlying 
structure and solves eigenvectors of a slightly different matrix.

• PCA is also related to canonical correlation analysis (CCA). CCA defines 
coordinate systems that optimally describe the cross-covariance 
between two datasets while PCA defines a new orthogonal coordinate 
system that optimally describes variance in a single dataset.
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PCA
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PCA: scores e loadings
• The new coordinates of the vectors corresponding to the observations (the rows 

of the matrix x) in the base of the principal components are called scores
• The coefficients of the linear combinations that define the principal components 

are called loadings
• The loading therefore provides a measure of the contribution of each observable 

to the principal components
• The loadings are also represented as scores as they are the projection of the 

original axes in the subspace identified the principal components, and scores 
and loadings can be plotted together
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PCA matrix Decomposition

  Xnm  Snp  L pm
T  Residual

X =
N

M

N

*
Mscore loading
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Mscore loading
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+ +…+



34

PCA, correlation and noise

• Noise is an additional stochastic term that belongs to every 
observation.

• The noise is the term that makes the measurement a statistical 
operation.

• The principal components describe the directions of maximum 
correlation between the data, for which the higher-order PC are 
oriented towards the directions of maximum correlation and those of 
lower order towards the poor correlation directions

• Decomposing the major components of higher order means holding the 
maximum correlation directions and remove those that are no-
correlated. In no-correlated directions where there is the noise

• The PCA therefore is a method for reducing the noise in a set of 
multivariate data.

• example: spectroscopy, GC, ...
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removing noise :
Reflectance Anisotropy Spectroscopy
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3 SnO2 sensors for 2 gas
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PCA score plot
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PCA bi-plot
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Sensor 1 vs sensor 2
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PCR procedure

X Y
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Xvall

Ycal
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&DATA
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validation



PCR algorithm 

X T

PT

E= * +

XY B= *

Y = T

PT

* B*

PCA

Original problem

PCR



Example: NMR fruits spectra

• We carried out 36 NIR spectra of fruits and we want to create a model 
for humidity and total acidity.

• Each spectrum is formed by 88 variables corresponding to the spectral 
channels in the range of 1.1-2.5 microns.

• For each fruit was measured humidity and acidity with other methods.
• We want the  two parameters of Y from the spectrum X .Therefore is 

necessary to estimate the parameter K

 Y1x 2  X1x 88  K88x 2



X matrix and covariance matrix
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PCA computation

• The spectra average  is reduced to zero therefore if the normal distribution 
assumption is satisfied, the whole information is in the covariance matrix.

• Eigenvectors and eigenvalues calculation 

• The first 3 eigenvalues have values significantly different to zero.
• The 88 spectra, vectors in a dimensional space of 88, are largely limited to a 

subspace dimension of 3.
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Eigenvalue and variance
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Scores e loadings
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Scores plot
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Decomposition and residues
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Principal Components Regression (PCR)

• We divide the dataset into two:
• 26 for the calculation of PCcal model, Ycal
• 10 for the error evaluation PCval, Yval
• The model calculates the regression matrix B pcr

• We calculate an estimation of the validation set (and for comparison 
also of the calibration)

• RMSEC and RMSECV

 

stimaYcal  X cal  BT

stimaYval  X val  BT

 Ycal  X cal  BT  BT  P  1 T T Ycal



results

2 2.5 3 3.5 4 4.5 5
x 10-3

2
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5
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0.058 0.06 0.062 0.064 0.066 0.068 0.07 0.072 0.074
0.055
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0.075

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
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4
x 10-3

0.064 0.065 0.066 0.067 0.068 0.069 0.07 0.071 0.072
0.064

0.066

0.068

0.07

0.072

calibration test

RMSEC acidity=3.1 10-4

RMSEC humidity=0.0013
RMSECV acidity=5.9 10-4

RMSECV humdity=0.0019



Application to the analysis of the images

• A scanned image can be see as an NxM matrix in the case of gray 
scale (black to white scale image) or NxMx3 (in the case of color 
image)

• A picture can consider as a matrix and we can apply the PCA
• The PCA decomposition may bring out some peculiar structures of 

the image allowing to study the characteristics of the image.
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PCA: Application to Image Analysis (example 1: I)
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• STM image of 
Sapphyrin molecules 
growth as a 
Langmuir-Blodgett 
film onto a gold 
substrate.
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PCA: Application to Image Analysis 
(example 1: II)
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  X  S1
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T  L1:15
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PCA: Application to Image Analysis 
(example 1: III)
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• The residuals of the 
expansion at the 
tenth PC put in 
evidence the 
sapphyrine film only.

  X  S1:10
T L1:10
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PCA: Application to Image Analysis 
(example 2: I)

• Caravaggio Deposition
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PCA: Application to Image Analysis 
(example 2: II)
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The normalization problem 

• The normalization is an operation that reduces the matrix  columns (features) to 
zero average (zero average and variance equal to one).

• The autoscaling gives the same weight to every feature, this procedure is good 
if if we are sure that every feature has the same importance in the problem.

• The autoscaling becomes dangerous when one or more features are noisy or 
when the numerical relationships between features are important

• Typical case is the spectroscopy where autoscaling completely destroys the 
information
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Normalization and Pattern Recognition

  X  G = X - 
 
Z = X - 



raw centered autoscaled
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Original data
scaling

(autoscale)
Scaled and 

rotated



PCA and pattern recognition

• The principal component analysis is a method that allow:
• To define features of a new set (linear combination of the original) that 

are uncorrelated between them
• To decompose the variance of the data in the sum of the variance of 

the new axes (principal components)
• To reduce the representation of the pattern to a subspace identified by 

the main components of greatest variance
• To study the contribution of the original features to the core 

components by identifying the most significant higher contribution 
features.



Example: Fruits parameters

• Suppose we have measured the following quantities in peaches: pH, sucrose, glucose, 
fructose, malic acid and citric acid, and we want to study the classification and the 
relationship using these parameters.

pH sucrose glucose fructose malic acid citric acid
baby gold 4.10 8.80 0.80 1.20 0.60 0.20
grezzano 4.0 7.0 0.60 0.80 0.50 0.10
iris rosso 3.50 4.30 0.90 1.0 0.40 0.60
maria aurelia 4.10 7.30 0.80 1.10 0.40 0.60
snow queen 3.90 5.70 0.80 1.30 0.50 0.50
spring star 3.60 9.40 1.40 1.90 1.0 0.50
super crimson 3.70 8.20 1.0 1.10 0.90 0.60
venus 4.10 7.40 1.60 2.20 0.70 0.40
argento roma 3.60 4.40 0.90 1.10 0.40 0.50
beauty lady 3.90 8.30 0.50 0.70 0.60 0.30
big top 4.50 8.60 0.90 1.30 0.50 0.40
doucer 4.40 9.80 0.70 0.80 0.40 0.10
felicia 4.60 9.30 0.50 0.50 0.20 0.20
kurakata 4.40 6.90 0.60 0.80 0.20 0.20
lucie 3.90 6.40 0.80 1.0 0.70 0.20
morsinai 4.10 5.80 1.60 1.90 0.50 0.60
oro 3.80 7.70 0.40 0.40 0.60 0.20
royal glory 4.0 6.70 0.80 0.90 0.40 0.10
sensation 4.70 4.60 2.0 3.40 0.30 0.20
sweet lady 4.20 5.50 1.30 2.10 0.50 0.40
youyeong 4.90 8.80 1.80 2.50 0.20 0.10
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PCA: peaches data
eigenvalues  vs. PC
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Scores Plot
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xi  a s1 bs2  n sn

xi
pca  a  pc1 b  pc2  residual

Residuals representation
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PCA example: peaches data
bi-plot: scores+loadings
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• The sucrose is 
anticorrelated to glucose 
and fructose

• The pH is obviously 
anticorrelated to acids
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PCA example: mineral waters

1 2 3 4 5 6 7 8 90

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Principal Component

Ei
ge

nv
al

ue

Eigenvalue vs. Principal Component

Raw data

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6 x 105

Principal Component

Ei
ge

nv
al

ue

Eigenvalue vs. Principal Component

Autoscaled

The autoscaling makes homogeneous 
the features by increasing the number of 
important dimensions

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5x 105

Principal Component

Ei
ge

nv
al

ue

Eigenvalue vs. Principal Component

centred



69

Mineral waters:
PCA biplot raw data 

• Only features numerically 
significant are important (HCO 
and Ca)

• The other features are around 
the origin and don’t contribute to 
the classification

• HCO and Ca are orthogonal
• Orthogonal means uncorrelated
• Only RES and APP are different 

from others
• in this plot has 98% of the 

variance
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Scree plot 
variance
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• The features contribute 
homogeneously

• The following are groups of 
waters:

• SAN, TER, VER, SAB
• minerals oligo
• PAN
• Oligo but with increase of NO3
• NEP, FER, APP
• Intensification of Mg, HCO, Ca, K
• ULI
• Increasing in Cl, SO4
• For ULI, NEP, FER, APP
• Common increasing of F, Na
• 60% of the variance in this plot
• And the other 40%?

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

SAN

FER

ULI

APP

VERTER

PAN

SAN

NEP

Ca 

Na 

Mg 

K  

NH4

HCO

SO4
Cl 

NO3

F  

SiO

PC 1 (36.56%)

PC
 2

 (2
3.

71
%

)

Biplot: (o) normalized scores, (+) loads

Mineral waters:
Autoscaled PCA biplot



72

Mineral waters:
loadings and scores analysis
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PCA: mineral waters 

• The 2D representation is not sufficient because the distribution of 
eigenvalues. 2D representations capture only different aspects of the 
problem.

Score plot 3D
76% di variance
SAN is separated showing 
specific characteristics 
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4 sensors for 2 gas
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PCA scores
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PCA scores normalization 
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Welfare of Italian regions
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PCA bi-plot
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PCA limitations

• The PCA representation is driven by the data characteristics in 
covariance matrix

• If the data are not normally distributed the covariance matrix does not 
satisfy the statistics of data, so the PCA representation is formally 
incorrect

• The score plot of the PCA is a linear projection from one to N 
dimension space to one dimension in the space 2 or 3. We can have 
false projection effects involving classification errors



Partial Least Squares (PLS)
Partial Least Squares

PLS toolbox di MATLAB



From PCR to PLS
geometric approach 

• The PCR solution is through the decomposition of the data matrix in the matrix 
of the principal components

• The principal components are the directions, in the space of the variables X, 
maximizing the variance and generate a base in which the X data are not 
correlated

• PCR in the principal components  has new variables (not correlated) so becomes 
more easily solved.

• In PLS algorithm  also the Y matrix is decomposed into principal components 
and principal components of X are rotated in the direction of maximum 
correlation to the principal components of Y

• PLS has latent variables, similar to the principal components maximizing the 
variance of both Y and X



Partial least squares regression (PLS regression) is a statistical method that bears 
some relation to principal components regression; instead of finding hyperplanes of 
maximum variance between the response and independent variables, it finds a linear 
regression model by projecting the predicted variables and the observable variables 
to a new space. Because both the X and Y data are projected to new spaces, the 
PLS family of methods are known as bilinear factor models. Partial least squares 
Discriminant Analysis (PLS-DA) is a variant used when the Y is categorical.

PLS is used to find the fundamental relations between two matrices (X and Y), i.e. a 
latent variable approach to modeling the covariance structures in these two spaces. 
A PLS model will try to find the multidimensional direction in the X space that 
explains the maximum multidimensional variance direction in the Y space. PLS
regression is particularly suited when the matrix of predictors has more variables 
than observations, and when there is multicollinearity among X values. By contrast, 
standard regression will fail in these cases (unless it is regularized).

The PLS algorithm is employed in partial least squares path modeling, a method of 
modeling a "causal" network of latent variables (causes cannot be determined 
without experimental or quasi-experimental methods, but one typically bases a 
latent variable model on the prior theoretical assumption that latent variables cause 
manifestations in their measured indicators). 

PLS importance



PLS latent variables computation

X = T * PT + E

Y = U * QT + F

The principal components are calculated maximising the correlation between T and 
U and their variance

 
max corr 2 U ,T ,var U  var T  
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PLS Overfitting

• PLS has overfitting
• The number of latent variables must be optimized in a cross-validation process
• The overfitting is given by the fact that the latent variable k is obtained by fitting 

the subspace of dimension k + 1. The latent variables are not orthogonal to 
each other, there is no limit to the possibility of fitting the data in calibration.

• The cross-validation sets the number latent variables accuracy estimated on the 
validation set. Normally this value is larger than the error obtained from the 
model on the calibration data

• Such errors are quantified by variables:
-RMSEC Root Mean Square Error in Calibration
-RMSECV Root Mean Square Error of Calibration in Validation



Linear or no-linear model
The validation problem 

• Which is the best function that describes the experimental data?
• The One that allows you to predict with minimal error variables that 

have not been used to build the model.
• The operation that allows us to estimate this error is called cross-

validation.

• Example: Consider the following information: y=f(x)+e
– What is the best function that describes the relationship between x and y?

x

y
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solutions

linear No-linear

No-linear



test method

• The data set is divided into two
• The model is determined on a subset of the data (calibration with 

training set)
• The error is evaluated on the subset (test set)
• The prediction of the test set gives significance to the model. The data 

were not used for calibration. So the model can be used in the real 
world to estimate unknown data.



Regression predictors 

• PRESS- Predicted Sum of Squares

• RMSEC - Root Mean Square error of calibration

• RMSECV - Root Mean Square error of Cross-Validation

 
PRESS  yi

LS  yi 2
i


 
RMSEC 

PRESS
N

 
RMSECVk 

PRESSk
N
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Test methods application

The data marked inred are the test set. The model is calculated on the 
remaining data (blue dots).
The error on the test data is evaluated as RMSECV

RMSECV=2.4 RMSECV=0.9 RMSECV=2.2



Discussion

• The best method is moderately non-linear (quadratic)
• The linear method has mistakes both in calibration and testing
• The highly non-linear method has a calibration error null but a high 

testing error. Such a model is "too specialized" in describing the 
calibration data and is not able to generalize.

• This effect is called overfitting and is typical in the case of highly non-
linear models.



Some consideration on the test-set
• The method is very simple but requires several sets of data.
• The selection of the data is not easy in general should be done 

randomly but you have to avoid the two sets unbalancing 
• You should check that the two sets have the same variance and the 

same average
• If the two sets are uncorrelated there may be apparent overfitting 

phenomena
• Apart from simple cases, usually the models fail in the prediction of 

measurements outside the range for calibration.



Leave-One-Out cross-validation
• When the number of data becomes small it is necessary to use other 

strategies for the selection of the feature and the error estimation.
• The most used method is the leave-one-out
• Leave-one-out cross-validation (LOOCV) is a particular case of leave-p-

out cross-validation with p = 1. The process looks similar, however with 
cross-validation you compute a statistic on the left-out sample(s), while 
in the other case you compute a statistic from the kept samples only.

• LOO cross-validation does not have the problem of excessive compute 
time as general LpO cross-validation



LOO linear model

RMSECV=2.12



LOO no linear model

RMSECV=0.96



LOO highly no linear model

RMSECV=3.33
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test – LOO Comparison 

• LOO provides a better estimation of the prediction error than the test 
set whose error estimate is unreliable.

• LOO takes full advantage of the entire data set.
• Obviously LOO is the method with minimum validation.
• For sets of large dimensions LOO is expensive from the points of view 

of the calculation.
• It can be "softened" considering more than k data sets.
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Matlab PLS toolbox
modlgui

• data: 4 sensors TSMR for the measurement of octane and toluene
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modlgui

octane toluene



Principal components and  significant 
directions

• The principal components are the principal axes of the ellipsoid on the 
covariance matrix, nothing assures the fact that these directions are 
important for the problem under consideration

• The "important“ direction can be found using a "supervised" view ie
highlighting some properties of the data set

Principal 
directionSignificant 

direction



Linear discriminant analysis (LDA)

• a linear combination of features that characterizes or separates two or more 
classes of objects or events. The resulting combination may be used as a linear 
classifier, or, more commonly, for dimensionality reduction before later 
classification

• There is a class of basic vectors 
(other than the PC) where the 
separation between classes is 
maximum

• If there are more classes you can 
introduce more directions

• Discriminatory directions are linear 
combination of real variables, you 
can study the contribution of each 
variable to the discriminant direction.



PLS-Discriminant Analysis (PLS-DA)

• PLS is the ideal tool for the solution of linear classification problems.
• Minimizing the classification error, through the score and loading plots 

you can study what are the patterns of the variables that mostly 
contribute to the classification.



PLS-DA
fertilizers methods for apples

• Three fertilizer methods for apples
• 1-Urea, 2-calcium nitrate and potassium, 3- ammonium sulphates 4-

One control
• four classes
• Each apple is characterized by a pattern of seven features:
• Total nitrogen, seed nitrogen, phosphorus, potassium, calcium, 

magnesium, weight

Y X



PLS-DA
fertilizers methods for apples



0.7839 0.4456   -0.0168   -0.2128
1.1728 -0.3482    0.1035    0.0718
0.8882 0.1623    0.0387   -0.0892
0.8729 0.0584   -0.2114    0.2801
0.0515    0.9332 0.0552   -0.0398
0.0116    0.9322 -0.0086    0.0648
0.0748    0.7485 0.0089    0.1678
0.1801    0.7226 0.0919    0.0053
0.0482   -0.1203    0.9887 0.0835
0.0820    0.2404    0.8671 -0.1895

-0.0390   -0.0669    1.0746 0.0313
-0.1771    0.0942    0.9599 0.1230
0.1673   -0.0846    0.1036    0.8137

-0.2136    0.1390   -0.0245    1.0990
0.1372   -0.0736    0.0300    0.9064

-0.0410    0.2174   -0.0608    0.8844 

1     0     0     0
1     0     0     0
1     0     0     0
1     0     0     0
0     1     0     0
0     1     0     0
0     1     0     0
0     1     0     0
0     0     1     0
0     0     1     0
0     0     1     0
0     0     1     0
0     0     0     1
0     0     0     1
0     0     0     1
0     0     0     1

PLS-DA
fertilizers methods for apples

Y true Y estimated



PLS-DA
fertilizers methods for apples

control

urea

Ca-K

N-S

The Scores show:
• The separation between the 

four groups
• From the control we have 

two directions: N-S and 
urea//Ca-K 

The loadings show:
• The N-S treatment 

increases the total nitrogen 
and phosphorus in the seed

• The treatments with urea 
and Ca-K increase 
potassium, magnesium, and 
the weight of the fruit

• The greater amount of 
calcium is found in the 
control apples




