
Mul$variate	regression:	MR/PCR/PLS	



Let’s	start	from	regression	…	

•  Regression	of	a	floa$ng	value	towards	a	fixed	
value	 means	 that	 the	 floa$ng	 value	 is	
progressively	approaching	the	fixed	value.	

•  In	sta$s$cs	‘regression	analysis’	 is	a	sta$s$cal	
process	for	es$ma$ng	the	rela$onship	among	
variables.		

•  In	par$cular:	a	dependent	variable	and	one	or	
more	independent	variables	(or	'predictors').	



Simplest	case:		
linear	regression	between	two	variables	

independent variable: x 
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Linear relationship:  
y = f(x) 
y = mx + q 

Regression parameters:  
m = regression coefficient 
q = intercept 



Regression:	
•  Linear	regression	analysis	helps	to	understand	how	the	typical	

value	 of	 the	 dependent	 variable	 (or	 ‘response	 variable’)	
changes	 when	 that	 of	 the	 independent	 variable	 (or	 factor	
variable)	is	varied.	

•  Typical	value	=	most	common	value	(average	value,	or	mean	if	
the	values	are	normally	distributed).	

•  In	prac$ce,	regression	analysis	es$mates	the	average	value	of	
the	 dependent	 variable	 when	 the	 independent	 variables	 is	
fixed.	

•  At	a	given	level	of	x	defined	as	xi,	y	values	approach	a	value	yi	
calculated	by	the	func$on	y	=	f(x).	



Understanding	regression	
Approach a value does not mean assume a value. 
This because any measured y variables has a variability.  

The yi value calculated by regression is a 
value that closely approches the average 
value of y for that xi level. 

independent variable: x 
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Understanding	regression	
Ideal regression implies y data variability for each x value.  

average value 

If data are normally distributed their frequency 
(density) is higher around the mean value and 
describes a Gaussian curve. 

independent variable: x 
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Understanding	regression	
Since regression uses ‘mean values’ as average values, 
normal (Gaussian) data distribution should be assumed.  

independent variable: x 
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average value 

normal data distribution  



Understanding	regression	
As a statistical tool,  
regression has to deal with  
data variability or uncertainty. 

There is always a 
‘discrepancy’ between 
predicted or expected 
values and observed 
values. 

independent variable: x 
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That’s why,  
regression has to deal with 
‘average values’.  

average value 



Understanding	regression	

The discrepancies  
(or differences) 
between predicted 
and observed values 
are called residuals. 
 
The higher the 
discrepancy, the 
lowest is the 
goodness of the 
regression. 

independent variable: x 
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observed y value 

predicted y value 



Understanding	regression	

independent variable: x 
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Residuals allows to judge the goodness of regression. 
As an example: let’s start from the same experimental 
points and try to draw two different regression lines which 
depicts data trend at a glance. 

GOOD NOT GOOD 

y = m1x + q1 

independent variable: x 
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 y = m2x + q2 



Understanding	regression	

independent variable: x 
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At a first glance, the differences between expected and 
predicted values (residuals) are higher in the graph on the 
right side. 

GOOD NOT GOOD 

y = m1x + q1 y = m2x + q2 



Understanding	regression	

independent variable: x 
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independent variable: x 
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In both graphs residuals could show negative values (below the 
regression line) or positive values (above the regression line). 
Negative values mean that predicted values are higher than observed, 
positive values mean that observed values are higher than predicted. 

GOOD NOT GOOD 

y = m1x + q1 y = m2x + q2 



Understanding	regression	

independent variable: x 
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independent variable: x 
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The sum of residuals in both cases is equal to zero since 
the positive and the negative deviations (or errors) from 
the regression lines are equal. The sum of residuals is 
not a good indicator of goodness of fit. 

GOOD NOT GOOD 

y = m1x + q1 y = m2x + q2 



Understanding	regression	
The sum of the squares of residuals (RSS), which is 
always higher than zero (since squares are always 
positive), is much higher in the case reported in the graph 
on the right than in the case reported in graph on the left. 

GOOD NOT GOOD 

independent variable: x 
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 y = m2x + q2 

independent variable: x 
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 y = m1x + q1 



Understanding	regression	
The sum of the squares of residuals (RSS) is generally 
preferred to the sum of absolute values of residuals, which 
is also always higher than zero (since absolute values are 
always positive), because squaring stresses the 
differences among values.  

Linear regression is 
performed by computer 
p r o g r a m s t h a t 
modulate the values of 
l i n e a r r e g r e s s i o n 
parameters m and q 
until a combination m1, 
q1, which minimizes 
the RSS, is found. 

independent variable: x 
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y = m1x + q1 



Understanding	regression	
Since regression minimizes the sum of the squares of 
residuals (RSS) is also called least square regression. 

Sta t i s t i ca l compu te r 
programs uses different 
algorithms in order to 
minimize the RSS. 
An algorithm is a step-by-
step set of operations to 
b e  p e r f o r m e d 
consecutively. 
T h e m o s t c o m m o n 
algorithm is the Marquadt. independent variable: x 
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y = m1x + q1 



Goodness	of	fit	

R2 =1− RSS
TSS

The residuals sum of squares (RSS) could be used to 
evaluate the goodness of fit but, generally the coefficient 
of determination or R2 is preferred to this purpose.  

The total sum of squares (TSS) is the sum of the squares 
of y values.  

R2 is a number that indicates the proportion of the 
variance in the dependent variable y that is predictable 
from the independent variable x. 

Proportion of variance  
intrinsic to y variable 



Variance	and	covariance	
•  R2	account	only	for	y	variability	or	variance.	
•  In	 the	 case	 of	 a	 rela$onship	 between	 x	 and	 y	 both	 the	 variables	

vary.	
•  In	 sta$s$cs,	covariance	 is	a	measure	of	 the	 joint	variability	of	 the	

two	(x	and	y)	variables.		
If	 the	 greater	 values	 of	 one	 variable	 (x)	mainly	 correspond	with	 the	
greater	 values	 of	 the	 other	 variable	 (y)	 (and	 the	 same	 holds	 for	 the	
lesser	 values),	 the	 covariance	 is	 posi$ve	 and	 the	 variables	 tend	 to	
show	similar	behavior.	
In	 the	opposite	case,	when	the	greater	values	of	one	variable	mainly	
correspond	to	the	lesser	values	of	the	other,	the	covariance	is	nega$ve	
and	the	variables	tend	to	show	opposite	behavior.		



Covariance	calcula$on	

•  In	 case	 x	 and	 y	 have	 equal	 probability	 (equal	
probability	 distribu$ons	 or	 probability	 density	
func$ons),	covariance	could	be	calculated	as:	

cov(x, y) = 1
N

(xi −E(x))(yi −E(y))
i=1

i=N

∑

Where: 
E(x) = xip = predicted yi values 
xi = xio = observed yi values 
E(y) = yip = predicted yi values 
yi = yio = observed yi values 
N = number of xy observations 



Correla$on	coefficient	(r)	
Pearson's	correla*on	coefficient	(r	or	ρ)	 is	the	covariance	of	the	two	
variables	divided	by	the	product	of	their	standard	devia$ons.	
	
	
	
	
	
	
	
	
	
Is	 a	 measure	 of	 the	 linear	 dependence	 (correla$on)	 between	 two	
variables	x	and	y.	 It	has	a	value	between	+1	and	−1,	where	1	 is	 total	
posi$ve	 linear	 correla$on,	 0	 is	 no	 linear	 correla$on,	 and	 −1	 is	 total	
nega$ve	linear	correla$on.	

ρx,y =
cov(x, y)
σ x ⋅σ y



R2	and	r	
In	 case	of	a	 linear	 regression	between	a	finite	 set	of	 x	and	y	values	equally	
distributed:	
	
	
	
	
	
	
	
	
	
Generally	three	assump$ons	should	be	sa$sfied	for	linear	regression	analysis	with	two	
variables:	
1.	the	rela$onship	between	y	and	x	should	be	linear;	
2.	y	should	be	normally	distributed;	
3.	x	and	y	values	should	be	equally	distributed.		
	
	

r = R2
Important! 
The two variables have different meanings and are 
differently calulated, but, in case of a linear regression, 
they could be easily derived one from the other. 



Understanding	regression	

These two regression lines have thus the same R2 
because they have the same RSS/TSS ratio.  

independent variable: x 
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The line on the right has more variability of y values around 
each mean value (higher RSS) but also higher total y values 
variability  (higher TSS).  



Understanding	regression	

These two regressions have different errors of estimation (σest).  
independent variable: x 
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independent variable: x 
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The line on the right has more variability of y values and 
thus the estimation of y given an x value is less precise.  

σest 

σest 



Understanding	regression	
Standard	Error	of	Es$ma$on	(σest)	
or	Root	Mean	Square	Error	(RMSE)		
or	Root	Mean	Square	Devia$on	(RMSD)	

	
		
RMSE = RSS

N
=

(yip − yio )
i=1

i=N

∑
N

Where: 
RSS = residual sum of squares 
yip = predicted yi values 
yio = observed yi values 
N = number of y observations 



Understanding	regression	
RMSE	could	be	expressed	as	an	absolute	value	or	as	a	percentage	
(CVRMSE):		
	
	
	
	
	
Where	y	is	the	mean	value	of	all	yi	data	
	
CVRMSE	permits	to	compare	the	results	of	regressions	carried	out	
on	 different	 set	 of	 samples	 since	 it	 is	 independent	 from	 both	
sample	size	and	the	mean	value	of	the	dependent	variable	(y).	

CVRMSE = RMSE
y

⋅100 =

(yip − yio )
i=1

i=N

∑
N
y

⋅100



Understanding	regression	
The	 concept	 of	 RMSD	 or	 RMSE	 is	 generally	 applied	 to	 studies	
with	a	big	amount	of	data.	
When	we	have	a	big	amount	of	data	 (n	>	30)	 the	number	of	 y	
values	is	high	enough	to	assume	that	our	data	are	a	popula$on	
of	data.	
	

The	mys$c	number	30	was	suggested	by	an	osserva$on	of	William	Gosset,	a	
sta$s$cian	 and	 Head	 Brewer	 for	 Guinness,	 which	 published	 several	 ar$cles	
under	the	pseudonymous	of	Student.	
	

However	 it	should	be	pointed	out	that	he	never	said	that	30	was	a	 ‘magic	number’,	
but,	by	comparing	the	correla$on	coefficients	of	a	n	sample	with	that	of	a	popula$on,	
he	concluded:	“with	samples	of	30	…	the	mean	value	of	a	correla9on	coefficient	of	a	
sample	 approaches	 the	 real	 value	 of	 the	 correla9on	 coefficent	 of	 a	 popula9on	
compara9vely	rapidly”.	
Student	 (1908).	Probable	error	of	a	 correla$on	coefficient.	Biometrika,	 6	 (2-3):	302–
310.	

	



With	a	limited	set	of	data	…	

The	 N	 number,	 which	 compares	 in	 the	 calcula$on	 of	
RMSE	and	r,	is	low	(<	30).	
	
When	 the	 N	 number	 is	 very	 low,	 we	 could	 not	 have	
enough	data	to	carry	out	a	regression.	
	

Why?	



With	a	limited	set	of	data	…	
A	 standard	 devia$on	 (σ)	 is	 necessary	 to	 describe	 the	
variability	of	an	x	variable	in	a	sample	with	a	limited	number	
of	observa$on.	
	
	
	
	
	
	
	
In	order	to	calculate	(σ)	the	mean	value	x	should	be	computed,	so	a	
bond	is	introduced	in	a	system.	
The	 bond	 is	 a	 parameter	 that	 is	 not	 free	 to	 vary;	 so	 when	 we	
introduce	 a	 bond,	 is	 like	 that	 we	 limit	 the	 variability	 of	 x	 of	 one	
degree.	

σ = SD =
(xi − x )

i=1

i=N

∑
N −1



With	a	limited	set	data	…	
In	 the	 same	 way,	 when	 we	 perform	 a	 linear	 regression	
analysis	betwwen	an	x	variable	and	a	y	variable,	the	m	and	
q	parameters	should	be	calculated.	
m	and	q	are	the	bonds	in	linear	regression	analysis		
The	bond	 is	a	parameter	 that	 is	not	 free	 to	vary;	 so	when	
we	introduce	two	bonds,	is	like	that	we	limit	the	variability	
of	y	(the	dependent	variable)	of	two	degrees.	
	
The	degree	of	freedom	in	a	regression	are:	N	-	2	



With	a	limited	set	of	data	…	
σest	or	Root	Mean	Square	Error	(RMSE)	for	a	sample	

	
	
	
RMSE	could	be	expressed	as	CVRMSE	as	well:		
		

RMSE = RSS
(N − 2)

=
yp − yo( )∑
(N − 2)

Where: 
RSS = residual sum of squares 
yp = predicted y values 
yo = observed y values 
N = number of y observations 
2 = n° of regression parameters 

CVRMSE = RMSE
y

⋅100 =

yp − yo( )∑
(N − 2)
y

⋅100



Regression	implies	an	error	

Since regression implies an error of approximation 
(which could be described by RMSE), the formula 
of a regression line could be written as: 
 
y = mx + q + e 
 
where: 
m: regression coefficient 
q: intercept 
e: error of estimation	
	
		



ε	and	degree	of	freedom	(dof)	

For regression purposes a degree of freedom is needed. 
independent variable: x 
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Since we have two bonds (one for each regression 
parameter: m and q) we need at leat three experimental 
point to perform a linear regression. 

independent variable: x 
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between two points, only 
one line could pass - 
no degree of freedom 
no error of estimation 

with three points, there is one 
degree of freedom - 

the line with the lowest RSS 
could be calculated 

y = mx + q y = mx + q + ε	



Non	linear	regression	
Modern	 sta$s$cal	programs	could	
ca r r y	 ou t	 a l so	 non	 l i nea r	
regression.	
	

Examples:	

	
	
	
		

quadratic cubic 
polynomial relationships 

asymptotic relationships 

exponential relationship 



Non	linear	models	
Non	linear	models	could	have	more	than	two	
parameters.	
	

Quadra$c	model:	
	

y	=	ax2	+	bx	+	q	(q	being	the	intercept)	

Cubic	model:	
	

y	=	ax3	+	bx2	+	cx	+	q	(q	being	the	intercept)	
	

Asympto$c	model:	
	
		

y =     x      + q (q being the intercept) 
      a + bx 



Non	linear	models	

Each	 addi$onal	 parameter	 is	 a	 new	 bond	 and	 thus	 an	 addi$on	
data	point	is	required	to	guarantee	a	degree	of	freedom.	
	
Linear	regression	requires	at	least	three	data	points.	
	
Quadra$c	regression	requires	at	leat	four	data	points.	
	
Asympto$c	regression	requires	at	least	four	data	points.	
	
Cubic	regression	requires	at	leat	five	data	points.	
	
and	so	on	…	
	

		



Non	linear	regression	
For	calcula$on	purposes,	non	 linear	regression	(NLR)	
uses	 the	 minimiza$on	 of	 RSS	 criterion	 similarly	 to	
linear	regression	(LR).	
	

RSS	and	R2	are	calculated	in	the	same	way	as	LR.	
	

The	 Marquadt	 algorithm	 could	 be	 used	 as	 well	 for	
NLR.	
	

In	order	to	calulate	RMSE,	the	number	of	parameters	
should	be	taken	into	account	(parameters	=	bond).	
	
Aqen$on!!!	In	non	linear	regression:		
	
	

		
	
	
	
		

r ≠ R2



Mul$variate	regression	(MR)	

Multiple regression analysis helps to understand 
how the typical value of the dependent variable 
(or 'criterion variable') changes when that of more 
than one independent variables (predictors) is 
varied. 
 
z = f(x,y) 
 
Since it is a regression … 
 
z = f(x,y) ± ε        where	ε is	the	error	of	es$ma$on.	



Simplest	case:		
linear	 regression	between	a	dependent	variable	and	
two	independent	variables	(factor	variables)	

independent variable: x 
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y = mx + q z = m1x + m2y + q 



Simplest	case:		
linear	 regression	between	a	dependent	variable	and	
two	independent	variables	(factor	variables)	

independent variable: x 
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independent variable: x 
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z = m1x + m2y + q z = m1x + m2y + q 
m1 > 0 ; m2 > 0 ; q > 0 m1 < 0 ; m2 < 0 ; q > 0 



Mul$variate	regression	(MR)	
The regression model is a polynomial model that 
has additive properties and could have one or 
more independent variables. 
 
y = m1x1 + m2x2 + m3x3 + m4x4 + … mixi + q ± ε  
 
where: 
xi is an independent variable 
mi is the regression coefficient of xi (-∞	<	m	<	∞) 

q	is	the	intercept	(-∞ < q < ∞)	
ε  is	the	error	of	es$ma$on.	
red	leqers	correspond	to	regression	parameter	



Mul$ple	linear	regression	model	

Mul$ple	 linear	 regression	 (MLR)	models	have	more	 than	
two	parameters.	
	
Each	 addi$onal	 parameter	 is	 a	 new	 bond	 and	 thus	 an	
addi$on	data	point	 is	 required	 to	guarantee	a	degree	of	
freedom.	
	
The	 simplest	 model:	 z	 =	 ax	 +	 by	 +	 q,	 with	 three	
parameters,	 requires	 at	 least	 four	 data	 point	 for	
calcula$on	purposes.	
	

		
		



Combined	effects:		
MLR	 could	 consider	 combined	 effect	 between	
independent/factor	variables	(es.	xy)	

independent variable: x 
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z = m1x + m2y + m3xy + q z = m1x + m2y m3xy + q 
m1 > 0 ; m2 > 0 ; m3 > 0; q > 0 m1 < 0 ; m2 < 0 ; m3 < 0; q > 0 



MLR	combined	effects	
When m3 is > 0 
 

Synergistic effect (the combined effect is higher 
than the sum of the effects of the two variables) 
 
m1m2 > m1 + m2  
 
When m3 is < 0 
 
Antagonistic effect (the combined effect is lower 
than the sum of the effects of the two variables) 
 
m1m2 < m1 + m2  



z = m1x2 + m2x + m3y2 + m4y + q z = m1x2 + m2x + m3y2 + m4y + q 
 m1 < 0 ; m2 < 0 ; m3 < 0 ; m4 < 0 ; q > 0 m1 > 0 ; m2 < 0 ; m3 > 0 ; m4 < 0 ; q > 0 
 

Mul$ple	regression:		
could	consider	non	linear	effects	
quadra$c	effects	



Mul$variate	regression	(MR)	
A second degree regression model between one 
dependent variable (z) and two independent/factor 
variables (x,y). 
 
z = m1x2 + m2x + m3y2 + m4y + m5xy + q ± ε  
 
where: 
x and y are an independent variable 
mi is the regression coefficient of a variable (-∞	<	m	<	∞) 

q	is	the	intercept	(-∞ < q < ∞)	
ε  is	the	error	of	es$ma$on.	
red	leqers	correspond	to	regression	parameters	



Mul$variate	linear	regression	(MLR)	

In case of combined and quadratic effects, MLR 
could be carried out by using both original variables 
(e.g. x and y) and calculated variables (x2, y2, xy) 
 
This is a x and y data linearization procedure that 
allows to fit z data that are not linearly correlated to 
x and y, by using a linear model. 



Limits	of	mul$variate	regression	(MLR)	

 
MLR could be imply the use of many factors. 
 
Multivariate linear regression requires that 
independent/factor variables are not correlated 
among them. 
 
When the number of factors gets too large (e.g. 
greater than the number of observations), it is 
possible to have data overfitting. 
 



Par$al	MLR	for	factor	reduc$on	

•  Par*al	 mul*ple	 regression	 analysis	 could	 be	 carried	
out	in	order	to	reduce	the	number	of	x	variables.	

•  In	 Par$al	MLR	 each	 variable	 is	 inserted	 in	 the	model	
using	 a	 stepwise	 method	 (one	 by	 one/step	 by	 step)	
and	its	regression	coefficient	is	calculated	by	setng	all	
the	other	variables	constant.	

•  This	tecnique	does	not	take	 into	account	the	effect	of	
other	variables	in	the	model	and	could	cause	a	loss	of	
informa$on.	



Stepwise	analysis	
•  Forward	stepwise	analysis:	variables	are	inserted	one	by	one	in	the	

model	 star$ng	 from	 the	 x	 variable	 that	 is	 most	 significantly	
correlated	to	y	(in	terms	of	r	and	p)	and	its	regression	coefficient	is	
calculated	by	setng	all	the	other	variables	constant,	then	another	
variable	 is	 inserted.	 When	 the	 first	 x	 variable	 non	 significantly	
correlated	to	y	is	encountered,	it	 is	removed	from	the	model.	This	
removal	 process	 is	 repeated	 for	 all	 the	 other	 uncorrelated	
variables.	

•  Backward	stepwise	analysis:	all	variables	are	inserted	in	the	model,	
then	the	x	variables	that	are	less	correlated	to	y	(in	terms	of	r	and	
p)	 are	 removed	 from	 the	 system	 one	 by	 one	 and	 the	 regression	
coefficients	of	other	variables	are	recalculated	each	$me	by	par$al	
regression.	 When	 the	 first	 significantly	 correlated	 variable	 is	
iden$fied	by	the	analysis,	the	procedure	of	removal	is	stopped.	



Overfitng	due	to	many	factors	
The blue curve which is polynomial model, with n 
factorial variables, fits data perfectly (R2 = 1). 
 

When new data (red dots) are added, the model fails to 
predict them. 
 

A simple linear model with only one factor works better 
in prediction. 
 

y 

x 



Valida$on	

Validation with an external data set (full cross 
validation) could be used to test/avoid overfitting. 
 

Another possibility is to carry out leave-one-out 
validation (LOOV) . 
 

LOOV validation, uses all but one sample to 
calculate a MLR model and different MLR models 
are calculated by leaving each sample out from the 
data set.  
 

Given n data, n models are obtained. The one that 
better predicts the leaved out sample is the best. 



Correla$on	among	factors	(MLR)	

Another limit of MLR is correlation among factors 
 
Correlation coefficient r between x and y variables 
(or among all xi independent variables) should be 
tested. 
 
If the probability value (p) associated to r for a 
given N number of observations is significant, MR 
could not be performed. 
 



Significance	 of	 correla$on	 among	
factors	

Could	be	determined	by	computer	program.	
	
Could	be	found	in	sta$s$cal	tables	which	reports	
r	and	p	values	as	a	func$on	of	N.	
	
In	 the	 laqer	 case,	 care	 should	 be	 taken	 in	
correc$ng	N	by	taking	into	account	the	number	
of	bonds.	



Correla$on	and	collinearity	

When	 there	 are	 a	 lot	 of	 independent	 variables	
(factor	 variables)	 or	 combina$ons	 among	 them	
(quadra$c	 or	 combined	 effects)	 is	 more	
probable	 to	 find	 significant	 correla$ons	 among	
some	of	the	factor	variables.	
	
In	 this	 case	 it	 is	 likely	 to	 have	 collinearity	 of	
variables	 (e.g.	 factor	 x	 increase	 or	 decrease	
lienarly	with	the	increase	of	factor	y)	



MLR	limits	

•  The	 overfitng	 of	 MLR	 models	 could	 be	
avoided	by	stepwise	analysis	and	valida$on.	

•  Correla$on	among	variables,	when	present,	is	
a	 limit	 that	 could	 not	 be	 overcome	 without	
resor$ng	to	latent	variables	extrac$on.	



Significance	of	correla$on	and	PCR	

When	factors	are	many	and	highly	collinear	among	
them:	
•  It	 is	 possible	 to	 carry	 out	 a	 PCA	 analysis	 and	
extract	 new	 latent	 variables	 (PCs)	 that	 are	 not	
correlated	among	them	by	construc$on.		

•  Then,	it	is	possible	to	carry	out	a	MLR	or	a	MNLR	
by	using	PCs	instead	of	the	original	variables.	

This	 procedure	 is	 called	 Principal	 Component	
Regression	(PCR).	



Principal	Component	Regression	
PCR	 permits	 to	 carry	 out	 MLR	 or	 MNLR	 avoiding	 the	
problem	of	independent	variables/factor	correla$on.	
	
PCs	 explain	 only	 the	 maximum	 variance	 within	 a	 given	
variables	data	set	and	do	not	consider	the	varia$on	of	an	
average	 dependent/response	 variable	 (e.g.	 y	 variable)	
value	 with	 the	 varia$on	 of	 the	 average	 values	 of	
independent/factor	variables	(e.g.	n	x	variables).	
	
For	this	reason	PCs	could	not	be	the	best	latent	variables	
to	 take	 in	 considera$on	 in	order	 to	 carry	out	a	mul$ple	
regression	 analysis	 using	 latent	 variables	 (or	 latent	
structures).	



Mul$ple	regression	by	PLS	

The	acronym	PLS	stands	for:	
Par*al	Least	Square	
but	nowadays	the	best	defini$on	is	retained:	
Projec*on	on	Latent	Structure	
since	 the	 regression	 is	 not	 performed	 by	 using	
the	 original	 xi	 variables	 but	 using	 a	 number	 of	
new	 variables	 called	 components	 calculated	
from	 a	 linear	 combina$on	 of	 the	 original	
variables.	



Extrac$on	of	components	
PCA	 calculates	 components	 that	 maximize	 the	
explained	variance	of	the	data	matrix.	
	

PLS	calculates	components	(latent	structures)	by	
seeking	 direc*ons	 in	 a	 n	 dimensional	 space	
defined	by	a	set	of	x	variables.	
	

A	direc$on	correspond	to	new	factor	described	
by	 a	 vectors)	 that	 are	 associated	 to	 an	 high	
varia$on	of	the	response	y	variables.	



‘Components’	or	‘Factors’?	

Some	 texts	 (or	 sta$s$cal	 computer	 programs)	
define	 the	 components	 calculated	 by	 PLS	 as	
factors	but,	in	some	cases,	this	defini$ons	could	
be	 misleading,	 since	 the	 original	 independent	
variables	 (x	 variables)	 are	 also	 called	 factorial	
variables	or	factors.	
	
Hereby,	 in	 these	 slides,	 they	 will	 be	 defined	
components	in	order	to	avoid	misleading.	



Why	‘latent	structures’?	

Components	 are	 latent	 structures;	 that	 is	
variables	whose	existence	is	inferred	(deducted)	
from	 the	 exis$ng	 rela$onship	 among	 observed	
items		(factors	and	response	variables).	
	

Since	 the	 latent	 structure	 are	 calculated	 by	
observing	 a	 rela$onship	 (linear	 rela$onship)	
among	variables,	PLS	 is	a	regression	method	by	
defini$on;	for	this	reason	many	researchers	call	
it	‘PLS’	and	not	‘PLS	regression’.	
	
	



Extrac$on	of	components	

Similarly	 to	 PCA,	 PLS	 calculates	 a	 number	 of	
components	 (latent	 structures)	 that	 are	 linear	
combina$ons	of	the	original	variables.	
	

The	number	of	 components	 could	 range	 from	 i	
(where	 i	 is	 the	 number	 of	 the	 original	 factor	
variables)	to	1.		
	

n	components	explain	the	100%	of	y	variability.	
	



Original	data	matrix	for	PLS	

x1	 x2	 x3	 x4	 x5	 …	 xn	

x11	 x21	 x31	 x41	 x51	 …	 xn1	
x12	 x22	 x32	 x42	 x52	 …	 xn2	
x13	 x23	 x33	 x43	 x53	 …	 xn3	
x14	 x24	 x34	 x44	 x54	 …	 xn4	
x15	 x25	 x35	 x45	 x55	 …	 xn5	
x16	 x26	 x36	 x46	 x56	 …	 xn6	
x17	 x27	 x37	 x47	 x57	 …	 xn7	
x18	 x28	 x38	 x48	 x58	 …	 xn8	
x19	 x29	 x39	 x49	 x59	 …	 xn9	

…	 …	 …	 …	 …	 …	 …	

x1i	 x2i	 x3i	 x4i	 x5i	 …	 xni	

y	

y1	
y2	
y3	
y4	
y5	
y6	
y7	
y8	
y9	

…	

yi	

where: 
y i s t h e d e p e n d e n t 
(response)  variable 
xn are the (independent) 
factor variables 
i  i s t h e n u m b e r o f 
observations 
 



Data	matrix	azer	PLS	extrac$on	

C1	 C2	 C3	 C4	 C5	 …	 Cn	

C11	 C21	 C31	 C41	 C51	 …	 Cn1	
C12	 C22	 C32	 C42	 C52	 …	 Cn2	
C13	 C23	 C33	 C43	 C53	 …	 Cn3	
C14	 C24	 C34	 C44	 C54	 …	 Cn4	
C15	 C25	 C35	 C45	 C55	 …	 Cn5	
C16	 C26	 C36	 C46	 C56	 …	 Cn6	
C17	 C27	 C37	 C47	 C57	 …	 Cn7	
C18	 C28	 C38	 C48	 C58	 …	 Cn8	
C19	 C29	 C39	 C49	 C59	 …	 Cn9	

…	 …	 …	 …	 …	 …	 …	

C1i	 C2i	 C3i	 C4i	 C5i	 …	 Cni	

y	

y1	
y2	
y3	
y4	
y5	
y6	
y7	
y8	
y9	

…	

yn	

where: 
y i s t h e d e p e n d e n t 
(response)  variable 
Cn are the components 
calculated by PLS analysis 
i  i s t h e n u m b e r o f 
observations 



PLS	model	

The	final	PLS	model	is:	

y	=	m1C1	+	m2C2	+	m3C3	+	…	+	mnCn	+	q	+	ε	
	

where:	
C	is	a	calculated	component	(latent	structure)		
mn	is	the	regression	coefficient	of	xi	(-∞	<	m	<	∞)	
q	is	the	intercept	(-∞	<	q	<	∞)	
ε  is	the	error	of	es$ma$on	
red	leqers	correspond	to	regression	parameter	
	



PLS	model	
Since	components	are	linear	combina$ons	of	the	original	factor	
variables	 (xn),	 sta$s$cal	 programs	 could	 easily	 recalculate	 the	
model	using	xn	as	variables.	

y	=	m1x1	+	m2x2	+	m3x3	+	…	+	mixn	+	q	+	ε	
	
where:	
x	is	the	original	factor	variable	
mi	is	the	regression	coefficient	of	xi	(-∞	<	m	<	∞)	
q	is	the	intercept	(-∞	<	q	<	∞)	
ε  is	the	error	of	es$ma$on	
red	leqers	correspond	to	regression	parameter	
	



Extrac$on	of	components	
	

n	components	explain	the	100%	of	y	variability.	
	

By	 taking	 into	 account	 the	 components	 that	
account	for	the	maximum	y	variability,	PLS	could	
be	used	to	reduce	the	system	dimensionality.	
	

If	 the	 number	 of	 components	 is	 too	 large	 (for	
example	 greater	 than	 the	 number	 of	
observa$on)	 overfitng	 could	 occur	 also	 in	 PLS	
regression	analysis.	
	
	



Regression	technique	
Even	 though	 it	 is	 carried	 out	 with	 calculated	
components	 (latent	 structures)	 instead	 of	 original	
variables,	 PLS	 uses	 the	 least	 square	 method	 for	
regression	purposes.	
	

By	 considering	 only	 the	 components	 that	 account	 for	
the	maximum	y	variability,	PLS	could	be	used	to	reduce	
the	system	dimensionality.	
	

If	the	number	of	components	is	too	large	(for	example	
greater	 than	 the	 number	 of	 observa$on)	 overfitng	
could	occur	also	in	PLS	regression	analysis.	

	
	



PLS	and	‘par$al’	least	square	
•  PLS	method	uses	a	 ‘par*al	 regression	analysis’,	which	
means	 that	 each	 variable	 (component	 in	 this	 case)	 is	
inserted	 to	 the	model	 using	 a	 stepwise	method	 (step	
by	 step)	and	 its	 regression	coefficient	 is	 calculated	by	
setng	all	the	other	variables	constant.	

•  This	tecnique	does	not	take	 into	account	the	effect	of	
other	variables	(components)	in	the	model	but	the	use	
of	 latent	 structures	 offers	 the	 advantage	 that	 the	
variables	 are	 not	 correlated	 among	 them,	 thus	 their	
effect	is	independent	from	the	variable	to	be	inserted.	



Overfitng	in	PLS	
The blue curve which is a PLS model, with n factorial 
variables (LS), fits data perfectly (R2 = 1). 
 

When new data (red dots) are added, the model fails to 
predict them. 
 

A simple PLS model with only one factor works better in 
prediction. 
 

y 

x 



Avoiding	overfitng	

•  Iden$fica$on	 of	 the	 number	 of	 components	 which	
significantly	 increase	 the	 percent	 varia$on	 of	 the	
response	variable	(y)	of	the	PLS	model.	

5 n e w c o m p o n e n t s 
(Factors) calculated from 
10 original factor variables 
could account for the 
99.54% of the response 
variable variation. 



Valida$on	of	PLS	

Validation with an external data set (full cross 
validation) could be used to avoid overfitting. 
 

Another possibility is to carry out leave-one-out 
(LOOV) validation. 
 

LOOV validation, uses all but one sample to 
calculate a MLR model and different MLR models 
are calculated by leaving each sample out from the 
data set.  
 

Given n data, n models are obtained. The one that 
better predicts the leaved out sample is the best. 



Avoiding	overfitng	by	valida$on	
Iden$fica$on	 of	 the	 number	 of	 components	 which	
significantly	 decrease	 the	 RMSE	 of	 calibra$on	 of	 the	
model	 (RMSEC)	 and	 the	 RMSE	 of	 predic$on	 or	
valida$on	(RMSEV)	of	the	PLS	model.	

Number of components 

R
M

S
E

 

In the case of the results reported 
on the graph, 4 components, out 
of 15 calculated components, are 
enough to minimize RMSEV below 
10% and to reduce the RMSEC to 
a value that is lower than that of 
RMSEV (about 5%). 



Visualiza$on	of	PLS	results	
P

re
di

ct
ed

 v
al

ue
s 

Observed values 

Calibration set 
Validation set An	 o b s e r v e d	 v s	

predicted	 data	 plot	
for	 calibra$on	 and	
valida$on	 sets	 could	
offer	 an	 opportunity	
t o	 v i s u a l i z e	 t h e	
goodness	of	fit	of	the	
regression	model.	



Orthogonal	PLS	(O-PLS)	
Components	 extracted	 by	 PLS	 are	 orthogonal	 among	
them	for	construc$on.	
	

However	 since	 PLS	maximizes	 the	 dependent	 variable	
(y)	variance	at	the	varia$on	of	the	factor	variables	(xn),	
it	 is	possible	 to	have	 some	systema$c	varia$on	 in	 the	
response	 variable	 that	 is	 unrelated,	 or	 orthogonal,	 to	
the	factors	variables.	
	

O-PLS	 is	 a	 data	 pre-treatment	 used	 to	 avoid	 y	
systema$c	varia$on	unrelated	to	x	variables.	
	

It	is	very	usefull	in	spectrometric	data	processing.	



PLS	and	PLS2	

•  PLS	regression	could	be	performed	both	using	
one	single	y	variable	and	a	set	of	y	variables.	

•  Just	in	the	case	that	y	variables	are	more	than	
one		(y1,	y2,	y3,	…	yn)	PLS	is	defined	as	PLS2.	

•  PLS	 maximizes	 the	 dependent	 variables	 (yn)	
variance	 at	 the	 varia$on	 of	 the	 factor	
variables	(xn).	



Original	data	matrix	for	PLS2	

x1	 x2	 x3	 …	 xn	

x11	 x21	 x31	 …	 xn1	
x12	 x22	 x32	 …	 xn2	
x13	 x23	 x33	 …	 xn3	

…	 …	 …	 …	 …	

x1i	 x2i	 x3i	 …	 xni	

where: 
yn are the dependent (response)  variables 
xn are the (independent) factor variables 
i is the number of observations 

y1	 y2	 y3	 …	 yi	

y11	 y21	 y31	 …	 yn1	
y12	 y22	 y32	 …	 yn2	
y13	 y23	 y33	 …	 yn3	

…	 …	 …	 …	 …	

y1i	 y2i	 y3i	 …	 yni	



Data	matrix	azer	PLS2	extrac$on	

C1	 C2	 C3	 …	 Cn	

C11	 C21	 C31	 …	 Cn1	
C12	 C22	 C32	 …	 Cn2	
C13	 C23	 C33	 …	 Cn3	

…	 …	 …	 …	 …	

C1i	 C2i	 C3i	 …	 Cni	

where: 
yn are the dependent (response)  variables 
Cn are the components (or factors) extracted by PLS analysis 
i is the number of observations 

y1	 y2	 y3	 …	 yi	

y11	 y21	 y31	 …	 yn1	
y12	 y22	 y32	 …	 yn2	
y13	 y23	 y33	 …	 yn3	

…	 …	 …	 …	 …	

y1i	 y2i	 y3i	 …	 yni	



PLS	Discriminant	Analysis	(PLS-DA)	
As	previously	discussed,	PLS	is	a	regression	analysis.	
	

However,	since	PLS2	maximizes	the	dependent	variable	
(yn)	 variance	 at	 the	 varia$on	 of	 the	 factor	 variables	
(xn),	it	is	possible	to	use	PLS2	as	a	discriminant	analysis	
by	 using	 y	 variables	 as	 classifica$on	 variables	 and	 by	
applying		0-1	binomial	values	to	each	yn	variable.	
	

When	a	sample	does	not	belong	to	a	y	class,	its	values	
for	that	class	is	0;	whilst	when	a	sample	belongs	to	a	y	
class,	its	value	for	that	class	is	1.	
	

PLS-DA	maximizes	the	varia$on	of	yn	at	varia$on	of	xn.	



Data	matrix	for	PLS-DA	
x1	 x2	 x3	 …	 xn	

x11	 x21	 x31	 …	 xn1	

x12	 x22	 x32	 …	 xn2	

x13	 x23	 x33	 …	 xn3	

x14	 x24	 x34	 …	 xn4	

x15	 x25	 x35	 …	 xn5	

x16	 x26	 x36	 …	 xi6	

x17	 x27	 x37	 …	 xn7	

x18	 x28	 x38	 …	 xn8	

x19	 x29	 x39	 …	 xn9	

…	 …	 …	 …	 …	

…	 …	 …	 …	 …	

…	 …	 …	 …	 …	

…	 …	 …	 …	 …	

…	 …	 …	 …	 …	

x1i	 x2i	 x3i	 …	 xn1	

y1	 y2	 y3	

1	 0	 0	

1	 0	 0	

1	 0	 0	

1	 0	 0	

1	 0	 0	

0	 1	 0	

0	 1	 0	

0	 1	 0	

0	 1	 0	

0	 1	 0	

0	 0	 1	

0	 0	 1	

0	 0	 1	

0	 0	 1	

0	 0	 1	

This example is for three 
grouping variable but in 
PLS-DA there is no limit 
for grouping variables. 



Data	matrix	azer	PLS-DA	extrac$on	
C1	 C2	 C3	 …	 Cn	

C11	 C21	 C31	 …	 Cn1	

C12	 C22	 C32	 …	 Cn2	

C13	 C23	 C33	 …	 Cn3	

C14	 C24	 C34	 …	 Cn4	

C15	 C25	 C35	 …	 Cn5	

C16	 C26	 C36	 …	 Ci6	

C17	 C27	 C37	 …	 Cn7	

C18	 C28	 C38	 …	 Cn8	

C19	 C29	 C39	 …	 Cn9	

…	 …	 …	 …	 …	

…	 …	 …	 …	 …	

…	 …	 …	 …	 …	

…	 …	 …	 …	 …	

…	 …	 …	 …	 …	

C1i	 C2i	 C3i	 …	 Cn1	

y1	 y2	 y3	

1	 0	 0	

1	 0	 0	

1	 0	 0	

1	 0	 0	

1	 0	 0	

0	 1	 0	

0	 1	 0	

0	 1	 0	

0	 1	 0	

0	 1	 0	

0	 0	 1	

0	 0	 1	

0	 0	 1	

0	 0	 1	

0	 0	 1	

This example is for three 
grouping variable but in 
PLS-DA there is no limit 
for grouping variables. 



Orthogonal	PLS-DA	(O-PLS-DA)	

O-PLS	 is	 a	 data	 pre-treatment	 used	 to	 avoid	 y	
systema$c	varia$on	unrelated	to	x	variables.	
	

It	 is	 very	 useful	 in	 spectrometric	 data	
processing.	
	

O-PLS	data	pre-treatment	could	be	used	also	for	
PLS-DA	 and	 this	 improves	 the	 classifica$on	
power	of	PLS-DA.	



O-PLS	pretreatment	for	classifica$on		



Exercise	

-  Carry	out	PLS-DA	on	the	data	set	used	for	PCA	
and	LDA	analysis	

-  Individuate	 the	 three	 most	 important	
components	for	classes	discrimina$on	

-  Visualize	data	using	3D	graph	



Original	table	
Group	 Age	 V1	 V2	 V3	 V4	 V5	 V6	 …	 Vn	

CR	 2	 1.05	 26.65	 3.90	 27.19	 2.37	 1.48	 …	 1.01	

CR	 15	 0.64	 7.23	 4.76	 35.98	 3.01	 1.29	 …	 1.51	

CR	 30	 1.10	 6.26	 4.90	 24.39	 4.03	 1.53	 …	 1.34	

CR	 60	 0.89	 2.80	 1.87	 18.21	 3.85	 6.98	 …	 1.05	

CR	 90	 0.73	 3.99	 0.00	 20.28	 2.07	 7.01	 …	 0.57	

CR	 180	 1.18	 1.93	 2.03	 13.66	 4.56	 6.55	 …	 1.15	

KR	 2	 0.18	 1.95	 3.73	 21.31	 3.69	 4.02	 …	 0.52	

KR	 15	 0.54	 0.04	 5.05	 16.89	 2.29	 2.95	 …	 1.28	

KR	 30	 0.33	 2.31	 5.39	 29.44	 3.72	 4.23	 …	 0.81	

KR	 60	 0.43	 1.40	 9.49	 10.38	 1.35	 2.92	 …	 0.64	

KR	 90	 0.57	 1.18	 9.53	 9.30	 0.84	 5.42	 …	 0.9	

KR	 180	 0.43	 1.88	 6.65	 14.61	 2.03	 2.75	 …	 1.03	

PR	 2	 0.35	 2.69	 11.07	 10.21	 0.46	 2.84	 …	 0.77	

PR	 15	 0.45	 4.65	 8.77	 11.77	 0.33	 4.03	 …	 0.82	

PR	 30	 2.74	 0.86	 11.35	 7.47	 0.93	 1.27	 …	 1.18	

PR	 60	 0.87	 0.60	 16.12	 5.22	 0.28	 3.95	 …	 1.05	

PR	 90	 0.43	 0.68	 13.66	 6.72	 0.35	 2.11	 …	 1.3	

PR	 180	 0.31	 1.68	 11.77	 8.17	 0.43	 1.47	 …	 1.76	



Data	matrix	for	PLS-DA	
V1	 V2	 V3	 V4	 V5	 V6	 …	 Vn	

1.05	 26.65	 3.90	 27.19	 2.37	 1.48	 …	 1.01	

0.64	 7.23	 4.76	 35.98	 3.01	 1.29	 …	 1.51	

1.10	 6.26	 4.90	 24.39	 4.03	 1.53	 …	 1.34	

0.89	 2.80	 1.87	 18.21	 3.85	 6.98	 …	 1.05	

0.73	 3.99	 0.00	 20.28	 2.07	 7.01	 …	 0.57	

1.18	 1.93	 2.03	 13.66	 4.56	 6.55	 …	 1.15	

0.18	 1.95	 3.73	 21.31	 3.69	 4.02	 …	 0.52	

0.54	 0.04	 5.05	 16.89	 2.29	 2.95	 …	 1.28	

0.33	 2.31	 5.39	 29.44	 3.72	 4.23	 …	 0.81	

0.43	 1.40	 9.49	 10.38	 1.35	 2.92	 …	 0.64	

0.57	 1.18	 9.53	 9.30	 0.84	 5.42	 …	 0.9	

0.43	 1.88	 6.65	 14.61	 2.03	 2.75	 …	 1.03	

0.35	 2.69	 11.07	 10.21	 0.46	 2.84	 …	 0.77	

0.45	 4.65	 8.77	 11.77	 0.33	 4.03	 …	 0.82	

2.74	 0.86	 11.35	 7.47	 0.93	 1.27	 …	 1.18	

0.87	 0.60	 16.12	 5.22	 0.28	 3.95	 …	 1.05	

0.43	 0.68	 13.66	 6.72	 0.35	 2.11	 …	 1.3	

0.31	 1.68	 11.77	 8.17	 0.43	 1.47	 …	 1.76	

CR	 KR	 PR	

1	 0	 0	

1	 0	 0	

1	 0	 0	

1	 0	 0	

1	 0	 0	

1	 0	 0	

0	 1	 0	

0	 1	 0	

0	 1	 0	

0	 1	 0	

0	 1	 0	

0	 1	 0	

0	 0	 1	

0	 0	 1	

0	 0	 1	

0	 0	 1	

0	 0	 1	

0	 0	 1	



Results	

The plot of y scores 
along the first two 
c o m p o n e n t s 
p e r m i t t e d  t o 
discriminate among 
classes. 



Variables	



Variables	for	classifica$on	

The reg ress ion 
coefficient between 
x a n d y c o u l d 
p e r m i t  t o 
i n d i v i d u a t e t h e 
mos t impo r t an t 
v a r i a b l e s  f o r 
s a m p l e s 
classification out of 
t h e 5 5 i n i t i a l 
variables. 



Results	

PLS-DA	was	carried	out	on	the	data	set.	
	

2	 components	 permiqed	 to	 discriminate	
samples	 to	 classes	 and	 to	 individuate	 the	most	
important	variables	for	sample	classifica$on.	
	

The	results	were	well	presented	by	plotng	the	
y	scores	of	samples	on	the	plane	defined	by	C1	
and	C2.	
	


