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background: Marijuana, the most used recreational drug, has been shown to have adverse effects on human reproduction. Endogen-
ous cannabinoids (also called endocannabinoids) bind to the same receptors as those of D9-tetrahydrocannabinol (THC), the psychoactive
component of Cannabis sativa. The most extensively studied endocannabinoids are anandamide (N-arachidonoylethanolamine, AEA) and
2-arachidonoylglycerol. The endocannabinoids, their congeners and the cannabinoid receptors, together with the metabolic enzymes and
putative transporters form the endocannabinoid system (ECS). In this review, we summarize current knowledge about the relationships
of ECS, sex steroid hormones and cytokines in female fertility, and underline the importance of this endocannabinoid–hormone–cytokine
network.

methods: Pubmed and the Web of Science databases were searched for studies published since 1985, looking into the ECS, sex
hormones, type-1/2 T-helper (Th1/Th2) cytokines, leukaemia inhibitory factor, leptin and reproduction.

results: The ECS plays a pivotal role in human reproduction. The enzymes involved in the synthesis and degradation of endocannabi-
noids normalize levels of AEA for successful implantation. The AEA degrading enzyme (fatty acid amide hydrolase) activity as well as AEA
content in blood may potentially be used for the monitoring of early pregnancies. Progesterone and oestrogen are involved in the mainten-
ance of endocannabinoid levels. The ECS plays an important role in the immune regulation of human fertility.
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conclusions: The available studies suggest that tight control of the endocannabinoid–hormone–cytokine network is required for suc-
cessful implantation and early pregnancy maintenance. This hormone–cytokine network is a key element at the maternal– foetal interface,
and any defect in such a network may result in foetal loss.
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Introduction
Endocannabinoids are a group of fatty-acid derivatives that bind to,
and activate, the cannabinoid receptors (Di Marzo, 1998) and have
several roles in both the central nervous system (CNS) and the per-
iphery (Fride, 2002). Anandamide (N-arachidonoylethanolamine:
AEA) (Devane et al., 1992)—the first endocannabinoid to be ident-
ified—was isolated from porcine brain and was closely followed by
2-arachidonoylglycerol (2-AG) (Mechoulam et al., 1995; Sugiura
et al., 1995). Most studies conducted to date involve either AEA or
2-AG, which are prototype members of fatty-acid amides and mono-
acylglycerols, respectively. However, several novel endocannabinoids
have been identified, including O-arachidonoylethanolamine (virodha-
mine) (Porter et al., 2002), N-arachidonoyldopamine (Bisogno et al.,
2000) and N-arachidonoyltaurine (Saghatelian et al., 2004). In addition,
N-oleoylethanolamine (OEA), N-palmitoylethanolamine (PEA) and
N-stearoylethanolamine are ‘endocannabinoid-like’ congeners that
are thought to exhibit an ‘entourage’ effect by inhibiting AEA and
2-AG degradation (Ben-Shabat et al., 1998; De Petrocellis et al.,
2004). AEA is released along with OEA and PEA when neurons,
somatic cells and reproductive cells are stimulated, and are rapidly
removed by re-uptake and hydrolysis to modulate signalling processes
(Freund et al., 2003). AEA, OEA and PEA are present in human
seminal plasma, mid-cycle oviductal fluid, follicular fluid, amniotic
fluid and milk (Schuel et al., 2002).

Endocannabinoids mimic several actions of the major pharmacologi-
cally active component D9-tetrahydrocannabinol (THC) of Cannabis
sativa (Piomelli, 2004).

The use of Cannabis is associated with implantation failure, spon-
taneous miscarriage, foetal growth restriction and premature birth in
humans (Fergusson et al., 2002).

Increasing evidence confirms the significance of endocannabinoids in
reproductive events such as folliculogenesis, spermatogenesis (Wang
et al., 2006a, b, c; Taylor et al., 2007; Battista et al., 2008b), fertiliza-
tion, oviductal transport, implantation and embryo development
(Wang et al., 2006a, b, c; Battista et al., 2007, 2008a; Taylor et al.,
2007) it is known that these events are under the control of
steroid hormones and cytokines. Several studies have now shown
direct effects of these steroids on elements of the ECS (Maccarrone
et al., 2000a, b, 2003a, b). In this review, we examine the role of
sex steroids, cytokines and the ECS in the regulation of female fertility.

Methods
A literature research of Pubmed and the Web of Science databases was
performed using the terms ‘endocannabinoid system’, ‘anandamide’, ‘sex
steroid hormones’, ‘LIF’, ‘Th1/Th2 cytokines’, ‘Leptin’ and ‘reproduction’
for studies published between 1985 and the present. We only included
articles published in the English language about studies in human and
mammals. Studies in non-mammalian species were not included.

The endocannabinoid system
Endocannabinoids, including AEA and 2-AG, bind to G-protein-
coupled cannabinoid receptors (CB1 and CB2) (Pertwee and Ross,
2002; Sugiura et al., 2002). The biological effects of AEA and 2-AG
are terminated by cellular uptake via a putative endocannabinoid
membrane transporter (EMT), followed by enzymatic degradation
(see below-mentioned text). The endocannabinoids, their congeners
and the cannabinoid receptors, together with the metabolic
enzymes and purported transporters, form the ECS. This system is
summarized in Fig. 1.

Metabolism: biosynthesis, transport
and degradation of AEA and 2AG
Biosynthesis
The biosynthesis of AEA occurs on demand. Its precursor is
N-arachidonoylphosphatidylethanolamine (NAPE), which is formed by
the transfer of arachidonic acid (AA) from the sn-1 position of
1,2-sn-di-arachidonoylphosphatidylcholine to phosphaditylethanolamine.
This process is catalyzed by a calcium-dependent N-acyltransacylase
(Sugiura et al., 2002). NAPE is then cleaved into AEA and phosphatidic
acid (PA) by NAPE-hydrolyzing phosopholipase D (NAPE-PLD), which
is the member of the metallo-b-lactamase family with calcium-sensitive
enzyme activity (Okamoto et al., 2004; Wang et al., 2006a, b, c).

Recently, additional pathways for the synthesis of AEA have been
proposed: the double deacylation of NAPE by an a/b hydrolase 4
to generate glycerophospho-AEA, which is then cleaved by a phos-
phodiesterase to AEA (Simon and Cravatt, 2008); another pathway
involves the cleavage of NAPE by a phospholipase C (PLC) to phos-
phoanandamide, which is followed by dephosphorylation to release
AEA (Liu et al., 2006). Alternatively, secretory phospholipase A2 can
hydrolyze NAPE to lyso-NAPE, which is further hydrolyzed to AEA
by a lyso-phospholipase D (Sun et al., 2004). Figure 2 summarizes
the synthetic pathway of AEA. The synthesized AEA is released into
the extracellular space, where it may act in an autocrine or paracrine
way through activation of cannabinoid receptors (see below-
mentioned text) (Piomelli et al., 2000).

2-AG is also released from the membranes on demand after the
conversion of diacylglycerol (DAG) to 2-AG by sn-1-DAG lipase
(DAGL). The key intermediate DAG can either be produced from phos-
phatidylinositol (PI) by PLC activity or alternatively from PA by a PA
hydrolase (Bisogno et al., 1999). Another pathway for 2-AG synthesis
involves the actions of a PI-preferring PLA1, producing lyso-PI, which is
then converted to 2-AG by lyso-PI-selective PLC (lyso-PLC) (Fig. 3).

Transport and degradation
The activity of AEA is terminated first by its removal from the extra-
cellular space via a putative EMT (Ben-Shabat et al., 1998) and then by
intracellular degradation by either fatty acid amide hydrolases, FAAH-1

348 Karasu et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/hum

upd/article-abstract/17/3/347/1395563 by guest on 14 M
arch 2020



Figure 1 The ECS: synthesis and degradation of AEA and 2-AG (Taylor et al., 2010). AEA and 2-AG bind to the putative EMT. AEA can also bind to
the transient vanilloid receptor type 1 (TRPV1). AEA is synthesized by the enzymes N-acyltransacylase (NAT) and NAPE-PLD and degraded by
FAAH1/2 to AA and ethanolamine. COX-2 converts AEA to prostaglandin-ethanolamines. 2-AG is synthesized by sn-1-DAGL and degraded by
MAGL/FAAH-2 to AA and glycerol. Abbreviations: PLC, phospholipase C; CBR, cannabinoid receptor; EMT, endocannabinoid membrane transpor-
ter; AEA, N-arachidonoylethanolamine; 2AG, 2-arachidonoylglycerol; AA, arachidonic acid; FAAH, fatty acid amide hydrolase; MAGL, monoacylgly-
cerol lipase; NAPE, N-arachidonoylphosphatidylethanolamine; NAT, N-acyltransacylase; COX, cyclo-oxygenase; TRPV1, transient vanilloid receptor
type 1; PLD, phospholipase D.

Figure 2 Biosynthetic pathways of AEA. NAPE, produced from membrane phospholipids by NAT, is the key intermediate for the synthetic path-
ways as described in the text. Abbreviations: PE, phosphatidylethanolamine; PC, 1,2-sn-di-arachidonyolphosphatidylcholine; NAT, N-acyltransferase;
NAPE, N-arachidonoylphosphatidylethanolamine; Abh4, a/b hydrolase 4; GP-AEA, glycerophospho-N-arachidonoylethanolamine; sPLA2, secretory
phospholipase A2; lyso-PLD, lyso-phospholipase D; PLC, phospholipase C; pAEA, phosphoanandamide.
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(McKinney and Cravatt, 2005) or FAAH-2 (Wei et al., 2006) or the
lysosomal N-acylethanolamine-hydrolyzing acid amidase (Tsuboi
et al., 2005) to AA and ethanolamine (De Petrocellis et al., 2004).
There are alternative pathways for AEA degradation, such as trans-
formation to 12-hydroxy-AEA by 12-lipoxygenase (12-LOX) (Van
der Stelt et al., 2002) or inactivation by cyclo-oxygenase (COX)-2 oxi-
dation into prostaglandin-ethanolamide (Rouzer and Marnett, 2008)
(Fig. 4a). There is still-controversy about the transmembrane move-
ment of AEA. Cellular models support the hypothesis of a carrier
protein for AEA transport in a process of facilitated diffusion (Giuffrida
et al., 2000; Hillard and Jarrahian, 2000), but this protein has not yet
been identified (Glaser et al., 2003). Other proposed transport mech-
anisms include simple diffusion (Kathuria et al., 2003) or intracellular
sequestration of AEA (McFarland et al., 2004). So far, several research
groups have shown that AEA cellular uptake is dependent on its con-
centration gradient and does not require ATP (Hillard et al., 1997).

2-AG, on the other hand, is degraded by either FAAH or monoa-
cylglycerol lipase (MAGL) to AA and glycerol (Fergusson et al., 2002).
MAGL is primarily found in the cytosol and FAAH in membranes of
the microsomal and mitochondrial sub-cellular fractions. In addition,
COX-2 and LOXs can degrade 2-AG to prostaglandin-glycerol
esters (Kozak et al., 2002) and hydroxyeicosatetraenoyl-glycerols
(Van der Stelt et al., 2002), respectively (Fig. 4b).

Endocannabinoid receptors
Classical cannabinoid receptors—CB1 and CB2
Endocannabinoids are ligands for the cannabinoid receptors type 1
(CB1) and type 2 (CB2) (Howlett et al., 2002). These are
G-protein-coupled seven transmembrane spanning receptors which
show 44% overall identity (Devane et al., 1988; Howlett et al.,
2002). CB1 was first described in rat brain (Devane et al., 1988)
and thought to be present mainly in the CNS, but it is now also

known to be present in peripheral tissues, such as the ovary,
uterine endometrium, testis, liver, heart, small intestine, urinary
bladder and peripheral cells, such as lymphocytes (Bouaboula et al.,
1993; Pertwee, 1997; Pertwee and Ross, 2002). The CB2 receptor
was first isolated from rat spleen and human myeloid cells (Munro
et al., 1993), and was also thought to be mainly expressed in
immune cells (Pertwee, 1997; Pertwee and Ross, 2002) but it has
now been localized in other tissues, such as central neurons

Figure 3 Biosynthetic pathways of 2-AG. 2-AG is produced via a DAG or lyso-PI intermediate. DAG can also be produced via PA. Abbreviations:
DAG, diacylglycerol; DAGL, sn-1-DAG lipase; PLC, phospholipase C; PLA1, phospholipase A1; lyso-PI, lyso-phosphatidylinositol.

Figure 4 Degradation of AEA and 2-AG. (a) AEA is inactivated by
FAAH-1, FAAH-2 or NAAA-mediated hydrolysis into AA and etha-
nolamine, or by COX-2 oxidation into prostaglandin-ethanolamide
(PGE2-EA) or via 12-LOX into 12-hydroxy-AEA (12-HAEA).
(b) 2-AG signalling is mainly terminated by MAGL or FAAH or by
COX-2 oxidation into (PGE2-GE). 2-AG can also be oxidized to
12-HETE-G via 12-LOX catalysis. Abbreviations: NAAA,
N-acylethanolamine-hydrolyzing acid amidase.
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(Viscomi et al., 2009), embryonic stem cells (ESCs) (Sharov et al.,
2003), human placenta (Helliwell et al., 2004), myometrium
(Dennedy et al., 2004), ovary (El-Talatini et al., 2009a, b), gastrointes-
tinum (Fioramonti and Bueno, 2008), liver (Mallat and Lotersztajn,
2008) and heart (Pacher and Steffens, 2009).

Activation of the CB1 receptor stimulates mitogen-activated protein
(MAP) kinases (Bouaboula et al., 1995) and inhibits adenylyl cyclase
(Paria et al., 1995), leading to reduced levels of cyclic adenosine
monophosphate (cAMP). Activation of the CB1 receptor results in
decreased opening of voltage-gated calcium channels and stimulates
potassium channels (Howlett et al., 2004). CB2 activation, on the
other hand, stimulates MAP kinases and cytosolic PLA2, but it does
not regulate ionic currents. Furthermore, CB2 activation inhibits
nitric oxide synthase, whereas CB1 activates it (Howlett et al.,
2004; Demuth and Molleman, 2006). Nitric oxide has been shown
to play an important role in several critical processes in female repro-
duction, including ovulation, implantation, pregnancy maintenance,
labour and delivery (Maul et al., 2003).

AEA has a high affinity for the CB1 receptor, whereas 2-AG has a
low affinity for the receptor but high efficacy (Sugiura et al., 1999).
While AEA is only a partial agonist of CB2, 2-AG has a high affinity
for the CB2 receptor and is a full agonist for both CB1 and CB2 sub-
types (Howlett et al., 2004; Demuth and Molleman, 2006). In this
context, it should be noted that growing evidence suggests that CB1
is localized within membrane microdomains called ‘lipid rafts’ (Bari
et al., 2005), whereas CB2 is not (Bari et al., 2006). Additionally,
AEA is present in both raft and non-raft domains, whereas 2-AG is
present in lipid rafts only (Rimmerman et al., 2008). Against this back-
ground, it remains to be established whether 2-AG can really bind to
CB2 receptors in vivo. There is, therefore, a need to classify which CB
receptor subtype is activated by which endocannabinoid.

Non-CB1/CB2 G-protein-coupled receptors
In addition to the established cannabinoid receptors CB1 and CB2,
two putative CB receptors (GPR55 and GPR119) have been identified.
These are G-protein-coupled orphan receptors (McPartland et al.,
2006) and their associations with the ECS have been discussed in
detail in recent reviews (Godlewski et al., 2009; Ross, 2009; Moriconi
et al., 2010).

GPR55 mRNA has been located in various brain regions, testis,
ileum, spleen, tonsils and adipose tissue (Brown, 2007). Studies have
shown that AEA and 2-AG have no consistent effect on GPR55
(Ryberg et al., 2007; Henstridge et al., 2009; Yin et al., 2009).
However, lyso-PI appears to be a ligand for GPR55 (Henstridge
et al., 2009; Yin et al., 2009) and triggers extracellular signal-regulated
kinase (ERK) phosphorylation and a rise in calcium levels (Oka
et al., 2007). GPR55 seems to be involved in pain control (Staton
et al., 2008).

GPR119 mRNA has been found mainly in pancreatic and gastroin-
testinal tissues (Chu et al., 2007; Lauffer et al., 2009) and seems to play
a role in obesity and diabetes. It has been shown that OEA binds to
GPR119 and thereby increases intracellular cAMP (Overton et al.,
2006). Other effects of GPR119 activation include the stimulation of
adenylyl cyclase and protein kinase A activity (Chu et al., 2007;
Lauffer et al., 2009).

Vanilloid receptors
The type-1 vanilloid receptor (TRPV1) (Szallasi and Blumberg, 1999) is
a ligand-gated non-selective cationic channel that belongs to the TRP
family of proteins. TRPV1 is activated by capsaicin and stimuli, such as
heat and protons (Szallasi and Blumberg, 1999). TRPV1 is synthesized
in cells outside the peripheral nervous system—for example, keratino-
cytes, epithelial and endothelial cells (Caterina, 2003), and has also
been found in various brain areas (Mezey et al., 2000).

Endovanilloids are the endogenous ligands that bind to, and activate,
TRPV1 (Di Marzo et al., 2001a; Van Der Stelt and Di Marzo, 2004).
The first identified endovanilloid was AEA (Zygmunt et al., 1999)
which, unlike 2-AG, binds to and activates TRPV1 at a cytosolic
binding site, triggering non-selective ion-channel activation of protein
kinases, calcium influx and release of cytochrome c (Szallasi and Blum-
berg, 1999; Maccarrone and Finazzi-Agrò, 2003). Cannabinoid and
TRPV1 receptors are often found in the same organs, tissues and
cells, where they can have opposing or similar functions (Ahluwalia
et al., 2003; Cristino et al., 2006). It is noteworthy that in striatal
neurons, AEA inhibits the metabolism and physiological actions of
2-AG at CB1 receptors, through a TRPV1-dependent mechanism
(Maccarrone et al., 2008).

Based on the different signal transduction pathways activated by
AEA and 2-AG, it is understandable that endocannabinoids have
different biological roles within the CNS and peripheral tissues
(Fride, 2002; Sugiura et al., 2006; Smita et al., 2007), especially
when the receptors are differentially located. One such emerging
role is the regulation of reproduction (Battista et al., 2007, 2008a;
Taylor et al., 2007).

ECS and female reproduction
In animal studies, it has been shown that the ECS plays a pivotal role in
reproduction. Endocannabinoid signalling pathways are involved in fer-
tilization, oviductal transport, implantation, embryo development and
maintenance of early pregnancy (Battista et al., 2007, 2008a; Taylor
et al., 2007). AEA is now thought to be the key link between the
developing embryo and the endometrium, ensuring synchronous
development of the preimplantation embryo and the endometrium,
thereby facilitating to permit embryo implantation during the ‘implan-
tation window’.

The metabolically stable AEA-analogue (R-methanandamide) stimu-
lates hyperactive motility of human sperm during in vitro capacitation at
0.25 nM, and inhibits hyperactivated motility at 2.5 nM (Schuel et al.,
2002). These findings suggest that localized differences in AEA con-
centration may modulate sperm capacitation within the human
oviduct.

Studies on cultured bovine oviductal epithelial cells indicate that
AEA modulates attachment of sperm to epithelial cells by activating
CB1 receptors (Gervasi et al., 2009), which suggests an important
role of endocannabinoid-signalling in regulating the migration of
sperm to the site of fertilization within the oviduct. After fertilization
in the oviduct, the fertilized egg undergoes mitotic divisions to form
a morula. The morula develops to a blastocyst, which consists of an
inner cell mass (ICM) and the trophectoderm. The ICM forms the
embryo and the trophectoderm develops to become the placenta
and extra-embryonic membranes. A reciprocal interaction between
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the blastocyst and a receptive uterus is essential for successful
implantation.

Previous studies on mice have localized the expression of CB1 and
CB2 receptors in preimplantation embryos, whereas only CB1 recep-
tors are found in the oviduct and uterus (Paria et al., 1995, 2001;
Wang et al., 2004).

In addition, both CB1 and CB2 mRNAs have also been found in the
preimplantation mouse embryo; CB1 mRNA is detected from the
4-cell stage to the blastocyst stage and CB2 mRNA is detected
from the 1-cell stage onwards (Battista et al., 2007) (Fig. 5). CB2 is
expressed in the ESCs but not in the trophectoderm and CB1 is
found in the trophectoderm (Paria et al., 1995). More recently, a sys-
tematic study of the presence of elements of the ECS in mouse ESCs
has revealed, in addition to classical CB1 and CB2 receptors, also
TRPV1 at mRNA, protein and binding levels (Bari et al., 2010).
Remarkably, ESCs were found to possess the mRNA, protein and
activity of the enzymes required to synthesize and degrade AEA (i.e.
NAPE-PLD and FAAH) and 2-AG (i.e. DAGL and MAGL), and
both endocannabinoids were detected in these cells (Bari et al., 2010).

CB1 seems to play an important role in the control of oviductal
transport and embryo development. Studies with CB1 knockout and
wild-type mice showed pregnancy loss in the knockout group (Paria

et al., 2001; Wang et al., 2004), suggesting that the expression of
CB1 in the blastocyst is required for implantation. CB1 deficiency
causes embryo retention in the oviduct and resultant ectopic preg-
nancy. When wild-type females were exposed to the stable AEA ana-
logue methanandamide or to THC the embryos were retained in the
oviduct (Wang et al., 2004). A more recent study has confirmed low
CB1-mRNA expression in the Fallopian tubes and endometrium of
women with tubal pregnancies (Horne et al., 2008). It seems therefore
that both silenced and enhanced cannabinoid signalling can impair
embryo development. Furthermore, in vitro studies have demonstrated
the involvement of the endocannabinoids, via CB1, in the storage and
capacitation of boar spermatozoa in the oviduct (Talevi et al., 2010).
AEA has also been shown to depress motility and capacitation of
human spermatozoa (Rossato et al., 2005), thereby prolonging the
fertile sperm period until the periovulatory signals release the sperm
from the oviductal epithelium (Hunter, 2008).

Normal gestation is based on early immunological adaptation invol-
ving peripheral T-lymphocytes (Maccarrone and Finazzi-Agrò, 2004).
Studies have shown that CB2 is involved in the release of cytokines
related to fertility (Correa et al., 2005; Borner et al., 2006). CB2
receptors have been found in the first trimester human placenta
(Helliwell et al., 2004) suggesting a role for these receptors in

Figure 5 Preimplantation embryo and endocannabinoid signalling in blastocyst implantation. The enzymes NAPE-PLD and FAAH are expressed in
the oviduct: NAPE-PLD is more highly expressed at the isthmus than the ampulla, whereas FAAH expression is higher at the ampulla. CB2 mRNA and
NAPE-PLD are detected from the 1-cell stage onwards, whereas FAAH is expressed from the 2-cell stage and CB1 mRNA from the 4-cell stage
onwards. There are low NAPE-PLD levels and high FAAH levels at the implantation site, resulting in low AEA concentration, which is favourable
for implantation. At the inter-implantation site, high NAPE-PLD and low FAAH activity result in high AEA concentrations, which are not conducive
to implantation.
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placentation and perhaps also in maternal– foetal signalling (Maccar-
rone, 2008).

The enzymes involved in the synthesis and degradation of endocan-
nabinoids normalize the levels of AEA for successful implantation.
NAPE-PLD is present in the cytoplasm of cells in the preimplantation
mouse embryos from the 1-cell stage to the blastocyst stage, while
FAAH is expressed from the 2-cell stage in the outer cell layers of
morulae and trophectoderm. NAPE-PLD is also found in the
oviduct, with higher levels at the isthmus and lower levels in the
ampullary region, whereas the expression of FAAH is higher in
the ampulla (Wang et al., 2006a, b, c) (Fig. 5). The AEA gradient is
important for normal embryo development, oviductal transport,
implantation and successful pregnancy (Wang et al., 2006a, b, c).

AEA plays an important role in the local regulation of implantation
in the uterus (Paria et al., 2001). High levels of NAPE-PLD and low
levels of FAAH are present in the inter-implantation sites of the
mouse uterus on Day 5–7, whereas high levels of FAAH and low
levels of NAPE-PLD, and consequently low AEA levels, are found in
the implantation sites (Habayeb et al., 2002; Wang et al., 2007)
(Fig. 5). Implantation is associated with a 4-fold reduction in AEA
levels at the implantation site (Schmid et al., 1997) and an increase
in FAAH activity (Paria et al., 1996).

The implanting blastocyst can also regulate uterine AEA levels by an
inhibitory effect of uterine NAPE-PLD (Guo et al., 2005), as well as
through the release of a putative lipid ‘FAAH activator’ (Maccarrone
et al., 2004). The ‘FAAH activator’, produced by both the ICM and
trophectoderm, up-regulates FAAH in the uterine cavity, which then
reduces AEA levels. Incidentally, a ‘FAAH activator’ has recently
been documented also in mouse ESCs, suggesting that such an
entity may be instrumental in regulating FAAH beyond the reproduc-
tive events (Bari et al., 2010).

The exposure of 2-cell embryos to high levels of endocannabinoids
in vitro results in developmental arrest (Paria et al., 1995, 1998). This
arrest can be prevented by selective CB1 antagonists (SR141716A,
AM251), but not by a specific CB2 antagonist (SR144528), suggesting
that the effect of endocannabinoids on the preimplantation embryo is
likely mediated via CB1. Indeed, Maccarrone et al. (2000a, b) demon-
strated that high AEA levels have a pro-apoptotic effect on mouse
blastocysts.

Endocannabinoid signalling mediated by CB1 in the embryo is
concentration-dependent. Low concentrations of AEA (7 nM) activate
the ERK signalling pathway via CB1 and make the blastocyst compe-
tent for implantation; conversely, higher levels (28 nM) of AEA
cannot activate ERK but inhibit calcium mobilization (Wang et al.,
2003). This is clinically relevant as reduced peripheral levels of AEA-
hydrolase in women have been shown to be associated with spon-
taneous miscarriage (Maccarrone et al., 2000a, b) (Table I). A pilot
study of women with threatened miscarriage showed that all
women who subsequently miscarried had high peripheral AEA levels
(greater than 2.0 nM) (Habayeb et al., 2008). Maccarrone et al.
(2000a, b) also demonstrated in IVF pregnancies that high plasma
levels of AEA were associated with failure to achieve an ongoing preg-
nancy after embryo transfer. Furthermore, it has been shown that
women undergoing IVF/ICSI required low AEA levels at the time of
implantation for a successful pregnancy (El-Talatini et al., 2009a, b)
(Table I). Taken together, the results suggest that FAAH activity as
well as AEA content in blood could perhaps be used for the

monitoring of early pregnancies. Of note is a recent study in rat,
where no correlation was found between plasma levels of endocanna-
binoids and uterine tissue levels during pregnancy. The absence of a
correlation suggests that maternal tissue levels are regulated by in
situ production and degradation of endocannabinoids (Fonseca et al.,
2010). Therefore it would be interesting to investigate this further in
humans.

Although the ECS has not been studied extensively during preg-
nancy, cross-sectional studies of the levels of AEA in plasma show
very distinct patterns. The levels of AEA are highest in the first trime-
ster, fall thereafter and then rise significantly in labour (Habayeb et al.,
2004; Lam et al., 2008). Low AEA levels are thus required to maintain
the pregnancy, whereas high levels are associated with labour onset
(Habayeb et al., 2004). The effects of ECS are summarized in Table I.

Although the precise mechanisms by which endocannabinoids influ-
ence reproduction are uncertain, the involvement of COX-2 may be
one of them. Maintenance of appropriate AEA levels conducive to
implantation and maintenance of pregnancy may be partly dependent
upon oxidation by COX-2 (Yu et al., 1997; Kozak et al., 2002),
which catalyzes the conversion of AEA to prostanoids (prostaglandin,
prostacyclin and thromboxane) and prostamides (prostaglandin-
ethanolamides formed from endocannabinoids). COX-2 is an
enzyme that is produced during inflammation, carcinogenesis and
pyrexia. It is essential in female reproduction as it is involved in
several critical processes, including ovulation, fertilization, implantation
and decidualization (Lim et al., 1997). Experiments in mice have shown
that COX-2 is expressed at the implantation site but is hardly
detected at the inter-implantation sites (Wang et al., 2007), and
may therefore contribute to the differential concentrations of AEA
at these sites.

In addition to the direct effects proposed for endocannabinoids on
reproduction, the ECS also interacts with sex steroid hormones and
cytokines to regulate reproduction indirectly. In the following sections,
we will review the evidence for these interactions.

The endocannabinoids and sex
steroid hormones

The role of progesterone
Progesterone is a C-21 steroid hormone that is produced predomi-
nantly after ovulation by the corpus luteum and the placenta during

........................................................................................

Table I Main effects of the ECS on female fertility.

Effects of low levels Target Effects of high levels

Embryo implantation AEA Miscarriage

Embryo development Pro-apoptotic mouse blastocyst

Miscarriage FAAH Embryo implantation

Embryo development

Ectopic pregnancy CB1 Oviductal transport

CB2 Embryo development

AEA, arachidonoylethanolamine; FAAH, fatty acid amide hydrolase; CB,
cannabinoid receptor.

Steroids, cytokines, endocannabinoids and fertility 353
D

ow
nloaded from

 https://academ
ic.oup.com

/hum
upd/article-abstract/17/3/347/1395563 by guest on 14 M

arch 2020



pregnancy and exerts its primary action through the intracellular
progesterone receptor.

Progesterone has a number of physiological effects that are ampli-
fied in the presence of oestrogen. This amplification by oestrogen
may be mediated through the oestrogen receptors, which have
been shown to up-regulate the expression of progesterone receptors.

It is well known that reproduction is dependent upon a tight immu-
noregulation, whereby type-2 T-helper (Th2) cytokines promote fer-
tility and type-1 T-helper (Th1) cytokines inhibit it. Progesterone
creates a suitable endometrial environment for implantation and main-
tains pregnancy by contributing to a protective immune milieu. Pro-
gesterone induces the production of the pro-fertility Th2 cytokines
and inhibits the anti-fertility Th1 cytokines (Piccinni and Romagnani,
1996).

Progesterone stimulates the release of leukaemia inhibitory factor
(LIF) through interleukin (IL)-4, which has also been demonstrated
to promote implantation and pregnancy continuation (Maccarrone
et al., 2001).

Furthermore, both progesterone and oestrogen are involved in the
maintenance of endocannabinoid levels. It has been shown that pro-
gesterone up-regulates lymphocyte FAAH activity through the tran-
scription factor Ikaros (Maccarrone et al., 2001, 2003a, b) and
thereby decreases AEA levels (Table II) (Fig. 6). However, progester-
one has been shown to have a minimal effect on EMT, NAPE-PLD and
CB1 expression in lymphocytes (Maccarrone et al., 2001, 2003a, b).

Progesterone and oestrogen have been shown to down-regulate
uterine NAPE-PLD expression in mice, possibly leading to a decrease
in AEA levels (Guo et al., 2005). However, the activity of uterine
FAAH, localized in murine glandular and luminal epithelium, is
decreased below basal levels by both progesterone and oestrogen,
contrary to the expectation that these should lead to an increase in
AEA (Maccarrone et al., 2000a, b) (Table II).

Changes in progesterone levels and FAAH expression are well cor-
related during the menstrual cycle (Lazzarin et al., 2004) in agreement
with the finding that progesterone up-regulates the FAAH gene (Mac-
carrone et al., 2003a, b). However, there seems to be no correlation
between plasma levels of AEA and progesterone in normal cycling
women (El-Talatini et al., 2010) and in early pregnancy (El-Talatini
et al., 2009a, b).

The role of oestrogen
Oestrogens are steroid hormones that diffuse across the cell mem-
brane. Once inside the cell, they bind, to and activate, oestrogen
receptors, which up-regulate the expression of many genes.

Oestrogens are produced primarily by developing follicles and the
corpus luteum in ovaries, and by the trophoblast cells of the placenta.
FSH and LH stimulate the production of oestrogen in the ovaries.
Other non-ovarian sources of oestrogens include the liver, adrenal
glands and the breasts. 17b-estradiol (E2) modifies many responses
and is known to increase prolactin secretion.

E2 is thought to be involved in the regulation of the ECS but the evi-
dence for this is not yet robust.

Maccarrone et al., for example, demonstrated that E2 stimulates
NAPE-PLD and inhibits FAAH, stimulating the release of AEA from
endothelial cells, which then modulates the cardiovascular and
immune systems (Maccarrone et al., 2002a,b,c). In contrast, uterine
NAPE-PLD is down-regulated by E2, suggesting that it induces a
decrease in AEA levels (Guo et al., 2005). However, results from a
separate study demonstrated decreased activity of murine uterine
FAAH by E2 (Maccarrone et al., 2000a, b) (Table II). The opposite
effect of E2 on NAPE-PLD in different tissues, despite a consistent inhi-
bition of FAAH, suggests that it is hard to predict the effects of E2 on
AEA levels based upon the expression of its metabolic enzymes; to
this end, studies that directly measure AEA content may be more
appropriate.

We investigated changes in plasma AEA levels during the menstrual
cycle of healthy women and found a positive correlation between E2

and AEA, suggesting that indeed E2 may be involved in the regulation
of AEA (El-Talatini et al., 2010). A positive correlation between E2 and
AEA levels was also demonstrated in non-pregnant women after IVF
and embryo transfer (El-Talatini et al., 2009a, b).

The endocannabinoids and
cytokines

The role of LIF
LIF, a member of the IL-6 family, plays important roles in the immune
and haematopoietic systems. It is, however, also essential for repro-
duction (Smith et al., 1998). Among its biological roles are cell prolifer-
ation, differentiation and survival (Hilton, 1992). Signalling is triggered
after binding of the LIF receptor-b (LIF-Rb) to glycoprotein gp130
(Heinrich et al., 2003). Signal transduction involves several different
pathways, but the main ones are Janus kinase/Signal transducer and
activator of transcription (JAK/STAT) signalling, Src homology
2-domain-containing tyrosine phosphatase/Ras/ERK signalling and
PI-3-kinase/Akt signalling (Auernhammer and Melmed, 2000;
Kimber, 2005). Signal transduction can be inhibited by suppressor of

........................................................................................

Table II Effects of progesterone and oestrogen on ECS
in female fertility.

Hormone/
cytokine

Reproductive
process

Effect on ECS

Progesterone Implantation Increases FAAH through
transcription factor Ikaros and
reduces AEA

Pregnancy
maintenance

Increases LIF via IL4

Promotes pro-fertility Th2
cytokines

Oestrogen Folliculogenesis Stimulates NAPE-PLD and
increases AEA from endothelial
cells

Implantation Inhibits FAAH activity and
increases AEA content in
endothelial cells

Down-regulates NAPE-PLD and
inhibits FAAH in uterine
epithelium

LIF, leukaemia inhibitory factor; IL4, interleukin 4; NAPE-PLD,
N-arachidonoylphosphatidylethanolamine-hydrolyzing phosopholipase D.
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cytokine-signalling proteins and protein inhibitors of activated STAT
(Auernhammer and Melmed, 2000).

Studies with LIF knockout mice showed that they are infertile as a
result of failed implantation; however, LIF2/2 embryos can implant
in wild-type female mice or LIF2/2 females after injection of LIF
(Stewart et al., 1992; Chen et al., 2000). These results suggest that
LIF is critically important for implantation but less so for embryo devel-
opment. Interestingly, gp130 knockout mice also present with failed
embryo implantation (Ernst et al., 2001). In vitro studies on mice
have demonstrated a role for LIF in blastocyst hatching, trophoblast
outgrowth and implantation of cultured mouse embryos (Lavranos
et al., 1995; Cai et al., 2000).

LIF expression has been detected in the human endometrium with a
peak LIF mRNA concentration in the luteal phase at the time of
implantation (Charnock-Jones et al., 1994; Kojima et al., 1994).

Furthermore, LIF is expressed in Fallopian tubes in humans and
therefore may be involved in blastocyst development (Keltz et al.,
1996). LIF-Rb mRNA, but not LIF itself, has been demonstrated in
human blastocysts (Charnock-Jones et al., 1994).

IL1b and leptin have been found to up-regulate LIF-Rb in human
endometrium (Gonzalez et al., 2004). Studies of cultured endometrial
cells have demonstrated that tumour necrosis factor (TNF)-a, and IL6
also stimulate LIF production (Laird et al., 1997). Seminal fluid has also
been shown to increase LIF in human endometrial cells (Gutsche et al.,
2003). Furthermore, it has also been suggested that the human blas-
tocyst is involved in the regulation of endometrial LIF expression
(Perrier d’Hauterive et al., 2004), whereby hCG has a stimulating

effect on LIF expression. Conversely, it is known that LIF can stimulate
hCG production by the trophoblast (Nachtigall et al., 1996). LIF also
enhances blastocyst development and differentiation in vitro (Dunglison
et al., 1996; Cai et al., 2000).

LIF seems to be involved in decidualization, as high levels of LIF
expression are detected in trophoblast and placenta (Hilton, 1992;
Nachtigall et al., 1996; Laird et al., 1997; Sharkey et al., 1999). Further-
more, LIF production in cultured endometrial tissue from women
affected by idiopathic infertility is lower than that of fertile women
(Delage et al., 1995), and lower levels of LIF have also been found
in some women with recurrent miscarriage (Piccinni et al., 1998).
Additionally, it has been shown that gp130 secretion is reduced in
infertile women (Sherwin et al., 2002). LIF levels in uterine flushings
have been investigated as a predictor of successful embryo implan-
tation: LIF levels decrease in the late luteal phase of the menstrual
cycle (Laird et al., 1997; Sharkey et al., 1999), and increased LIF
levels are measured in women who fail to conceive (Ledee-Bataille
et al., 2002). A suggested explanation for failed conception is a
delayed LIF expression following a delayed development of the
endometrium.

The Th1/Th2 balance
T-lymphocytes play a significant role in implantation and successful
pregnancy (Piccinni et al., 1998). Th2 cytokines inhibit Th1 cytokine
responses, and therefore they allow the survival of the foetus (Piccinni
and Romagnani, 1996). Th2 cytokines such as IL-3, IL-4 and IL-10

Figure 6 AEA-hormone–cytokine network. AEA is removed from the extracellular space via the putative, not yet identified EMT, and then it is
degraded intracellularly by FAAH to AA and ethanolamine. Leptin promotes the up-regulation of the FAAH promoter via STAT3, and thereby
decreases AEA levels. Furthermore, progesterone up-regulates the FAAH promoter via the transcription factor Ikaros. AEA reduces LIF release
via the CB1 receptor. Progesterone induces pro-fertility Th2 cytokines and inhibits the release of anti-infertility Th1 cytokines.
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stimulate trophoblast growth through inhibition of natural killer cells.
Th1 cytokines, such as IL-2, IL-12 and interferon (INF)-g, damage
the trophoblast through stimulation of natural killer cells and secretion
of TNF-a. In the preceding sections, a case was made for the ECS’s
role in the immune regulation of human fertility. In this context, it
has been found that FAAH expression is regulated by the Th1 and
Th2 cytokines: IL-4 and IL-10 enhance FAAH activity, whereas IL-2
and INF-g reduce FAAH expression (Maccarrone et al., 2001).
In addition, IL-2 inhibits the release of LIF, and IL-4 stimulates it (Mac-
carrone et al., 2001, 2002a, b, c). AEA reduces the release of LIF from
T cells via a CB1 receptor-dependent mechanism (Lim et al., 1997;
Maccarrone et al., 2000a, b, 2001), and thereby carries out its
anti-fertility action (Fig. 6).

As stated before, progesterone induces pro-fertility Th2 cytokines
and stimulates LIF release through IL-4 (Piccinni et al., 1998; Maccar-
rone et al., 2001). Treatment of women with the antiprogesterone
RU486 after ovulation resulted in a reduction in LIF expression of
the glandular epithelium, but not in the luminal epithelium or stromal
cells (Danielsson et al., 1997). Furthermore, RU486 had no effect on
LIF expression in the Fallopian tube (Li et al., 2004), suggesting that
there are different regulatory mechanisms in different cells.

The role of leptin
Leptin, a 16 kDa helical cytokine, is a product of the obese (ob) gene
(Zhang et al., 1994) and is produced by adipose tissue, the ovary and
the placenta (Henson and Castracane, 2000; Reitman et al., 2001;
Margetic et al., 2002). Leptin was first described in relation to food
uptake and energy homeostasis (Friedman and Halaas, 1998).
Mutations in ob are responsible for the absence of leptin production
and for obesity and infertility in homozygous (ob/ob) mice (Clement
et al., 1998). Exogenous leptin can restore fertility in ob/ob mice
(Chehab et al., 1996), and there is now a general consensus that
leptin is critical for reproduction (Clarke and Henry, 1999).

Leptin has been shown to regulate the growth and development of
the conceptus (Kiess et al., 1998) and may be involved in the regu-
lation of angiogenesis, an important process during early pregnancy
(Bouloumie et al., 1998; Park et al., 2001). The human leptin receptor
exists in long and short isoforms, which couple to different signal trans-
duction pathways. The long isoform (OB–Rl) couples to the JAK2/
STAT3 signalling system (Tartaglia, 1997), whereas the short isoform
(OB–Rs) signals through the MAP kinase pathway (Bjorbaek et al.,
1997). Leptin and its receptors have been located in placental syncy-
tiotrophoblast (Ashworth et al., 2000) and the endometrium
(Gonzalez et al., 2000). Low levels of leptin have been found in
women with spontaneous miscarriage in the first trimester (Lage
et al., 1999). Enhanced leptin secretion from the endometrium
occurs in the presence of a blastocyst; therefore, it seems that
leptin is also important for implantation (Gonzalez et al., 2000). Fur-
thermore, Kawamaru et al. (2002) demonstrated that leptin stimulates
the development of mouse embryos in vitro. However, high levels of
leptin interfere with mouse embryo development and hatching and
also cause apoptosis in blastocysts (Fedorcsak and Storeng, 2003).

In humans, leptin levels vary in relation to gender and body compo-
sition. For example, women of reproductive age have higher serum
levels than men (Hickey et al., 1996) and post-menopausal women
(Shimizu et al., 1997). Serum leptin levels also change during the

menstrual cycle with lower levels during the follicular phase compared
with the secretory phase (Hardie et al., 1997). Maternal serum leptin
concentrations are greater than those of non-pregnant women, indi-
cating that leptin may play a role in pregnancy maintenance (Hardie
et al., 1997). During early pregnancy, leptin concentrations rise in con-
junction with E2 levels (Hardie et al., 1997). E2 regulates leptin levels
through the leptin promoter (Machinal et al., 1999). Leptin concen-
trations have been demonstrated to correlate well with progesterone
levels during the luteal phase of the menstrual cycle and with hCG
concentrations during human pregnancy (Hardie et al., 1997). Conse-
quently, available evidence suggests a relationship between obesity,
leptin levels and reproduction (Linne, 2004; Henson and Castracane,
2006; Metwally et al., 2008). In fact, leptin concentrations in plasma
are related to the amount of body fat (Considine et al., 1996;
Hardie et al., 1997), and obese women have been shown to have
lower conception rates after IVF treatment (Wang et al., 2000;
Fedorcsak et al., 2004); these women are also at increased risk of
early pregnancy loss (Fedorcsak et al., 2000; Wang et al., 2002).
Weight reduction before IVF treatment increases the chances of a suc-
cessful pregnancy (Fedorcsak et al., 2004). Successful appetite control
and therefore reduction of obesity has been demonstrated from inter-
ventions with the CB1 antagonist rimonabant (Leite et al., 2009) but
there are no data on the effects of rimonabant on leptin levels in
women of the reproductive age group.

Leptin is also integrated into the regulation of the endocannabinoid-
hormone–cytokine network. Results from studies on ob/ob2/2 mice
demonstrated that leptin reduces the levels of AEA and 2-AG in the
hypothalamus (Di Marzo et al., 2001b; Kirkham et al., 2002). Maccar-
rone et al. (2005) determined that uterine AEA and 2AG are
up-regulated in the ob/ob2/2 mice owing to reduced activity of
EMT, FAAH and MAGL as well as increased activity of DAGL, and
normal endocannabinoid levels were obtained by treatment with
leptin. These results suggest that leptin down-regulates the endocan-
nabinoid signalling pathway.

In human studies, it has been shown that leptin up-regulates the
promoter region of the FAAH gene through STAT3 signalling
(Maccarrone et al., 2003a, b) and concomitantly reduces AEA levels
in T cells (Fig. 6). Consequently, inhibition of LIF release by AEA is
reduced (Maccarrone et al., 2002a, b) and embryo implantation is
impaired (Piccinni et al., 1998).

Overall, LIF, Th1/Th2 cytokines and leptin are all essential for
implantation. It seems, therefore, that a fundamental interaction
exists between these substances and the ECS, which ultimately
impacts on implantation. Figure 6 summarizes these relationships,
which imply that changes in the immunological response are essential
for successful implantation and maintenance of pregnancy.

Conclusions
In this review, we have summarized the current knowledge of the
cross talk that occurs between the ECS, steroid hormones and cyto-
kines in female fertility. The available data suggest that a tight control
of this network is required for successful implantation and mainten-
ance of early pregnancy. This hormone–cytokine network is a key
element at the maternal– foetal interface, and any defect in such a
network may result in foetal loss (Piccinni et al., 1998).
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Studies have shown that low plasma AEA levels are required for
successful implantation and maintenance of pregnancy (Maccarrone
et al., 2000a, b; Habayeb et al., 2004). FAAH is the key regulator of
AEA levels, which directs various preimplantation events. AEA levels
in humans inversely correlate with FAAH activity in peripheral lympho-
cytes (Maccarrone et al., 2002a, b, c), and FAAH is also under the
control of Th1/Th2 cytokines, Progesterone and leptin (Maccarrone
et al., 2001, 2003a, b). Taken together, FAAH and AEA assays
might be useful in predicting the outcome of assisted reproduction
and natural pregnancy in women with threatened miscarriage. On a
final note, it should be stressed that a clear correlation between per-
ipheral (blood) alterations of elements in the ECS and dysregulation in
the actual reproductive tissues of miscarrying versus healthy women
has yet to be established. However, the adverse effects of marijuana
smoke and THC on reproductive functions point to processes that
are modulated by ECS. THC, unlike endogenous ligands, is slowly
metabolized and accumulates in fat deposits within the body and
may mimic situations where an excess of endocannabinoids is pro-
duced or when re-uptake or removal of endogenous ligands is
impaired (Schuel and Burkman, 2006). Future research efforts
should be directed to fill this gap, in order to develop ECS-oriented
drugs for the treatment of human infertility problems.
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