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1.1 INTRODUCTION

Almost all cells on an organism share the same genetic material encoded in the DNA
sequence, but display a broad range of morphological and functional diversity. Epigenetics
can be defined as the study of changes of a phenotype such as the gene expression patterns
of a specific cell type not caused by underlying changes in the primary DNA sequence.

These changes are mitotically and maybe in some cases meiotically heritable. Epigenetic
regulation mediates genomic adaption to an environment thereby ultimately contributing
toward the phenotype and “brings the phenotype into being” (1).

Epigenetics consists of a variety of molecular mechanisms including post-transcriptional
histone modifications, histone variants, ATP-dependent chromatin remodeling complexes,
polycomb/trithorax protein complexes, small and other non-coding RNAs including siRNA
and miRNAs, and DNA methylation. These diverse molecular mechanisms have all been
found to be closely intertwined and stabilize each other to ensure the faithful propagation
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of an epigenetic state over time and especially through cell division. Nonetheless epigenetic
states are not static, but change with age in a stochastic manner as well as in response to
environmental stimuli. This review gives a brief introduction to the multiple biological
facets of DNA methylation, probably the best-studied epigenetic modification, and its
potential use in clinical applications.

|2 PATTERNS OF DNA METHYLATION

DNA methylation is a post-replication modification almost exclusively found on the 5
position of the pyrimidine ring of cytosines, (Figure 1.1), in the context of the dinucleotide
sequence CpG, of which around 29 million are found in the human (haploid) genome (2).
The additional methyl group is located at the major groove edge in a DNA double helix
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FIGURE I.I Chemical structure of cytosine, 5-methylcytosine, and 5-hydroxymethylcytosine. R
denotes the sugar moiety, which has been omitted for simplification. Cytosine is incorporated into
the DNA using deoxycytidinetriphosphate as a building block and methylated after its incorporation
by DNA methyltransferases. 5-hydroxymethylcytosine is created by oxidation of methylcytosine by
the TET enzymes. DNA methylation standing out in the major grove of the DNA double helix shows
identical Watson-Crick base pairing compared to cytosine.



A Short Introduction to DNA Methylation = 3

and does not change the Watson-Crick base pairing (Figure 1.1). 5-methylcytosine (5mC)
accounts for ~1% of all bases, varying slightly in different tissue types and the majority
(60%-80%) of CpG dinucleotides throughout mammalian genomes are methylated
(Figure 1.2). Other types of methylation such as methylation of cytosines in the context of
CpNpG or CpA sequences have been detected in mouse embryonic stem cells, neurons, and
plants, but are generally rare in somatic mammalian/human tissues. DNA methylation
marks are part of the cellular identity and memory and the sequence symmetry of CpG
dinucleotides allows for the transmission of DNA methylation marks through cell division.
CpGs are underrepresented in the genome, as a result of their increased mutation potential
with mutation rates at CpG sites to be about 10-50 times higher than other transitional
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FIGURE 1.2 Distribution of DNA methylation in normal tissue and cancer. In the normal tissue, most
promoter CpG islands are free of DNA methylation (indicated by white circles) even if the gene is not
expressed. Repetitive elements as well as interspersed CpG dinucleotides are mostly methylated
(indicated by black circles). Methylation changes at intergenic gene regulatory regions, such as
enhancers, which can change the expression status of the associated gene while the methylation
status of the gene does not change. In tumors, a global loss of DNA methylation (hypomethylation
of the cancer genome) is observed while some promoter CpG islands become methylated in a tumor-
type specific manner. Methylation patterns are dynamic and also change to a lesser extent compared
to cancer with age and in response to environmental factors.
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mutations. As the deamination of methylated CpGs to TpGs yields a naturally occurring
DNA base, it is less well corrected. Despite this general trend, relatively CpG rich clusters,
so-called CpG islands, are found in the promoter region and first exons of ~65% genes
containing about 7% of all CpGs (Figure 1.2) (3). Depending on the employed set of
parameters, a CpG island is defined as having a C + G content of more than 50% (55%), an
observed versus expected ratio for the occurrence of CpGs of more than 0.6 (0.65) and a
minimum size of 200 (500) base pairs (4). They are mostly non-methylated in all tissues and
throughout all developmental stages corresponding to an open chromatin structure and a
potentially active state of transcription (Figure 1.2). There are around 30,000 CpG islands
in the human genome. As CpG islands are mainly unmethylated in the germline, they are
less susceptible to deamination and have therefore retained the expected frequency of CpGs.
Binding of transcription factors, exclusion of nucleosomes, and the presence  of H3K4
methylation and the associated histone methyltransferases protect most CpG islands from
DNA methylation. It should be noted that a number of CpG islands have been identified that
are methylated in a tissue-specific manner in normal tissues, but concern mainly intragenic
CpG islands (5,6). CpGs islands associated to genes not expressed in a specific cell type
acquire the repressive histone modification H3K27Me;, but rarely DNA methylation. In
contrast, regions located up- and downstream of CpG islands, termed CpG island shores,
show variable tissue-specific DNA methylation patterns and these are often altered in
tumorigenesis (7). In contrast to CpG islands, gene bodies are commonly highly
methylated, where DNA methylation has been associated with enhanced gene expression
maybe by facilitating transcriptional elongation and preventing initiation of spurious
transcription events (8). Intragenic methylation has in addition been associated with the
repression/use of alternative promoters or different splice variants (6,9).

1.3 DNA METHYLTRANSFERASES

Both local and global epigenetic patterns are dictated by the composition of the genome
depending on CpG spacing as well as sequence motifs and DNA structure (10), while in
turn DNA methylation will have a major influence on DNA shape (11). The transfer of a
methyl-group from the universal methyl donor S-adenosyl-l1-methionine (SAMe) is carried
out by DNA methyltransferases. During the methylation reaction a methyl group is
transferred from SAMe to the cytosine, thereby leaving S-adenosylhomocysteine, which at

high concentrations inhibits the action of DNA methyltransferases.

Four DNA methyltransferases have been identified (DNMT1, DNMT3A, DNMT3B, and
DNMTS3L) (Figure 1.3) (12). DNMT3L, however, lacks a catalytic domain, but is in complex
with DNMT3A important for maternal genomic imprinting and male spermatogenesis.

Simplified, DNMT1 acts as a maintenance methyltransferase as it prefers hemi-
methylated templates. It is located at the replication fork during the S phase of the cell
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FIGURE 1.3 Schematic illustration of the domain structure of the mammalian DNMTs. All DNMTs
with the exception of DNMT3L contain a catalytic domain with 10 motifs characteristic for DNA
methylation activity. The DMAPD domain of DNMT1 binds DNMAPI, a factor repressing
transcription through interactions with HDACs. The proliferating cell nuclear antigen (PCNA)
binding domain, binds to the PBD of DNMT1, which recruits DNMT1 to replication foci at the early
and middle stage of the S-phase and binds a number of factors required for replication. The RFTD
domain localizes DNMT1 to the region undergoing replication by interacting with UHRF1, which
recognizes hemimethylated CpGs. The CXXC domain contains two zinc atoms forming zinc
fingers, which bind unmethylated CpGs. However, the exact function of this domain is currently
unclear. The two BAH domains are involved in chromatin remodeling, but their exact function
needs further investigation. The PWWP domain of DNMT3A and 3B is involved in protein-protein
interactions, tethers the DNMTs to chromatin regions including pericentromeric heterochromatin
regions marked with H3K26Me;. The cysteine-rich plant homeodomain (PHD)- like ADD domain
interacts with a multitude of proteins including H3K9 methylases, co-repressors, and
heterochromatin protein 1. DNMT3A and 3B interact with the C-terminal domain of DNMT3L
increasing de novo DNA methylation activity. Abbreviations used: DMAPD: DNA methyltransferase-
associated protein 1 interacting domain; PBD: PCNA-binding domain; NLS: Nuclear localization
signal; RETD: Replication foci targeting domain; CXXC: CXXC domain; BAH1/2: Bromo-adjacent
homology domain 1 and 2; GK-repeats: Glycine-lysine rich repeats; PWWP: PWWP domain; ADD:
ATRX-DNMT3-DNMT3L domain.
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cycle and methylates the newly synthesized DNA strand using the parent strand as a
template with high fidelity (13). The symmetric sequence of CpGs thus allows to pass the
epigenetic information to pass through cell generations. A number of proteins associated
with the local chromatin structure such as LSD1 and URHF1 are required to ensure the
specificity and stability of the DNA methylation reaction associated with DNA replication.
However, DNMT3A and DNMT?3B are also required for methylation maintenance (14). De
novo methylation is carried out by the methyltransferases DNMT3A and DNMT3B. These
enzymes have certain preferences for specific targets (e.g, DNMT3A together with
DNMT3L methylates maternal imprinted genes and DNMT3B localizes at minor satellite
repeats as well as the gene bodies of actively transcribed genes), but also work cooperatively
to methylate the genome (12,15). Possible trigger mechanisms to initiate de novo methylation
include preferred target DNA sequences, RNA interference, but mostly chromatin
structures induced by histone modifications and other protein-protein interactions (16,17).
Histone modifications such as H3K9Me;, are thought to initiate heterochromatin formation
and DNA methylation comes in as a secondary molecular alteration to ensure the stable
silencing of the repressed sequences.

|4 5-HYDROXYMETHYLATION AND THE DNA
DEMETHYLATION PROCESSES

Mechanisms for DNA demethylation mechanism have long been searched for as active
demethylation occurs at different stages of development and a global hypomethylation is

associated with many cancers. DNA demethylation has been proposed to be either passive,
where the 5mC is removed owing to a lack of maintaining the methylation during several
cycles of replication, or as an active process, with direct removal of the methyl group
independently of DNA replication (18). The active process is initiated through the enzymatic
oxidation of 5mC to 5-hydroxymethylcytosine (5hmC) (Figure 1.1) as described below in
this paragraph. However, 5hmC is now considered to be not only an intermediate in oxidative
DNA demethylation, but constitutes a distinct layer in the complex process of epigenetic
regulation with its own distribution and regulatory functions. The reaction yielding 5hmC
is catalyzed by the ten-eleven translocation (TET) methylcytosine dioxygenase family of
enzymes, consisting of three mammalian subtypes, TET1-3 (Figure 1.4) (12,19). 5ShmC is
most abundant in human brain tissue and embryonic stem cells, but at levels approximately
tenfold lower than those of 5-methylcytosine (20). TET enzymes are expressed in a tissue/
cell-type and developmental stage dependent manner with 5hmC decreasing during cell
differentiation. Active demethylation of gene regulatory sequences plays a key role in
activating specific genes required for proper tissue-specific gene expression programs. 5hmC
levels do not correlate with 5mC levels of the respective tissue and 5hmC was found enriched
at specific active functional elements of the genome, in particular enhancers, promoters, and
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FIGURE |4 Domain structure of the mammalian TETs. The N-terminal region is involved in
chromatin remodeling and methylation sensing and can directly bind to DN'A, while the C-terminal
catalytic domain consisting of a cysteine-rich domain and the double-stranded B-helix dioxygenase
domain, including an Fe(II)-binding HxD motif and an &X-ketoglutarate-binding domain separated
by a low complexity spacer of unknown function, recognizes CpGs and oxidizes them. For TET2
the N-terminal domain is provided by a separate protein (IDAX).

gene bodies associating 5hmC with open chromatin and transcriptional activity (20,21).
5hmC levels are globally reduced in cancer and alterations of the TET enzymes have been
reported for various cancers (19,22). This observation suggests that 5ShmC alterations may
have a distinct role in the development and progression of malignancies.

In addition to its regulatory function, 5hmC is an intermediate in the active demethylation
process (23), where it is further oxidized to 5-formylcytosine (5fC) and 5-carboxylcytosine
(5caC) again by the TET enzymes, with the latter two modifications being present at barely
detectable levels in the human genome (Figure 1.5). Both the carboxyl and the formyl groups can
be removed enzymatically with or without base excision, generating an unmethylated cytosine.

I.5 TRANSCRIPTION AND GENOME STABILITY

Transcription does not occur on naked DNA but in the context of chromatin, which
critically influences the accessibility of the DNA to transcription factors and the DNA
polymerase complexes. DNA methylation, histone modifications and chromatin
remodeling are closely linked and constitute multiple layers of epigenetic modifications to
control and modulate gene expression through chromatin structure. DNMTs and histone
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FIGURE I.5 Demethylation pathway. TET enzymes successively oxidize 5mC to 5hmc, and 5-
formylcytosine (5fC) and 5-carboxylcytosine (5caC) are dependent on X-ketoglutarate and Fe(II).
5fC and 5caC are replaced by unmodified cytosines through a thymine DNA glycosylase (TDG)
initiated base excision repair (BER) mechanism, although additional mechanisms for DNA
demethylation do exist.

deacetylases (HDACs) are found in the same multi-protein complexes and methyl CpG-
binding domain proteins (MBDs) interact with HDACs, histone methyltransferases as well
as with the chromatin remodeling complexes. Furthermore, mutations or loss of members
of the SNF2 helicase/ATPase family of chromatin remodeling proteins such as ATRX or
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LSH lead to genome-wide perturbations of DNA methylation patterns and inappropriate
gene expression programs.
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FIGURE 1.6 Methylation sensitivity of transcription factors. A simplified view how DNA methylation
might influence transcription factor (TF) binding. Some TFs are only binding to unmethylated DNA
and methylation will impede binding. Methylation will on the other hand attract methyl binding
proteins which in complex with HDACS and other repressors will silence gene expression. Other
transcription factors might also have a higher affinity for methylated compared to unmethylated

DNA. Methylation changes at upstream regulatory elements such as enhancers might induce
changes in the TF occupancy of the regulatory element, which can lead to activation of alternative
genes or transcripts.

Transcription may be affected by DNA methylation in several ways (Figure 1.6). First, the
binding of transcriptional activators such as Spl and Myc may be inhibited directly by the
methylated DNA through sterical hindrance, while other transcription factors especially
homeodomain transcription factors are attracted by methylated target recognition
sequences (24-26). Methylation of CpG sites in a target sequence can thereby lead to change
in transcription factor occupancy at the same sequence and activation of tissue-specific
genes (27). Second, methylated DNA is bound by specific methyl-CpG binding domain
(MBD1, MBD2, and MBD4) proteins or methyl-CpG binding proteins (MeCP2) as well as



A Short Introduction to DNA Methylation = ||

proteins of the Kaiso family (12,28,29). They recruit transcriptional co-repressors such as
histone deacetylating complexes, polycomb proteins and chromatin remodeling complexes,
thereby establishing a repressive closed chromatin configuration (Figure 1.6). Mbd3 binds
specifically hydroxymethylated cytosines.

In many cases, DNA methylation occurs subsequently to changes in the chromatin
structure and is used as a molecular mechanism to permanently and thus heritably lock the
gene in its inactive state. It should be underlined that an unmethylated state of a CpG island
or gene regulatory element does not necessarily correlate with the transcriptional activity
of the gene, but rather that the gene can be potentially activated. The simple presence of
methylation does therefore not necessarily induce silencing of nearby genes. Only when a
specific core region of the promoter that is often—but not necessarily—spanning the
transcription start site becomes hypermethylated, the expression of the associated gene is
modified (30). In CpG-poor intergenic gene regulatory regions DNA methylation is highly
dynamic, CpG dinucleotides are mostly highly methylated, but methylation is reduced
when the region or the methylated CpG is bound by transcription factors (31).

DNA methylation plays an important role in the maintenance of genome integrity by
transcriptional silencing of repetitive DNA sequences and endogenous transposons (32).
DNA methylation may prevent the potentially deleterious recombination events between
non-allelic repeats caused by these mobile genetic elements. In addition, methylation
increases the mutation rate leading to a faster divergence of identical sequences and
disabling many retrotransposons.

The functional relevance of DNA methylation (and other epigenetic changes) can now
be interrogated by epigenetic editing using mainly a nuclease deficient version of the
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated
protein (Cas) 9 system, which allows recruiting chromatin modifying and remodeling
complexes to specific target sequences (33). The fusion of the core catalytic domain of a
DNA methyltransferase (e.g., DNMT3A) or demethylase (e.g., TET1) to a modified nuclease
deficient Cas9 (dCas9) has been shown to induce specific targeted epigenetic changes either
locally if a promoter is targeted or more regionally if a distant gene regulatory element such
as an enhancer is targeted (33-35).

1.6 EPIGENETIC CHANGES IN HEALTH AND DISEASE

Cytosine methylation is essential for normal mammalian development including X

chromosome inactivation and correct setting of genomic imprinting. Epigenetics holds the
promise to explain at least a part of the influences the environment has on a phenotype as
described in Chapter 5 and is an integral part of aging and cellular senescence whereby the
overall content of DNA methylation in the mammalian and human genome decreases with
age in all tissues especially at repetitive elements (36,37). Despite its stochastic nature,
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DNA methylation levels at a number of specific loci have been shown to correlate very well
with lifetime (chronological) age and several DNA methylation signatures have been
developed for the accurate prediction of the age through the analysis of DNA methylation
patterns (36,38). Accelerated epigenetic changing has been associated with earlier all- cause
mortality in later life (39), while people with exceptional longevity show a decreased
epigenetic age compared to their chronological age (40).

DNA methylation and chromatin structure are strikingly altered in many complex
diseases. Mutations in genes that are part of the molecular machinery responsible for
correct establishment and propagation of the epigenetic modifications through
development and cell division lead to the neurodevelopmental disorders such as ICF
(immune deficiency, centromeric instability, and facial abnormalities, DNMT3B) (41) or
Rett syndrome (MeCP2) (42), while mutations in TET2 have been found in multiple
hematological malignancies, where they probably among the earliest genetic events of the
disease (43).

Cancer is by far the most studied disease with a strong epigenetic component (44,45). In
tumors, a global loss of DNA methylation (hypomethylation) of the genome is observed.
This hypomethylation has been suggested to initiate and propagate oncogenesis by inducing
aneuploidy, genome instability, activation of retrotransposons, and transcriptional activation
of oncogenes and pro-metastatic genes (46). The overall decrease in DNA methylation is
accompanied by a region- and gene-specific increase of methylation (hypermethylation) of
multiple CpG islands frequently associated with transcriptional silencing of the associated
gene (44,45). This hypermethylation is not random as it occurs primarily at gene promoters
that are targets of the polycomb repressive complex 2 (PRC2) and marked by H3K27Me; in
(embryonic) stem cells and resembles the DNA methylation changes observed during aging
albeit at a much greater amplitude.

While the contribution of somatic mutations to carcinogenesis has long been recognized,
it has become evident that epigenetic changes leading to transcriptional silencing of tumor
suppressor genes constitute an at least equally contributing mechanism (45,47). DNA
methylation changes and genetic mutations co-occurring in the same tumors show different
dynamics and evolve differently during tumor progression supporting the functional
relevance of epigenetic changes on the phenotype of the tumor (48). Epigenetic changes
occur at higher frequency compared to genetic changes and may be especially important in
early-stage human neoplasia (49).

Examples for the use of DNA methylation-based biomarkers include therefore early
detection with the commercial FDA-approved Epi proColon blood test being a prime
example. This testanalyzes the methylation profile of an intronic sequence of the SEPT9 gene
for the population-wide screening of colorectal cancer achieving a sensitivity of 50%-80%
depending of the stage of the cancer and a very high specificity (>95%) (50,51). A number
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of DNA methylation changes have been linked to prognosis of different cancers (52). In
addition to the application for early detection of cancers, the analysis of the methylation
status of CpG islands can be used to characterize and classify cancers as for examples
recently demonstrated for subtypes of Ewing sarcoma, which are all characterized by the
same recurrent genetic alteration (53). Furthermore, as the DNA methylation patterns of
distant metastases will at least partly carry the tissue-specific DNA methylation signature
of the primary tumor, analysis of the DNA methylation profile of the metastases has shown
to permit the identification of the tissue of the primary tumor (54). Similarly, the DNA
methylation profile of cell-free DNA from plasma/serum contains the information of the
tissue it is released from and allows detecting the tissue-of-origin of a cancer (55). DNA
methylation changes detect tumor recurrence as well as predict and monitor patients’
response and the effectiveness to a given anti-cancer therapy with the prediction of the
response of patients with glioblastomas to the alkylating agent temozolomide based on the
DNA methylation status of the DNA repair gene MGMT being the prime example (56). As
DNA methylation is a non-mutational and therefore—at least in principle—a reversible
modification, it can be used as point of departure for anti-neoplastic treatment by chemically
induced demethylation (57). Two DNA methyltransferase inhibitors (DNMTis)
(azacytidine [Vidaza] and 5-aza-deoxycytidine [decitabine, Dacogen, Decitibine]) have
been approved for the treatment of several hematological malignancies (58,59). At low
doses azacytidine and decitabine induce their effect through demethylation of silenced
genes associated with reduced apoptosis, cell differentiation and proliferation, whereas at
higher doses the main cytotoxic effect is due to DNA damage after incorporation (60).
Second-generation DNMTis with improved pharmacology and lower toxicity such as the
prodrug SGI-110 show high potential for the use in the treatment of several different
malignancies (58). Epigenetic therapy is rapidly evolving with many combination therapies
now under investigation.

The field of epigenetics of other complex diseases is still relatively young, but epigenetics
may provide the missing link between the genetic susceptibility and the phenotype by
mediating and modulating environmental influences. Several neuropsychiatric disorders
have been linked to epigenetic changes (61). Epigenetic dysregulation in cognitive disorders
such as Alzheimer’s disease as well as age-related memory decline has also been reported
(62,63). DNA methylation patterns are also disturbed in atherosclerosis (64), diabetes (65) as
well as inflammatory, autoimmune, and allergic diseases (66,67). In a number of studies the
epigenetic changes are located in the same genomic region as genetic variation previously
associated with the disease (68,69). It is difficult to infer causality from most of studies, but
at least in some case DNA methylation seems to mediate the effects of genetic variation to
yield the phenotype.
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1.7 CONCLUSION

Although our knowledge on the regulation of DNA methylation has been rapidly increasing
over the last years, the gained information has mainly led to the insight that the complexity
of the gene regulatory network, in which DNA methylation plays a pivotal role, had been
underestimated. CpG islands, which had been the focus of research for decades, might
contribute little to the plasticity of the cells necessary for cell-type specific differentiation
and to cope with internal and environmental cues. New functional tools allow now for the
first time to assess the functional consequences of DNA methylation changes during
development and disease. Biomedical applications of DNA methylation as biomarkers for
cancer and other complex diseases, but also for prenatal testing, have become routine and
first assays have been approved by regulatory agencies paving the way for a more widespread
acceptance and use of DNA methylation-based tests.
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