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The original definition of Epigenetics by Conrad Waddington was “The branch of biology
which studies the causal interactions between genes and their products which bring
phenotypes into being” (1). As can be seen, this original definition is already aimed at
describing how factors involved in the development of organisms (i.e., the “epi” part of

epigenetics) affect the expression of their genetic composition.
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Nowadays, the focus of epigenetics has shifted to study accessory chemical modifications
on the DNA that are able to regulate gene expression and survive mitotic events (2).
However, epigenetic mechanisms still represent processes that bridge the gap between
environmental influences and long-term regulation of gene expression, which is in turn
involved in phenotype formation.

Every epigenetic process described to date has two basic components: The intrinsic
machinery of the cells and the contribution of external factors. External factors will act on
the epigenetic machineries by: (i) providing chemicals as substrate for the epigenetic
reactions, (i) affecting the functioning of enzymes that are involved in epigenetic reactions,
or (iii) altering the binding of ligands to receptors that respond to environmental stimuli,
and that subsequently trigger cascade of reactions that will ultimately affect the epigenetic
machinery.

Epigenetic machineries are involved in any aspect of the body’s function. In the
following sections we will describe the role of intrinsic (endogenous) factors in influencing
epigenetic regulation related to reproductive health, followed by a description of extrinsic
(environmentally available) factors that, in one way or another, alter the functioning of
epigenetic machineries in the developing and adult organism and thereby may affect its
reproductive capacity. First, however, we provide some basic information about epigenetic
mechanisms and processes.

62 DEVELOPMENTAL PERIODS OF EPIGENETIC REPROGRAMMING

At the interface of the interaction between intrinsic and extrinsic factors are developmental
periods of “epigenetic reprogramming”. Special susceptibility for the action of environ-
mental compounds occurs during these periods that involve transient albeit major
epigenetic rearrangements. Two waves of extensive epigenetic reprogramming are
described to date in mammals. One is after fertilization, where an initial reduction in
DNA methylation is followed by re-methylation at the time of blastocyst implantation (3).
This epigenetic reprogramming is crucial for the differentiation of somatic cells. Another
period of epigenetic reprogramming occurs during the migration of primordial germ cells
(PGCs) toward their final establishment in the gonads (4). During this migration a major
demethylation of the genome also occurs followed by re-methylation (3-5). This epigenetic
reprogramming is crucial for the differentiation of somatic cells.

Disruptions in epigenetic reprograming triggered by environmental factors have
different consequences depending on whether blastocysts or germ cells are affected. When
environmental exposures (such as endocrine disruptors) affect preimplantation embryos,
important somatic phenotypic and epigenetic effects will be produced in the individuals
emerging from these embryos (6,7). However, when the epigenetic reprogramming of



Intrinsic and Extrinsic Factors That Influence Epigenetics = 101

primordial germ cells is affected, the epigenetic disruption could affect individuals in the
next generations (8-10). Although in the following generations epigenetic reprogramming
will also occur, thereby erasing most of the epigenetic marks brought from previous
generations, epigenetic marks will persist in genomic regions known as “escapees” (11).
Such regions could be responsible for the transgenerational transmission of phenotypic
effects induced by environmental insults.

6.3 INTRINSIC FACTORS INFLUENCING EPIGENETIC PROCESSES

AND REGULATING REPRODUCTIVE HEALTH
Many endogenous factors shown to alter epigenetic mechanisms relate to the endocrine
system, which have distinct roles at different ontogenetic stages. Due to this, we have
separated the description of the endogenous factors on epigenetic systems according to
different developmental and reproductive stages: Pre- and early postnatal development,
puberty, and adulthood.

Pre- and Early Postnatal Development

The development of fetal germ cells is mediated by the release of luteinizing hormone (LH)
and follicle stimulating hormone (FSH) from the fetal gonadotrope-precursor cells (GnPCs)
located at the developing anterior pituitary. Studies in mouse models have shown that germ
cell proliferation and differentiation is similar in both sexes until 10.5 days post coitum
(dpc). Thereafter, germ cell development starts to become sex-specific (12).

Embryonic LH production appears to be under intricate epigenetic control. It has recently
been shown that expression of the Lh gene in mice is orchestrated by the active DNA
demethylation involving Tetl and Tet2 enzymes (13). Interestingly, mice lacking Tet1/2 are
viable but show abnormal ovarian development and reduced fertility (14) pointing toward
an important role of Tet enzymes in ovarian development. In addition, the regulation of
Tetl expression and activity in differentiating GnPCs is regulated by liganded estrogen and
androgen receptors, and the gonadotropin-releasing hormone (GnRH) through activation
of protein kinase A (PKA) (13), suggesting that proper hormonal signaling is decisive in the
epigenetic control of ovarian development.

A key factor responsible for the initiation of male sexual differentiation is the Y-
chromosome encoded transcription factor SRY (sex-determining on the Y chromosome),
which controls the expression of different genes involved in male gonadal development and
thus the increase in perinatal testosterone levels (15,16). In the developing mouse testes, DNA
demethylation of a regulatory region of the Sry gene occurs at 11.5 dpc and correlates with
increased expression of Sry (17). This demethylation is testis specific and is believed to be
mediated by GADD45 (growth arrest DNA damage-inducible 45) proteins that recruit DNA
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repair proteins to replace methylated cytosines by unmethylated ones (15). Interestingly,
GADDA45 proteins are also known to be involved in stress response (18), which could imply
that environmental stress can affect early gonadal development and testosterone production.
Increased gonadal sex hormones levels are needed for developmental reprogramming of the
hypothalamus in a sexual dimorphic manner, for the development of reproductive organs,
and for imprinting of sexual dimorphic behavior. In the prenatal brain of male rodents, it
has been shown that aromatase (Cyp19al) readily converts (aromatizes) testosterone into
estrogen (E2) that is responsible for imprinting male-typical behavior (19,20). During this
period, increase in the transcription-activating mark histone 3 (H3) acetylation is found at
the Cyp19al gene in males, coinciding with their testosterone surge (21).

Another critical window for hormonal influence is the neonatal period when sex-
differentiated development of the hypothalamus occurs. It has been shown that variations
in transient hormonal surges associated with maternal care given with a preference to male
over female neonatal pups has lasting effects on DNA methylation of the estrogen receptor
alpha (ERx) promoter in the hypothalamus and thus on adult sexual behavior (22,23).

Puberty

The initiation of mammalian puberty is orchestrated by a myriad of complex interactions
involving different cell types and organs that activate large and interconnected gene networks.
Although the molecular mechanisms are still largely obscure, from a neuronal perspective
it is known that puberty is triggered by trans-synaptic (24,25) and glial (26) interactions
with hypothalamic neurons that release GnRH. Kisseptins are neuropeptides that have a
major role in GnRH release. Kisspeptins are transcribed from the KISS1 gene and bind to
the kisseptin receptor (GPR54/KISS1R) on GnRH neurons of the hypothalamus (24,27,28).
GnRH, in turn, triggers the release of LH and FSH from the anterior pituitary, leading to
downstream effects in hormonal levels related to pubertal progression, development of
secondary sexual characteristics, and ovulation in females. De-methylation of a regulatory
region of the GNRH gene seems to be one of the mechanisms of regulation of GnRH release
during puberty (29).

Both KISSI and GNRH are suggested to be under hormonally dependent epigenetic
control. For example, peripubertal increases in gonadal estrogen (E2) levels (in female
rodents) promote the binding of the estrogen receptor alpha (ERX) to the KissI promoter
(30,31). This binding, which appears to be mediated by reduced H3 acetylation, promotes
a peripubertal GnRH surge (30,31). Interestingly, as mentioned above, ERQ is itself under
epigenetic control, with both DNA methylation (32) and histone deacetylase (HDAC)
modifications in the promoter (21) being fundamental in regulating ERG expression and
sexual development.
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Adulthood

Increasing evidence points toward nuclear receptor (NR) transcription factors, including
the sex hormone receptors, as having an important role in epigenetic regulation of gene
expression. NRs can recruit both chromatin-remodeling co-activators with histone
acetylase (HAT) and deacetylase (HDAC) activities (33,34) and direct de novo DNA
methylation and de-methylation to regulatory regions (34,35). The mechanisms
underlying NR-induced DNA de-methylation is still unclear, however, recent reports
show evidence that at least ERx (36), ERB (37), retinoic acid receptor alpha (RARX) (38),
and androgen receptor (AR) (39) can direct DNA de-methylation to specific genomic loci
by interacting with thymine DNA glycosylase (TDG). TDG belongs to the base excision
repair machinery and is part of the final step in DNA de-methylation by replacing
deaminated methylcytosines to unmethylated cytosines. In the case of ERX, the TDG-
ER« interaction is dependent on E2 activation (36), however, for ERB this does not seem
to be the case (37). Instead, it can be speculated that antagonistic ligands may be more
important in modulating the interaction between ERB and TDG. In view of the essential
roles that sex hormones play in sexual differentiation and reproduction, deregulations in
sex hormone signaling may directly impose lasting effects on the epigenome, not only in
the affected individual, but also in the offspring.

In females, the dynamic changes in sex-hormone levels during the menstrual cycle, for
example fluctuating E2 levels, appear to occur through the involvement of hormonal action
on epigenetic mechanisms. These dynamic hormonal changes are regulated by the equally
dynamic expression of Cyp19al and the steroidogenic acute regulatory protein (Star), which
is also involved in progesterone synthesis (40). Interestingly, the action of both enzymes,
which are constantly unmethylated, are under the control of LH surges that trigger highly
dynamic histone marks within their promoter regions (41-43). While Cyp19al is rapidly
suppressed after the LH surge, Star is rapidly upregulated in relation to luteinization
following ovulation.

In adult males, spermatogenesis is dependent on high levels of free testosterone and is
sensitive to drops in these levels (44). Additionally, spermatogenesis relies heavily on
proper DNA methylation and chromatin remodeling of regulatory elements of testis genes
(45,46,47). Interestingly, testosterone and FSH differentially affect sperm chromatin
remodeling through epigenetic mechanisms and transcription factors that ultimately
hamper the replacement of histones with protamines (48). Testosterone deficits interfere
with the expression of proteins involved in the biogenesis of small non-coding RNAs, the
levels of histone deacetylases (HDACI and 6), and generate modifications in histones such as
h2b and the testis specific th3 (48). FSH deficits, in turn, affect the turnover of ubiquitylated
histones and inhibit DNA repair mechanisms, leading to sperm DNA damage (48).
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64 ENVIRONMENTAL EPIGENETICS: THE STUDY OF HOW

EXTRINSIC FACTORS INFLUENCE EPIGENETIC MARKS
The terms “Environmental Epigenetics” and “Environmental Epigenomics” were first
mentioned in the 2007 review article “Environmental Epigenomics and Disease
Susceptibility” by Jirtle and Skinner (49). At the time, this review summarized many of the
important studies that led to the conceptual definition of the terms. The trend of correlating
environmental exposures and epigenetic changes, however, started much earlier, and it could
be consider that the seminal paper was the 1998 review “Epigenetics and Epimutagens: Some
New Perspectives on Cancer, Germline Effects and Endocrine Disrupters” by MacPhee
(50). In this paper, MacPhee argues that previously published estrogen-dependent effects
on the expression and DNA methylation of the vitellogenin promoter in laying hens (51)
could be mimicked by the action of endocrine disruptors (EDCs), that is, compounds that
alter the function of the endocrine system in organisms. In a visionary fashion, MacPhee
stated: “Other epigenetic changes (inappropriate methylation, generalised hypomethylation)
associated with exposure to environmental agents may also be recognised more readily in the
future.” Three years later, John McLachlan also suggested that estrogens or endocrine

disrupting chemicals could play a role in the programming or imprinting of genes through
persistent changes in DNA methylation (52).

In the following years, endocrine disruptors started to become the main environmental
influence known to affect epigenetic changes, and have since been one of the strongest
drivers of the field of “Environmental Epigenetics.” Meanwhile, other environmental factors
started to be studied and gained importance in relation to epigenetic effects. These include
pharmacological compounds known as demethylating agents, nutritional compounds that
provide the substrate needed (methyl groups) for DNA methylation reactions, or inorganic
chemicals.

Nowadays most scientists in related disciplines would agree that environmental factors
are able to influence the establishment of epigenetic mechanisms, and that this process can
occur through many different biological pathways. Here we describe four groups of
environmental compounds for which there is abundant evidence of related epigenetic
effects: endocrine disruptors; nutritional factors; pharmacological compounds; inorganic
compounds.

Endocrine Disruptors and Epigenetic Changes

We have recently extensively reviewed the literature related to the connection between
EDCs and epigenetic changes (53). This connection, as previously mentioned, has been
a driving force for the field of environmental epigenetics, especially regarding
transgenerational effects. Nowadays, the literature reporting actions of EDCs on epigenetic
mechanisms is extensive. For example, EDCs are shown to regulate numerous endocrine
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related genes through DNA methylation, which includes well-known receptors such as to
estrogen, progesterone, glucocorticoids, mineralocorticoids, retinoic acid, oxytocin,
follicle-stimulating hormone, thyroid-stimulating hormone, and the insulin-like growth
factor (53). EDCs reported to induce epigenetic effects include DES, BPA, Benzo[a]pyrene,
Vinclozolin, n-butylparaben, DEHP, PCBs, and TCDD, among others (53).

Although the exact mechanism by which EDC promote epigenetic changes is still not
fully elucidated, recent research has given hints on potential mechanisms. Because EDCs
mimic the action of endogenous hormones, they can, in theory, interfere with endocrine
response both at the physiological and molecular levels. Such interference is reported to
have reproductive effects. Well-known examples of detrimental reproductive effects are
those produced by exposures to DES (54), BPA (55), and vinclozolin (56). Once EDCs bind
to cytosolic receptors that belong to the nuclear hormone receptors (NHRs) superfamily,
either they can trigger responses through the classical genomic pathway or through the
non-genomic pathway (57). The genomic pathway involves nuclear translocation and the
further binding of the ligand-activated hormone receptors to hormone-responsive elements
in the genome, while the non-genomic pathway involves the rapid and transient induction
of membrane-initiated signaling pathways that activate kinase cascades (57). EDCs appear
to act on hormone receptors through both pathways (57). EDCs can also mimic hormonal
action that takes place directly on genomic regions known as “response elements” such as
the estrogen response element (ERE) (58,59). For example, Bhan et al. (60) have shown that
the binding of EDCs to an ERE within the promoter of a non-coding RNA (HOTAIR)
enables the binding of histones methylases that will modify the chromatin and activate
gene expression (60).

Nutritional Factors and Epigenetic Changes

Nutrition is a critical environmental component influencing the epigenome. This is
particularly important for DNA methylation, which requires the presence of methyl-group
substrates, commonly derived from the diet. Dietary sources of methyl groups include folic
acid, betaine, zinc, and vitamin B,,, which ultimately participate in the metabolism of
methionine and S-adenosil methionine (SAM) (61). SAM is formed from methyl groups
derived from choline, methionine or methyl-tetrahydrofolate, and is the primary methyl
donor for the various methyltransferase enzymes in organisms (62). The amount of folates
in the diet can directly influence their levels in the blood (63).

Possibly the best known animal model for studying the effects of dietary methyl donors
on DNA methylation is the agouti mouse. Using this model, changes in methylation in the
Avy allele can be easily detected through changes in the coat color. Specifically, the level of
DNA methylation in an intracisternal A particle (IAP) retro-transposon located upstream
of the Avy allele correlates with coat color shifts from yellow-agouti to yellow (64). Changes
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in maternal consumption of methyl groups lead to coat color variations in the offspring,
which correlates with the methylation status of the Avy allele (64,65). Other experiments
have taken advantage of other properties of the Avy allele, such as its association with
obesity (66,67).

Another model exploiting phenotypic traits to reflect DNA methylation in IAP elements
uses IAPs located upstream of the promoter of Axin fused. In this case, high Axin fused
DNA methylation in the tail is associated with a straight tail phenotype, while low levels
correlate with a kinky tail phenotype (68). Both tail axin fused DNA methylation and kinky/
straight phenotype correlate with the pre- and post-natal availability of methyl groups.

Nutritional factors also influence the expression of Dnmts. In humans, increased DNMT1
(the maintenance Dnmt) expression in observed in cervical intraepithelial neoplasia
samples after mandatory fortification of grain products with folic acid in the United States
(69). Concordantly, Dnmt1 has been shown to be reduced in the liver of rat offspring born
to protein-restricted mothers (70). In addition to DNA methylation, dietary compounds
have also been implicated in the modulation of other epigenetic systems, such as histone
modifications (71) and non-coding RNAs (72).

In addition to folate groups, dietary flavonoids have also been associated with epigenetic
changes. Flavonoids (or isoflavones) is a class of plant compounds that elicit estrogenic
actions in animals (73), and hence are also called phytoestrogens. Dietary intake of
phytoestrogens is known to produce reproductive effects in mammals (74-77) including
humans (78), where isoflavones are reported to be transferred from mother to child through
breastfeeding (79).

Initial experiments showed that administration of the phytoestrogens coumestrol and
equol to newborn mice inactivated the proto-oncogene H-ras through increased DNA
methylation (80). Later, it has been shown that consumption of high doses of the phytoestrogen
genistein by 8-week-old mice induces altered DNA methylation patterns (81), while neonatal
exposure of females to high genistein levels results in tissue-specific hypermethylation in the
gene Nsbpl (nucleosomal binding protein) in the uterus (82). Also in mice, gender-specific
changes in DNA methylation of the Actal promoter in the liver are observed in response to
a diet rich in the phytoestrogens genistein and daidzein (83). The Agouti mouse model has
also been used to evidence the epigenetic effects of phytoestrogens. With this model,
hypomethylation of the Avy allele induced by maternal exposure to BPA was shown to be
inhibited by maternal dietary supplementation with either methyl-donors or genistein (84).
Table 6.1 summarizes studies that investigate epigenetic effects induced via nutrition.

The epigenomic effects of dietary phytoestrogens are not limited to DNA methylation.
In prostate cancer, genistein has a protective effect that takes place through the activation
of tumor suppressor genes by histone modifications and chromatin remodeling (85). In
breast cancer cells, genistein, in addition to reducing the expression of Dnmts, inhibits the
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TABLE 6.1 Nutritional Factors and Epigenetic Changes

Nutritional Factor Experimental Model Effect References
Methyl supplemented Mouse (agouti) Increased longevity and DNA methylation — [64]
maternal diet in LTR repeats in liver and kidney
Methyl supplemented Mouse (agouti) Altered coat color in mice exposed as [65]
maternal diet embryos and their offspring. Coat color
is dependent on methylation levels at the
Avy allele
Maternal dietary Mouse (agouti) Altered coat color in mice exposed as [66]
genistein embryos and DNA methylation in LTR
repeats in many tissues
Methyl supplemented Mouse (axin fu) Increased DNA methylation in the [68]
maternal diet Axin-fused allele, and reduction in the
incidence of kinky tail phenotype
Folic acid Human samples of cervical Increased DNMT1 expression [69]
supplementation intraepithelial neoplasia
Dietary genistein Mouse (C57BL/6]) DNA methylation differences in a novel [81]
gene in prostate
Dietary genistein and Mouse (C3H) Suppression of gender-specific differences [83]
daidzein in body weight and in promoter DNA

methylation in Actal (liver); advanced
sexual maturation in females
Maternal diet with Mouse (agouti) Neutralization of BPA-induced [84]
methylsupplementation hypermethylation in Avy alleles
and genistein

hTERT (human telomerase reverse transcriptase) gene by promoting hypomethylation in
E2F-1 sites (thereby increased E2F-1 binding) and altering methylation in H3K9 and H3K4
histones in its promoter (86).

Pharmacological Compounds and Epigenetic Changes

The first pharmacological agent used to deliberately alter the epigenome was the
demethylating agent 5-AzaC. 5-AzaC was initially tested as a treatment against leukemia
in mice (87) and is currently approved by the FDA (since 2004) for the chemotherapeutical
treatment of the myelodysplastic syndrome (88). In addition to 5-AzaC, there are currently
a number of other epigenetic drugs approved for clinical use by the FDA (89): Decitabine
(5-aza-2’-deoxycytidine) is also a hypomethylating agent with similar therapeutic
applications as 5-AzaC for the treatment of myelodysplastic syndrome; Tranylcypromine
and phenelzine are lysine demethylase inhibitors initially approved as anti-depressants, but
currently also tested for cancer treatment; Trichostatin-A, Vorinostat, Panobinostat, and
Belinostat are HDAC inhibitors (of the hydroxamic acids group) employed in the treatment
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TABLE 6.2 Current Approval Status of Pharmacological Agents

Drug (s) Epigenetic Mechanism Uses Approval Status
5-AzaC DNA methylation Treatment of myelodysplastic syndrome ~ FDA approved
Tranylcypromine and Lysine demethylase ~ Anti-depressants FDA approved
phenelzine inhibitors Cancer treatment Being tested
Trichostatin-A, Histone deacetylase =~ Treatment of lymphoma and leukemia FDA approved
Vorinostat, inhibitors
Panobinostat, and
Belinostat
Mocetinostat Histone deacetylase ~ Treatment of myelodysplastic syndrome ~ FDA approved
inhibitor
Romidepsin Histone deacetylase ~ Treatment of cutaneous T-cell lymphoma, FDA approved
inhibitor after patients have had systemic therapy
Miravirsen and RG-101 ~ miRNAs Treatment of hepatitis C Clinical trials
MRX34 miRNAs Treatment of cancer Clinical trials

of lymphoma and leukemia; Mocetinostat is an HDAC inhibitor from the benzamides
group also employed for the treatment of myelodysplastic syndrome; Romidepsin is an
HDAC I and II inhibitor with cyclic tetrapeptide antibiotic and antineoplastic activity
approved for the treatment of patients with cutaneous T-cell lymphoma, used after they
have been administered with systemic therapy (89). In addition, three epigenetic drugs
based on the action of miRNAs have entered clinical trials: Miravirsen and RG-101 for the
treatment of hepatitis C, and MRX34 for the treatment of cancer (89). Table 6.2 summarizes
the current status of pharmacological agents that alter the epigenome.

Inorganic Compounds and Epigenetic Changes

Special attention is currently given to the epigenetic effects of inorganic compounds due to
increasing knowledge about the consequences of exposure of human populations to heavy
metals. One of the first inorganic elements that has been related with epigenetic effects is
arsenic, due to its reported role in the metabolism of methyl groups (90). In mice in which
hepatocellular carcinoma has been induced by exposure to arsenic in utero, altered estrogen
signaling plays arole, in which arsenic induces overexpression of ERX and hypomethylation
in regions of the ERX promoter in the liver (91). In mouse Leydig (MLTC-1) cells arsenic
exposure induces upregulation of 3B-HSD (3B-hydroxysteroid dehydrogenase) through the
suppression of histone H3K9 di- and tri-methylation (92). Another inorganic element of
recent concern is cadmium due to its carcinogenic properties and adverse health effects in
relation to smoking. In humans, high cadmium levels detected in urine samples (associated
with smoking status) correlated with hypomethylation in MGMT gene independent of
gender, hypomethylation in MT2A and DNMT3B in women, and LINE-1 hypermethylation
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in men (93). In human bronchial epithelial cells that undergo cadmium-induced malignant
transformation, Dnmts get progressively overexpressed, which increases global DNA
methylation, while the expression of DNA repair genes is progressively reduced (94).

65 CONCLUDING REMARKS

Timely epigenetic events mediate proper development in organisms and contribute to the
formation of healthy individuals. These events are highly plastic, allowing the organism to
cope with variations in its surrounding environment. However, such plasticity also implies
that developmental windows of increased epigenetic remodeling may be sensitive to the
action of environmental exposures that will generate detrimental outcomes. Nutritional
factors, EDCs (man-made or natural) or various pharmacological agents are currently

known to act on epigenetic processes, thereby interfering with the epigenetic machineries.
In parallel, it is important to consider the known detrimental effects EDCs exert on
reproduction, such as those generated by exposure to BPA and phytoestrogens. Increasing
evidence points toward endocrine signaling, particularly signaling involving sex hormones,
as being very sensitive to epigenetic remodeling by extrinsic factors. This is of special
concern since sex-hormone signaling is not only needed for the normal functioning of the
adult organism but also for its reproductive ability. Future research on the interaction
between intrinsic and extrinsic epigenetic regulation is therefore warranted.
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