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Primary ovarian insufficiency (POI) is characterized by a loss of ovarian
function before the age of 40 and account for one major cause of female
infertility. POI relevance is continuously growing because of the increasing
number of women desiring conception beyond 30 years of age, when POI
prevalence is >1%. POI is highly heterogeneous and can present with
ovarian dysgenesis and primary amenorrhea, or with secondary amenorrhea,
and it can be associated with other congenital or acquired abnormalities. In
most cases POI remains classified as idiopathic. However, the age of
menopause is an inheritable trait and POI has a strong genetic component.
This is confirmed by the existence of several candidate genes, experimental
and natural models. The variable expressivity of POI defect may indicate
that, this disease may frequently be considered as a multifactorial or
oligogenic defect. The most common genetic contributors to POI are the X
chromosome-linked defects. Here, we review the principal X-linked and
autosomal genes involved in syndromic and non-syndromic forms of POI
with the expectation that this list will soon be upgraded, thus allowing the
possibility to predict the risk of an early age at menopause in families
with POI.
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In most of the women from industrialized countries,
the median age at menopause occurs between 50 and
52 years of age (1), but early menopause (EM) occurs in
about 10% of the women before 45 years of age, and in
1–2% before 40 years (2, 3). As the fertility impairment
starts around 20 years before menopause (4), premature
ovarian aging or primary ovarian insufficiency (POI) did
not represent a relevant disease when the expected lifes-
pan was <65 years and women usually conceived in their
twenties. But, due to the cultural and socioeconomical
changes of the last decades, nowadays a high number
of women program their first pregnancy beyond 30 years
of age (5) and POI has therefore acquired a particular
importance because this disease is currently diagnosed
when fertility is irreversibly affected (6) (Table 1). In
most cases, POI becomes clinically [primary amenorrhea
(PA) or secondary amenorrhea (SA) for >4 months] and
biochemically manifest [high follicle-stimulating hor-
mone (FSH), low estradiol and anti-Mullerian hormone
(AMH)] when the ovarian follicular reserve is already

severely depleted, thus justifying studies aiming to define
tests able to predict the risk of an early age at menopause.
A reliable test would allow young women recognized to
be at risk of POI to program their fertility by anticipating
the age of their spontaneous pregnancy or cryopreserving
their oocytes.

The heterogeneous manifestations and multifactorial
origin of POI

The clinical presentation of POI is highly heterogeneous
as it can be associated with ovarian dysgenesis (OD)
and PA or with anticipated depletion of the ovarian
reserve and SA before 40 years of age. Such heterogene-
ity is reflected also by the different mechanisms poten-
tially accounting for POI. During human embryogenesis,
developing ovaries house around 7 millions of primor-
dial follicles. Most of these follicles will be rapidly lost
by apoptosis, while some germ cells will continue to
divide, a few will enter meiosis to become primordial
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Table 1. Relevant impact of POI on woman’s and social health

Condition Consequences Comments

Infertility Psychological Severe impact for
affected woman
and family

Interventions to
rescue fertility
after POI onset

Frequently
ineffective

Oocyte
cryopreservation
before follicle
depletion

These interventions
are rarely
supported by
NHS

Oocyte donation
Hormonal defects Flushes, sweating,

irritability/anxiety,
sleep disorders

Premature aging at
several tissue
levels has
increasing
impact due to
the prolongation
of life
expectancy, but
may be reduced
by
appropriate HRT.

Costs for
examinations
and therapeutics.

Impaired
performance
(physical and
mental)

Bone disease
(osteoporosis)

Metabolic and
cardiovascular
diseases

Neurodegenerative
diseases

HRT, hormone replacement therapy; NHS, National Health
System; POI, primary ovarian insufficiency.

oocytes. Half a million oocytes will not be ovulated and
only approximately 400 are ovulated before physiologi-
cal menopause occurs. Multiple mechanisms have been
described to be causatives of POI onset, including: (i)
presence of a smaller pool of primordial follicles, (ii)
increased follicular atresia, or (iii) an altered maturation
and/or recruitment of primordial follicles (7). Neverthe-
less, in the majority of cases, including a subset asso-
ciated with PA and OD (8, 9), POI occurs because of
premature exhaustion of the primordial follicular pool.
A wide range of etiological causes may activate such
mechanisms including genetic, autoimmune, metabolic,
toxic, infectious and iatrogenic factors (10). At present,
about 25% of all forms of infertility at early age can
be classified as iatrogenic and related to cancer treat-
ment. The benefits of fertility preservation in these sit-
uations are well established (11, 12), but freezing of
oocytes or ovarian fragments can be advised also in
women at high-risk of POI. However, fertility preserva-
tion for these women should be supported by an effi-
cient test able to predict POI when the ovarian reserve is
still intact.

Multiple evidences support a strong genetic compo-
nent underlying the pathogenesis of idiopathic POI (13).
One important clue is the role of familiarity in the
determination of menopausal age in mothers and daugh-
ters (13–15) and a recent genome wide study identified
loci that are significantly associated with age at natu-
ral menopause (16). Surveys focused on large series of

women with POI found that 4–31% had one or more
affected family members, depending on the population
studied, but this incidence further increase in presence of
a familial history of EM (17). Different modes of inher-
itance can be found in POI families, but the maternal
transmission is by far the most frequent (10, 18, 19).
The concomitant presence of POI and EM in the same
pedigree suggests that POI may have genetic underly-
ing causes with a highly variable expressivity (20), thus
supporting the view of a complex multifactorial diseases
characterized by a great genetic heterogeneity probably
involving the contribution of stochastic events, several
alleles and/or epigenetics.

Over the past several years, the candidate gene
approach contributed to find a correlation between
the ovarian phenotype and several genetic variations
in different genes. Some of those candidates arose
from experimental or natural animal models showing
ovarian failure, however, in many cases no variants
in the corresponding human orthologues have been
found, but this might be due to the small size of the
cohorts or the ethnicity group investigated. Among
the genes associated with POI, only a few (such as
FMR1 premutation, BMP15, GDF9, and FSHR) have
been incorporated as diagnostic biomarkers (21), and
scientific community and patients ask for more research
before using other genes as a routine tool (22). Addition-
ally, submicroscopic copy number variations (CNVs),
both rare and common, have recently emerged as an
important genetic risk category for POI, both in cases
of PA and SA. Nevertheless, a large number of genes
or genomic loci, affected by common CNVs or single
nucleotide polymorphisms (SNPs) and identified by
genome-wide association studied (GWA), may have a
role in the disease susceptibility but can explain only
a small proportion of the total heritability of POI (23).
The analysis of a few cohorts of 46,XX POI patients by
means of high throughput techniques, such as compara-
tive genomic hybridization array (array-CGH) and SNP
array, has led to the identification of CNVs affecting
several X-linked and autosomal loci with a possible
role in female fertility (24–34). Similarly, the recent
application of whole-exome sequencing (WES) to a few
POI multigenerational familial cases has succeeded in
revealing rare single nucleotide variants affecting genes
implicated in ovarian function (35–48). As already
reported in other complex diseases characterized by
a great genetic heterogeneity, it is likely that patients
with POI may harbor multiple genetic variants. For that
reason, henceforth the investigations on POI candidate
genes could be rapidly performed by using genetic
panels based on the next-generation sequencing (NGS),
which enable the study of multiple candidate genes
in the same patient for a dozen of patients simultane-
ously (49, 50). The regulatory function of microRNAs
(miRNAs) in oocyte maturation and ovarian follicular
development might be implicated in the development of
POI by affecting different signaling pathways (51–53).

In the next section, we elucidate the main genetic
mechanisms involved in the pathogenesis of POI
(Table 2).
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Table 2. List of genetic defects associated with POI and their estimated frequencies

Estimated
frequency in POI References

X chromosome defects
Turner’s syndrome and related defects 4–5% (9, 55, 59, 60)
Triple X syndrome 1–4% (62)
Fragile X syndrome (FMR1 premutation) 3–15% (119, 120, 122, 132)
DIAPH2 disruption (translocation) Unknown (18, 19)
BMP15 variants 1.5–12% (143–149)
PGRMC1 variants 1.5% (155)

Autosomal defects
Complex diseases Rare

Galactosemia (GALT ) (94, 95, 98)
BPES (FOXL2) (79, 88)
APECED (AIRE) (65, 70, 71)
Mitochondrial diseases (POLG) (102, 103)
Demirhan syndrome (BMPR1B) (109)
PHP1a (GNAS) (101)
Ovarioleucodystrophy (EIF2B) (106)
Ataxia telangiectasia (ATM) (108)
Perrault syndrome (HSD17B4, HARS2, CLPP, LARS2,

C10ORF2)

a

Premature aging syndromes:
Bloom syndrome (BLM) (113, 114)
Werner syndrome (WRN) (117)
GAPO disease (ANTXR1) (118)

Isolated disease
FSH/LH resistance (FSHR and LHCGR) 0–1% (42, 47, 134, 135)
INHA variants 0–11% (138, 139)
GDF9 variants 1.4% (32, 146, 150)
FOXL2 variants Rare (50, 92, 93)
FOXO3 variants 2.2% (168, 169)
NOBOX variants 0–6% (50, 175, 177–179, 182)
FIGLA variants 1–2%b (183, 184)
NR5A1 variants 1.6% (164, 165)
LHX8 variants Rare (50, 185, 186)
DNA replication/meiosis and DNA repair genes variants

(DMC1, MSH4, MSH5, SPO11, STAG3, SMC1β, REC8,
POF1B, HFM1, MCM8, MCM9, SYCE1, PSMC3IP, NUP107,
FANCA, FANCC,FANCG)

Unknown (35, 38–41, 45, 156–162)

FSH, follicle-stimulating hormone; LH, luteinizing hormone; POI, primary ovarian insufficiency.
aRefer to specific article on this same issue.
b1% in Indian and 2% in Chinese women, respectively.

Syndromic POI

Turner syndrome and X chromosome defects

Turner syndrome (TS) is the consequence of complete
or partial loss of one X chromosome. In almost all
patients, the resulting phenotype is that of a female
with infertility due to POI and short stature, variably
associated with other extra-gonadal abnormalities. The
45,X has been recognized as the characteristic karyotype
associated with TS with an incidence of about 1:2500
live female births (54). However, a recent revision of
previous data argues that the surviving individuals are
most likely 45,X/46,XX mosaicisms or structural abnor-
malities of the X chromosome (55). In women with
TS, oocyte-loss occurs in the early stages of meiotic
prophase and ovarian development, resulting in OD
and PA with elevated FSH levels since infancy (9).
Nevertheless, spontaneous menarche and pregnancies

have been reported (56, 57). The TS phenotype may
be explained by several mechanisms, including the
lack of a homologous partner for the X chromosome at
meiosis (58), but the most substantiated one is the lack
of required dosage of particular X-linked gene products
(like SHOX) that physiologically escape X inactivation
(59). The requirement for a double dosage of X-linked
genes is supported by the complete spontaneous puberty
reached in about one third of patients with high level
mosaicisms (56, 60). Recently, we documented the spon-
taneous puberty in one TS patient with short stature and
a full duplication of the BMP15 gene on the short arm
of X chromosome in presence of low level mosaicism
(<10%), suggesting a relevant role for a double dose of
this gene in ovarian development (60, 61).

X chromosome abnormalities have long been recog-
nized as a frequent cause of many forms of familial as
well as sporadic POI. They include triple X syndrome
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(62), turner mosaics, deletions, isochromosomes and
translocations between X chromosome and autosomes
(18). Critical regions for normal ovarian development
have been proposed on the long arm of the X chro-
mosome: Xq13-21, which is interested by most of the
breakpoints of balanced translocations, and Xq23-27,
which is associated with interstitial deletions (18). The
size of the critical Xq region might alternatively explain
the ovarian defect (18). Other possible deleterious con-
sequences of balanced translocations include the direct
disruption of relevant loci or a ‘position effect’ caused by
the rearrangements on contiguous genes, which might
cause changes in gene transcription. Transcriptional
characterization of breakpoint regions led to the identi-
fication of five genes interrupted by translocations: the
XPNPEP2 (MIM *300145) gene in Xq25, the POF1B
(MIM *300603) gene in Xq21.2, and the DACH2 (MIM
*300608) gene in Xq21.3, the CHM (MIM *300390)
gene in Xq21.2 and the DIAPH2 (MIM *300108) gene
in Xq22 (18, 19). However, breakpoints described in
women with POI were frequently mapped outside of
genic regions in Xq21, consistent with models for POI
involving extra-X chromosome effects caused by X to
autosome translocations. In addition, some transloca-
tions may adversely affect X chromosome structure
and, consequently, meiotic pairing, therefore increasing
apoptosis of germ cells at meiotic checkpoints (63) and
ultimately exacerbate POI.

Moreover, X-linked POI pathogenesis may also have
an epigenetic component, as suggested by the fact
that a down-regulation of genes specifically expressed
in oocyte during follicle maturation were reported
upon heterochromatin rearrangements of the Xq13-q21
region (64).

Autoimmune polyendocrinopathy syndrome type I

Autoimmune polyendocrinopathy syndrome type I
(APS1, MIM #240300) is caused by mutations in the
autoimmune regulator gene (AIRE, MIM *607358).
The syndrome is characterized by having two out of
three major clinical findings: Addison’s disease (AD),
and/or hypoparathyroidism, and/or chronic mucocuta-
neous candidiasis. Generally in this syndrome, the AD
has its onset in childhood or early adulthood. APS1 is
frequently associated with chronic active hepatitis, mal-
absorption, juvenile-onset pernicious anemia, alopecia,
and primary hypogonadism. On the other hand, diabetes
mellitus and autoimmune thyroid disease are infrequent
in APS1. Other forms of autoimmune polyendocrinopa-
thy syndromes are APS2 or APS3 (65). APS2 (MIM
#269200) includes AD in association with autoimmune
thyroid disease and/or diabetes mellitus type 1 and
its genetics remain to be well defined. APS3 includes
patients with autoimmune thyroid disease and another
autoimmune disorder not to include AD.

In 1990, Ahonen et al. reported candidiasis as the pre-
senting symptom in the majority of the patients with
APS1 (66) and POI was present in 60% of the women
over the age of 13. Two laboratories concurred in the iso-
lation of the causal gene for APS1 in 1997 and designated

it AIRE (67, 68). The gene is located at 21q22.3 The
AIRE protein contains two zinc finger motifs consis-
tent with a role as transcription factor. AIRE is involved
in the induction of tolerance to self-antigens by induc-
ing the expression of peripheral tissue self-antigens in
thymic stromal cells. Normally, this promotes the clonal
deletion of differentiating T cells that recognize these
self-antigens. In the absence of AIRE protein, many
tissue-specific self-antigens fail to be expressed in the
thymus, thus leading to multi-organ autoimmunity due
to the failure in the negative selection of auto-reactive
T cells (69). Negative selection normally causes death
of T cells which have receptors that are highly specific
for self-peptides. If these auto-reactive T cells are left
unchecked autoimmunity may result. Around 50 muta-
tions in AIRE have been identified and are inherited in a
recessive manner.

Soderbergh et al. in their study of a cohort of 90
patients with APS1 found an association between AD
and the presence of antibodies against 21-hydroxylase
(P450 c21) and side-chain cleavage enzyme (P450scc)
(70). In the same report, hypogonadism was exclusively
associated with antibodies against P450scc with an odds
ratio of 12.5. Jasti et al. examined the fertility and ovarian
function of Aire-deficient mice and found that only 16%
were able to produce two litters (71). By 20 weeks of
age approximately half of these mice exhibited ovarian
follicle depletion. This was associated with ovarian
infiltration of proliferating CD3+ T lymphocytes and the
presence of serum antibodies against oocytes, as well
as stromal and luteal cells. Taken together the findings
are consistent with the idea that ovarian dysfunction
and eventual follicular depletion are mechanisms of
infertility in Aire-deficient mice.

Women with POI related to steroidogenic cell autoim-
munity have lymphocytic autoimmune oophoritis as the
mechanism of their POI (72). Reato et al. investigated
the prevalence of POI in women with autoimmune AD
(73). In this specific clinical setting they found POI in
41% of women with APS1 and 16% of women with
APS2. Falorni et al. examined the prevalence of steroido-
genic cell autoantibodies in women with POI who also
had adrenal autoimmunity (74), and found that these
women were frequently positive for 17-hydroxylase
and/or P450scc autoantibodies. Recent studies show
that POI women with positive anti-steroidogenic cell
autoantibodies have frequently conserved AMH levels
(75, 76), a finding that may indicate a prevalent theca
cell involvement, at least in the initial phases of the ovar-
ian failure. Recently, mono-allelic dominant mutations in
the first plant homeodomain (PHD1) zinc finger of AIRE,
which exert a dominant negative effect, have been identi-
fied at relatively high frequencies in different populations
in presence of late onset and milder manifestations com-
pared with classical APS1, such as only hypothyroidism
and POI, and follow incomplete inheritance (77). In this
context, POI might represent the first or even the only
manifestation of a non-classical form of organ-specific
autoimmunity.

Ovarian antibodies detected by indirect immunofluo-
rescence lack specificity and testing for them is therefore
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not warranted (78). Ovarian biopsy does not provide
information that helps management and is not indicated
outside of an investigational protocol.

Blepharophimosis, ptosis, epicanthus inversus syndrome

Blepharophimosis, ptosis, epicanthus inversus syndrome
(BPES, MIM #110100) is an autosomal dominant eye-
lid malformation characterized by BPES and telecanthus.
When the condition is associated with POI it is consid-
ered type I BPES. When not associated with POI it is
considered type II BPES. Forkhead transcription factor
L2 (FOXL2, MIM *605597) mutations are known to be
associated with BPES (79). Animal models of human
BPES, including the goat with polled/intersex syndrome
(PIS) and the Foxl2 knock-out mice, were shown to repli-
cate the findings in humans (80, 81). FOXL2 role in
granulosa cells (GC) physiology includes the promo-
tion of GC differentiation and postnatal maintenance of
ovaries. Briefly, FOXL2 regulates: (i) AMH expression
through the interaction with steroidogenic factor 1 (SF-1)
(82, 83), (ii) follistatin gene transcription by cooperating
with SMAD3 (84), (iii) estradiol signaling by triggering
the activin-dependent expression of ESR2 (85) and (iv)
maintenance of GC identity through the indirect repres-
sion of SOX9 (85).

More than 260 FOXL2 variants have been reported
in individuals with BPES types I and II, demonstrating
that phenotypic features are caused by the pleiotropic
effect of a single gene (FOXL2 Mutation Database at
http://medgen.ugent.be/LOVD2/home.php) (86). Intra-
genic mutations of all types represent about 80% of the
genetic defects found in BPES cohorts. Genomic rear-
rangements, comprising deletions encompassing FOXL2
entire gene or located outside its transcription unit, repre-
sent 12% and 5% of all genetic defects, respectively (87).

FOXL2 intragenic mutations resulting in truncated pro-
teins before the poly-Ala tract are typically associated
with BPES type I, whereas poly-Ala expansions would
rather lead to BPES type II (88). However, in most
cases FOXL2 mutations are not in accordance with the
ovarian phenotype, especially the missense mutations
located within the forkhead domain (FHD). Therefore,
some authors proposed that mutants could be sorted into
two classes: those that potentially alter protein–protein
interactions and those that might disrupt the interac-
tions with DNA (89). The in silico tool based on
a crystallographic-derived molecular model for testing
variants affecting the FHD looks at the localization of the
side chain of each amino acid of the FHD helices, which
strongly correlates with their impact on FOXL2 trans-
activation capacity (89). Finally, two different reporter
promoters are used to test the FOXL2 variants’ transcrip-
tional activity in order to assess the associated risk of
POI (90). However, recently reported cases emphasize
the importance of long-term clinical follow-up of ovarian
function also in patients with a poly-Ala expansion (7).

FOXL2 sequence variants in women with POI but
without palpebral abnormalities appear to be a rare
event (91). To date, only three variants have been docu-
mented (92, 93). Very recently, another FOXL2 variant

has been identified by NGS and described as loss-of-
function (50).

Galactosemia and carbohydrate-deficient glycoprotein
syndromes

Proper galactose metabolism is required for normal
ovarian function. Galactosemia (MIM #230400) is a
hereditary disorder of galactose metabolism caused by
deficiency of galactose-1-phosphatase uridyltransferase
(GALT, MIM *606999) enzyme, with an incidence in
Europe and North America of about 1:30,000–1:50,000)
(94). Galactosemia presents with the worst complica-
tions in organs with high GALT expression (liver,
kidney, ovary and heart). Up to 80–90% female patients
with GALT homozygous mutations that partially or
completely abolish GALT activity show a severe pheno-
type and exhibit POI (94, 95). More than 150 causative
mutations have been described in GALT gene (96), how-
ever, more than 70% of cases associated with impaired
GALT function are caused by two common mutations
(p.Q188R and p.K285N) (97). Lacking the proper
metabolism of galactose, patients with GALT mutations
accumulate galactose in the ovary to toxic levels and
follicles undergo accelerated atresia (98). FSH levels
can be increased since birth to puberty and the timing
of the damage to the ovary can vary, but is frequently
associated with PA (94). Spontaneous pregnancies have
been reported in a few women with galactosemia, even
when biochemical markers (undetectable AMH and
estradiol and high gonadotrophins) were indicative of
ovarian failure (99).

Congenital disorders of glycosylation [carbohydrate-
deficient glycoprotein (CDG) syndromes] are rare and
complex diseases caused, among others, by muta-
tions in PMM2 (CDG1, MIM *601785) gene, which
encodes a phosphomannomutase enzyme required
for the conversion of mannose-6-phosphate into
mannose-1-phosphate. Genetic defects of such enzymes
generally determine severe systemic disorders, and
ovarian defects may be seen indicating that a defective
glycosylation of ovarian glycoproteins is critical for
ovarian function (100).

Pseudo-hypoparathyroidism type 1a

Pseudo-hypoparathyroidism type 1a (PHP1a, MIM
#103580) is a generalized form of hormone resistance
characterized by renal resistance to parathyroid hormone
(PTH), resulting in hypocalcemia and hyperphos-
phatemia. Moreover, it is characterized by resistance to
other hormones including thyroid-stimulating hormone
(TSH), gonadotropins and growth-hormone-releasing
hormone (GHRH) and a variety of clinical fea-
tures known as Albright hereditary osteodystrophy.
Gonadal dysfunction with delayed or incomplete sex-
ual maturation, amenorrhea or oligomenorrhea and/or
infertility is very frequent. In about 70–80% of cases,
PHP1a is caused by maternally inherited heterozy-
gous loss-of-function variants in the GNAS gene (MIM
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*139320). Methylation defects at the same locus can
also be disease-causing. The GNAS gene encodes for
the protein Gsα, which is the first intracellular element
downstream of gonadotropin receptors and whose acti-
vation couples the stimulation of FSH and luteinizing
hormone (LH) receptors (FSHR and LHCGR) to their
enzymatic effector, adenylyl cyclase. The presence of
gonadotropin resistance and POI in these patients is jus-
tified by the preferential expression of a mutant maternal
allele in gonads as in other target tissues of peptide
hormones acting through the same GPCR-Gsα-cAMP
pathway (101).

Progressive external ophthalmoplegia

The POLG gene (MIM *174763) encodes for the enzyme
that synthesizes new mitochondrial DNA and corrects
mitochondrial DNA errors. Patients with POLG muta-
tions present with autosomal dominant (MIM #157640)
or recessive (MIM #258450) progressive external oph-
thalmoplegia (PEO), a disease characterized by weak-
ness of the ocular muscles and myopathy secondary to
the depletion of mitochondria. POLG mutations which
cluster in the polymerase (pol) domain undergo a typ-
ical dominant inheritance pattern, while those affect-
ing the proofreading (exonuclease, exo) domain follow
recessive inheritance. POLG pol-domain mutations have
been consistently reported in several large families in
co-segregation with POI and parkinsonism (102, 103).

Ovarioleucodystrophy

Ovarioleukodystrophies are by definition genetic neuro-
logical disorders characterized by the involvement of the
white matter of the central nervous system associated
with POI (104). Some of the patients have unusual
association of POI with ‘vanishing white matter disease’
(VWM, MIM #603896) observed on cerebral magnetic
resonance imaging, with variations in any of the five
subunits of eukaryotic initiation factor 2B (EIF2B).
This factor acts in response to cellular stress preventing
the accumulation of denatured proteins. The age at
onset of neurologic degeneration correlates positively
with the severity of ovarian dysfunction. Moreover,
in some cases, POI manifests before the neurological
symptoms or occurs when neurological abnormalities
are subclinical (105). Therefore, the involvement of
EIF2B mutations should be considered even in patients
with apparent isolated POI. The screening of a large
panel of patients without leukodystrophy or neurological
symptoms showed no mutations in EIF2B genes (106),
thus indicating that EIF2B mutations are not responsible
for non-syndromic forms of POI.

Ataxia telangiectasia

Ataxia telangiectasia mutated gene (ATM, MIM
*607585) encodes a cell-cycle checkpoint kinase which
is involved in the cellular response to DNA damage,
in the processing of the DNA strand breaks that occur

during meiosis, during immune system maturation and
for telomere maintenance (107). ATM mutations are
the underlying causes of ATM (MIM #208900), an
autosomal-recessive disorder which includes cerebellar
degeneration, oculomotor dysfunction, immunodefi-
ciency, predisposition for cancer, radiosensitivity and
chromosome instability as well as gonadal abnormalities
and reduced germ cell pool. Mutations in the ATM
gene generally result in the total loss of the protein. A
loss-of-function mutation of the ATM gene has been
associated with OD and defects in primordial germ cells
development (108).

Demirhan syndrome

Mutations in BMPR1B, the gene coding for bone mor-
phogenetic protein receptor 1B (MIM *603248), have
been found to cause a subtype of acromesomelic chon-
drodysplasia with genital anomalies, amenorrhea and
hypergonadotrophic hypogonadism, defined Demirhan
syndrome (109). Acrosomelic chondrodysplasias are
hereditary skeletal disorders characterized by short
stature, very short limbs and hand/foot malformations.
BMPR1B is a receptor for member of the transforming
growth factor-beta (TGF-β) family and is fundamental
for gonadal and skeletal development, as confirmed by
the existence of naturally occurring BMPR1B variants
found in association with the hyperproliphic Booroola
phenotype in sheep and the female knock-out mice
presenting with brachydactyly and infertility (110–112).

Premature aging syndromes

Several syndromes characterized by symptoms of ‘pre-
mature aging’ are associated with POI (or azoospermia
in males). Bloom syndrome (MIM #21090) is a rare
autosomal recessive disorder caused by mutations in the
gene coding for the DNA helicase BLM (MIM #604610),
which result in genomic instability. The main symptoms
of Bloom syndrome include short stature, distinctive
skin rashes on sun-exposed areas, moderate immunod-
eficiency, increased cancer risk and hypogonadism in
both sexes (113). Nevertheless, successful pregnancies
in women with Bloom syndrome have been reported,
although rarely, in literature (114, 115). Recessive muta-
tions in the WRN gene (MIM #604611), which encodes
another DNA helicase, are the causatives of Werner
syndrome (MIM #604611), a form of adult progeria
characterized by sklerodermic-like skin, cataract, prema-
ture arteriosclerosis, increased cancer risk and atrophic
gonads (116). Also in these patients, successful pregnan-
cies have been reported, although rarely (117). Another
form of syndromic premature aging associated with POI
is represented by growth retardation, alopecia, pseudoan-
odontotia, and optic atrophy (GAPO) syndrome (MIM
#230740), which is caused by recessive mutations in a
gene involved in cell adhesion and migration, ANTXR1
(MIM *606410). GAPO syndrome is characterized by
severe growth retardation, alopecia, optic atrophy and
distinctive facial features. Ovaries of women affected
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by GAPO syndrome display extensive deposition of
hyaline extracellular material and premature follicular
depletion (118).

The epidemiological observations that POI is often
associated with syndromes characterized by prema-
ture aging further support the growing idea that even
non-syndromic POI could be considered as a form of
ovary-specific accelerated aging.

Non-syndromic POI

Fragile X mental retardation 1

The fragile X mental retardation 1 (FMR1) gene is
located on the X chromosome and includes a trinu-
cleotide repeat sequence, (CGG)n, in its 5′ untranslated
region. Common alleles include 6-44 CGG repeats, typ-
ically with AGG interspersions every 9 or 10 repeats.
When expanded to 55–200 repeats, this ‘premutation’
becomes unstable when transmitted and has the poten-
tial to expand beyond 200 repeats in the next generation.
The resulting ‘full’ mutation then leads to the full silenc-
ing of the FMR1 gene due to hypermethylation of the
repeat and regulatory regions and causes fragile X syn-
drome, the most common inherited form of intellectual
and developmental disabilities in males. The premuta-
tion is carried by about 1 in 250 women. Among women
who carry the premutation, approximately 15–24% have
POI (119), the disorder referred to as fragile X-associated
premature ovarian insufficiency (FXPOI). About 11.5%
[95% confidence interval (CI): 5.4–20.8%] of women
with familial POI and 3.2% (95% CI: 1.4–6.2%) of those
with sporadic POI carry the premutation (119). Thus, the
FMR1 premutation has emerged as the leading known
heritable cause of both sporadic and familial POI (19).

Studies conducted on women carrying the premu-
tation allele that are still having regular menstrual
cycles revealed that their hormonal hypothalamic-
pituitary-gonadal axis profile is strikingly similar to that
of aging ovaries: increased gonadotropins and decreased
inhibin B in the follicular phase and decreased inhibin
A (INHA) and progesterone in the luteal phase (120).
More recent studies have shown reduced levels of AMH
among premutation carriers compared with non-carriers,
again, consistent with an aging ovary (121).

Two risk factors have surfaced as potential predic-
tors of risk and severity of FXPOI, namely repeat size
(122) and mean age at menopause of first degree rel-
atives (123). With respect to repeat size, a non-linear
relationship with severity of FXPOI has been estab-
lished: premutation carriers with the highest risk for
FXPOI turn out to be those with about 80–100 repeats,
not those with >100 repeats. Consistently, among those
with 80–100 repeats, the onset of FXPOI was earli-
est, rarely before 20 years. Several studies aimed at the
investigation of the role of intermediate CGG repeat size
(45–54 repeats) in POI have been performed but pro-
duced varying results. Indeed, some studies highlighted
an increased frequency of intermediate alleles in ‘occult’
POI (124–126), while, more recently, other authors did
not show any positive association, despite a significantly

larger sample size, thus limiting the consideration of
normal- and intermediate FMR1 repeat size in the diag-
nostic evaluation of women with POI, or in order to pre-
dict POI onset in women at risk (127, 128). Additional
research is needed to better define the repeat size alleles
which assesses the highest risk and the underlying mech-
anisms. The second established risk factor is mean age at
menopause of first degree relatives. Accordingly, modi-
fier genes could play a substantial role in the variability
of age at menopause among premutation carriers.

The mechanism leading to FXPOI is still unexplained.
As the premutation repeat size increases, the level of
FMR1 transcripts abnormally increases and the level
of FMRP, the resulting protein, decreases (129). The
toxic effect of the premutation could have its influence
at several levels. FMR1 mRNA studies in the mouse
(130) and FMRP expression studies in fetal ovaries (131)
indicate that FMRP is highly expressed in the germ
cells of the fetal ovary. Thus, FMRP may play a role in
oogonia proliferation and the determination of the initial
size of the ovarian reserve. Interestingly, several studies
have indicated that FMRP is also expressed in GC of
maturing follicles, but not in primordial/primary stages
(130, 131). Schuettler et al. (132) suggested that this
cellular shift of FMRP expression to GC during follicle
maturation after birth indicates a role for FMRP in the
maturation of an oocyte.

Based on the knowledge that FMRP is involved in the
suppression of transcripts’ translation, it may be possi-
ble that increased levels of FMRP in specific moments
during development could lead to the insufficiency of
proteins necessary in oocyte development, or for fol-
licle development and survival. Alternatively, the large
CGG repeat track in the premutation allele mRNA may
determine a cumulative toxic effect in GC, leading to
an increased rate of follicular atresia later in a woman’s
reproductive life.

Gonadotropin receptors

FSH and LH receptors are glycoprotein hormone
receptors belonging to the G-protein-coupled receptors
(GPCRs) family. Together with their binding hormones,
LH and FSH, these receptors are involved in regulating
reproductive hormonal signaling in both males and
females. Rare loss-of-function mutations affecting these
receptors cause gonadotropin resistance with hyperg-
onadotrophic hypogonadism (133). For example, the
homozygous missense mutation that determines the
p.A189V substitution in the extracellular domain of
the FSHR gene (MIM *136435) causes PA, hyperg-
onadotropic hypogonadism and hypoplastic ovaries
with impaired follicular growth. However, this mutation
appears to be particularly frequent only in the Finnish
population, as result of a founder effect. From in vitro
studies, the mutant receptor is retained inside the cells
thus causing a complete FSH resistance (134). Other
mutations in different regions of the FSHR gene have
been reported in women with the classic biochemical
phenotype of premature ovarian insufficiency (FSH
higher than LH levels). Very recently, thanks to the
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WES approach, two novel causative FSHR missense
variants (p. I418S and p.D408Y) have been identified in
two distinct families, each one composed of two sisters
diagnosed with PA and hypergonadotropic gonadal
failure (42, 47). Complete FSH resistance is associated
with absent pubertal development and PA and partial
forms are characterized by post-pubertal POI and SA.
However, both the complete and partial forms undergo a
typical recessive inheritance (133).

Homozygous inactivating variants of the LHCGR gene
(MIM *152790) are a rare cause of POI in women with
46,XX karyotype. They represent a particular form of
hypergonadotropic hypogonadism characterized by LH
levels higher than those of FSH. Studies in males affected
with Leydig cell hypoplasia evidenced the particular
phenotype of ovarian insufficiency in women with LH
resistance (135). A severe LH resistance cause the POI
phenotype characterized by oligoamenorrhea or SA with
evidence of multiple follicles at the antral stage at ultra-
sound. Although different mature follicles are present, as
evidenced by ovarian biopsies, ovulation does not occur.

TGF-β family

Both the oocyte and GC within the ovarian folli-
cle express several TGF-β-like factors (136), which
promote proliferation and differentiation in the tis-
sues where they are expressed. These factors include:
growth and differentiation factors (GDFs), bone morpho-
genetic proteins (BMPs), as well as inhibins, activins
or AMH. TGF-β-like factors are commonly expressed
as pre-pro-proteins, which undergo proteolytic cleavage
during the secretory pathway. The precursors are specif-
ically cleaved to generate the ‘mature’ ligand, which
alone or in combination with other secreted factors pro-
mote the cell signaling cascade. The pro-region is impor-
tant for the processing of the pro-protein by driving the
dimerization and secretion of the mature peptides. Sev-
eral of these factors acting within the ovarian follicles are
required for maintaining the follicle homeostasis and for
proper folliculogenesis. Therefore, the related encoding
genes are considered as candidates to be investigated in
women with POI (7, 112).

Inhibin A
Inhibin is a candidate gene involved in regulating ovarian
function either as negative modulator of pituitary FSH
synthesis or as a paracrine factor within the ovarian
follicles. Based on studies of transgenic mice with INHA
gene deletion which early develop stromal/granulosa cell
tumors with raised FSH levels and infertility with nearly
100% penetrance, it has been postulated that inhibin
functions in vivo as a tumor suppressor in the gonads
of mice (137). The association between inhibin and POI
was first suggested by the identification in a woman
with POI of a 46,XX,t(2;15)(q32.3;q13.3) translocation
causing a breakpoint in the α subunit of inhibin (INHA;
MIM *147380, locus 2q33-36), therefore prompting the
mutational screening of this gene (138). One recurrent
variation of INHA (p.A257T) has been consistently

found in women affected by POI of different ethnicities,
with a prevalence of 0–11% depending on the population
studied. A large-scale association study in Italian and
German POI cohorts, however, evidenced no significant
differences in variant frequency between patients and
controls (139). Nevertheless, a further meta-analysis of
the random effects on the risk of POI in carriers of the
INHA variant from the most relevant studies revealed
a combined risk difference of 0.04 (138). Based on
these results, INHA gene might be considered as a
susceptibility locus for POI.

Bone morphogenetic protein 15
BMP15 (MIM *300247) is an oocyte-specific
growth/differentiation factor which is involved in
follicular development and in the regulation of many
GC processes (112, 136). The main BMP15 actions
include: (i) the promotion of follicle growth and mat-
uration, (ii) regulation of follicular GC sensitivity to
FSH, (iii) prevention of GC apoptosis, (iv) promotion
of oocyte developmental competence and (v) determi-
nation of ovulation quota (61, 136). Consistent with
a role for this gene in folliculogenesis and ovulation,
ewes with heterozygous naturally occurring mutations
have an increased ovulation rate, while homozygous
carriers show infertility with complete block of fol-
liculogenesis. Unlike mutated Bmp15 homozygous
ewes, female knock-out mice show only subfertility
(140). All together, these data indicate that the role of
BMP15 appears to differ between species and seems
more critical in mono-ovulating species (such as sheep
and human) than in the poly-ovulating ones (mice).
Accordingly, mouse seems to lack a biologically active
Bmp15 molecule (141), but the over-expression of a
biologically active Bmp15 in mice leads to accelerate
folliculogenesis and causes an early onset of ovarian
failure (142). BMP15 maps to a locus on Xp critical to
ovarian reserve determination where several of the TS
traits are located including ovarian failure (19, 59). In
women, mutations in BMP15 gene have been associated
with both PA and SA in several POI cohorts with a preva-
lence ranging from 1.5% to 15% (7). BMP15 p.Y235C
was the first mutation reported in association with hyper-
gonadotropic ovarian insufficiency in two Italian sisters
with PA and OD (143). The Y235 residue is highly
conserved among species and corresponds to a site of
positive selection in the hominidae clade during evolu-
tion. When functionally tested, this alteration enhances
the BMP15-induced transcriptional activity and causes
increased GC steroidogenesis (144). In contrast, BMP15
p.Y235C was unable to increase GC proliferation, as
previously shown (143). Several other variants have been
further identified with variable frequency in worldwide
POI cohorts (145–151). Almost all of the identified
BMP15 variants are missense substitutions found in
the heterozygous state and located in the gene sequence
encoding the pro-region of the protein which lead to ham-
pered processing, together with an important reduction
in their biological functions (149). Although, some of
these variants have also been found in low percentage in
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the control populations, a finding that may question their
pathogenic role, a recent revision of the frequency of
BMP15 variants in POI and control populations revealed
a 10-fold higher frequency of heterozygous BMP15 vari-
ations in cases (61). In a recent study on X chromosome
mosaicism, we identified a tandem duplication of the sin-
gle BMP15 gene in a patient with 45,X karyotype, who
experienced a spontaneous menarche followed by regular
menses for 4 years. This BMP15 duplication would have
enabled a small amount of functional follicles to survive
atresia and reach pubertal age by means of a partial com-
pensation to the haploinsufficiency for the other X-linked
genes. Consistent with this, fluorescent in-situ hybridiza-
tion (FISH) and array-CGH experiments demonstrated
that the presence of a mosaicism with the euploid cell
line >10% would be sufficient for spontaneous menar-
che to happen (60). Taken together, these data highlight
how BMP15 gene dosage contributes to the ovarian
phenotype of patients with TS and further support
the hypothesis that BMP15 is an ovary-determining
X-linked gene (61, 152). This finally brings additional
support to the idea that inactivating mutations in this
gene can represent a predisposing event for POI.

Growth differentiation factor 9
Growth differentiation factor 9 (GDF9, MIM *601918),
also named GDF9b, is homologous to the gene encod-
ing for BMP15. GDF9 expression is high in the oocytes,
where its products can form non-covalent heterodimers
with BMP15, which are active in surrounding follic-
ular GC. Evidences from experimental animals have
strongly suggested that GDF9 activity is crucial in
poly-ovulating species: in mice, for instance, GDF9 is
fundamental for folliculogenesis (112, 136). Concerning
mono-ovulating species, natural GDF9 mutations have
been described both in Cambridge and Belclare sheeps,
where the ovarian phenotype was analogous to that seen
in BMP15 mutants (140). In humans, all the GDF9 vari-
ations described so far in different cohorts are all mis-
sense and in the heterozygous state, affecting exclusively
the pro-region with a prevalence of 1.4%. None were
detected in the control populations (112). A duplication
affecting the regulatory region of GDF9 was detected
by array-CGH in a patient with early onset of SA. The
duplicated region contains three newborn ovary home-
obox (NOBOX)-binding elements and an E-box, impor-
tant for GDF9 gene regulation, and it is likely causative
of POI (32). Rarely, some insertion/deletion or missense
variants in GDF9 have been reported in mothers of dizy-
gotic twins (153, 154), with an incidence around 4%, thus
supporting GDF9 as a determinant of the ovulation quota
also in humans.

Progesterone receptor membrane component 1

Progesterone receptor membrane component 1
(PGRMC1, MIM *300435) gene has been described
as candidate for POI following the identification of an
X/autosome translocation in Xq13-26, within the X
‘critical region’ in association with POI. Further, a mis-
sense substitution located in the intracellular C-terminus

of PGRMC1, which impair the anti-apoptotic action
of progesterone in the developing ovary leading to
premature ovarian follicles depletion, has been found at
the heterozygous state by the genetic screening of 67
women with POI (155).

Genes affecting DNA replication, meiosis and DNA
repair

Variations in genes involved in creation and repair of
DNA double-strand breaks for recombination, DNA
damage checkpoint control, cell cycle progression or for-
mation of the synaptonemal complex may be associated
with POI, as strongly suggested by mouse models show-
ing a POI-like phenotype.

Among those genes known to be potentially asso-
ciated with POI, which include DMC1 or LIM15
(MIM *602721), MSH4 (MIM *602105), MSH5 (MIM
*603382), and SPO11 (MIM *605114), variations in
MSH5 and DMC1 have been identified by the genetic
screening of women with POI (156). However, this
study has not been confirmed yet in larger populations
and further studies are needed to evaluate the func-
tional consequences of the identified variants in order to
corroborate the link with POI onset.

STAG3 encodes a meiosis-specific subunit of the
cohesin ring, which ensures correct sister chromatid
cohesion. Using WES analysis of a large consanguineous
Palestinian family, a homozygous 1-bp deletion induc-
ing a frameshift mutation in STAG3 segregated with POI,
a finding that is further supported by the phenotype of
knock-out female mice with fetal oocytes arrested at
early prophase I and oocyte depletion within 1 week of
age (38). Variants in two other genes part of the cohesin
complex (SMC1β and REC8) have been recently iden-
tified in association with POI onset (38). These genes
regulate sister chromatid cohesion and recombination
between homologous chromosomes. The pathogenic role
of the identified variants in POI is supported by studies of
Smc1β−/− and Rec8−/− female mice that show very early
ovarian defects and are sterile as a result of early meiotic
arrest in oocytes (157, 158).

A mutation in POF1B gene was discovered in a
homozygous state in association with POI by sequenc-
ing a Lebanese family (159). POF1B is an X-linked gene
located within the critical region for normal ovarian func-
tion, known to escape X inactivation, which encodes a
protein that interacts with actin filaments, and the authors
speculate that POF1B could have a role in the pairing of
meiotic chromosomes and that alteration in its function
could increase germ-cell apoptosis and lead to POI.

A shared compound heterozygous mutation in another
meiotic gene, HFM1, which encodes a protein neces-
sary for homologous recombination of chromosomes,
resulted in autosomal recessive POI in two affected Chi-
nese sisters. The mother and father each carried one of
the mutations, and both parents were clinically normal.
Sequencing of HFM1 in an additional cohort of 69 Chi-
nese women with sporadic POI identified another com-
pound heterozygous mutation. All the identified variants
were not found in 316 matched controls (160). Another
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gene required for homologous recombination, PSMC3IP
(MIM *608665) has been found to harbor variations
causative of POI (35).

MCM8 and MCM9 are members of the highly con-
served mini-chromosome maintenance proteins (MCM)
complex involved in homologous recombination and
repair of double-stranded DNA breaks. SNP analysis
and WES revealed several autosomal-recessive variants
causing genomic-instability and association with hyper-
gonadotropic hypogonadism (40, 41, 161).

A protein-truncating homozygous mutation was iden-
tified by exome sequencing in the SYCE1 gene, encoding
an essential component of the synaptonemal complex,
where paired chromosome homologs closely associate in
meiosis before crossover, in an Israeli Arab family with
a consanguineous pedigree (39).

Recently, mutations in NUP107 (MIM *607617) have
been described in association with POI and OD (45).
NUP107 is a component of the nuclear pore complex,
which mediates nucleocytoplasmic transport of macro-
molecules, such as transcription factors, thus promoting
cell-specific gene-expression. Although the role of this
protein is to be confirmed, related genes in Drosophila
melanogaster are necessary for mitosis and meiosis pro-
gression. Similarly, NUP107 could have a role in main-
taining the meiotic cycle also in humans and variations
affecting this gene could lead to impaired meiosis.

Finally, another chromosomal instability disorder asso-
ciated with POI is Fanconi anemia, which can be caused
by alterations in FANCA (MIM *607139), FANCC (MIM
*613899) and FANCG (MIM *602956) genes (162).

Transcription factors

SF-1 or NR5A1
The NR5A1 (MIM +184757) gene encodes for a nuclear
receptor whose expression can be detected early in
embryo development in bipotential gonads, where it
plays a key role as a transcriptional regulator of genes
involved in the hypothalamic-pituitary-steroidogenic
axis (163), such as STAR, CYP11A1, CYP17A1,
CYP19A1, LH/CGR and INHA. Mutations of NR5A1
have been reported in cases of 46,XY disorders of sex
development (DSD), with or without adrenal failure.
The first evidence of an association between NR5A1
function and POI came from the detection of mutations
in this transcription factor in members of four families
with histories of both 46,XY DSD and 46,XX POI,
as well as in 2 of 25 women with isolated ovarian
insufficiency, but in none of 700 control alleles (164).
The association between NR5A1 mutations and POI
pathogenesis was further confirmed by Janse et al. with
a mutation frequency of 1.6% (165). Patients carrying
NR5A1 mutations show a wide spectrum of ovarian
anomalies, ranging from SA to PA, or even gonadal
dysgenesis. NR5A1 mutations were further tested in in
vitro experiments, which demonstrated that each mutant
protein displayed an altered transactivational activity
on gonadal promoters important for follicle growth
and maturation.

Forkhead transcription factors
The forkhead family of transcription factors consists
of over 100 genes encoding for proteins involved in a
range of developmental processes, including a role in
TGF-β signaling by means of binding to members of the
Smad family proteins. Similarly to FOXL2, few other
FHD-containing transcription factors have been demon-
strated to have a role in ovarian function: FOXO3a (MIM
*602681), FOXO1a (MIM *136533) and FOXO4 (MIM
*300033). Foxo3a knock-out female mice, for instance,
show a premature development of follicles, followed by
oocyte death, which results in a marked age-dependent
decline in their reproductive fitness and, ultimately, in
infertility (166). Alike, transgenic mice with a constitu-
tive expression of Foxo3a in the oocytes show a delay
in follicular development and oocyte growth resulting in
infertility. Moreover, Foxo3a seems to have a regulatory
role on BMP15, as the constitutive expression of Foxo3a
determines a significant reduction of BMP15 expression
(167). The striking ovarian phenotype of Foxo3a mouse
models highly resembles the human POI phenotype,
suggesting that FOXO3a could be a candidate gene for
POI in women. Accordingly, two potentially pathogenic
variations (p.S421L and p.R506H ) in FOXO3a were
found in a first screening in 2 out of 90 POI cases from
New Zealand and Slovenia (2.2%), but not in controls
(168). A subsequent analysis conducted on a cohort of
50 French patients identified only one missense variant
(p.Y593S) probably with no deleterious impact on
protein function (169).

Oocyte-specific transcription factors
NOBOX (MIM *610934) and FIGLA (factor in germline
alpha) (MIM *608697) both encode for oocyte-specific
transcription factors which in turn regulate genes unique
to oocytes. NOBOX is a homeodomain-containing,
oocyte- and GC-specific protein (170, 171) able to
directly regulate the expression of key oocyte-specific
factors such as Gdf9, Oct4 and KIT-L (172–175). In
mice, NOBOX expression can be detected in embryonic
ovaries as early as embryonic day 15.5, and its knockout
has been shown to cause female sterility due to acceler-
ated postnatal oocyte loss and blockade in the primordial
to primary follicle transition (172, 176). Follicles are
then replaced by fibrous tissue in female knockout mice
in a manner similar to OD in women (172). Further
corroborating the importance of NOBOX activity for
folliculogenesis, heterozygous NOBOX mutations have
been consistently reported in women with sporadic
POI of African and Caucasian origin at a prevalence
of approximately 6% (POF5, OMIM #611548) (175,
177–179), suggesting to consider NOBOX as the first
autosomal candidate gene involved in POI (178). Vice
versa, mutations in the homeobox domain of NOBOX
seem not to be common explanations for POI in Asian
women (180, 181). We recently documented that several
NOBOX mutants form intracellular aggregates and are
unable to enter the nucleus and activate transcription
(182). Interestingly such mutants conserve the ability to
interact with FOXL2, thus presumably reducing also its
access to the nucleus.
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Table 3. Particular health conditions of POI patients associated with variations in the listed genes

Particular phenotypes Genetic associations

Hearing defects (Perrault syndrome) HSD17B4, HARS2, CLPP,
LARS2, C10ORF2

Progressive external ophthalmoplegia and tremor (parkinsonism) POLG
Blepharophymosis, epicanthus inversus FOXL2
Resistance to multiple hormones (PTH, GHRH, LH/FSH, TSH), short stature, short

IV metacarpus, overweight
GNAS

Candidiasis, Addison disease AIRE
Hypothyroidism AIRE (mutations in the PHD1

domain), MCM8
X-linked mental retardation or tremor-ataxia in relatives FMR1 premutation
LH elevation higher than FSH, large ovarian follicles present, anovulation LHCGR
Variable presence of small pre-antral follicles FSHR
DSD (Swyer syndrome) in male relatives NR5A1
Galactosemia GALT
Vanishing white matter (VWM) disease with progressive neurological deterioration EIF2B
Ataxia telangiectasia ATM
Dehmiran syndrome BMPR1
Short stature (cardiac malformations, lymphedema) Turner mosaicism
Recurrent spontaneous dizygotic twinning GDF9
46,XX ovarian dysgenesis BMP15, MCM9, FSHR,

NUP107, PSMC3IP, ATM
Premature aging syndromes (Bloom syndrome, Werner syndrome, GAPO disease) BLM, WRN, ANTXR1

DSD, disorders of sex development; FSH, follicle-stimulating hormone; GHRH, growth-hormone-releasing hormone; LH, luteinizing
hormone; POI, primary ovarian insufficiency; PTH, parathyroid hormone; TSH, thyroid-stimulating hormone.

FIGLA is a basic helix-loop-helix (bHLH) transcrip-
tion factor involved in the regulation of the expression
of zona pellucida genes. Figla−/− female mice display a
lack of primordial follicles formation concomitantly with
a rapid loss of oocytes after birth, suggesting that FIGLA
variations might have a role in the pathogenesis of POI in
humans. A mutational study conducted on 100 Chinese
women affected by POI revealed two heterozygous dele-
tions (which were not detected among 304 ethnically
matched controls) in two unrelated cases. Functional in
vitro studies confirmed that both variants might have a
pathogenic role (183). Two additional variants, p.R83C
(positioned within the functional domain bHLH) and
p.S141T (located outside the functional domain, but
possibly impairing the protein–protein interaction
between FIGLA and TCF3), were further identified in
a cohort of Indian women with POI. Both variants were
predicted as potentially pathogenic and disease-causing
by in silico analysis, but were not experimentally tested
(184). Recently, thanks to the NGS approach a rare
loss-of-function variant (p.A41V) has been identified in
1 out of 100 women with idiopathic POI (50).

LHX8 gene is a member of the LIM-homeobox tran-
scription factor family which encodes for a transcription
factor acting as a germ-cell-specific critical regulator of
early oogenesis. NGS of 100 women with POI detected
the first reported variant of this gene. When function-
ally tested, the mutant exhibits a lower transcriptional
activity on the promoter of Lin28A (a protein regulating
primordial germ cell development) (50). Supporting the
LHX8 critical role for maintenance and differentiation of
the oocyte during early oogenesis, the murine knockout

model display an impaired transition from primordial
to growing follicles, together with a very rapid loss of
primordial follicles. The ovaries of Lhx8–/– mice show
an aberrant expression of oocyte-specific genes, such
as Gdf9, Pou5f1, and Nobox (185). Nevertheless, only
one LHX8 variant was found in 100 patients (50) while
a previous study found no variants in a cohort of 95
Caucasian women with POI (186), thus suggesting that
while LHX8 mutations may be a rare finding in POI.

The relevance of genetic investigations in patients
with POI

In the last years, thanks to the sustained efforts in
the investigation of new genetic POI determinants the
prevalence of known genetic alterations in women
with an idiopathic premature ovarian insufficiency is
estimated at 25–30% and the pathogenic mechanism
of POI onset still remain unknown in approximately
70% of cases. Indeed, the existing literature on POI
is only the beginning of a better understanding of the
molecular mechanisms and regulation of ovarian aging
process and POI pathogenesis. The identification of the
causative genetic alteration (or alterations) in a patient
already diagnosed with POI is especially useful for her
female relatives, who in case of positivity for the genetic
screening, could be addressed to either egg or ovarian
tissue freezing with later thawing and use in assisted
reproductive technology at the appropriate age, embryo
cryopreservation, anticipated pregnancy planning or
novel patient-oriented protocols and tailored treatments,
which could be made when fertility is still present and
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no physical or biochemical parameters are altered (the
‘occult’ phase). In this perspective this precautionary
measures will finally allow the preservation of female
fertility of all women, preventing emotional and psy-
chological discomfort of the patients and worthless
costs for ineffective infertility treatments. This per-
spective is becoming increasingly important, as a high
number of women want to conceive into their thirties
and forties. At present, genetic screening for female
infertility risk and/or assessment should be performed
for the most prevalent genetic alterations (i.e. X chro-
mosome abnormalities by karyotype or array-CGH-
and the FMR1 premutation). The prompt identification
of such abnormalities would be of extreme importance
in a context of family counseling not only for female
fertility preservation, but also for the risk of X-linked
male mental retardation associated with FMR1 full
mutation. Moreover, the recent papers on the field agree
on the possibility of extending genetic investigations
to also include genes like BMP15, FIGLA, NOBOX
and NR5A1. Furthermore, the presence of POI signs
together with distinctive phenotypes should advise for
other, more specific, genes to be investigated (Table 3).
Nevertheless, clinicians should pay careful attention in
counseling patients on the basis of data derived from
cohorts of different ethnicity as notable differences in
prevalence exist among different populations (i.e. in
case of FSHR, BMP15, GDF9, NOBOX, and FOXL2
variants) (180, 181, 187–192). Henceforth, the investi-
gations on POI candidates should be multi-ethnic and
involve larger sample sizes. Consistently, several groups
around the world are working toward the ameliora-
tion of the sensitivity of genetic screening in the near
future and possibly develop NGS panels with adequate
performance for the prediction of the risk of EM and
POI (50). Recent studies suggest that a more extensive
analysis at genomic level (which goes further than the
suspected candidate gene investigation) will facilitate
the identification of causative gene or genes responsible
for POI. This scenario may indeed broaden specialists’
chances for an efficient counseling service aimed at
infertile women and establish ‘ad hoc’ interventions for
the prevention and management of the consequences of
premature ovarian insufficiency.
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