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Abstract: Nutrition is a modifiable key factor that is able to interact with both the genome and
epigenome to influence human health and fertility. In particular, specific genetic variants can influence
the response to dietary components and nutrient requirements, and conversely, the diet itself is
able to modulate gene expression. In this context and the era of precision medicine, nutrigenetic
and nutrigenomic studies offer significant opportunities to improve the prevention of metabolic
disturbances, such as Type 2 diabetes, gestational diabetes, hypertension, and cardiovascular diseases,
even with transgenerational effects. The present review takes into account the interactions between
diet, genes and human health, and provides an overview of the role of nutrigenetics, nutrigenomics
and epigenetics in the prevention of non-communicable diseases. Moreover, we focus our attention
on the mechanism of intergenerational or transgenerational transmission of the susceptibility to
metabolic disturbances, and underline that the reversibility of epigenetic modifications through
dietary intervention could counteract perturbations induced by lifestyle and environmental factors.

Keywords: nutrigenetics; nutrigenomics; epigenetics; gene-nutrient interaction; transgenerational
effect; non-communicable diseases

1. Background

In 1848, the German philosopher Ludwig Feuerbach claimed that “man is what he eats”. Indeed,
160 years after this affirmation, we can confirm that diet is a major factor affecting the quality of
life in humans. In fact, diet habits, such as high consumption of fats and sugars, alcohol abuse and
reduced vegetable and fruits intake are major components of risk for non-communicable diseases
(NCDs), which are characterized by raised blood cholesterol and glucose, hypertension and obesity.
Therefore, an appropriate nutrition pattern is recommended as a protective factor against the risk of
heart disease, cancer, diabetes and other NCDs, which represent the primary cause of morbidity and
mortality worldwide [1].

In recent years, much attention has also been devoted to the role played by diet in human
reproduction, not only because infertility represents a major health problem in western countries, but
also due to emerging research that corroborates the “developmental origins of health and disease
(DOHaD)” hypothesis, which underlines the impact of prenatal, or even preconceptional environmental
exposures on the long-term health of the offspring [2].

Although a huge amount of media information has been devoted to the description of the best
nutritional approaches to improve human health and reproductive fitness, this approach is still based on
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the “one size fits all” model, which does not take in account the genetically determined interindividual
variability in food metabolism.

In this review, we provide an overview on the recent literature data on this topic and of latest
research findings in the fields of nutrigenetics, nutrigenomics and epigenetics.

2. Dietary Habits and Human Reproduction

The relationship between diet and fertility in males has been demonstrated by several reports that
describe the effects of specific food on semen quality (for a review see Ricci et al. [3]). In particular,
it has been suggested that fruit and vegetables, vitamins A, C and E, folates, organ meat and fish have a
positive effect on semen quality. On the other hand, trans fat, total fat, processed meat, dairy products
and soy phytoestrogens are considered to induce a negative effect on spermatogenesis [3].

Other dietary habits, such as intake of caffeine and tea, have also been suggested to influence
male reproductive fitness in terms of fertilization rate, pregnancy rate and miscarriage rate [4].

Confirmation of the relationship between diet and reproductive fitness also comes from studies
reporting a positive effect of the Mediterranean diet (MedDiet) on the semen quality of male partners of
couples attempting fertility treatment, and on in vitro fertilization (IVF) success rates among non-obese
women [5,6].

Due to the current relevance of fertility issues it has been suggested that the influence of diet on
fertility could be a specific topic for public health nutrition programs, especially because the correlation
between diet and other risk factors assumes the shape of a vicious cycle [7]. In fact, dietary risk
factors, such as high intake of saturated fat or sugar, are strongly related to obesity, which in turn
represents a risk factor for both male and female infertility. Obesity can be related to psychosocial risk
factors, such as depression anxiety and stress, which are well-known to reduce fertility. Furthermore,
sociodemographic risk factors could be a possible cause of unhealthy diet. In this view, diet appears
to play a central role in the network of environmental factors that are able to affect human health
and fertility.

Despite all the data that support a crucial role played by the diet in a couple’s reproductive fitness,
some discrepancies can be noted among different studies. Inconsistencies in the reported effect of
different foods were analyzed by Gaskins and Chavarro [8], who demonstrated that the role played by
some elements in human fertility, such as vitamin D, antioxidants, long chain omega 3, fatty acid and
dairy products is not yet clear. Moreover, very recent studies on folic acid and zinc supplementation in
male partners did not show an improvement in semen quality or live birth rates in couples undergoing
infertility treatment [9]. A possible explanation for these discrepancies is that people are not genetically
identical and the presence of specific genetic variants can influence metabolism, therefore, the effect of
diet may be variable. In other words, a specific nutrient may provide benefit to some individuals but not
to others, based on their different genotype. This makes it necessary to develop personalized nutrition
plans based on the different genetic make-up of each subject, that is, nutrigenetic programs [10].

3. Nutrigenetics and Human Health

Nutrigenetics can be defined as the field of nutritional genomics, which studies (i) the role of
specific genetic variants, in the form of single nucleotide polymorphisms (SNPs), in the modulation
of the response to dietary components, and (ii) the implications of such interaction, including the
influence on health status and predisposition to nutrition-related diseases [11,12] (Figure 1). Thus,
the primary aim of nutrigenetics is to design effective, personalized nutritional strategies that not only
result in body weight loss but also prevent metabolic disturbances such as Type 2 diabetes (T2DM),
hypertension, dyslipidaemias, and cardiovascular disease (CVD).
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Several genes within our genome are known to influence the metabolism of nutrients [13].
The main genes, whose variants are related to body weight loss in response to hypocaloric diets
and/or physical activity programs in adults, are involved in the regulation of lipid metabolism and
adipogenesis; others are related to carbohydrate metabolism, energy intake and expenditure, and the
circadian system [13]. Of note, it has also been demonstrated that variants in taste, olfactory and
texture-related genes can influence perception and preferences for certain foods, which affects the
susceptibility to nutrition-related conditions [14].

There are well-documented examples of clinically significant nutrigenetic interactions including:
(i) saturated fats intake, APOA2 2265T > C variant and BMI [15]; (ii) coffee intake, gene variants mostly
involving adrenergic receptors and hypertensive response [16]; and (iii) folic acid supplementation,
MTHFR gene variants, homocysteine levels and CVD risk [15].

Among genetic variants related to nutrition, a key role is played by SNPs in the FTO gene affecting
body weight and body composition. In fact, carriers of the FTO rs9939609 AA genotype are likely
to be more obese than non-carriers of the A risk allele [17]. This variant is considered one of the
strongest risk factors for polygenetic obesity. Nevertheless, it has been demonstrated that the increased
susceptibility to obesity induced by the A risk allele can be modified by either physical activity or
reduction in energy intake. This provides an example of how the genetic susceptibility to several NCDs
can be modulated through positive lifestyle changes [18]. Another study found a gene–diet interaction
with the MedDiet for both the FTO rs9939609 and for the MC4R rs17782313, which showed a higher
T2DM risk in carriers of the variant alleles as compared to wild-type subjects when the MedDiet was
not complied with. These associations disappear when there is high adherence to the MedDiet [19].
Several studies have also reported the interactions between TCF7L2 rs7903146 (C > T) and dietary
components in modulating T2DM risk [20–23]. In fact, wholegrain intake was inversely associated
with T2DM risk among CC carriers, whereas this protective effect was inhibited by the presence of the
T-allele. These examples demonstrate the complexity of nutrigenetics in terms of influences, that is,
the different genetic predisposition in various populations, as well as the environmental factors that
can influence the gene–nutrient association.

Accordingly, based on the specific genotype, different individuals metabolize lipids, carbohydrates
and folates in different ways and have a specific response to identical diets. Nutrigenetic tests are
currently used in specific circumstances for selecting an appropriate diet in patients at risk of different
conditions. For example, our group, by using a simple panel of nine nutrigenetic variants, demonstrated
an increased risk of gestational diabetes mellitus (GDM) in women carriers of the TT genotype of
the TCF7L2 gene (OR 2.5) [24,25]. Moreover, an association between variants in PPARG2, APOA5,
MC4R, LDLR and FTO genes and lipid parameters has been detected [24–26]. The diagnosis of GDM
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allows the identification of a population that is highly vulnerability to T2DM and metabolic syndrome,
providing an easy and ideal tool that matches routine anthropometric and biochemical factors, dietary
assessments and genetic make-up in clinical practice [25,26]. The integration of precision nutrition into
routine clinical care is a growing challenge, and this approach, once validated, could help improve not
only the personalized nutrient intake but also the early identification and stratification of women at
increased risk. However, this is just an example of a specific condition in which the daily intake of food
and the effect on body size and on clinical parameters can be easily assessed. Moreover, adherence to a
specific diet by women affected by a condition that could influence the health of the fetus is expected to
be very high. On the other hand, correct information about dietary habits are more difficult to obtain
when dealing with the general population and couples trying to have a child.

Some studies have shown that individuals can be inaccurate and may alter dietary patterns when
asked to report their dietary intake [27,28]. In our experience, Italian males with fertility problems
usually report almost full adherence to a Mediterranean diet even when their BMI index and clinical
parameters strongly suggest unhealthy diet habits [unpublished data]. This represents a real weakness
in any kind of diet strategy based on reducing the intake of dangerous food since patients often are not
fully aware of their diet habits.

In the last decade about >2 million direct-to-consumer tests have been sold by different companies.
These tests can be ordered on the internet without any medical prescription and are often offered under
the label of “lifestyle” genetic testing, by-passing the more stringent legislation covering clinical and
medical devices/services [29,30]. Ethical and legal issues are involved in these procedures, including
the complexity of data interpretation, doubts about the clinical significance of results and management
of the information. Finally, establishing for whom and to what extent a nutrigenetic test is considered
clinically useful can be controversial. In addition to the above, the confusion generated about the
meaning and scope of their potential results for consumer/patient has been seriously questioned, as such
tests can generate unrealistic hopes or cause a false sense of security or undue anxiety [30,31]. Although
this debate is still ongoing, we underline that both pre-test and post-test genetic counselling should be
provided for nutrigenetic panels. Several elements should be addressed before and after nutrigenetic
testing including: (i) the nature of the test and its results, (ii) utility of the test, (iii) meaning/scope of
the results, and (iv) risks [30].

However, another important topic in this field is the recent discovery that not only can a specific
genetic variant influence the metabolism of specific foods, but diet itself is able to modify gene
expression. This leads us to discuss one of the most interesting issues in this field, that is, the epigenetic
consequences of diet on human reproduction.

4. Epigenetics, Diet and Human Health

Epigenetics focus on the molecular processes that modulate gene expression without changing
the DNA sequence, such as DNA methylation, histone modification, and microRNA (miRNA)
regulation [32]. In this context, to date, nutritional epigenetics, that is, the study of changes in
gene expression induced by bioactive dietary compounds, is emerging as a novel topic in studies
investigating the impact of nutrition on health [33] (Figure 1).

Nutrition is one of the most modifiable factors able to affect DNA methylation pathways. It has
been demonstrated that nutrition can influence the epigenetic regulation of DNA methylation in
different ways by altering the substrates and cofactors necessary for this process, by changing the
activity of enzymes regulating the one-carbon cycle or by playing a role in DNA demethylation
activity [34].

The most important effect of diet on the epigenetic modulation of gene expression is represented by
early life nutritional experiences that are able to induce persistent metabolic and physiological changes
through altered epigenetic profiles, leading to different susceptibility to various chronic diseases in
later life [35]. In this view, prenatal exposure to different elements plays a critical role.
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In fact, maternal malnutrition and/or over-nutrition during the pre and postnatal period are
the main stressors that are able to influence offspring outcomes and adult phenotypic consequences,
by increasing the susceptibility to metabolic disease [2,36].

An epigenetic link between unbalanced maternal diet during pregnancy, fetal growth and CVD
risk in adulthood has been consistently demonstrated, for example, DNA methylation levels at genes
regulating cortisol levels, tissue glucocorticoid action and blood pressure have been associated with
both early-life parameters and cardiometabolic risk factors [37]. Significant seasonal variations in
maternal methyl-donor nutrient intake during the periconceptional period influence several maternal
plasma biomarkers that predict changes in the methylation at metastable epialleles in lymphocytes and
hair follicles in infants postnatally [38]. In addition, maternal obesity can lead to DNA methylation
changes, which are present at birth and remain postnatally. In fact, the study of maternal obesity,
with or without GDM, has shown many differentially methylated sites in DNA from the umbilical
cord blood of offspring, and from 4–5 year-olds and 9–16 year-olds [39,40].

Thus, maternal nutrition can be considered as a major influence on resetting the epigenome in
the early embryo because it affects offspring phenotype through alterations of oocyte maturation,
oocyte provisioning, and oocyte stores of mitochondria and metabolites. In particular, the cytoplasmic
constituents respond to maternal nutrition in a specific way: dietary fat increases lipid droplet size and
composition, micronutrients influence DNA methylation and alterations in dietary lipid and sugars
affect mitochondrial activity [41]. In this regard, the oocyte quality, mitochondrial function, and fertility
in animal models can be restored by caloric restriction or omega-3-enriched diet, which suggests that
these alterations can potentially be modified by nutritional or targeted therapeutic interventions [42,43].
In addition, it has been demonstrated that maternal methyl donor supplementation can reverse DNA
hypomethylation induced by endocrine-disrupting chemicals in early development [44].

Recent studies have confirmed that males also transmit epigenetic modifications to the offspring,
thus influencing not only embryo growth but also lifetime health [44,45].

Epigenetic alterations can affect male germ cell development at different phases. Environmental
or lifestyle insults such as toxins, endocrine disrupters, smoking, and obesity can affect sperm during
development in the testes or during maturation in the epididymis [46,47]. In particular, it has been
demonstrated that sperm from obese glucose-intolerant males show distinct small noncoding RNA
(sncRNA) expression and DNA methylation profiles as compared to lean, normal-glucose tolerant
subjects. Alterations in DNA methylation affect differential methylation clusters within genes known
to contain SNPs related to obesity, such as FTO, MC4R and others. In addition, remodeling of the
obesity-associated sperm DNA methylation pattern in a separate cohort of men as a result of bariatric
surgery has also been observed. This specific remodeling involved gene regulators of appetite control
(such as MC4R, BDNF, NPY, CR1) or metabolism (such as FTO, CHST8, SH2B1) [48]. These results
were corroborated by Soubry et al. [49] who confirmed that male overweight and obesity status is
traceable in the sperm epigenome. In fact, these authors demonstrated lower methylation percentages
at the MEG3, NDN, SNRPN and SGCE/PEG10 differentially methylated regions (DMRs) as well as a
slight increase in DNA methylation at the MEG3-IG DMR and H19 DMR in sperm of overweight or
obese men.

Although the above reported studies do not make it possible to clarify if altered sperm methylation
was due to obesity itself or to the dietary lifestyle of the patients, taken together these observations
demonstrate the presence of a link between nutrition and sperm epigenetic patterns. Therefore, it is
possible that sperm epigenetic modifications can be transmitted to the offspring, which may lead
to paternal epigenetic inheritance of metabolic disorders (paternal origins of health and diseases
(POHaD)) [50]. Thus, it has been proposed that a nutrition-linked mechanism passed through the
male line is able to influence the longevity and the risk for cardiovascular and diabetes mellitus
mortality when either the father or the paternal grandfather have been exposed to an excess of food
from 9–12 years of age [51–53].



Int. J. Mol. Sci. 2020, 21, 2633 6 of 13

Thus, the modifications of the epigenetic landscape by dietary compounds can affect overall health
but also the reproductive health of both sexes, and the stressors of both parents, even before conception,
and they can shape the development and life-course trajectory of the embryo and fetus [47,54–56].

In light of the above, the “epigenetic diet” could be a promising approach to neutralize epigenomic
aberrations caused by exposure to environmental contaminants. Increasing evidence has shown the
beneficial health outcomes induced by bioactive dietary compounds such as isothiocyanates in broccoli,
genistein in soybean, epigallocatechin-3-gallate in green tea, resveratrol in grape, and ascorbic acid in
fruits, which modify the epigenome [57].

5. Other Viewpoints

Although current evidence is accumulating to support the interplay between parental diet, genes
and offspring health, conversely, some works identify the failure of the gene-centric (i.e., DNA and
epigenetic) paradigm in clinically relevant research [58].

Following an analysis of the history of the gene-centrism perspective and reassessing the
fundamentals of evolutionary theory, Bonduriansky et al. suggested that non-genetic inheritance,
which encompasses epigenetic, environmental, behavioural, and cultural factors, could play an
important role in evolution, by imposing transgenerational effects and generating heritable variations
in a broad array of traits in all organisms [59–61].

The maternal resources hypothesis proposes a novel conceptualization of inheritance and evolution,
in which non-genetic vectors, including accumulative maternal effects (i.e., maternal prenatal energy
metabolism and maternal postnatal physical activity), socio-environmental and phenotypic evolution,
are the predominant causal factors for the health of future generations [62]. Thus, in this evolutionary
context, the “overconsumption” that leads to metabolic disease is due not to dietary factors per se,
but rather to physical inactivity caused by increments in energy intake and non-genetic evolutionary
processes with the adipogenic partitioning of nutrient-energy [62–64].

In this critical hypothesis, diet is an essential component of health, however it may be a trivial
risk factor in the case of chronic diseases [65,66], suggesting that macronutrients can have metabolic
effects dependent of the individual physiologic context (e.g., physical activity level) [65]. In addition,
the role of diet in chronic diseases has been highly controversial [66]. Some of this controversy was
prompted by the publication of epidemiologic reports supporting memory-based methods to measure
dietary intake [27,28,65,67] even though these methods can produce inaccurate dietary data collection,
resulting in spurious associations and effects [27].

Considering these discordant viewpoints, further interventional and longitudinal research with a
rigorous approach is essential in order to explore the possible role of epigenetic mechanisms and diet
as mediators of the consequences for future generations.

6. Future Perspectives

There are great expectations for nutrigenetics, especially in regard to studies related to its future
beneficial application in health promotion and for personalized nutrition in the prevention of chronic
illnesses. Although studies that provide a comprehensive understanding of the interaction between
diet, genes and human health require further effort, the identification of optimal interventions could
modulate pre-existing genetic risks, thus reducing the susceptibility to lifestyle-related diseases.
To that aim, the notions of nutrigenetics and nutrigenomics should no longer be considered as two
independent mechanisms of correlation between food and gene expression, but should rather be seen
as two interacting patterns.

Recently, it has been suggested that lifestyle modifications, including personalized diet and
physical activity intervention, may impact on obesity through changes in the expression level of the
FTO and IRX3 genes. However, this effect is mediated by the genotype of FTO, which is capable of
modulating the impact of lifestyle changes on its own expression [68]. These findings have highlighted
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how important gene variants related to nutrients and metabolism are, especially in terms of a possible
link between dietary intake and gene expression and their related functions [69].

On the other hand, attention must also be paid to nutrigenomic studies that focus on the role of
nutrition in the health of individuals and their offspring.

Over the last three decades, some evidence from both animal and human studies has indicated
epigenetic mechanisms as possible mediators for developmental programming of obesity and T2DM
via parental exposure. In general, studies have focused on one of three broad environmental factors,
both during and before pregnancy: (i) altered diet/nutrition, (ii) toxin exposure, and (iii) stress and
have demonstrated alterations in the course of embryonic development and possible phenotypic
changes into adulthood. As for the diet, animal model research has identified tissue-level epigenetic
alterations in the fat, muscle, pancreas and liver biopsies from the offspring of mothers fed with specific
diets [70–74]. On the other hand, due to ethical and clinical limitations, most human studies have
examined epigenetic profiles mainly in placenta, offspring umbilical cord or infant blood as surrogate
markers of metabolic tissue-level epigenetic modifications [39,40,75–79]. The vast majority of these
studies have focused on DNA methylation, while miRNA expression and histone modifications need
to be better understood. In this regard, miRNAs have been investigated as possible biomarkers of
epigenetic modification in maternal diet-induced obesity, especially in mice. Maternal high-fat diet and
a high simple-carbohydrate diet may cause a programmed increase in miR-126, leading to a reduction
in the insulin receptor substrate-1 expression in epididymal white adipose tissue of male offspring [80].
Moreover, maternal high-fat diet consumption can affect the early lipid metabolism of offspring by
modulating hepatic β-oxidation-related genes and miRNA expression [81]. Taken together, these
findings strongly suggest that such mechanisms may contribute to metabolic disturbances in adult life.

Although the literature is mainly concerned with maternal epigenetic and gestational effects, there
is evidence that supports paternal contributions in modulating an offspring’s health outcomes [81–86].
The findings from animal studies show clearly that the dietary perturbation (e.g., high-fat diet)
can influence several phenotypes in the next generation including body weight, fat distribution,
abnormalities in glucose tolerance, as well as reproductive health [83,87–89].

On the other hand, undernutrition, such as low protein diet, caloric restriction or intermittent
fasting, can also have an impact on progeny phenotypes including changes in cholesterol and lipid
metabolism, glucose control, and other cardiovascular risk factors in the offspring [85,90–94]. In fathers
who were fed a low-protein and high-fat diet, sperm cells displayed global DNA hypomethylation and
altered miRNA expression [89].

In addition, epigenetic stressors including endocrine-disrupting chemicals, alcohol and nicotine
abuse, can cause intergenerational reproductive health and metabolism effects [95–100]. In the context
of endocrine-disrupting chemicals, transgenerational effects on brain, behavior, and reproduction
have been documented [95,101–103]. For example, in one of the earliest studies, which reported the
paternal effect, it was demonstrated that the exposure of pregnant rats to high levels of vinclozolin
during fetal gonadal development induced decreased sperm number and motility in F1, F2, F3, and F4
generations, with 8% of males developing infertility [95]. Recently, some studies have supported
the idea that various RNAs in testis, spermatozoa, and seminal fluid can act as epigenetic vectors of
inheritance by which paternal environmental state influences metabolic and non-metabolic phenotypes
in offspring [104–107]. Particularly, miRNAs in testis may modulate spermatogenesis, while miRNAs
in spermatozoa and seminal fluid may influence early fetal development through interactions with the
endometrial environment [50]. Although it is increasingly clear from animal models that the sperm
epigenome carries some information from father to child, this evidence is still lacking in humans and it
should be better explored.

Although the current evidence has been questioned by some studies [58,64,108], the data in the
literature are accumulating in support of the potential role of epigenetic and genetic patterns of parents
in offspring health. Therefore, comprehensive knowledge of the epigenetic modifications induced
by unhealthy parental lifestyles or by exposure to environmental insults in the periconceptional
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period could provide useful insights for the prevention of long-term disease in the offspring. There
is emerging data that suggest the predictive power of epigenetic markers in gametes. For example,
the studies of Jenkins et al. [109] demonstrated the utility of epigenetic screening of mature sperm
for the identification of various fertility-related diseases and for successful assessment in assisted
reproductive techniques.

Dietary patterns, nutrients and bioactive compounds interact with metabolic traits through
epigenetic mechanisms; thus, they represent attractive therapeutic targets. Recently, a potential
protective role of bioactive dietary compounds in neutralizing epigenetic aberrations induced by
several environmental factors has been suggested. [57]. Nutrigenetics, nutrigenomics, as well as
epigenetic diet are being more widely explored so that their implementation can become an innovative
and effective measure for the protection of human health, especially for future generations.
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