Esercitazione Prof. Sallese BIOCHIMICA DELLA TRASDUZIONE

Identificazione di segnali intracellulari attivati a seguito di stimolazione con EGF

Giorno I

Seminare 1.5×10^6 cellule in una flask T25 ed incubare a $37^{\circ}C$ in 5% CO_2 o.n. nelle condizioni culturali standard

Giorno II

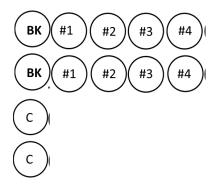
- Aspirare il surnatante cellulare contenente le cellule non adese
- Effettuare un lavaggio con PBS
- Aggiungere DMEM serum free

Giorno III

- Dopo 48 ore, aspirare il surnatante cellulare
- Trattare le cellule con 5 ml di terreno trattamento (DMEM serum free + EGF 100 ng/ml) per 10 minuti
- Aspirare il terreno
- Effettuare un lavaggio con PBS
- Aggiungere 0,5ml di buffer di lisi contente gli inibitori di proteasi e fosfatasi per 20 minuti in ghiaccio
- Raccogliere il lisato cellulare e Centrifugarlo a 13000 rpm x 20 minuti
- Eliminare il pellet e trasferire il surnatante contenente le proteine da analizzare in una nuova provetta

DOSAGGIO PROTEICO CON METODO BRADFORD

Il saggio Bradford è basato sull'utilizzo del colorante Coomassie Brilliant Blue G-250 Il colorante libero (forma cationica) presenta un massimo di assorbimento a 465 nm, dopo il legame con proteine l'assorbimento massimo si sposta a 595 nm e si presenta di colore blu.


La curva standard per la concentrazione proteica viene ottenuta utilizzando concentrazioni note di albumina sierica bovina (BSA)

 Preparare la curva standard di BSA in duplicato direttamente nella multi-well a 96 pozzetti

	H ₂ O (μL)	BSA (µL)	BRADFORD (µL)
BIANCO	200	-	50
Punto 1 (1μg/μL)	199	1	50
Punto 2 (2μg/μL)	198	2	50
Punto 3 (4 μg/μL)	196	4	50
Punto 4 (8 μg/μL)	192	8	50

 Preparare il campione proteico di cui vogliamo conoscere la concentrazione. Facciamo sempre un duplicato direttamente nella multi-well a 96 pozzetti

	H₂O (<i>µ</i> L)	campione (µL)	BRADFORD (µL)
campione	175	25	50

• Leggere la piastra a 595 nm

Calcolare la concentrazione delle proteine del nostro campione utilizzando la retta di

X = la concentrazione proteica del nostro campione

y = Assorbanza letta a 595 nm

Correggere per la diluizione