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Preface

After studying experimental design a researcher or statistician should be able
to: (1) choose an experimental design that is appropriate for the research
problem at hand; (2) construct the design (including performing proper ran-
domization and determining the required number of replicates); (3) execute
the plan to collect the data (or advise a colleague on how to do it); (4) deter-
mine the model appropriate for the data; (5) fit the model to the data; and
(6) interpret the data and present the results in a meaningful way to answer
the research question. The purpose of this book is to focus on connecting the
objectives of research to the type of experimental design required, describing
the actual process of creating the design and collecting the data, showing how
to perform the proper analysis of the data, and illustrating the interpreta-
tion of results. Exposition on the mechanics of computation is minimized by
relying on a statistical software package.

With the availability of modern statistical computing packages, the analy-
sis of data has become much easier and is well covered in statistical methods
books. In a book on the design and analysis of experiments, there is no longer
a need to show all the computational formulas that were necessary before the
advent of modern computing. However, there is a need for careful explanation
of how to get the proper analysis from a computer package. The default anal-
ysis performed by most statistical software assumes the data have come from
a completely randomized design. In practice, this is often a false assumption.
This book emphasizes the connection between the experimental units, and the
way treatments are randomized to experimental units, and the proper error
term for an analysis of the data.

R is used throughout the book to illustrate both construction of experimen-
tal designs and analysis of data. R was chosen to be illustrated in the book
because it is an open-source software that can be downloaded free of charge for
Windows, Linux, and Macintosh operating systems from www.r-project.org.
Additionally, user developed packages for R have given it extensive capabilities
in both creating experimental designs and analyzing data. Information about
many of these user written packages is available on the Web site http://cran.
r-project.org/web/views/ExperimentalDesign.html that is maintained
by Ulrike Groemping. User written packages along with base R functional-
ity are illustrated in many examples in the text. The packages simplify things
that could require extensive R coding without their use. The code examples
in the book are available for download on the Web site www. jlawson.byu. edu
and they duplicate all design creation and data analysis methods illustrated

xi
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xii PREFACE

in the earlier version of this book, Design and Analysis of Experiments with
SAS. These two books are very similar with the exception of the software
illustrated. Therefore an instructor could conceivably teach a class on design
and analysis of experiments while allowing his students to use either book
depending upon which software package they prefer. In the future, it is pos-
sible that some of the R packages illustrated in this book may be removed
from CRAN, if the developer drops support, or they may be changed by the
developer so that the examples in the book no longer work. If problems such
as this arise, revisions will be made to the code online so that a working copy
of the examples is available.

With fewer pages devoted to computational formulas, I have attempted to
spend more time discussing the following: (1) how the objectives of a research
project lead to the choice of an appropriate design, (2) practical aspects of
creating a design or list of experiments to be performed, (3) practical aspects
of performing experiments, and (4) interpretation of the results of a computer
analysis of the data. Items (1)—(3) can best be taught by giving many examples
of experiments and exercises that actually require readers to perform their own
experiments.

This book attempts to give uniform coverage to experimental designs and
design concepts that are most commonly used in practice, rather than focusing
on specialized areas. The selection of topics is based on my own experience
working in the pharmaceutical industry, and in research and development
(R&D) and manufacturing in agricultural and industrial chemicals, and ma-
chinery industries. At the end of each chapter a diagram is presented to help
identify where the various designs should be used. Examples in the book come
from a variety of application areas. Emphasis is placed on how the sample
size, the assignment of experimental units to combinations of treatment fac-
tor levels (error control), and the selection of treatment factor combinations
(treatment design) will affect the resulting variance and bias of estimates and
the validity of conclusions.

Intended audience: This book was written for first- or second-year gradu-
ate students in statistics or advanced undergraduates who intend to work in
an area where they will use experimental designs. To be fully understood, a
student using this book should have had previous courses in calculus, intro-
ductory statistics, basic statistical theory, and applied linear models such as
Kutner et al. (2004) and Faraway (2004). Matrix notation for analysis of linear
models is used throughout the book, and students should be familiar with ma-
trix operations at least to the degree illustrated in chapter 5 of Kutner et al.
(2004). Also some experience with R or command driven statistical software
is assumed, although there is a brief appendix and additional references for
students with no experience with R.

However, for students from applied sciences or engineering who do not have
all these prerequisites, there is still much to be gained from this book. There
are many examples of diagnosing the experimental environment to choose
the correct design, creating the design, analyzing data, and interpreting and
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presenting results of analysis. There is R code to create and analyze all the
example experiments in the book. One with a basic understanding of R, and
aid of the documentation for the R functions illustrated, should be able to
follow these examples and modify them to complete the exercises in the book
and solve problems in their own research without needing to understand the
detailed theoretical justification for each procedure.

For instructors: This book can be used for a one-semester or two-quarter
course in experimental design. There is too much material for a one-semester
course, unless the students have had all the prerequisites mentioned above.
The first four chapters in the book cover the classical ideas in experimental
design, and should be covered in any course for students without a prior
background in designed experiments. Later chapters start with basics, but
proceed to the latest research published on particular topics, and they include
code to implement all of these ideas. An instructor can pick and choose from
these remaining topics, although if there is time to cover the whole book, I
would recommend presenting the topics in order.

Some instructors who do not intend to cover the entire book might consider
covering factorial experiments in Chapter 3, fractional factorials in Chapter 6,
and response surface methods in Chapter 10, following the pattern established
by the DuPont Strategies of Experimentation Short Courses that were devel-
oped in the 1970s. I chose the ordering of chapters in the book so that variance
component designs in Chapter 5 would be presented before describing split
plot experiments that are so commonplace in practice. I did this because I feel
it is important to understand random factors before studying designs where
there is more than one error term.

Acknowledgments: This book is the culmination of many years of thought
prompted by consulting and teaching. I would be remiss if I did not thank the
late Melvin Carter, my advisor at Brigham Young University (BYU) who in-
troduced me to the computer analysis of experimental data over 40 years ago,
and whose enthusiasm about the subject of designed experiments inspired my
lifelong interest in this area. I would also like to thank John Erjavec, my boss
and mentor at FMC Corp., for introducing me to the ideas of Box, Hunter,
and Hunter long before their original book Statistics for FExperimenters was
published. I also thank the many consulting clients over the years who have
challenged me with interesting problems, and the many students who have
asked me to explain things more clearly. Special thanks to my former students
Willis Jensen at Gore and Michael Joner at Procter & Gamble for their careful
review and comments on the first version of this book, to Ulrike Groemping
at Beuth University of Applied Sciences Berlin for her careful review of the
manuscript and R-code, and finally to the developers of the many packages
for R that are illustrated in this book. Finally, I thank my wife Francesca for
her never-ending support and encouragement during the writing of this book.

John Lawson
Department of Statistics
Brigham Young University
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CHAPTER 1

Introduction

1.1 Statistics and Data Collection

Statistics is defined as the science of collecting, analyzing, and drawing con-
clusions from data. Data is usually collected through sampling surveys, obser-
vational studies, or experiments.

Sampling surveys are normally used when the purpose of data collection is to
estimate some property of a finite population without conducting a complete
census of every item in the population. For example, if there were interest in
finding the proportion of registered voters in a particular precinct that favor
a proposal, this proportion could be estimated by polling a random sample of
voters rather than questioning every registered voter in the precinct.

Observational studies and experiments, on the other hand, are normally
used to determine the relationship between two or more measured quantities
in a conceptual population. A conceptual population, unlike a finite popu-
lation, may only exist in our minds. For example, if there were interest in
the relationship between future greenhouse gas emissions and future aver-
age global temperature, the population, unlike registered voters in a precinct,
cannot be sampled from because it does not yet exist.

To paraphrase the late W. Edwards Deming, the value of statistical meth-
ods is to make predictions which can form the basis for action. In order to
make accurate future predictions of what will happen when the environment
is controlled, cause and effect relationships must be assumed. For example, to
predict future average global temperature given that greenhouse gas emissions
will be controlled at a certain level, we must assume that the relationship be-
tween greenhouse gas emissions and global temperature is cause and effect.
Herein lies the main difference in observational studies and experiments. In
an observational study, data is observed in its natural environment, but in an
experiment the environment is controlled. In observational studies it cannot
be proven that the relationships detected are cause and effect. Correlations
may be found between two observed variables because they are both affected
by changes in a third variable that was not observed or recorded, and any
future predictions made based on the relationships found in an observational
study must assume the same interrelationships among variables that existed
in the past will exist in the future. In an experiment, on the other hand, some
variables are purposely changed while others are held constant. In that way
the effect that is caused by the change in the purposely varied variable can
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be directly observed, and predictions can be made about the result of future
changes to the purposely varied variable.

1.2 Beginnings of Statistically Planned Experiments

There are many purposes for experimentation. Some examples include: deter-
mining the cause for variation in measured responses observed in the past;
finding conditions that give rise to the maximum or minimum response; com-
paring the response between different settings of controllable variables; and
obtaining a mathematical model to predict future response values.

Presently, planned experiments are used in many different fields of applica-
tion such as: engineering design, quality improvement, industrial research and
manufacturing, basic research in physical and biological science, research in
social sciences, psychology, business management and marketing research, and
many more. However, the roots of modern experimental design methods stem
from R. A. Fisher’s work in agricultural experimentation at the Rothamsted
Experimental Station near Harpenden, England.

Fisher was a gifted mathematician whose first paper as an undergraduate
at Cambridge University introduced the theory of likelihood. He was later
offered a position at University College, but turned it down to join the staff
at Rothamsted in 1919. There, inspired by daily contact with agricultural re-
search, he not only contributed to experimental studies in areas such as crop
yields, field trials, and genetics, but also developed theoretical statistics at an
astonishing rate. He also came up with the ideas for planning and analysis of
experiments that have been used as the basis for valid inference and prediction
in various fields of application to this day. Fisher (1926) first published his
ideas on planning experiments in his paper “The arrangement of field experi-
ments”; 9 years later he published the first edition of his book The Design of
Ezxperiments, Fisher (1935).

The challenges that Fisher faced were the large amount of variation in
agricultural and biological experiments that often confused the results, and
the fact that experiments were time consuming and costly to carry out. This
motivated him to find experimental techniques that could:

e climinate as much of the natural variation as possible

e prevent unremoved variation from confusing or biasing the effects being
tested

e detect cause and effect with the minimal amount of experimental effort
necessary.

1.3 Definitions and Preliminaries

Before initiating an extended discussion of experimental designs and the plan-
ning of experiments, I will begin by defining the terms that will be used fre-
quently.
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Ezperiment (also called a Run) is an action where the experimenter
changes at least one of the variables being studied and then observes the
effect of his or her actions(s). Note the passive collection of observational
data is not experimentation.

Experimental Unit is the item under study upon which something is
changed. This could be raw materials, human subjects, or just a point
in time.

Sub-Sample, Sub-Unit, or Observational Unit When the experimental unit
is split, after the action has been taken upon it, this is called a sub-sample
or sub-unit. Sometimes it is only possible to measure a characteristic sepa-
rately for each sub-unit; for that reason they are often called observational
units. Measurements on sub-samples, or sub-units of the same experimental
unit, are usually correlated and should be averaged before analysis of data
rather than being treated as independent outcomes. When sub-units can
be considered independent and there is interest in determining the vari-
ance in sub-sample measurements, while not confusing the F-tests on the
treatment factors, the mixed model described in Section 5.8 should be used
instead of simply averaging the sub-samples.

Independent Variable (Factor or Treatment Factor) is one of the variables
under study that is being controlled at or near some target value, or level,
during any given experiment. The level is being changed in some system-
atic way from run to run in order to determine what effect it has on the
response(s).

Background Variable (also called a Lurking Variable) is a variable that
the experimenter is unaware of or cannot control, and which could have an
effect on the outcome of the experiment. In a well-planned experimental
design, the effect of these lurking variables should balance out so as to not
alter the conclusion of a study.

Dependent Variable (or the Response denoted by Y) is the characteristic of
the experimental unit that is measured after each experiment or run. The
magnitude of the response depends upon the settings of the independent
variables or factors and lurking variables.

Effect is the change in the response that is caused by a change in a fac-
tor or independent variable. After the runs in an experimental design are
conducted, the effect can be estimated by calculating it from the observed
response data. This estimate is called the calculated effect. Before the ex-
periments are ever conducted, the researcher may know how large the effect
should be to have practical importance. This is called a practical effect or
the size of a practical effect.

Replicate runs are two or more experiments conducted with the same set-
tings of the factors or independent variables, but using different experimen-
tal units. The measured dependent variable may differ among replicate runs
due to changes in lurking variables and inherent differences in experimental
units.
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Duplicates refer to duplicate measurements of the same experimental unit
from one run or experiment. The measured dependent variable may vary
among duplicates due to measurement error, but in the analysis of data
these duplicate measurements should be averaged and not treated as sep-
arate responses.

e FExperimental Design is a collection of experiments or runs that is planned
in advance of the actual execution. The particular runs selected in an ex-
perimental design will depend upon the purpose of the design.

Confounded Factors arise when each change an experimenter makes for
one factor, between runs, is coupled with an identical change to another
factor. In this situation it is impossible to determine which factor causes
any observed changes in the response or dependent variable.

Biased Factor results when an experimenter makes changes to an indepen-
dent variable at the precise time when changes in background or lurking
variables occur. When a factor is biased it is impossible to determine if the
resulting changes to the response were caused by changes in the factor or
by changes in other background or lurking variables.

FExperimental Error is the difference between the observed response for
a particular experiment and the long run average of all experiments con-
ducted at the same settings of the independent variables or factors. The fact
that it is called “error” should not lead one to assume that it is a mistake or
blunder. Experimental errors are not all equal to zero because background
or lurking variables cause them to change from run to run. Experimental
errors can be broadly classified into two types: bias error and random error.
Bias error tends to remain constant or change in a consistent pattern over
the runs in an experimental design, while random error changes from one
experiment to another in an unpredictable manner and average to be zero.
The variance of random experimental errors can be obtained by including
replicate runs in an experimental design.

With these definitions in mind, the difference between observational studies
and experiments can be explained more clearly. In an observational study, vari-
ables (both independent and dependent) are observed without any attempt
to change or control the value of the independent factors. Therefore any ob-
served changes in the response, or dependent variable, cannot necessarily be
attributed to observed changes in the independent variables because back-
ground or lurking variables might be the cause. In an experiment, however,
the independent variables are purposely varied and the runs are conducted in
a way to balance out the effect of any background variables that change. In
this way the average change in the response can be attributed to the changes
made in the independent variables.
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1.4 Purposes of Experimental Design

The use of experimental designs is a prescription for successful application of
the scientific method. The scientific method consists of iterative application
of the following steps: (1) observing of the state of nature, (2) conjecturing or
hypothesizing the mechanism for what has been observed, then (3) collecting
data, and (4) analyzing the data to confirm or reject the conjecture. Statistical
experimental designs provide a plan for collecting data in a way that they can
be analyzed statistically to corroborate the conjecture in question. When an
experimental design is used, the conjecture must be stated clearly and a list of
experiments proposed in advance to provide the data to test the hypothesis.
This is an organized approach which helps to avoid false starts and incomplete
answers to research questions.

Another advantage to using the experimental design approach is the ability
to avoid confounding factor effects. When the research hypothesis is not clearly
stated and a plan is not constructed to investigate it, researchers tend toward
a trial and error approach wherein many variables are simultaneously changed
in an attempt to achieve some goal. When this is the approach, the goal may
sometimes be achieved, but it cannot be repeated because it is not known
what changes actually caused the improvement.

One of Fisher’s early contributions to the planning of experiments was pop-
ularizing a technique called randomization, which helps to avoid confusion
or biases due to changes in background or lurking variables. As an example
of what we mean by bias is “The Biggest Health Experiment Ever,” Meier
(1972), wherein a trial of a polio vaccine was tested on over 1.8 million chil-
dren. An initial plan was proposed to offer vaccinations to all children in the
second grade in participating schools, and to follow the polio experience of
first through third graders. The first and third grade group would serve as a
“control” group. This plan was rejected, however, because doctors would have
been aware that the vaccine was only offered to second graders. There are
vagaries in the diagnosis of the majority of polio cases, and the polio symp-
toms of fever and weakness are common to many other illnesses. A doctor’s
diagnosis could be unduly influenced by his knowledge of whether or not a
patient had been vaccinated. In this plan the factor purposely varied, vacci-
nated or not, was biased by the lurking variable of doctors’ knowledge of the
treatment.

When conducting physical experiments, the response will normally vary
over replicate runs due solely to the fact that the experimental units are dif-
ferent. This is what we defined to be experimental error in the last section.
One of the main purposes for experimental designs is to minimize the effect
of experimental error. Aspects of designs that do this, such as randomiza-
tion, replication, and blocking, are called methods of error control. Statistical
methods are used to judge the average effect of varying experimental factors
against the possibility that they may be due totally to experimental error.
Another purpose for experimental designs is to accentuate the factor effects
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(or signal). Aspects of designs that do this, such as choice of the number and
spacing of factor levels and factorial plans, are called methods of treatment
design. How this is done will be explained in the following chapters.

1.5 Types of Experimental Designs

There are many types of experimental designs. The appropriate one to use
depends upon the objectives of the experimentation. We can classify objec-
tives into two main categories. The first category is to study the sources of
variability, and the second is to establish cause and effect relationships. When
variability is observed in a measured variable, one objective of experimen-
tation might be to determine the cause of that variation. But before cause
and effect relationships can be studied, a list of independent variables must
be determined. By understanding the source of variability, researchers are of-
ten led to hypothesize what independent variables or factors to study. Thus
experiments to study the source of variability are often a starting point for
many research programs. The type of experimental design used to classify
sources of variation will depend on the number of sources under study. These
alternatives will be presented in Chapter 5.

The appropriate experimental design that should be used to study cause and
effect relationships will depend on a number of things. Throughout the book
the various designs are described in relation to the purpose for experimenta-
tion, the type and number of treatment factors, the degree of homogeneity
of experimental units, the ease of randomization, and the ability to block
experimental units into more homogeneous groups. After all the designs are
presented, Chapter 13 describes how they can be used in sequential experi-
mentation strategies where knowledge is increased through different stages of
experimentation. Initial stages involve discovering what the important treat-
ment factors are. Later, the effects of changing treatment factors are quanti-
fied, and in final stages, optimal operating conditions can be determined. Dif-
ferent types of experimental designs are appropriate for each of these phases.

Screening experiments are used when the researcher has little knowledge of
the cause and effect relationships, and many potential independent variables
are under study. This type of experimentation is usually conducted early in
a research program to identify the important factors. This is a critical step,
and if it is skipped, the later stages of many research programs run amuck
because the important variables are not being controlled or recorded.

After identifying the most important factors in a screening stage, the re-
searcher’s next objective would be to choose between constrained optimization
or unconstrained optimization (see Lawson, 2003). In constrained optimiza-
tion there are usually six or fewer factors under study and the purpose is to
quantify the effects of the factors, interaction or joint effects of factors, and to
identify optimum conditions among the factor combinations actually tested.

When only a few quantitative factors are under study and curvilinear re-
lationships with the response are possible, it may be possible to identify
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improved operating conditions by interpolating within the factor levels ac-
tually tested. If this is the goal, the objective of experimentation is called
unconstrained optimization. With an unconstrained optimization objective,
the researcher is normally trying to map the relationship between one or more
responses and five or fewer quantitative factors.

Specific experimental design plans for each of the stages of experimentation
will be presented as we progress through the book.

Figure 1.1 shows the relationship between the objectives of experimenta-
tion, the design of the experiment, and the conclusions that can be drawn.
The objective of a research program dictates which type of experimental de-
sign should be utilized. The experimental design plan in turn specifies how
the data should be collected and what mathematical model should be fit in
order to analyze and interpret the data. Finally, the type of data and the
mathematical model will determine what possible conclusions can be drawn
from the experiment. These steps are inseparable and dependent upon each
other. Many mistakes are made in research by trying to dissever these steps.
An appropriate analysis of data cannot be completed without knowledge of
what experimental design was used and how the data was collected, and con-
clusions are not reliable if they are not justified by the proper modeling and
analysis of the data.

Figure 1.1 Objectives, Design, and Conclusions from Experimentation

Define Objectives

‘ Select Experimental Design ‘

Procedures for Model for
Collecting Data Analysis of Data
N/

Analysis of Data
Interpretation of Results

Conclusions

1.6 Planning Experiments

An effective experimental design plan should include the following items: (1)
a clear description of the objectives, (2) an appropriate design plan that guar-
antees unconfounded factor effects and factor effects that are free of bias, (3)
a provision for collecting data that will allow estimation of the variance of the
experimental error, and (4) a stipulation to collect enough data to satisfy the
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objectives. Bisgaard (1999) recommends a formal proposal to ensure that a
plan includes all of these elements. The proposal should include a checklist for
planning the experiments. Below is a checklist that is similar to Bisgaard’s.
Examples of some of the steps from this checklist will be illustrated in dis-
cussing a simple experiment in the next section.

1. Define Objectives. Define the objectives of the study. First, this statement
should answer the question of why is the experiment to be performed.
Second, determine if the experiment is conducted to classify sources of
variability or if its purpose is to study cause and effect relationships. If it
is the latter, determine if it is a screening or optimization experiment. For
studies of cause and effect relationships, decide how large an effect should
be in order to be meaningful to detect.

2. Identify Fxperimental Units. Declare the item upon which something will
be changed. Is it an animal or human subject, raw material for some pro-
cessing operation, or simply the conditions that exist at a point in time
or trial? Identifying the experimental units will help in understanding the
experimental error and variance of experimental error.

3. Define a Meaningful and Measurable Response or Dependent Variable. De-
fine what characteristic of the experimental units can be measured and
recorded after each run. This characteristic should best represent the ex-
pected differences to be caused by changes in the factors.

4. List the Independent and Lurking Variables. Declare which independent
variables you wish to study. Ishikawa Cause and Effect Diagrams (see SAS
Institute, 2004b) are often useful at this step to help organize variables
thought to affect the experimental outcome. Be sure that the independent
variables chosen to study can be controlled during a single run, and varied
from run to run. If there is interest in a variable, but it cannot be controlled
or varied, it cannot be included as a factor. Variables that are hypothesized
to affect the response, but cannot be controlled, are lurking variables. The
proper experimental design plan should prevent uncontrollable changes in
these variables from biasing factor effects under study.

5. Run Pilot Tests. Make some pilot tests to be sure you can control and vary
the factors that have been selected, that the response can be measured, and
that the replicate measurements of the same or similar experimental units
are consistent. Inability to measure the response accurately or to control the
factor levels are the main reasons that experiments fail to produce desired
results. If the pilot tests fail, go back to steps 2, 3, and 4. If these tests are
successful, measurements of the response for a few replicate tests with the
same levels of the factors under study will produce data that can be used
to get a preliminary estimate of the variance of experimental error.

6. Make a Flow Diagram of the Experimental Procedure for Each Run. This
will make sure the procedure to be followed is understood and will be
standardized for all runs in the design.
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7.

10.

11.

Choose the Experimental Design. Choose an experimental design that is
suited for the objectives of your particular experiment. This will include a
description of what factor levels will be studied and will determine how the
experimental units are to be assigned to the factor levels or combination of
factor levels if there are more than one factor. One of the plans described in
this book will almost always be appropriate. The choice of the experimental
design will also determine what model should be used for analysis of the
data.

Determine the Number of Replicates Required. Based on the expected vari-
ance of the experimental error and the size of a practical difference, the
researcher should determine the number of replicate runs that will give a
high probability of detecting an effect of practical importance.

Randomize the Experimental Conditions to Experimental Units. According
to the particular experimental design being used, there is a proscribed
method of randomly assigning experimental conditions to experimental
units. In some designs, factor levels or combination of factor levels are
assigned to experimental units completely at random. In other designs,
randomizing factor levels is performed separately within groups of experi-
mental units and may be done differently for different factors. The way the
randomization is done affects the way the data should be analyzed, and
it is important to describe and record exactly what has been done. The
best way to do this is to provide a data collection worksheet arranged in
the random order in which the experiments are to be collected. For more
complicated experimental designs Bisgaard (1999) recommends one sheet
of paper describing the conditions of each run with blanks for entering the
response data and recording observations about the run. All these sheets
should then be stapled together in booklet form in the order they are to be
performed.

Describe a Method for Data Analysis. This should be an outline of the steps
of the analysis. An actual analysis of simulated data is often useful to verify
that the proposed outline will work.

Timetable and Budget for Resources Needed to Complete the Ezxperiments.
Experimentation takes time and having a schedule to adhere to will im-
prove the chances of completing the research on time. Bisgaard (1999)
recommends a Gantt Chart (see SAS Institute, 2004a), which is a sim-
ple graphical display showing the steps of the process as well as calendar
times. A budget should be outlined for expenses and resources that will be
required.

1.7 Performing the Experiments

In experimentation, careful planning and execution of the plan are the most
important steps. As we know from Murphy’s Law, if anything can go wrong it
will, and analysis of data can never compensate for botched experiments. To
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illustrate the potential problems that can occur, consider a simple experiment
conducted by an amateur gardener described by Box et al. (1978). The purpose
was to determine whether a change in the fertilizer mixture would result in a
change in the yield of his tomato plants. Eleven tomato plants were planted in
a single row, and the fertilizer type (A or B) was varied. The experimental unit
in this experiment is the tomato plant plus the soil it is planted in, and the
treatment factor is the type of fertilizer applied. Easterling (2004) discusses
some of the nuances that should be considered when planning and carrying
out such a simple experiment. It is instructive to think about these in context
with the checklist presented in the last section.

When defining the objectives for this experiment, the experimenter needs
to think ahead to the possible implications of conclusions that he can draw.
In this case, the possible conclusions are (1) deciding that the fertilizer has no
effect on the yield of tomatoes, or (2) concluding that one fertilizer produces a
greater yield. If the home gardener finds no difference in yield, he can choose to
use the less expensive fertilizer. If he finds a difference, he will have to decide
if the increase in yield offsets any increase in cost of the better fertilizer. This
can help him determine how large a difference in yield he should look for and
the number of tomato plants he should include in his study. The answer to
this question, which is crucial in planning the experiment, would probably be
much different for a commercial grower than for a backyard enthusiast.

The experimental units for this experiment were defined in the paragraph
above, but in identifying them, the experimenter should consider the similarity
or homogeneity of plants and how far apart he is going to place the tomato
plants in the ground. Will it be far enough that the fertilizer applied to one
plant does not bleed over and affect its neighbors?

Defining a meaningful response that can be measured may be tricky in this
experiment. Not all the tomatoes on a single plant ripen at the same time.
Thus, to measure the yield in terms of weight of tomatoes, the checklist and
flow diagram describing how an experiment is conducted must be very precise.
Is it the weight of all tomatoes on the plant at a certain date, or the cumulative
weight of tomatoes picked over time as they ripen? Precision in the definition
of the response and consistency in adherence to the definition when making
the measurements are crucial.

There are many possible lurking variables to consider in this experiment.
Any differences in watering, weeding, insect treatment, the method and timing
of fertilizer application, and the amount of fertilizer applied may certainly
affect the yield; hence the experimenter must pay careful attention to these
variables to prevent bias. Easterling (2004) also pointed out that the row
position seems to have affected the yield as well (as can be seen in Figure 1.2).
The randomization of fertilizers to plants and row positions should equalize
these differences for the two fertilizers. This was one of the things that Box
et al. (1978) illustrated with this example. If a convenient method of applying
the fertilizers (such as A at the beginning of the row followed by B) had
been used in place of random assignment, the row position effect could have
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been mistaken for a treatment effect. Had this row position effect been known
before the experiment was planned, the adjacent pairs of plots could have been
grouped together in pairs, and one fertilizer assigned at random to one plot-
plant in each pair to prevent bias from the row position effect. This technique
is called blocking and will be discussed in detail in Chapter 4.

Figure 1.2 Plot of Yield by Row Position— Tomato Experiment
3040

25 ©

Yield

204

2 4 6 8 10
Row Position
fertilizer O A +B

Easterling (2004) also raised the question: why were only eleven plants
used in the study (five fertilized with fertilizer A and six with fertilizer B)?
Normally flats of tomato plants purchased from a nursery come in flats of
twelve. Was one plant removed from the study because it appeared unhealthy
or got damaged in handling? The yield for the plant in the second row position
(see Figure 1.2) of the 11 plants used was considerably lower than the others
planted in neighboring row positions with the same fertilizer. Was this plant
unhealthy or damaged as well?

Any problems that arise during the conduct of experiments should be care-
fully observed, noted, and recorded as comments on the data collection form
described in step 9 of the checklist. Perhaps if this had been done for the
tomato experiment, the low yield at row position two could be explained.

This discussion of a very simple experiment helps to emphasize the impor-
tance of carefully considering each step of the checklist presented in Section
1.6, and the importance of strict adherence to a flowchart for conducting the
experiments, described in step 6 of that checklist. Failing to consider each point
of the checklist, and inconsistency in conducting experiments and recording
results, may lead to the demise of an otherwise useful research project.
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1.8 Use of R Software

Fisher’s original book on experimental designs clearly laid the logical prin-
ciples for experimentation, but users of experimental designs needed to have
more detailed descriptions of the most useful designs along with accompany-
ing plans. Consulting statisticians needed to have a systematic explanation of
the relation between experimental designs and the statistical theory of least
squares and linear hypotheses, and to have an enumeration of designs and
descriptions of experimental conditions where each design was most appropri-
ate.

These needs were satisfied by Cochran and Cox (1950) and Kempthorne
(1952) books. However, Cochran and Cox and Kempthorne’s books were pub-
lished before the age of computers and they both emphasize extensive tables
of designs, abundant formulas, and numerical examples describing methods of
manual analysis of experimental data and mathematical techniques for con-
structing certain types of designs. Since the publication of these books, use
of experimental designs has gone far beyond agricultural research where it
was initially employed, and a plethora of new books have been written on the
subject. Even though computers and software (to both design and analyze
data from experiments) are widely available, a high proportion of the more
recent books on experimental design still follow the traditional pattern estab-
lished by Cochran and Cox and Kempthorne by presenting extensive tables
of designs and formulas for hand calculations and methods for constructing
designs.

One of the objectives of this book is to break from the tradition and present
computer code and output in place of voluminous formulas and tables. This
will leave more room in the text to discuss the appropriateness of various de-
sign plans and ways to interpret and present results from experiments. The
particular computer software illustrated in this book is R (R Development
Core Team, 2003; Thaka and Gentleman, 1996). In addition to R program-
ing statements that are useful for constructing experimental designs and base
functions that are useful for the analysis of experimental data, there are many
user written packages that ease the construction of specific designs and provide
analysis routines that are not available in the base R. These user written pack-
ages can be installed from CRAN. Packages illustrated in this book include:
agricolae, AlgDesign, BsMD, car, daewr, DoE.base, FrF2, GAD, gmodels,
leaps, lme4, lsmeans, mixexp, multcomp, and Vdgraph. An appendix is in-
cluded at the end of the book with a brief introduction to R and additional
references on using R.

1.9 Review of Important Concepts

This chapter describes the purpose for experimental designs. In order to de-
termine if cause and effect relationships exist, an experimental design must be
conducted. In an experimental design, the factors under study are purposely
varied and the result is observed. This is different from observational stud-
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ies or sampling surveys where data is collected with no attempt to control
the environment. In order to predict what will happen in the future, when
the environment is controlled, you must rely on cause and effect relationships.
Relationships obtained from observational studies or sampling surveys are not
reliable for predicting future results when the environment is to be controlled.

Experimental designs were first developed in agricultural research, but are
now used in all situations where the scientific method is applied. The ba-
sic definitions and terminology used in experimental design are given in this
chapter along with a checklist for planning experiments. In practice there are
many different types of experimental designs that can be used. Which design
is used in a particular situation depends upon the research objectives and the
experimental units. Figure 1.3 is a diagram that illustrates when the different
experimental designs described in this book should be used. As different ex-
perimental designs are presented in chapters to follow, reference will be made
back to this figure to describe when the designs should be used.

Figure 1.3 Design Selection Roadmap

Design Purpose

Estimate Variances | | Study Factor Effects
]
E.U’s
Homogeneous | Heterogeneous
Block Factors
One Two
Block size
Large Small
RCB PBIB,BTIB [SD
RSE CRD
One Factor } GCB BIB RCD
Factors Factors
) FRSE class| |cont. mixture cont.| [class
Multiple Factors - NSE CRpp  CRRS SLD RCBF BRS  PCBF
SNSE  CRFF SCD !
PB, OA EYD CCBF
l ' v

Multiple Factors
with some hard
to vary

CRSP RSSP SPMPV RBSP
SPFF EESPRS

1.9.1 Design Name Acronym Index

RSE — random sampling experiment
FRSE — factorial random sampling experiment
NSE — nested sampling experiment
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SNSE — staggered nested sampling experiment
CRD — completely randomized design

CRFD — completely randomized factorial design
CRFF — completely randomized fractional factorial
PB — Plackett-Burman design

OA — orthogonal array design

CRSP — completely randomized split plot

RSSP — response surface split plot

EESPRS — equivalent estimation split-plot response surface
SLD — simplex lattice design

SCD — simplex centroid design

EVD — extreme vertices design

SPMPV — split-plot mixture process variable design
RCB — randomized complete block

GCB — generalized complete block

RCBF — randomized complete block factorial
RBSP — randomized block split plot

PBIB — partially balanced incomplete block

BTIB — balanced treatment incomplete block

BIB — balance incomplete block

BRS — blocked response surface

PCBF — partially confounded blocked factorial
CCBF — completely confounded blocked factorial
LSD — Latin-square design

RCD — row-column design
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1.10 Exercises

1. A series of runs were performed to determine how the wash water tem-
perature and the detergent concentration affect the bacterial count on the
palms of subjects in a hand washing experiment.

(a) Identify the experimental unit.
(b) Identify the factors.
(c) Identify the response.

2. Explain the difference between an experimental unit and a sub-sample or
sub-unit in relation to the experiments described in 1.

3. Explain the difference between a sub-sample and a duplicate in relation to
the experiment described in 1.

4. Describe a situation within your realm of experience (your work, your
hobby, or school) where you might like to predict the result of some future
action. Explain how an experimental design, rather than an observational
study, might enhance your ability to make this prediction.

5. Kerry and Bland (1998) describe the analysis of cluster randomized studies
where a group of subjects are randomized to the same treatment. For ex-
ample, when women in some randomly selected districts are offered breast
cancer screening while women in other districts are not offered the screen-
ing, or when some general practitioners are randomly assigned to receive
one or more courses of special training and the others are not offered the
training. The response (some characteristic of the patients) in the clus-
ter trials must be measured on each patient rather than the group as a
whole. What is the experimental unit in this type of study? How would
you describe the individual measurements on patients?
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CHAPTER 2

Completely Randomized Designs with
One Factor

2.1 Introduction

In a completely randomized design, abbreviated as CRD, with one treatment
factor, n experimental units are divided randomly into ¢ groups. Each group
is then subject to one of the unique levels or values of the treatment factor.
If n = tr is a multiple of ¢, then each level of the factor will be applied to
r unique experimental units, and there will be r replicates of each run with
the same level of the treatment factor. If n is not a multiple of ¢, then there
will be an unequal number of replicates of each factor level. All other known
independent variables are held constant so that they will not bias the effects.
This design should be used when there is only one factor under study and the
experimental units are homogeneous.

For example, in an experiment to determine the effect of time to rise on
the height of bread dough, one homogeneous batch of bread dough would be
divided into n loaf pans with an equal amount of dough in each. The pans
of dough would then be divided randomly into ¢ groups. Each group would
be allowed to rise for a unique time, and the height of the risen dough would
be measured and recorded for each loaf. The treatment factor would be the
rise time, the experimental unit would be an individual loaf of bread, and
the response would be the measured height. Although other factors, such as
temperature, are known to affect the height of the risen bread dough, they
would be held constant and each loaf would be allowed to rise under the same
conditions except for the differing rise times.

2.2 Replication and Randomization

Replication and randomization were popularized by Fisher. These are the
first techniques that fall in the category of error control that was explained
in Section 1.4.

The technique of replication dictates that r bread loaves are tested at each
of the ¢ rise times rather than a single loaf at each rise time. By having repli-
cate experimental units in each level of the treatment factor, the variance of
the experimental error can be calculated from the data, and this variance will
be compared to the treatment effects. If the variability among the treatment
means is not larger than the experimental error variance, the treatment dif-
ferences are probably due to differences of the experimental units assigned to

17
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each treatment. Without replication it is impossible to tell if treatment differ-
ences are real or just a random manifestation of the particular experimental
units used in the study. Sub-samples or duplicate measurements, described in
Chapter 1, cannot substitute for replicates.

The random division of experimental units into groups is called random-
ization, and it is the procedure by which the validity of the experiment is
guaranteed against biases caused by other lurking variables. In the bread rise
experiment randomization would prevent lurking variables, such as variability
in the yeast from loaf to loaf and trends in the measurement technique over
time, from biasing the effect of the rise time.

When experimental units are randomized to treatment factor levels, an
exact test of the hypothesis that the treatment effect is zero can be accom-
plished using a randomization test, and a test of parameters in the general
linear model, normally used in the analysis of experimental data, is a good
approximation to the randomization test.

A simple way of constructing a randomized data collection form, dividing
n experimental units into ¢ treatment groups, can be accomplished using base
R commands. For example, in the bread rise experiment, if the experimenter
wants to examine three different rise times (35 minutes, 40 minutes, and 45
minutes) and test four replicate loaves of bread at each rise time, the following
code will create the list.

> set.seed(7638)

> f <- factor( rep( c(35, 40, 45 ), each = 4))

> fac <- sample( f, 12 )

> eu <- 1:12

> plan <- data.frame( loaf=eu, time=fac )

> write.csv( plan, file = "Plan.csv", row.names = FALSE)

The R command factor creates a vector of the factor levels for (rise time)
and stores it in the variable f. There is also an ordered command in R that
creates a factor that is assumed to have equally spaced numerical levels. R
handles factors created by the factor and ordered commands differently
when making comparisons of treatments after fitting a model. There will be
more discussion of this in Section 2.8.

The sample function randomizes the order of the factor levels and stores the
randomized vector in the variable fac. The seq function creates a numeric
vector of experimental unit (i.e., loaf) numbers (eu). Next, the data.frame
function combines the two vectors eu, fac as columns that are stored in the
data frame object plan with column headings loaf, and time. Finally, the
write.csv function writes the data frame to a .csv file called Plan. csv. This
file can be found in your working directory. To get the path to your working
directory, type the command >getwd() at the R prompt (you can also specify
your working directory with the command >setwd()). Opening Plan.csv in
a spreadsheet program like Microsoft Excel or Open Office Calc and adding
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an extra column (as shown in Figure 2.1) results in a convenient electronic
data collection form.

Figure 2.1 Data Collection Form in a Spreadsheet

A B C

1 |loaf time Height
2 1 40

3 2 45

4 3 40

3 4 35

] 5 40

7 6 35

8 7 35

9| 8 35

10 9 40

1 10 45

12 11 45

13 12 45

14

This form shows us that the first loaf, or experimental unit, should be
allowed to rise 40 minutes, the second loaf 45 minutes, etc. If you run the
same commands in R repeatedly, you will get the same random order because
of the set.seed statement. Remove this statement to get a different random
order.

In addition to the base R commands shown above, several user written
R packages can create randomized lists of experiments, which can be conve-
niently converted into electronic data collection forms. However, these pack-
ages will be illustrated for creating more complicated designs in forthcoming
chapters, and will not be shown here.

2.3 A Historical Example

To illustrate the checklist for planning an experiment described in Section 1.6,
consider a historical example taken from the 1937 Rothamstead Experimen-
tal Station Report (unknown, 1937). This illustrates some of the early work
done by Fisher in developing the ideas of experimental design and analysis of
variance for use on agricultural experiments at the research station.

Objectives The objective of the study was to compare the times of planting,
and methods of applying mixed artificial fertilizers (NPK) prior to planting,
on the yield of sugar beets. Normally fertilizer is applied and seeds planted as
early as the soil can be worked.

Ezxperimental Units The experimental units were the plots of ground in
combination with specific seeds to be planted in each plot of ground.
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Response or Dependent Variable The dependent variable would be the
yield of sugar beets measured in cwt per acre.

Independent Variables and Lurking Variables The independent vari-
ables of interest were the time and method of applying mixed artificial fertil-
izers. Four levels of the treatment factor were chosen as listed below:

1. (A) no artificial fertilizers applied

2. (B) artificials applied in January (plowed)

3. (C) artificials applied in January (broadcast)
4. (D) artificials applied in April (broadcast)

Lurking variables that could cause differences in the sugar beet yields be-
tween plots were differences in the fertility of the plots themselves, differences
in the beet seeds used in each plot, differences among plots in the level of
weed infestation, differences in cultivation practices of thinning the beets, and
hand harvesting the beets.

Pilot Tests Sugar beets had been grown routinely at Rothamstead, and
artificial fertilizers had been used by both plowing and broadcast for many
crop plants; therefore, it was known that the independent variable could be
controlled and that the response was measurable.

Choose Experimental Design The completely randomized design (CRD)
was chosen so that differences in lurking variables between plots would be
unlikely to correspond to changes in the factor levels listed above.

Determine the Number of Replicates A difference in yield of 6 cwt
per acre was considered to be of practical importance, and based on histori-
cal estimates of variability in sugar beet yields at Rothamstead, four or five
replicates were determined to be sufficient.

Randomize Experimental Units to Treatment Levels Eighteen plots
were chosen for the experiment, and a randomized list was constructed as-
signing four or five plots to each factor level.

2.4 Linear Model for CRD

The mathematical model for the data from a CRD, or completely randomized
design, with an unequal number of replicates for each factor level can be
written as:

Yij = pi + €ij 2.1
J=H J

where Y;; is the response for the jth experimental unit subject to the ith
level of the treatment factor, i =1,...,t, 7=1,...,7;, and r; is the number of
experimental units or replications in ith level of the treatment factor.

This is sometimes called the cell means model with a different mean, p;, for
each level of the treatment factor. The distribution of the experimental errors,
€5, are mutually independent due to the randomization and assumed to be
normally distributed. This model is graphically represented in Figure 2.2.



LINEAR MODEL FOR CRD 21

Figure 2.2 Cell Means Model
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An alternate way of writing a model for the data is
}/ij :M+Ti+€ij~ (22)

This is called the effects model and the 7;s are called the effects. 7; represents
the difference between the long-run average of all possible experiments at the
ith level of the treatment factor and the overall average. With the normality
assumption Yj; ~ N(u + 7;,02) or €;; ~ N(0,0?). For equal number of repli-
cates, the sample means of the data in the ith level of the treatment factor is
represented by

1
TIL' ]‘:1

and the grand mean is given by

—_

- Zyz Z:iyij (2.4)

where n = Y r;. Using the method of maximum likelihood, which is equivalent
to the method of least squares with these assumptions, the estimates of the
cell means are found by choosing them to minimize the error sum of squares

~

ssE = ZZ(yU i) (2.5)

i=17=1
This is done by taking partial derivatives of ssE with respect to each cell
mean, setting the results equal to zero, and solving each equation

0ssE t

= _22 Z(ylj i) =0.

8/"% i=1j=1
This results in the estimates:

i = Yi.-
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2.4.1 Matriz Representation

Consider a CRD with t = 3 factor levels and r; = 4 replicates for ¢ = 1,...,¢.
We can write the effects model concisely using matrix notation as:

y=XB+e (2.6)
Where
Y11 1100 €11
Y12 1100 €12
Y13 1 1 0 O €13
Y14 1100 €14
y21 ]. 0 ]. 0 [L €21
_| Y22 |1 0 10 | n | e
y= Y23 y X = 1010 » B= | T es |
Y24 1010 T3 €24
Y31 1 0 0 1 €31
Y32 1 0 0 1 €32
Y33 1 0 0 1 €33
Y34 1 0 O 1 €34

and € ~ MV N(0,0°1I).

The least squares estimators for 3 are the solution to the normal equations
X' X3 = X'"y. The problem with the normal equations is that X'X is singular
and cannot be inverted. Using the treatment coding for an unordered factor
created with the factor command, the R function 1m makes the X matrix
full rank by dropping the column that corresponds to the first level of the
factor as shown below.

I
e e e e e e
O OO R R LR LR OOOO
= 000000000 0oO0o

o
—

This treatment coding makes the first level of the factor the standard, and
all other levels of the factor are compared to it. For the example with ¢ = 3
factor levels the solution to the normal equations is
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. fi+T1
(X'X)'X'y=B=| 72-7
P37

2.4.2 L.S. Calculations with R Function lm

Table 2.1 shows the data from a CRD design for the bread rise experiment
described earlier in this chapter.

Table 2.1 Data from Bread Rise Experiment
Rise Time Loaf Heights

35 minutes 4.5, 5.0, 5.5, 6.75
40 minutes 6.5, 6.5, 10.5, 9.5
45 minutes | 9.75, 8.75, 6.5, 8.25

Using these data we have

12 4 4 88.0
X'X=|4 4 0], Xy=| 330 |,
4 0 4 33.25

and

025 -0.25 -0.25
(xX'x)*t=| -025 050 025 |,
-0.25 025  0.50

A f+ T 5.4375
B=(X'X)'X'y=| -7 |=| 28125 |.

T3—T1 2.8750

If the data had been collected and typed into the electronic spreadsheet shown
in Figure 2.1 and resaved as a .csv file, then it could be read back into an R
data frame called bread with the following command.

> bread <- read.csv("plan.csv")

However, the R package daewr contains data sets from this book and several
R functions. Running the code on the next page opens the data set shown in
Table 2.1 and computes the estimates.
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> library(daewr )
> mod0 <- 1lm( height ~ time, data = bread )
> summary( modO )

The command library(daewr) makes this package available, but before
this command can be issued the package must be installed as described in the
Appendix at the end of the book. The 1m command fits the linear model and
stores the results in the object modO, and the summary command prints the
results, a portion of which is shown below.

Coefficients:

Estimate Std. Error t value Pr(>lt])
(Intercept)  5.4375 0.7655  7.104 5.65e-05 *x**
time40 2.8125 1.0825 2.598 0.0288 *
time45 2.8750 1.0825 2.656 0.0262 *

Signif. codes: O *xx 0.001 *x 0.01 * 0.05 . 0.1 1

Residual standard error: 1.531 on 9 degrees of freedom
Multiple R-squared: 0.5056, Adjusted R-squared: 0.3958
F-statistic: 4.602 on 2 and 9 DF, p-value: 0.042

Since the variable time is a factor in the data frame bread, and default
treatment coding was used by function 1m, the estimates described above are
produced.

2.4.8 Estimation of o2 and Distribution of Quadratic Forms

The estimate of the variance of the experimental error, 02, is ssE/(n—t). It is
only possible to estimate this variance when there are replicate experiments at
each level of the treatment factor. When measurements on sub-samples or du-
plicate measurements on the same experimental unit are treated as replicates,
this estimate can be seriously biased.

In matrix form, ssE can be written as

ssE=y'y-B'X'y=y' (I-X(X'X)"X")y,

and from the theory of linear models it can be shown that the ratio of ssE
to the variance of the experimental error, o2, follows a chi-square distribution
with n — ¢ degrees of freedom, that is, ssE/o? ~ x2_,.

2.4.4 FEstimable Functions

A linear combination of the cell means is called an estimable function if it can
be expressed as the expected value of a linear combination of the responses,
that is,
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From this definition it can be seen that effects, 7;, are not estimable, but a
cell mean, p + 7;, or a contrast of effects, > ¢;7;, where Y ¢; = 0, is estimable.

In matrix notation LS is a set of estimable functions if each row of L is a lin-
ear combination of the rows of X, and L@ is its unbiased estimator. L3 follows
the multivariate normal distribution with covariance matrix o>L’'(X'X) L,
and the estimator of the covariance matrix is 62L/(X’X )~ L. For example,
using the data from the bread rise experiment above,

01 -1 0
L‘(o 1 0 —1)’ (2:8)
_ T — T2 A5 7:1—7:2 _ -2.8025

L'B_ ( T1 — T3 )’ and LIB_( 7:1—7:3 )_( -2.8750 )
is a vector of contrasts of the effects. The number of degrees of freedom, or
number of linearly independent contrasts of effects in a CRD, is always the
number of levels of the treatment factor minus one, that is, ¢ — 1. Whenever
there is a set of ¢ — 1 linearly independent contrasts of the effects, they are
called a saturated set of estimable contrasts.

It can be shown that (L3) (L(X'X)™'L')"'(LA3) follows the noncentral
chi-square distribution, x?(p, \) where the noncentrality parameter

A= (") LB (L(X'X) L) (LB),

and L is the coefficient matrix for an estimable contrast like (2.8), and the
degrees of freedom p is equal to the rank of L.

Estimable contrasts can be obtained from the fit.contrast function in
the R package gmodels, Warnes (2012). First install the gmodels package as
described in the appendix, then the package can be loaded and the function
called as shown in the example code below. There it is used to estimate the
average difference in the cell means for the first and second levels of the
treatment factor, (u+71) — (u+72) =71 — 2.

> library(gmodels)
> fit.contrast( modO, "time", c(1, -1,0) )

In the function call above, the mod0 is the name of a model previously fit with
the R function 1m, the string in quotes is the name of the factor in the model
whose cell means are compared, and the vector c(1 -1,0) are the contrast
coefficients, ¢;. This produces the result (-2.8125), which is the negative of
the second estimate produced in the R output on the previous page using the
default treatment coding in the model mod0.
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2.4.5 Hypothesis Test of No Treatment Effects

In the model for the CRD, the statistical hypothesis of interest is Hy : puy =
o =...[t OF T| =T9 = ... =Ty versus the alternative H, : at least two of the 7s
differ. If the null hypothesis is true, the model y;; = p1;+€;; = p+7;+¢;; simplifies
to y;; = 1 + €55, which can be represented as a single normal distribution with
mean j and variance o2 rather than multiple normal distributions like those
shown in Figure 2.2.

The sums of squares about the mean is ssTotal = ¥!_, Z;Ll(yij -75.)? =
y'y - (1'y)?/(1'1), where 7. is the grand mean and 1 is a column vector of
ones. This sum of squares can be partitioned as:

ssTotal = ssT + ssE (2.9)
where ssT = 3 X'y - (1'y)?/(1'1) = (LB)(L(X'X)'L') (L), and L is
the coefficient matrix for a saturated set of estimable contrasts. This quantity
is called the treatment sums of squares. Under the null hypothesis Hy : pq =
to = ..., both ssT and ssE follow the chi-squared distribution. These sums
of squares and their corresponding mean squares, which are formed by dividing
each sum of squares by its degrees of freedom, are usually presented in an
analysis of variance or ANOVA table like that shown symbolically in Table
2.2.

Table 2.2 Analysis of Variance Table

Source df | Sum of Squares | Mean Squares F-ratio
Treatment | t—1 ssT msT F =msT/msE
Error n—t sskE mskE

Total n-1 ssTotal msTotal

Under the null hypothesis, the F-ratio msT/msE follows the F-distribution
with ¢t — 1 and n -t degrees of freedom, and under the alternative it follows
the noncentral F distribution with noncentrality parameter

A= ()T @B (LX) L) (L) = 5 s = )

It is the generalized likelihood ratio test statistic for Hy, and is the formal
method of comparing the treatment effects to the experimental error variance
described in Section 2.2.

The sums of squares, mean squares, degrees of freedom in the ANOVA
table, and associated F-test statistic can be calculated by the aov function in
R. The inputs to the aov function are the same as those for the 1m function
shown earlier, but the summary of an object created by the aov function is
the ANOVA table rather than the estimates produced by the 1m function. The
code to produce the ANOVA table for the bread dough rise experiment is:
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> modl <- aov( height ~ time, data = bread )
> summary (mod1)

The resulting ANOVA table is shown below.

Df Sum Sq Mean Sq F value Pr(>F)
time 2 21.57 10.786 4.602 0.042 *
Residuals 9 21.09 2.344

Signif. codes: O *xx 0.001 *x 0.01 * 0.05 . 0.1 1

In this table the ssT and msT and the associated degrees of freedom are
on the line labeled time, the ssFE is on the line labeled Residuals, and the
ssTotal can be computed by adding the ssT to the ssE. The F-value is the
ratio msT/msE and the last column labeled Pr(>F) is the probability of
exceeding the calculated F-value if the null hypothesis is true. This is called
the P-value and is illustrated graphically in Figure 2.3. If the experimenter
chooses the significance level, a, for his hypothesis test, he would reject the
hypothesis if the Pr (>F) value on the aov output is less than the chosen value
of a.

Figure 2.3 Pr> F

Pr(F,, > 4.6) = 0.042

/

F =msT/msE =4.60

For the bread rise experiment there are significant differences among the
mean risen dough heights for each rise time at the significance level o = 0.05,
since 0.042 < 0.05.
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2.4.6 A Word of Caution

When a completely randomized design in one factor is conducted, the model
for analysis is Equation (2.1) or (2.2) and the correct analysis is through the
analysis of variance as shown symbolically in Table 2.2. The use of computer
software like R makes it easy to analyze data and draw conclusions; however,
if the experiment was not properly conducted even a sophisticated analysis
of the data could be useless. The ¢;; term in the model (2.1) or (2.2), and
its associated sums of squares, ssF, represents replicate experimental units.
In many cases experimenters do not have replicate experimental units in each
level of the treatment factor and substitute sub-samples or duplicates for
them in the analysis. In other cases the experimental units are not properly
randomized to treatment factor levels. When this is the situation, performing
the analysis as if the design had been properly conducted may be completely
wrong and misleading. Wrong conclusions can be drawn that do not hold up
to later scrutiny, and a bad reputation is unfairly ascribed to statistically
designed experiments and statistical analyses of data.

For example, consider an experiment where a professor would like to de-
termine the effect of teaching methods on student test scores. If he uses one
teaching method for the morning class, another for his evening class, and treats
test scores for individual students as replicates, the results of his analysis may
be totally wrong. This situation is similar to the cluster randomized studies
described in exercise 5 of Chapter 1. The experimental unit is the class, since
he applied the teaching method to a whole class simultaneously, and the in-
dividual students are sub-samples or observational units (since he must test
individual students, not the class as a whole). The treatment effect should be
judged against the variability in experimental units or classes. The variability
among students in a class may be much different than variability from class
average to class average. Sub-sample observations should be averaged before
analysis, as explained in Section 1.3. If this were done, he would only have one
observation per class per teaching method and no replicates for use in calcu-
lating ssE in Table 2.2. There is no denominator for calculating the F-test
statistic for teaching method. If he uses the variability in students within a
class to calculate ssFE, it may be too large or too small, causing him to reach
the wrong conclusion about the significance of the treatment effect. Further,
if he did not randomize which teaching method was used in the morning and
evening classes, and if he has no replicate classes that were taught with the
same teaching method, his analysis is wide open to biases. Students in the
morning classes may be fundamentally different than students in the evening
classes, and any difference in average scores between the two teaching methods
may be entirely due to differences among the two groups of students. In fact,
if the professor knows there are differences in morning and evening students,
he may purposely use the teaching method he wants to promote on the better
class, thus ruining the objectivity of his research.
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2.5 Verifying Assumptions of the Linear Model

Two assumptions required for validity of the analysis based on the linear
model presented in the last section are constancy of the variance of the ex-
perimental error, o2, across all levels of the treatment factor, and normality
of the experimental errors. To verify these assumptions, simple graphs can be
constructed. A scatter plot of the model residuals versus the factor levels can
show whether the variability seen at each level of the factor is approximately
equal. The model residuals are the differences of the responses y;; in each
cell (or level of the factor) and the cell means, 4i;. When the variance differs
between factor levels, it is often because the variability in the response tends
to increase when the mean level of the response increases. A graph that can
reveal this tendency is a plot of the model residuals versus the cell means
or predicted values. Finally, the normality of the experimental errors can be
checked by making a normal probability plot of the model residuals.

The most critical assumption justifying the analysis based on the linear
model is independence of the experimental error terms ¢;;. This assumption
is justified if proper randomization of the experimental units to treatment
factor levels has been performed and true replicates are included. A simple
scatter plot of the model residuals versus the experimental unit number can
reveal inadequacies in the randomization. If there is an increasing, decreasing,
or cyclical pattern in this plot, it could indicate the randomization did not
balance heterogeneous experimental units across levels of the factor.

The four plots used to verify the assumptions of the linear model can be
easily made using R. The code below produces these plots.

par( mfrow = c(2,2) )

plot(modl, which=5)

plot(modl, which=1)

plot(modl, which=2)

plot(residuals(modl) ~ loaf, main="Residuals vs Exp. Unit",
font.main=1,data=bread)

abline(h = 0, lty = 2)

vV + V V V Vv V

In this code, the R command par(mfrow=c(2,2)) splits the plot region
into four subregions. The resulting plots are arranged row-wise in Figure 2.4.
The command plot(modl, which=5) produces a plot of the standardized
residuals versus the factor levels in the upper left. The command plot (mod1,
which=1) produces the plot of residuals versus the cell means or fitted values
in the top right. The command plot(modl, which=2) produces the normal
probability plot of the standardized residuals in the lower left. The final plot
statement produces the plot of residuals versus experimental unit numbers
in the lower right. In this plot statement, the residuals(modl) extracts the
residuals from the object mod1 that was calculated by the aov function. A
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complete list of the quantities calculated by the aov function can be obtained
by typing the command names (mod1) in the R console.

Figure 2.4 Graphs to Verify Assumptions of Linear Model
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If the variability of the residuals differs between the factor levels in the plot
in the upper left of Figure 2.4, it would indicate the variance of the €;;’s is not
constant. With only four replicates in each cell this is difficult to determine.
The plot of residuals versus cell means, shown in the upper right of Figure 2.4,
may indicate that the variability in the residuals increases as the cell mean
increases, but it is not clear. A better way to determine if this is the case will
be shown in the next section. The normal probability plot of residuals in the
lower left justifies the normality assumption concerning the €;;’s if the points
fall along a straight line. When there is more data and more points on the
plot, the points must lie closer to a straight line to justify this assumption. In
the normal plot in Figure 2.4, the points fall away from the line in the lower
left and the upper right possibly indicating short tails in the distribution of
residuals, but again it is difficult to determine with only 12 data points on
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the graph. The equal variance assumption is more critical than the normality
assumption, but they sometimes go hand in hand. When the equal variance
assumption is violated, the normality assumption is often violated as well,
and the corrective measures used for modifying the analysis when there is
heterogeneity of variance will often correct both problems.

2.6 Analysis Strategies When Assumptions Are Violated

One common cause of heterogeneity of variances between levels of the treat-
ment factor is a nonlinear relationship between the response and stimulus or
treatment. For example, in the upper half of Figure 2.5, it can be seen that
the response increases nonlinearly as a function of the factor levels. The den-
sity functions, drawn on their sides at three treatment levels, represent how
nonlinearity often affects the distribution of the response. As the mean or
center of the distribution increases, the variance or spread in the distribution
also increases, and the distributions have long tails on the right. One way of
correcting this situation is to transform the response data prior to analysis.

Figure 2.5 Representation of Effect of Nonlinearities on Distribution of Response

Original Scale

Transformed Scale

Factor

The bottom half of Figure 2.5 shows the potential result of a variance stabi-
lizing transformation. On the transformed scale, the variance appears constant
at different factor levels and the distributions appear more normal.

2.6.1 Box-Cox Power Transformations

One way to recognize the need for a variance stabilizing transformation is to
examine the plot of residuals versus cell means described in the last section.
If the spread in the residuals tends to increase proportionally as a function
of the cell means (as possibly indicated in the upper right of Figure 2.4) a
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transformation, Y = f(y) can usually be found that will result in a more sen-
sitive analysis. Box and Cox (1964) proposed a series of power transformations
Y =y that normally work well. If the variance tends to increase as the mean
increases, choose a value of \ less than one, and if the variance tends to de-
crease as the mean increases, choose a value of A greater than one. Table 2.3
summarizes some common Box-Cox power transformations. A common situa-
tion where the o o p is when the response is actually a measure of variability,

like the sample variance s2.

Table 2.3 Boz-Cox Power Transformations
Relation between

o and p A Transformation

o o< pu? -1 Reciprocal

o o< ,u3/ 2 —% Square Root of Reciprocal
o o< 1 0 Log

o oc ptl? % Square Root

In a CRD design with replicate experiments in each level of the treatment
factor, one way to determine the most appropriate value of A to use in the
Box-Cox transformation is to plot the maximum of the log likelihood function
(which is proportional to the reciprocal of the error sum of squares in the
ANOVA) versus the value of A used in transforming the data. The value of
A that maximizes the log likelihood (or minimizes the error sum of squares)
would be most appropriate. This plot is called a Box-Cox plot. The boxcox
function in the R package MASS makes this plot automatically.

In the example shown below the boxcox function is used with the R 1m
object mod1 that was fit to the data from the bread rise experiment. The plot
is shown in Figure 2.6, and A = —.0505 maximizes the log likelihood.

> library(MASS)

> bc <- boxcox(modl)

> lambda <- bc$x[which.max(bc$y)]
> lambda

[1] -0.5050505

In Figure 2.6, the values of A\ directly below the points where the dotted
horizontal line labeled 95% intersects the curve are 95% confidence limits for
A. In this example the confidence interval is wide and includes A = 1 (no
transformation) and A = -1 (reciprocal transformation). This shows there
is considerable uncertainty about the heterogeneity of variances with only
four replicate experiments in each level of the factor. However, for illustrative
purposes the analysis using the optimal (A = -0.5050505) will be shown. The
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Figure 2.6 Boz-Cox Plot for the Bread Rise Ezperiment
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R code to add the transformation to the data frame tbread and fit the model
to the transformed data follows.

> tbread <- transform(bread, theight = height~(-.5050505))
> mod2 <- aov( theight“time, data = tbread )
> summary (mod2)

The resulting ANOVA table below shows the P-value for the factor time has
decreased to 0.0209 from the 0.042 value shown in the earlier ANOVA of
the untransformed data. Therefore the transformation has made the analysis
slightly more sensitive.

Df Sum Sq Mean Sq F value Pr(>F)
time 2 0.01732 0.008662 6.134 0.0209 *
Residuals 9 0.01271 0.001412

For experiments where the variance heterogeneity is more pronounced, the
Box-Cox transformation can greatly increase the sensitivity in detecting treat-
ment effects.

The graphs to verify the assumptions of the analysis of the transformed data
can be made by modifying the code on page 29 replacing mod1 with mod2. The
result is shown in Figure 2.7. It can be seen in this figure that the spread or
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variability of the residuals is nearly the same for each value of the predicted
value or cell mean of responses raised to the —0.505 power.

Figure 2.7 Plot of Residuals versus Cell Means after y* Transformation for Bread
Rise Experiment

Constant Leverage:

Residuals vs Factor Levels Residuals vs Fitted

)

- ot S _lon
% | o o P [e} [e]
3
'g e o e N o
o - =] 8 -
] o o : o
N o o 2 ° | o
T S A &
s ! 7]

o o

§ - o g 1 (o)
@ f — 07 40 i o7 40

I

time - T T T T T T T
40 35 036 038 040 042
Factor Level Combinations Fitted values
Residuals vs Exp. Unit
Normal Q-Q

0 - S o

- 110 S 1° o o
¢ o0 ©
=) —
o © % . o
el ~ T
S ] 50 = ° o
S o 3 °
(] o 7 -
2 T 8
S - 0.0 < o ©
%) <

3 Jos o7 O| o o

1 T T T T T T T T T T T T T

-1.5 -0.5 05 10 1.5 2 4 6 8 10 12
Theoretical Quantiles loaf

2.6.2 Distribution-Based Transformations

The distribution assumption for the effects model for the CRD described in
Section 2.3 was Y;; ~ N (u+7;,02). However, if it is known that the data follow
some distribution other than the normal distribution, such as the Binomial,
Poisson, or Lognormal, then it would also be known that the standard devia-
tion would not be constant. For example, if the response, Y, was a binomial
count of the number of successes in n trials, then due to the central limit the-
orem, Y would be approximately normal, but uy =np and oy =/np(1 -p),
where p is the probability of success. In situations like this where the distri-
bution of the response is known to follow some specific form, then an appro-
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priate transformation can be found to stabilize the variance. Table 2.4 shows
the transformation for common situations often encountered.

Table 2.4 Response Distribution-Based Transformations

Variance in Transformation
Response Distribution  Terms of Mean 1 f(y)

Binomial @ sin™t\/y/n (radians)

Poisson w VY or/y+ %

Lognormal cp? log(y)

2.6.3 Alternatives to Least Squares Analysis

When the variance of the experimental error is not constant for all levels
of the treatment factor, but it is not related to the cell means, a trans-
formation will not be an appropriate way of equalizing or stabilizing the
variances. A more general solution to the problem is to use weighted least
squares. Using weighted least squares, ﬁ is the solution to the normal equa-
tions X'WXB = X'Wy, where W is a diagonal matrix whose diagonal
elements are the reciprocals of the standard deviation within each treatment
level. As an illustration of this method, consider the R code below for analyz-
ing the data from the bread rise experiment.

> with(bread, { std <- tapply(height, time, sd)

+ weights <- rep( 1/std, each = 4 )

+ mod3 <- 1m( height ~ time, weights = weights, data = bread )
+ anova( mod3 )

+ 1

In this example, the with(bread, {...}) function causes all statements
within the { } brackets to use the variables from the data frame bread. The
(height, time , var) function is used to calculate the variance of the re-
sponse at each level of the factor time. The weights are calculated as the
reciprocal of the standard deviations and the rep( ) function is used to ex-
pand the vector of weights to the number of rows in the data frame bread.
The 1m function calculates the weighted least squares estimates and the anova
function prints the ANOVA table. The results appear on the next page.
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Analysis of Variance Table

Response: height

Df Sum Sq Mean Sq F value Pr(>F)
time 2 18.209 9.1047 6.2263 0.02006 =*
Residuals 9 13.161 1.4623

Signif. codes: O *xx 0.001 *x 0.01 * 0.05 . 0.1 1

With these results, it can be seen that the F-test from the weighted least
squares is more sensitive than the unweighted least squares, and the P-value
is similar to what was obtained with the Box-Cox transformation shown in
Section 2.6.1.

When the error distribution is not normal, an alternative to analyzing a
transformation of the response is to use a generalized linear model (see Mc-
Cullagh and Nelder, 1989). In fitting a generalized linear model, the user must
specify the error distribution and a link function in addition to the model. The
method of maximum likelihood is used to estimate the model parameters and
the generalized likelihood ratio tests are used to test the hypotheses. When
the link function is the identity and the distribution is normal, the general-
ized linear model analysis will result in the method of least squares and the
ANOVA F-test. There are several R functions to fit the generalized linear
models and compute the appropriate likelihood ratio test statistics.

To illustrate the use of one of these functions to analyze experimental data,
consider the following example. A professor wanted to compare three different
teaching methods to determine how the students would perceive the course.
The treatment factor was the teaching method, the experimental unit was a
class of students, and the response was the summary of student ratings for the
course. The professor taught two sections of the course for three consecutive
semesters resulting in a total of six experimental units or classes. He con-
structed a randomized list so that two classes were assigned to each teaching
method. This would reduce the chance that other differences in the classes, or
differences in his execution of the teaching methods, would bias the results.
At the end of each semester, the students were asked to rate the course on a
five-point scale, with 1 being the worst and 5 being the best. Therefore, the
response from each class was not a single, normally distributed response, vy,
but a vector (y1,...,ys) response that followed the multinomial distribution.
The summary data from the experiment is shown in Table 2.5.
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Table 2.5 Counts of Student Rating Scores

Class | Method | 1 2 3 4 5
1 1 2114 | 12 8 6
2 3 1|11 |15 (15| 10
3 2 3 8|18 | 14 | 10
4 3 1 9|17 | 15| 12
5 2 4 12|19 9 7
6 1 3116|113 |10| 4

This data is stored in the data frame teach in the package daewr. The follow-
ing R code makes this data available and uses the function polr from the R
package MASS (Venables and Ripley, 2002) to fit the full and reduced model.
The function polr by default uses the logistic link function and the multino-
mial distribution. The response score and the treatment factor method in the
data frame teach are factors, while the variable score is a numeric variable
containing the counts of the various student rating scores. The formula in
the full model, modf, includes the treatment factor, while the formula in the
reduced model, modr, only includes the intercept.

library(daewr)

library(MASS)

modf <- polr( score ~ method, weight = count, data=teach)
modr <- polr( score ~ 1, weight = count, data = teach)
anova (modf ,modr)

V V V Vv V

The anova function displays the likelihood ratio test of the significance of the
treatment factor as shown below.

Likelihood ratio tests of ordinal regression models

Response: score

Model Resid. df Resid. Dev  Test Df LR stat. Pr(Chi)
1 1 294 885.9465
2 method 292 876.2986 1 vs 2 2 9.647875 0.008035088
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The P-value for the likelihood ratio chi-square statistic is small indicat-
ing there is a significant difference between the teaching methods. Teaching
method 1 had an average score of 2.98, teaching method 2 had an average
score of 3.22, and teaching method 3 appeared to be the best with an average
score of 3.47. This can also be visualized in the bar charts in Figure 2.8, which
shows that the percentage of high scores given increases for teaching method
2 and 3.

Figure 2.8 Percentage of Student Rating Scores by Teaching Method
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2.7 Determining the Number of Replicates

The significance level, «, of the ANOVA F-test of no treatment effect is the
probability of rejecting the null hypothesis Hg : u1 = po,...,= i, when it is
true. The power of the test is the probability of rejecting the null hypothesis
when it is false. The test statistic msT/msE follows the F-distribution when
the null hypothesis is true, but when the null hypothesis is false it follows the
noncentral F-distribution. The noncentral F-distribution has a wider spread
than the central F-distribution, as shown in Figure 2.9.

The spread in the noncentral F-distribution and probability exceeding the
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Figure 2.9 Central and Noncentral F-Distribution
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critical limit from the central F-distribution is an increasing function of the
noncentrality parameter, A. When the distribution is the noncentral F, the
probability of exceeding the critical limit from the central F-distribution is
called the power. The power is greater than the significance level, a;, when the
null hypothesis is false making the noncentrality parameter greater than zero.
The power can be computed for any scenario of differing means, if the values
of the cell means, the variance of the experimental error, and the number of
replicates per factor level are specified. For a constant difference among cell
means, represented by Zle(ui — [i.)?, the noncentrality parameter and the
power increase as the number of replicates increase.

When the differences among cell means is large enough to have practical
importance, the experimenter would like to have high power, or probability of
rejecting the hypothesis of no treatment effects. When the difference among
the means has practical importance to the researcher we call it practical signif-
icance. Practical significance does not always correspond to statistical signifi-
cance as determined by the F-test from the ANOVA. Sometimes the number
of replicates in the experiment is too few and the probability or power of
detecting a difference of practical significance too low. Statistical significance
can be made to coincide with practical significance by determining the ap-
propriate number of replicates that result in the desired power. Doing this is
the second technique that falls in the category of error comtrol discussed in
Chapter 1. The idea that increasing the number of replicates increases the
sensitivity of the experiment is also due to Fisher (1935).

For example, if there is a difference among the cell means so that the cor-
rected sum of squares (css = Y'_, (u; — fi.)?) is greater than zero, then the
power or probability of rejecting Hg : uy = pa, ..., = is given by

= [ F(a,t-1,t(r - 1), \)da (2.10)

Ft—l,t(r—l),oc

where Fy_j ¢(r-1), is the ath percentile of the central F distribution with ¢t -1
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and t(r — 1) degrees of freedom, F(xz,t - 1,t(r — 1),\) is the noncentral F-
distribution with noncentrality parameter A = 5 Yt (pi — 1.)%. For a fixed
value of # Y (i — i), the noncentrality parameter and the power increase
as a function of the number of replicates, r. This probability can be calculated
for various values of r until a value is found with adequate power. In this way
the appropriate number of replicates can be determined. The Fpower function
in the R package daewr facilitates these computations.

In the bread rise experiment, suppose less than a 3-inch difference in risen
dough heights is of no consequence. However, if changing the rise time from 35
minutes to 45 minutes causes a difference of more than 3 inches in risen dough
height, the experimenter would like to know about it, because he will need to
monitor rise time closely in the future to produce loaves of consistent height.
In this case, we can regard A = 3.0 as a practical difference in cell means. The
smallest css = Y¢_; (i — f1.)? could be, with at least two cell means differing
by A, would be the case when one cell mean was A/2 higher than the grand
mean, a second was A/2 less than the grand mean, and a third was equal to
the grand mean. This would result in

o S (2 0 (2 (5) - (£) a0

Assuming the variance of the experimental error 62 = 2.1 was estimated from
the sample variance in risen dough heights in a pilot experiment where several
loaves were allowed to rise for the same length of time, then the noncentrality
factor can be calculated as A = 575 x (4.5). The power is calculated for r =
2,...,6 using the R code shown below. This code illustrates the use of the
Fpowerl function that takes as arguments, alpha=c, nlev=t (the number of

levels of the factor), nreps=r, Delta=A, and sigma=o0.

> library(daewr)

> rmin <-2 #smallest number of replicates considered
> rmax <-6 # largest number of replicates considered
> alpha <- rep(0.05, rmax - rmin +1)

> sigma <-sqrt(2.1)

> nlev <- 3

> nreps <- rmin:rmax

> Delta <- 3

> power <- Fpowerl(alpha,nlev,nreps,Delta,sigma)

> power

By using a vector argument for nreps, the function produces a corresponding
vector of calculated power values that are shown in the following output.
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alpha nlev nreps Delta sigma  power

[1,1] 0.05 3 2 3 1.4491 0.19480
[2,] 0.05 3 3 3 1.4491 0.40419
[3,] 0.05 3 4 3 1.4491 0.59034
[4,] 0.05 3 5 3 1.4491 0.73289
[5,] 0.05 3 6 3 1.4491 0.83299

From this we can see that with r = 5 replicates there would be a 73% chance
of detecting a difference in cell means as large as 3.0, and with r = 6 there is a
83% chance. With fewer than five replicates there is at least a 40% chance this
difference will be missed. As a rule of thumb, the number of replicates that re-
sult in power between 0.80 and 0.90 is usually sufficient for most experimental
studies.

2.8 Comparison of Treatments after the F-test

When the F-test for the null hypothesis Hy : 1 = pg = . .. uz is rejected, it tells
us that there are significant differences between at least two of the cell means,
but if there are several levels of the treatment factor, it does not necessarily
mean that all cell means are significantly different from each other. When the
null hypothesis is rejected, further investigation should be conducted to find
out exactly which cell means differ. In some cases the investigator will have
preplanned comparisons he would like to make; in other situations he may
have no idea what differences to look for.

2.8.1 Preplanned Comparisons

Considering the treatment factor levels in the sugar beet yield experiment con-
ducted at Rothamstead in 1937 and described in Section 2.3, some preplanned
comparisons that might have been of interest are:

1. Ho:pn = 5 (po + pi3 + pia)
2. Ho:po = ps
3. Ho:pz = pa

The first comparison asks the question: Does a mix of artificial fertilizers
change yield? The second comparison asks the question: Is there a difference
in yields between plowed and broadcast application of artificial fertilizer? The
third comparison asks the question: Does timing of the application change the
yield?

These hypotheses can all be expressed in the general form Hy : ZLI cipti =0,
where 2521 ¢; = 0. Since Zle c;iih; = 0 are estimable functions, each of these
hypotheses can be tested by computing the single estimable function L3 and
its standard error sy 5 = 1/62L’(X’X) ! L. The ratio of the estimable function
to its standard error follows the t-distribution. The fit.contrast function
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in the R package gmodels (described before on page 25) performs this test.
For the sugar beet experiment the code below loads the data, and sets up and
prints the contrast matrix L.

> library(daewr)
> mod4 <- aov( yield ~ treat, data = sugarbeet )
> con <- matrix(c(1, -1/3, -1/3, -1/3, 0, 1, -1, O,
+0, 0,1, -1), 4, 3)
> L <- t(con)
> rownames (L) <- c("-fertilizer effect", "-plowed vs. broadcast"
+ , "-January vs. April")
> L

[,1] [,2] [,3] [,4]
-fertilizer effect 1 -0.3333333 -0.3333333 -0.3333333
-plowed vs. broadcast 0 1.0000000 -1.0000000 0.0000000
—-January vs. April 0 0.0000000 1.0000000 -1.0000000

The function call below prints the results. The options statement controls the
number of digits after the decimal for printing in this book.

> options(digits = 3)
> library(gmodels)
> fit.contrast( mod4, "treat", L)

The results are as follows.
Estimate Std. Error t value Pr(>|tl)

treat-fertilizer effect -8.8 0.825 -10.664 4.19e-08
treat-plowed vs. broadcast -3.8 0.975 -3.897 1.61e-03
treat-January vs. April 0.1 0.919 0.109 9.15e-01

The P-values in the column labeled Pr >|t|, in the above output, can be
interpreted the same way the P-values for the F-statistic were interpreted, and
we can see that: (1) artificial fertilizers enhance yield, (2) broadcast application
results in higher yields than plowed application, and (3) there is no significant
difference in yield between April and January application time.

When factor levels are quantitative, such as the rise time in the bread dough
rise experiment, preplanned comparisons often involve looking for the signif-
icance of linear or higher order polynomial trends in the response. Contrast
coeflicients, ¢; for testing orthogonal polynomial trends, can be obtained from
the R contr.poly function. The required input for this function is the number
of levels of the factor. The result is an orthogonal matrix with the contrast
coefficients desired. For example, for the bread dough rise experiment, the
commands on the next page construct and print the contrast matrix.
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> contrasts(bread$time) <- contr.poly(3)
> contrasts(bread$time)

The resulting contrast matrix below has coefficients for the linear and
quadratic contrasts.

.L .Q
35 -7.071068e-01 0.4082483
40 4.350720e-18 -0.8164966
45 7.071068e-01 0.4082483

The code using the R aov and summary.lm functions shown below calculates
the contrasts and displays the results.

> mod3 <- aov( height ~ time, bread )
> summary.lm(mod3)

In the following results, we can see that there is a significant (at the « = 0.05
level) linear trend, but no significant quadratic trend.

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 7.3333 0.4419 16.593 4.68e-08 **x*
time.L 2.0329 0.7655 2.656 0.0262 *
time.Q -1.1227 0.7655 -1.467 0.1765

Signif. codes: 0 ***x 0.001 *x 0.01 * 0.05 . 0.1 1

If the levels for the factor time were created with the ordered command
rather than the factor command, R automatically creates the X matrix
using the orthogonal polynomial contrasts and the summary table above can
be obtained without creating additional contrasts for time.

2.8.2 Unplanned Comparisons

When a set of preplanned comparisons can be expressed as a saturated set
of orthogonal contrasts, like the examples shown in the last section, these
comparisons are independent and equivalent to partitioning the overall F-
test of Hy : u1 = ... = us. However, if the comparisons are not planned in
advance of running the experiment, the analyst might be tempted to choose
the comparisons he or she would like to make based on the means of the data.
This implicitly means that all possible comparisons have been made. When
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testing all possible comparisons, each at the a=0.05 significance level, the
overall significance level can be much higher than 0.05, greater than 50% in
some cases. This means that even when there is no difference in the cell means
141, - .., it there could be a high probability of finding one or more comparisons
significant when each is tested individually. In order to reduce the overall (or
experiment-wise) chance of a type I error, an adjustment must be made.

For pairwise comparisons of the form Hy : pu; = p; for @ # j Tukey’s HSD
(or honestly significant difference) method adjusts the critical region by us-
ing the studentized range statistic instead of the student’s ¢-distribution. Us-
ing the HSD reject Hy : p; = p; in favor of the alternative H, : p; # py if
| — 1] > (\/i)an_t,aSm_ﬂj_ where g n-t,o is the a upper percentile of the
studentized range. This is only approximate when the sample sizes are un-
equal. If X1,..., X are independent random variables following N (u,o?) and
R = max; X; — min; X; then R/ follows the studentized range distribution
(see Tukey, 1949a).

The R function TukeyHSD will make pairwise comparisons using Tukey’s
HSD method. The code below illustrates how this function is called to make
the comparisons on the data from the sugar beet experiment.

> mod4 <- aov( yield ~ treat, data = sugarbeet )
> mod4.tukey <- TukeyHSD( mod4, ordered =T )
> mod4.tukey

A portion of the output is shown below.

Tukey multiple comparisons of means
95% family-wise confidence level
factor levels have been ordered

diff lwr upr p adj
B-A 6.3 .3122236 9.287776 0.0001366
D-A 10.0 .1655464 12.834454 0.0000004
C-A 10.1 .2655464 12.934454 0.0000003
D-B 7 .8655464 .534454 0.0094231
C-B 8 .9655464 .634454 0.0077551
C-D 1 .5723484 .772348 0.9995162

N OO ~NNW

O W w
N O O

The first column of the output lists the comparison made, the next column
lists the difference in cell means, and the next two columns are bounds for
a 95% confidence interval on the difference of means of the form |u; — ;] +
(\/ﬁ)ql,’n—t,o.055ﬂi.—ﬂjn The final column is a P-value for the test of the null
hypothesis that the two means are equal. For example, the confidence interval
for the last comparison, puc — up, includes zero and the P-value is > 0.05
indicating the sugar beet yield for treatment (C—artificial applied broadcast
in January) is not significantly different than the yield for treatment (D—
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artificial applied broadcast in April). All other pairwise comparisons show a
significant difference.

A less conservative method of comparing all possible cell means was devel-
oped independently by Newman (1939) and Keuls (1952). This method is also
based on the studentized range statistic, but is based on the range of the par-
ticular pair of means being compared, within the entire set of ordered means,
rather than the range of the largest to smallest as Tukey’s HSD. The means
comparison using the student Newman-Keuls method can be made using the
Snk.test function in the R package agricolae (de Mendiburu, 2012a). The
arguments for the Snk.test function are similar to the TukeyHSD function
and are illustrated below using the data from the sugar beet experiment.

> library(agricolae)
> compare <- SNK.test( mod4, "treat", alpha = 0.05 )
> print(compare)

A portion of the output is shown below.

$statistics
Mean CV MSerror
45.68333 3.182182 2.113321

$parameters
Df ntr
14 4

$SNK

Table CriticalRange
2 3.033186 2.091573
3 3.701394 2.552344
4 4.110506 2.834454

$groups

trt means M
C 48.8 a
D 48.7 a
B 45.0 b
A 38.7 c

The critical range section of the output lists the critical values for difference
in means that range 2, 3, or 4 apart. In the last section of output, means with
the same Group indicator on the left are not significantly different. This shows
the sugar beet yield for treatment (C—artificial applied broadcast in January)
is not significantly different than the yield for treatment (D—artificial applied
broadcast in April). All other pairwise comparisons show a significant differ-
ence (in this case same results as Tukey’s HSD method).

The last section of the output of the Snk. test function illustrates a compact
way of presenting the significant differences in treatment means that are found

W N -



46 COMPLETELY RANDOMIZED DESIGNS WITH ONE FACTOR

by multiple comparison techniques like Tukey’s HSD method or the student
Newman-Keuls method. When reporting results in written text, this method
of presentation can be modified by listing the means horizontally in the text
from smallest to largest and using an underline in place of the Group indica-
tor to show which means are not significantly different. Means that are not
significantly different are underlined with the same line. The example below
shows the means from an experiment to determine the effect of the download
site upon the time to download a file.

B D A C E
2.73 3.20 3.79 4.03 5.27

The results show that the download time is not significantly different be-
tween sites B and D, and not significantly different between sites D and A,
but there is a significant difference in the download time between sites B and
A. Likewise, there is no significant difference in download times for sites A
and C, but the download time for site C is significantly longer than either site
B or D. Finally, site E has a significantly longer download time than any of
the other sites.

2.8.83 Comparison of All Means to a Control or the Best

In some experiments one of the treatment levels is the current or default level
and the others are new or experimental levels. One of the main objectives in
this type of experiment might be to compare the mean of each experimental
level to the default, or sometimes called the control level. Dunnett (1955) de-
veloped a method to do this and control the experiment-wise type I error rate.
In the sugar beet yield experiment, treatment level (A—no artificial fertilizer)
can be thought of as the control. All other treatment levels can be compared
to this one using the glht function in the R package multcomp (Hothorn et al.,
2008). To load the multcomp package you must also have the mvtnorm pack-
age (Genz et al., 2012), and the survival package (Therneau, 2012) installed.
When using the Dunnett method the glht function (by default) uses the first
level of the treatment factor as the control.

> summary (sugarbeet)

treat yield

A:4 Min. :36.90

B:4 1st Qu.:43.77

C:5 Median :47.25

D:5 Mean :45.68
3rd Qu.:48.58
Max. :51.30

As can be seen above the treatment level (A—mno artificial fertilizer) is the
first level of the treatment factor in the data frame for the sugar beet yield
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experiment. The code to use Dunnett’s method to compare mean at each level
of the treatment factor to the control (A) by calling the glht function is shown
below.

> library(multcomp)

> sugar.dun<-glht (mod4,linfct = mcp(treat = "Dunnett"),
+ alternative = "greater")

> summary (sugar.dun)

The output below is the result of one-tailed tests. When comparing all
treatment levels to a control, the desired direction of the difference is often
known. Therefore a one-tailed test, rather than a two-tailed test, may be
required. Other options for alternative = in the code above are "less" or
"two.sided".

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

Fit: aov.default(formula = yield ~ treat, data = sugarbeet)

Linear Hypotheses:
Estimate Std. Error t value Pr(>t)

B-A<=0 6.3000 1.0279  6.129 1.69e-05 ***
C-A<=0 10.1000 0.9752 10.357 < 1e-05 *x*x
D-A<=0 10.0000 0.9752 10.254 < 1e-05 *x*x

Signif. codes: O *xx 0.001 *x 0.01 * 0.05 . 0.1 1
(Adjusted p values reported -- single-step method)

When there is no control level of the treatment factor, there may still be
interest in comparing all treatment levels to the best level. For example, in
the experiment to see the effect of the download site on the time to download
a file, described at the end of Section 2.8.2; it may be of interest to find all
sites whose average download times are not significantly longer than the site
with the minimum observed average download time. In the means shown in
Section 2.8.2, site B had the shortest observed download time. To compare all
treatment means to the best level and control the experiment-wise error rate,
the MCB procedure of Hsu (1984) can be used. This procedure turns out to be
equivalent to Dunnett’s method. To use this method, first look at the observed
means and decide which is the best. Next, set up contrasts comparing each
level to the best. Finally, call the glht function to perform Dunnett’s test. For
example, if the data for the file download experiment were contained in a data
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frame called download, and the second level (or "B") of the factor site had the
minimum average download time, the code below sets up the contrasts and
calls the glht function to compare treatment means for sites "A", "C", "D",
and "E" to the mean for site "B" using Dunnett’s method.

aov.ex <- aov(time ~ site, data=download)

K <-rbind( c( 1, -1, 0, 0, 0), c(0, -1, 1, 0, 0),

c(0, -1, 0, 1, 0), c(0, -1, 0, 0, 1))

rownames (K) <- c( "A-B", "C-B", "D-B", "E-B" )
colnames(K) <- names(coef (aov.ex))

dht <- glht( aov.ex, linfct = mcp( site = "Dunnett" ),
alternative = "two.sided")

summary (dht)

vV + V VV + Vv V
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2.9 Review of Important Concepts

In order to determine if cause and effect relationships exist and to make pre-
dictions about the results of future actions, experiments must be performed
wherein certain factors are purposely varied while others are held constant.
The one-factor design is the simplest case where one-factor is varied while all
other known factors are held constant.

Figure 2.10 shows a roadmap for selecting an appropriate experimental
design. When there is only one factor under study and experimental units
are homogeneous, the CRD design should be used as indicated in black in the
figure. This is the only situation presented in Chapter 2. As additional designs
are presented in subsequent chapters the other branches in Figure 2.10 will
be explained.

Figure 2.10 Design Selection Roadmap

Design Purpose
Study Factor Effects

E.U.’s
Homogeneous |

CRD
One Factor Il

Fisher’s technique of randomizing experimental units to treatment levels
guarantees the long run validity of the CRD and minimizes the chance that
changes in unknown factors, or lurking variables, will bias the results. The
way a series of experiments is conducted dictates what model should be used
for analysis.

The model for the analysis of the CRD or completely randomized for one-
factor design is y;; = pi + €55 Or Y5 = o+ T; + €;5, where y;; is the observed
response for the jth replicate of the ith treatment level, u; is the cell mean
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for the ith level, and 7; is the effect. €;; is the experimental error for the
jth observation on treatment level i. €;;s are assumed to be independent and
normally distributed with constant variance 2. The typical analysis is to fit
the linear model by the method of least squares - maximum likelihood and
perform a likelihood ratio F-test of the Hy : uy = ... = . If the data were
not collected in a proper randomized design with replicates, analyzing data in
this way may be totally misleading.

The credibility of the conclusions of analysis depends on the degree to which
the assumptions are valid. The independence assumption is the most critical
and it is guaranteed when replicate experimental units are randomized to
treatment factor levels. The other assumptions should be checked. The con-
stant variance and normality assumptions can be checked by plotting the
residuals versus cell means and by making a normal probability plot of the
residuals. If these assumptions are violated, the data should be analyzed on
a transformed scale or by weighted least squares or the method of maximum
likelihood for the generalized linear model.

If a significant difference in cell means is found with the overall F-test, fur-
ther investigation of the differences can be made. If comparisons are planned
in advance of running the experiment and can be described by as a set of
orthogonal comparisons, the overall F-test can be partitioned to test these
comparisons. The experimentwise type I error rate for all possible compar-
isons of means can be controlled by using Tukey’s HSD or the less conservative
student Newman-Keuls method. For comparing all means to a control level,
Dunnett’s method should be used and for comparing all means to the best
(largest or smallest), Hsu’s MCB method should be used.
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2.10 Exercises

1.

Consider the simple experiment described in Section 2.1 and used through-
out this chapter to determine the effect of rise time on the height of bread
dough. Describe the steps in the planning process for this experiment sim-
ilar to what was done for this historical example in Section 2.3. Describe
some of the potential problems that could occur in performing these exper-
iments (similar to Section 1.7), and discuss how careful planning using the
checklist from Chapter 1 could prevent these problems.

. Paper helicopters can be cut from one half of an 8% x 11 sheet of paper as

shown below.

CcuT

FOLD

CcuT ﬂ

FOLD
4

42—

These helicopters can be made quickly and inexpensively, and can be used
to demonstrate experimental design concepts. An experiment can be per-
formed by constructing a helicopter, dropping it from a fixed height, and
clocking the time it takes to rotate to the floor, as shown above, with a
stopwatch. The wing length could be varied by trimming some paper off
the top prior to folding the wings. Trimming some paper off would reduce
the weight of the helicopter, but would also result in less surface area on
the blades. You could experiment to determine if changing the wing length
affects the flight time.

(a) Describe the experimental unit.

(b) Explain the difference in replicates and duplicates for this situation.

(¢) Describe the treatment factor.
)

Describe any lurking variables that might affect the results of experi-
ments.

(e) Explain why randomization would be important.
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Create a randomized list of experiments for examining four wing lengths
of (47, 4.75”,5.5”, and 6”) with eight replicate experiments in each level.

Carry out the experiments and collect the data.
Perform an analysis of variance with your data.
Check the equal variance and normality assumptions with residual plots.

Test whether there is a significant linear or quadratic trend in flight
times as the wing length increases.

3. In Section 2.8.2 an experiment for determining the effect of the download
site selected upon the time to download a file was discussed. In this exper-
iment:

a)
b)
)
)

Describe the experimental unit.
Describe the treatment factor.
Describe the response.

Discuss the causes for experimental error in this experiment and why
the principles of replication and randomization would be important in
reaching a valid conclusion.

4. In an experiment to study the effect of the amount of baking powder in
a biscuit dough upon the rise heights of the biscuits, four levels of baking
powder were tested and four replicate biscuits were made with each level
in a random order. The results are shown in the table below.

(a)
(b)

25tsp btsp 75 tsp 1 tsp
114 27.8 47.6 61.6
11.0 29.2 47.0 62.4
11.3 26.8 47.3 63.0
9.5 26.0 45.5 63.9

What is the experimental unit?

Perform the analysis of variance to test the hypothesis of no treatment
effect.

Formulate a contrast to test the hypothesis that increase in rise height
is a linear function of the increase in baking powder in the dough, and

test this hypothesis.

Estimate the variance of the experimental error o2.

Make a plot of residuals versus predicted values and normal plot of
residuals and comment on whether the assumptions of the linear model
are justified.

If the dough were made in batches and the four replicate biscuit rise
heights in each column (shown in the table above) were all from the
same batch, would your answer to (a) be different? How could the data
be analyzed if this were the case?
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5. The effect of plant growth regulators and spear bud scales on spear elon-
gation in asparagus was investigated by Yang-Gyu and Woolley (2006).
Elongation rate of spears is an important factor determining final yield of
asparagus in many temperate climatic conditions. Spears were harvested
from 6-year-old Jersey Giant asparagus plants grown in a commercial plant-
ing at Bulls (latitude 40.2S, longitude 175.4E), New Zealand. Spears were
harvested randomly and transported from field to lab for investigation. Af-
ter trimming to 80mm length, spears were immersed completely for 1 h in
aqueous solutions of 10 mg 1-1 concentration of indole-3-acetic acid (IAA),
abscisic acid (ABA), GA3, or CPPU (Sitofex EC 2.0%; SKW, Trostberg,
Germany) in test tubes. Control spears were submerged in distilled wa-
ter for 1 h. The experiment was a completely randomized design with five
replications (spears) per treatment. The resulting data (final spear length
in mm) is shown below.

Control IAA ABA GA3 CPPU
94.7 89.9 96.8 99.1 1044
96.1 94.0 878 95.3 98.9
86.5 99.1 89.1 94.6 98.9
98.5 92.8 91.1 93.1 106.5
94.9 99.4 89.4 95.7 104.8

(a) Perform the analysis of variance to test the hypothesis of no treatment
effect.

(b) Use the Tukey method to test all pairwise comparisons of treatment
means.

(c) Use the Dunnett procedure to compare all treatment group means to
the control mean.

6. Consider an experimental situation where the investigator was interested in
detecting a maximum difference in treatment means that is twice the stan-
dard deviation of the response measured on replicate experimental units
assigned to the same level of the treatment factor, that is, A = 2.00. If
there are 4 levels of the treatment factor:

(a) Modify the R code in Section 2.7 to calculate the power for various
numbers of replicates r per treatment level.

(b) Calculate the number of replicates necessary to have 0.90 power of de-
tecting a difference as large as A = 2.00.

(¢) How would the result you got in (c) change if the number of levels of the
treatment factor increased to 8, or decreased to 27
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CHAPTER 3

Factorial Designs

3.1 Introduction

In Chapter 2 we examined one-factor designs. These are useful only when one
factor is under study. When multiple factors are under study, one classical
approach is to study each separately while holding all others constant. Fisher
(1935) pointed out that this approach is useful for demonstrating known rela-
tionships to students in laboratory courses when the influence of other factors
is known. However, this approach is both inefficient and potentially mislead-
ing when it comes to discovering new knowledge through experimentation. A
much better strategy for experimenting with multiple factors is to use a facto-
rial design. In a factorial design the cells consist of all possible combinations
of the levels of the factors under study. Factorial designs accentuate the factor
effects, allow for estimation of interdependency of effects (or interactions),
and are the first technique in the category of what is called treatment design.

By examining all possible combinations of factor levels, the number of repli-
cates of a specific level of one factor is increased by the product of the number
of levels of all other factors in the design, and thus the same power or precision
can be obtained with fewer replicates. In addition, if the effect of one factor
changes depending on the level of another factor, it will be seen in a factorial
plan. This phenomenon will be missed in the classical approach where each
factor is only varied at constant levels of the other factors. The example in
the next section will illustrate these facts.

3.2 Classical One at a Time versus Factorial Plans

In the exercises for Chapter 2, a set of experiments with paper helicopters
was described. In those experiments only one factor, the wing length, was
under study. However, to maximize the flight time of paper helicopters, it
would be advisable to consider more than one factor. For example, consider
varying wing length over 4 levels as before, and the body width over four levels,
such as 4.25”, 4.0”, 3.75”, and 3.5”. The left side of Figure 3.1 represents the
classical plan in which one factor is varied at a time. The circles in the diagram
represent experiments or runs. Using this approach, the experiments across
the bottom of the figure would be completed by varying wing length while
holding body width constant at 3.5”. Next, the three additional experiments
up the left side of the figure would be completed by varying body width while
holding the wing length constant at its low level of 4.0”. If eight replicate runs
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were to be made for each of these experiments (as suggested in exercise 2 of
Chapter 2), a total of 56 experiments would be required.

Figure 3.1 Comparison of One-at-a-Time and Factorial Designs
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If the objective were to find the combination with the longest flight time,
the classical approach would be to complete the experiments with one factor
first. Next one would calculate the cell means and then select the level with
the highest mean. Finally, the second factor would be varied while holding the
first constant at its optimal level, not the lowest level as shown in Figure 3.1.
However, Fisher’s caution to randomize would tell you this is a bad strategy.
If any unknown forces changed after the first set of experiments, the results
could be biased. Additionally, the optimal level of one factor may depend upon
the level of the other factor. Therefore, by varying one factor at a time, the
overall optimum may be missed.

The diagram on the right side of Figure 3.1 represents a factorial plan for
the helicopter experiments. Here it can be seen that experiments are run at
all combinations of the levels of the two factors. In this plan, if two replicates
of each cell are completed, there will be eight replicates of each level of wing
length, and eight replicates of each level of body width which is equivalent
to the one-at-a-time plan. Therefore the factorial plan would have the same
precision or power for detecting factor effects as the one-at-a-time plan, but
is more efficient since it requires only 2 x 16 = 32 total runs as opposed to
the 56 required by the one-at-a-time plan. The number of replicates of each
factor level in the factorial design is equal to the number of replicates per
cell times the product of the levels of all other factors in the design. This
multiplication is referred to as hidden replication. In the case shown in Figure
3.1, there are only two factors each at four levels; therefore, the number of
replicates of each factor level is 2x4 = 8. In the factorial plan, the 32 treatment
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combinations would be randomized to experimental units, thus preventing
biases from unknown sources.

In more complicated research problems many treatment factors may be un-
der study. The efficiency of factorial designs can be demonstrated even in the
simplest case where each factor has only two levels. For example, consider a
design with four factors. A factorial design would require all combinations of
four factors at two levels, or 2% = 16 cells. If two replicates were run for each
cell, there would be a total of 2x 16 = 32 experiments or runs. To examine the
effect of any one of the four factors, half the runs (or 2 x 2% = 16 due to the
hidden replication) would be at one level of the factor and half at the other
level. Thus the treatment effect would consist of a difference of two averages of
16. Results from the same 32 experiments can be used to calculate the treat-
ment effect for each of the four factors. To have equal precision for comparing
treatment effects using a one-at-a-time plan, 32 runs would be required for
comparing the levels of each factor while holding the others constant. This
would result in 4 x 16 + 16 = 80 experiments, or 2.5 times the number required
for a factorial design!

3.3 Interpreting Interactions

If there is an interaction or joint effect between two factors, the effect of
one factor upon the response will differ depending on the level of the other
factor. This can be illustrated graphically in Figure 3.2. On the left side of the
figure is a contour plot representing the results of a series of experiments with
paper helicopters. This plot can be interpreted like a topological map with the
lines representing contours of equal flight time. You can simulate what would
happen in a series of experiments where wing length was held constant

Figure 3.2 Contour Plot of Flight Time for Helicopter Experiment
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and body width varied by drawing a straight line parallel to the body width
axis across the contour plot. The flight time for various runs can be read off
as the label for the contour lines the straight line intersects. For example, if
wing length were held constant at a value below its mid-point on the left of the
contour plot, the flight times resulting from five runs with varying body width
are represented as the black line traced on the graph at the right in Figure 3.2.
If the wing length were held constant at a higher value, the grey line indicates
what the result of a series of experiments with body width might look like.
The fact that the two lines or curves on the right side of the figure are not
parallel indicates there is an interaction between wing length and body width.
They show that the effect of body width depends upon the wing length.

Interactions are common in the real world, but using the classical one-at-
a-time strategy of experimentation tacitly assumes that interactions do not
exist. To see the fallacy that results from this assumption, examine Figure 3.3,
which represents what would happen if one were to search for the optimum
combination of wing length and body width.

Figure 3.3 One-at-a-Time Optimization with Paper Helicopters
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The vertical set of circles are drawn at the wing length, body width combi-
nations for a series of experiments that vary wing length while holding body
width constant. The numbers within the circles represent the resulting flight
times. After examining the result of this series of experiments, the optimal
wing length would be chosen and another series of experiments would be con-
ducted by holding the wing length constant at its optimal value and varying
the body width. The results of these experiments can be visualized as the
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horizontal series of circles. The maximum result, 2.8, is not the overall opti-
mum, because the optimal wing length depends on the body width and vice
versa.

Table 3.1 Mooney Viscosity of Silica B at 100°C

Naphthene Oil (phr) Filler (phr)
0 12 24 36 48 60
0 25 30 35 40 50 60
10 18 21 24 28 33 41
20 13 15 17 20 24 29
30 11 14 15 17 18 25

When the effect of the factors is close to linear, the interaction is easier
to explain in words. Table 3.1 shows the results of a factorial experiment
conducted by Derringer (1974) to determine the effect of elastomer compounds
on the viscosity silica at 100°C. The elastomer compounds were Naphthene
Oil, studied at 4 levels, and Filler content, studied at 6 levels.

Figure 3.4 shows a graphical representation of the data in the table. This
figure is called an interaction plot. As the Filler is increased from 0 to 60, the
viscosity increases along a fairly linear trend. However, the slope of the trend
line depends upon the level of Naphthene Oil. When there is no Naphthene Oil
added, increasing the Filler from 0 to 60 causes viscosity to increase rapidly
from 25 to 60; but when there is 30 phr of Naphthene Oil, increasing the Filler
from 0 to 60 causes a more gradual increase in viscosity from 11 to 25.

Figure 3.4 Interaction Plot of Filler and Naphthene Oil
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Since interactions are common in factorial experiments, it is important to
learn how to explain or interpret an interaction in order to clearly present the
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results of research studies. This is best done by describing the effect of one
factor upon the response, and then contrasting or comparing how that effect
changes depending on the level of the other factor. An interaction plot, like
Figure 3.4, can guide the description or interpretation. Many more examples
of interpreting interactions will be given throughout this chapter and the
remainder of the book.

3.4 Creating a Two-Factor Factorial Plan in R

A factorial design can be easily created using R in several ways. For exam-
ple, nested loops could be used, the base R function expand.grid, or several
functions available in user developed packages. For example, the expand.grid
function (which creates a data frame containing all possible combinations of
supplied factors) is illustrated below to create a factorial design to study paper
helicopters.

> D <- expand.grid( BW = ¢(3.25, 3.75, 4.25), WL = c(4, 5, 6) )

>D

BW WL
13.256 4
2 3.75 4
34.25 4
4 3.25 5
5 3.75 5
6 4.25 5
7 3.25 6
8 3.75 6
94.25 6

As can be seen, this code creates an unreplicated 32 factorial in factors
Body width = BW and Wing length = WL with the supplied levels for these
factors. This design is stored in the data frame D. To replicate every run in
the design, the R function rbind (which stacks one copy of the 32 factorial
design on top of the other) is used as shown below.

> D <- rbind(D, D)

To randomize the order of the runs, the sample function can be used to
create a random order of the run numbers 1 to 18. Next, the rows in the data
frame D are ordered by this random order list. Finally, the factor columns
from the data frame D can be copied into a new data frame Copterdes and
this data frame can be written to a .csv file to produce an electronic data
collection form like the example on page 19. This is illustrated in the code on
the next page.
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> set.seed(2591)

> D <- D[order(sample(1:18)), ]

> CopterDes <- D[ c( "BW", "WL" )]

> CopterDes

> write.csv(CopterDes, file = "CopterDes.csv", row.names = FALSE)

The list that was produced by this code shows that the first experiment
would consist of constructing a helicopter with a body width of 3.75” and a
wing length of 47, dropping it from a fixed height, and timing its flight. The
second experiment consists of constructing a helicopter with a body width of
3.75” and a wing length of 57, dropping it from the same fixed height, and
timing its flight, and so forth. The randomization will help prevent biases
from any lurking variables such as changes in air currents, changes in temper-
ature, or learning curves in dropping or timing helicopters. By removing the
set.seed(2591) statement in the above code, a different random ordering of
the experiments will result each time the code is run.

3.5 Analysis of a Two-Factor Factorial in R

The mathematical model for a completely randomized two-factor factorial
design can be written as:

Yijk = Hij + €ijks (3.1)
where i represents the level of the first factor, j represents the level of the
second factor, and k represents the replicate number. This model is called the
cell means model and p;; represents the expected response in the ijth cell.

Another way of representing the model is the effects model

Yijk = U+ o +Bj +aﬂij +€ijk~ (32)
In this model, o, 3; are the main effects and represent the difference between
the marginal average of all experiments at the ith level of the first factor
and the overall average, and the difference between the marginal average at
the jth level of the second factor and the overall average, respectively. The
interaction effects, a3;;, represent the difference between the cell mean, u;;,
and p + a; + ;. With these definintions, ¥; a; =0, ¥, 8; =0, ¥, afi; =0, and
Zj aﬁij =0.

The usual assumptions are that the experimental errors are independent and
€ijk ~ N(0,0?). The independence assumption is guaranteed if the treatment
combinations are randomly assigned to the experimental units, and the equal
variance and normality assumptions can be verified with a residual versus
predicted plot and a normal probability plot of the residuals as described in
Section 2.4.

Estimable functions, as described for the one-factor model in Section 2.4.4,
are linear combinations of the cell means that can be expressed as a lin-
ear combination of the data. For the two-factor factorial the cell means,
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Wij = b+ oy + B + afi;, are estimable functions but the individual effects,
a;, B, and of;; are not estimable functions. Contrasts among the effects such
as ¥, ciay and ¥, ¢35, where ¥, ¢; = 0,3, ¢; = 0 are estimable only in the
additive model where all a/3;;’s are zero. Contrasts of the form ¥, >, b;ja3;5,
where };0;; = 0,%;b;; = 0 are estimable even in the non-additive model.
The estimable functions and their standard errors can be computed with
the estimable function in the R package gmodels. The marginal means
p+a; +af; and p+ B + @_j are estimable functions and they and the cell
means can be computed using the R function model.tables, which will be
illustrated on page 147.

3.5.1 Matrixz Representation of Model and Analysis

The effects model can be represented in matrix notation as

n
y=XB+e=(1 | Xa | Xg | Xap) gz +e (3.3)

Ban

For example, consider a case where the first factor has two levels, the second
factor has three levels, and there are two replicates per cell. Then

Yin 110100100000 [ €111
Y112 1101 0010O0O0O00O0 oy €112
Y211 1 01 1.0 0O01O0O0O0O0 (65 €211
Y212 101 1 0001 O0O0O00O0 51 €212
Y121 110 01 0 0O01O0O00O0 Ba €121
Y122 _ 1 1.0 01 0 0 01 000 ,83 i €122
Y221 1 01 01 0 0O OO T1TO0O0 05611 €221
Y222 1 01 01 00 O0OO0OT1TTO0FO0 o1 €929
Y131 1 1.0 0 01 0 0 0 O0 10 aﬂlQ €131
Y132 1100 01 0O0O0O0T10O0 22 €132
Y231 101 001 0O0O0O0O01 a3 €231
Y232 10100100000 1)\ afs €339

The X'X is singular and to solve the normal equations (using the default
treatment coding) the R function 1m drops the indicators for the first level
of each factor in the main effect columns, and creates the columns for the
interaction as all possible products of the main effect columns. This makes
the X’X matrix full rank as was the case for the one-factor model in Sections
2.3.1 and 2.3.2. For the two-factor model where the first factor has two levels,
the second factor has three levels, and there are two replicates per cell, the y
vector and recoded X matrix would be as shown on the next page.
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Yin
Y112
Y211
Y212
Y121
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Y221
Y222
Y131
Y132
Y231
Y232
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This treatment coding makes the w17 cell mean the standard, and the resulting
effect estimates are shown below.

f+an +@A1 +04Aﬂ11
0}2 - @1 + 09821 - 01511
_ - B2 = B1+afBs—af;
(X'X)'X'y=g=| 2O
. P - ﬁ} + 0451;, - aﬁu
afiyy + By — By - afy
afyy +afag —afys —aby

The error sum of squares ssE = y'y-3' X'y= y'(I-X(X'X)X")y, where
B = (X'X) 1 X'y are the estimates produced by the 1m function in R. To
test the hypothesis Hy : a1 = ag = 0,Hy : 81 = B2 = B3 =0, and Hy : af1 =
afla1 = aff1a = afas = aff13 = afes = 0, the likelihood ratio F-tests are obtained
by calculating ratios of the ANOVA mean squares. What the 1m designates
as the sums of squares for factor A is ssA = B'X'y - (1'y)?/(1'1), where
the model is simplified to include only the effects for the first factor, that
is, X = ( 1 | Xa ) The error sums of squares for this simplified model is
ssE 4. The sums of squares for factor A is denoted R(«|u). The sums of squares
for factor B is denoted R(S|a, 1)=ssE4—ssEp where ssEp is the error sums of
squares from the reduced model where X =( 1 | X4 | Xp ). Finally,
the sums of squares for the interaction AB is denoted R(af|53,a, u)=ssEp -
ssE. In general when there are a levels of factor A, b levels of factor B, and
r replicates per cell, the ANOVA table for the two-factor factorial design can
be represented symbolically as shown in Table 3.2.
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Table 3.2 Analysis of Variance Table

Source df Sum of Squares Mean Squares F-ratio

SsA _ msA
A a-1 R(c|w) @) F= msE
B -1 R(fon) oB Feme
AB (a-1)(b-1)  R(aB|B,a,p) % F=medl
Error ab(r-1) sskE ﬁi)

The sums of squares ssA, ssB, and ssAB can also be written in the form
s5A = (LafB) (La(X'X) ' L,) ' (LaB)
ssB = (LpB) (La(X'X) " Ly) ' (LB)
§sAB = (LapB) (Lap(X'X) ' Lag') ™ (LapB);

where Lq, Lg, and Log are contrast matrices computed internally by the
1m function, see Goodnight (1980). Under the null hypotheses the F-ratios
msA/msE, msB/msE, and msAB/msE follow the F-distribution with the
degrees of freedom shown in the table, and under the alternative they follow
the noncentral F-distribution. The noncentrality parameter for F' = msA/msE
is given by the expression Ay = (62) " (LaB)'(La(X'X) " La) ' (LafB). The
noncentrality parameters for the F-ratios msB/msE and msAB/msE are
similarly given. When there is an equal number, r, of replicates in each cell,
the noncentrality parameters can be shown to be equal to

Ao =br Z a?lo® (3.4)
Asg=ary Bio” (3.5)
J
and
Aap =1y, 2 aB]0% (3.6)
i g

To illustrate the analysis of a two-factor factorial experiment in using the
R function aov consider the data in Table 3.3. These are the results of a
two-factor experiment given by Hunter (1983). In this data, an experiment
consisted of burning an amount of fuel and determining the CO emissions
released. The experimental unit is the portion of a standard fuel required
for one run, and the response, y, is the carbon monoxide (CO) emissions
concentration in grams/meter® determined from that run. There were two
replicate runs for each combination of factor levels separated by commas in
Table 3.3. Factor A is the amount of ethanol added to an experimental unit or
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portion of the standard fuel, and factor B is the fuel-to-air ratio used during

the burn of that fuel.

Table 3.3 Data from Ethanol Fuel Experiment
A=ethanol additions B=air/fuel ratio y=CO emissions

0.1 14 66, 62
0.1 15 72, 67
0.1 16 68, 66
0.2 14 78, 81
0.2 15 80, 81
0.2 16 66, 69
0.3 14 90, 94
0.3 15 75, 78
0.3 16 60, 58

The data for this experiment is stored in the data frame COdata in the
daewr package where the levels of ethanol and ratio are stored as the factors
Eth and Ratio. The R commands to analyze the data are shown below.

> library(daewr)
> modl <- aov( CO ~ Eth * Ratio, data = COdata )
> summary (mod1)

The ANOVA table that results follows. There it can be seen that aov pro-
duces a table of the sums of squares, as described earlier. It can be seen from
the tables that the two effects and their interaction are significant as indicated
by the P-values to the right of the F-values.

Df Sum Sq Mean Sq F value Pr(>F)

Eth 2 324.0 162.0 31.36 8.79e-05 *x*x*
Ratio 2 652.0 326.0 63.10 5.07e-06 *xx
Eth:Ratio 4 678.0 169.5  32.81 2.24e-05 *xx
Residuals 9 46.5 5.2

Signif. codes: O *xx 0.001 **x 0.01 * 0.05 . 0.1 1

The model.tables function produces the results shown on the next page.
The top line is the estimate of the overall mean fi. The next two sections
show the marginal means for each factor along with the standard deviation of
the values averaged in each mean. If the interaction was not significant, the
marginal means would reveal the direction of the factor effects, but further
preplanned comparisons or other multiple comparison procedures could be
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used to draw definite conclusions. The next section shows the cell means, and
the final section shows the standard errors of the differences in marginal and
cell means.

> model.tables( modl, type = "means", se = T )
Tables of means
Grand mean

72.83333

Eth
Eth

0.1 0.2 0.3
66.83 75.83 75.83

Ratio
Ratio

14 15 16
78.5 75.5 64.5

Eth:Ratio
Ratio
Eth 14 15 16
0.1 64.0 69.5 67.0
0.2 79.5 80.5 67.5
0.3 92.0 76.5 59.0

Standard errors for differences of means
Eth Ratio Eth:Ratio
1.312 1.312 2.273
replic. 6 6 2

Two estimate specific contrasts of the main effects, the estimable function
from the Rpackage gmodels can be utilized. To use it we must first construct
contrasts to replace the default treatment contrasts used by the R function
aov. For example, in the first statement below we construct the contrast coef-
ficients for comparing the first factor level to the third in a three level factor.
A second contrast orthogonal to the first is also constructed, and the contrast
matrix cm is created by using the two contrasts as columns.

> cl <= c(-1/2, 0, 1/2)
> ¢c2 <= c¢(.5, -1, .5)
> cm <- cbind( c1, c2 )
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In the call of the aov function below, the cm contrast matrix will be used for
both main effects rather than the default treatment contrasts used by the aov
function. The next lines load the gmodels package, and create labels for the
contrasts which compare the first factor level to the third factor level. The
vector following each label is an indicator vector for which model coefficient
is displayed. It selects the first coefficent for ethanol and ratio. Finally, the
estimable function is called with the inputs being the mod2, that was created
by the aov function, and the contrast labels and definitions in c.

> mod2 <- aov( CO ~ Eth * Ratio, contrasts = list( Eth = cm,
+ Ratio = cm ), data = COdata)

> library(gmodels)

> ¢ <- rbind( ’Ethanol 0.3 vs 0.1’ = ¢(0,1,0,0,0,0,0,0,0),

+ ’Ratio 16 vs 14’ = ¢(0,0,0,1,0,0,0,0,0) )

> estimable(mod2,c)

The results are shown below. These are both estimable functions, and the
estimates along with their respective standard errors and t¢-ratios for testing
the hypotheses, Ho : 3, cia; =0 and Hyp : 3, ¢; 35 = 0, are given.

Estimate Std. Error t value DF Pr(>ltl)
Ethanol 0.3 vs 0.1 9 1.312335 6.858007 9 7.406588e-05
Ratio 16 vs 14 -14 1.312335 -10.668011 9 2.083651e-06

These estimates would be estimable and meaningful if there were no significant
interaction between ethanol addition level and air/fuel ratio, but in this case
there is a significant interaction and the difference in CO emissions caused
by changing the amount of ethanol addition will depend on the air/fuel ratio
and the difference in CO emission caused by changing the air/fuel ratio will
depend on the amount of ethanol added. An interaction graph is a better
way of interpreting these results. An interaction plot can be generated using
the R function interaction.plot as shown below. This code uses the with
statement to call the interaction.plot function using variables names in
the data frame COdata to produce Figure 3.5.

> with(COdata, (interaction.plot(Eth, Ratio, CO, type = "b",
+ pch = ¢(18,24,22), leg.bty = "o",

+ main = "Interaction Plot of Ethanol and air/fuel ratio",
+ xlab = "Ethanol",ylab = "CO emissions")))

In this plot we can see more clearly the dependence of effects. Increasing
the amount of ethanol added to the fuel from 0.1 to 0.3 causes CO emissions
to increase linearly from 64 grams/liter to 92 grams/liter when the air/fuel
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Figure 3.5 Interaction Plot Ethanol and Air/Fuel Ratio
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ratio is at its low level of 14. This is shown by the dotted line with black
diamonds representing the cell means. However, when the air/fuel ratio is at
its high level of 16 (illustrated by the solid line with squares representing the
cell means), increasing the ethanol added to the fuel from 0.1 to 0.3 actually
causes a decrease in CO emissions from 67 grams/liter to 59 grams/liter along
a nearly linear trend. Finally, when the air/fuel ratio is held constant at its
mid-level of 15 (illustrated by the dashed line with triangles representing the
cell means), increasing ethanol from 0.1 to 0.2 causes CO emissions to increase
by 11 grams/liter; but a further increase in ethanol to 0.3 causes a decrease
in CO emissions of 4 grams/liter to 76.5.

The interpretation above again illustrates the principle of comparing the
effect of one factor across the levels of the other factor in order to describe an
interaction. This was done by comparing the effect of changing the ethanol
addition between the levels of air/fuel ratio. It could also be done in the
opposite way. For example, the R code below reverses the interaction plot as
shown in Figure 3.6.

> Ethanol <- COdata$Eth

with(COdata, (interaction.plot(Ratio, Ethanol, CO, type = "b",
pch = c(18,24,22), leg.bty = "o",

main="Interaction Plot of Ethanol and air/fuel

ratio", xlab = "Ratio", ylab = "CO emissions")))

+ + + Vv

In this plot the solid line, with squares representing the cell means, shows
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the effect of increasing air/fuel ratio when ethanol is added at the high rate of
0.3. Carbon monoxide emissions decrease linearly from 92 grams/liter to 59
grams/liter. However, when ethanol is added at the low rate of 0.1, the CO
emissions actually increase slightly from 64 grams/liter to 67 grams/liter as a
result of increasing air/fuel ratio from 14 to 16. This can be seen on the dotted
line with black diamonds representing the cell means. When ethanol is added
at the mid-rate of 0.2, there is little change in CO emissions when air/fuel
ratio is increased from 14 to 15, but there is a decrease in CO emissions of
13 grams/liter caused by increasing air/fuel ratio from 15 to 16. The latter
result can be visualized on the dashed line with triangles representing the cell
means.

Figure 3.6 Interaction Plot Ethanol and Air/Fuel Ratio
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Either way of presenting and interpreting the interaction is valid as long as
one discusses how the effect of one factor changes depending upon the level
of the other. The factor effects, that should be compared, depend on which
one is of most interest in a particular research problem. Another thing to
notice about the two interpretations is that cause and effect relationships are
assumed. We say the change in the response is caused by the change in the
factor or the change in the response is the result of changing the factor. This
statement could not be made when discussing the results of an observational
study.
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3.5.2 Determining the Number of Replicates

One of two possible methods can be followed to determine the number of
replicates for a factorial experiment that will result in a power between 0.80
to 0.90 (for detecting differences that have practical significance). The first
method is to consider detecting differences among the cell means. The second
method is to consider detecting a practical size difference in the marginal
means for the factors in the experiment.

When looking for differences among the cell means, the cells in the factorial
are considered to be an unstructured group as in a one-factor design. Using
the cell means model y;;, = pi; + €;;% the procedure is the same as it was
described for the one-factor model y;; = p; + €;; in Section 2.6. The non-
centrality parameter for the F-test is:

a b
A=(rlo® )y (Hi; -7

i=1j=1

When looking for differences in the marginal means for the factors, the non-
centrality factor for the first main effect is:

No=br Y a2fo? = br Y (i - i) o™,
and for the second main effect the noncentrality factor is:
\p = ar Zﬁj?/oz =ar Z (7.; - 7.)?/o%.

J J

If A is considered to be the size of a practical difference in cell means, then
the smallest A = /02 ¥, Z?=1 (f;; — 71..)* could be with two cells differing by
at least A is rA?/202. Likewise, if A is considered to be the size of a practical
difference in marginal means for factor A, the smallest A, = br ¥, (1;. — 72..)% /0
could be with two marginal means differing by at least A is brA2/202. Here
again we can see the efficiency of factorial designs because the noncentrality
factor for detecting differences in marginal factor A means is larger than the
noncentrality factor for detecting differences of cell means by a factor of b, the
number of levels of factor B.

Consider the following example. A paper helicopter experiment is planned
to investigate the effects of four levels of factor A = wing length, and four
levels of factor B = body width, upon the flight time. If pilot experiments
with nine replicates of one design resulted in flight times of 2.8, 2.6, 3.5, 3.0,
3.1, 3.5, 3.2, 3.4, and 3.4 seconds. How many replicates would be required to
detect a difference in flight times of 1 second with a power of .907

From the pilot tests the standard deviation of experimental error can be
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estimated as s = 0.32. If A =1.0 is considered to be a practical size difference
in cell means, the R code in Section 2.7 can be modified to give the answer.
In a 4-by-4 factorial there are 16 cells so the number of levels of the factor is
considered to be 16. The modified R code is shown below.

> library(daewr)

> rmin <- 2 # smallest number of replicates
> rmax <- 8 # largest number of replicates
> sigma <- .32

> alpha <- .05

> Delta <- 1

> nlev <- 16

> nreps <- c(rmin:rmax)

> power <- Fpowerl(alpha, nlev, nreps, Delta, sigma)
> options(digits = 5)

> power

The results of running this code show that 6 replicates per cell would be
required to obtain a power of at least 0.90.

alpha nlev nreps Delta sigma  power

[1,] 0.05 16 2 1 0.32 0.24173
[2,] 0.05 16 3 1 0.32 0.48174
[3,] 0.05 16 4 1 0.32 0.69246
[4,1] 0.05 16 5 1 0.32 0.83829
[5,] 0.05 16 6 1 0.32 0.92326
[6,] 0.05 16 7 1 0.32 0.96664
[7,] 0.05 16 8 1 0.32 0.98655

If A =1.0 is considered to be a practical size difference in marginal means
for one of the factors, the results will be different. The degrees of freedom for
the numerator would be 11 = 4-1, the degrees of freedom for the denominator
would be vg = 16(r — 1), the noncentrality factor for a main effect A would be
Mg = brA%/202, and the non-centrality factor for a main effect B would be A, =
arA?/20%. The R code below demonstrates the use of the Fpower2 function in
the daewr package for determining the number of replicates required to detect
a difference of A in marginal means of the factors in a two-factor factorial.
The arguments that must be supplied to Fpower2 are: alpha, nlev (a vector
of length 2 containing the number of levels of the first factor (A) and the
second factor (B)), nreps=r, Delta=A, and sigma=o0.

library(daewr)

rmin <- 2 # smallest number of replicates
rmax <- 4 # largest number of replicates
alpha <- .05

vV V V VvV
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> sigma <- .32

> Delta <- 1.0

> nlev <- c(4,4)

> nreps <- c(rmin:rmax)

> result <- Fpower2(alpha, nlev, nreps, Delta, sigma)
> options(digits = 5)

> result

The results of running this code appear below. Here it can be seen that with
only r=two replicates per cell the power for detecting a A = 1.0 difference
in marginal means for factor A or B is greater than the power for detecting
differences of A = 1.0 in cell means with r = 8 replicates per cell. Again this
demonstrates the efficiency of factorial experiments through hidden replica-
tion.

alpha a b nreps Delta sigma powera powerb

[1,] 0.05 4 4 2 1 0.32 0.99838 0.99838
[2,] 0.05 4 4 3 1 0.32 1.00000 1.00000
[3,] 0.05 4 4 4 1 0.32 1.00000 1.00000

With the ability to calculate power quickly, it is possible to explore many
potential designs before actually running the experiments. The number of
factors, the number of levels of each factor, and the number of replicates in
each cell all affect the power to detect differences. Power calculations help an
experimenter to determine an effcient use of his or her resources.

3.5.8 Analysis with an Unequal Number of Replicates per Cell

Although it would be unusual to plan a factorial experiment with an unequal
number of replicates per cell, the data from a factorial experiment may end
up with an unequal number of replicates due to experiments that could not be
completed, or responses that could not be measured, or simply lost data. As
long as the chance of losing an observation was not related to the treatment
factor levels, the data from a factorial experiment with an unequal number of
replicates per cell can still be analyzed and interpreted in a manner similar
to the way it would be done for the equal replicate case. However, the com-
putational formulas for analyzing the data differ for the case with an unequal
number of replicates.

To illustrate why the analysis shown in Section 3.5.1 is inappropriate, con-
sider again the data from the ethanol fuel experiment described in Section
3.5.1. This time assume one observation in the cell where air/fuel ratio = 16
and ethanol level = 0.3 was missing. Then Table 3.4 shows the data with each
response value written above its symbolic expected value.

The R code below the table creates a data frame containing the data in
Table 3.4, by inserting a missing value into the 18th row and third column.
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Table 3.4 Fuel Ezxperiment with Unequal Reps

air /fuel air /fuel air /fuel

Ethanol 14 15 16

66 72 68

0.1 62 67 66
ptap+Bi+aBn prog+Botafy prap+ fs+afs

78 80 66

0.2 81 81 69
p+ag+fr+oaf  p+as+ P+ afey L+ ag+ 3+ ofas

90 75 60

0.3 94 78

ptaz+fBi+afs prog+Potafzy p+azt B3+ afss

73

> COdatam <- COdata
> COdatam[18, 3] <- NA

The marginal column means for the levels of air/fuel ratio factor computed
using the model.tables statement as shown on page 66 and the modified
data frame COdatam would be 78.5, 75.5, and 65.8, respectively. The expected
value of the marginal means for the first two columns would be: p+ 31, g+ B2,
since (a; + as +a3)/3 =0 and (aB; + B2 + afB3;)/3 =0 for i = 1,2. However,
the expected value of the last marginal column mean would be p+ 83 + (21 +
20 +3) [5+ (213 +2aB23 +B33) /5 and is not an unbiased estimate of i+ Os.
The comparison between the first and third column means would not be an
unbiased estimate of 5, — O3. Likewise, the last marginal row mean would not
be an unbiased estimate of p + as.

If the ANOVA table of the data in COdatam is produced with the R function
aov, the F-tests will not test the same hypotheses that they do in the case of
equal number of replicates in the cells. When there is an unequal number of
replicates in the cells, the noncentrality parameter for the F-test of Hy: v =
-++ = @, that is based on R(alp) will not be A\, = 76¥; a? but a quadratic
form involving the elements of «, 3 as well as a3. The noncentrality for the
F-test test of Hy: (31 =--- = based on R(f|u,«) will be a quadratic form
involving the elements of 8 and a3.

To calculate adjusted sums of squares for the null hypothesis for the main
effects, use the contr.sum option in the R 1m function and the Anova function
from the R package car (Fox and Weisberg, 2011). The option type II in the
Anova function computes the type II sums of squares, and the option type III
produces the type III sums of squares. The type II sum of squares for the fac-
tors A and B can be represented as ssAj; = R(a|u, 8), and ssBjr = R(8|u, «).
R(a|p, B) is the difference in the error sums of squares for the reduced model
where X = (1|Xp) and the full model where X = (1|/X a|Xp|Xap). The
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corresponding noncentrality factor for the corresponding F-test will be a
quadratic form that only involves o’ = (ai,asz,a3) and aB’. When there
is an equal number of replications per cell, the sums of squares computed by
the aov function are identical to the type II sums of squares.

The type III sum of squares for the factors A and B can be represented
as ssArrr = R(alu,B,aB), and ssBrrr = R(Blp, a,af). R(alu,8,a8) is
the difference in the error sums of squares for the reduced model where
X = (1|XpB|Xap) and the full model where X = (1|Xa|XB|Xap). The
corresponding noncentrality factor for the corresponding F-test will be a
quadratic form that only involves ' = (a1, a2, @3). When there is an equal
number of replications per cell, the sums of squares computed by the aov
function are identical to the type III sums of squares.

Some analysts prefer to use the type II sums of squares and others prefer
the type III sums of squares when there is an unequal number of replicates
per cell. In this book we illustrate the type III sums of squares and hypothesis
tests, although the type II sums of squares can be obtained by changing the
option from type = "III" to type = "II" in the call to the Anova function.

The code to produce the type III ANOVA table ethanol fuel experiment
after removing the observation with the value of 58 (from the cell with the
air/fuel ratio = 16 and the ethanol level = 0.3) is shown below.

> library(car)

> mod2 <- 1m( CO ~ Eth*Ratio, data = COdatam, contrasts
+ = list( Eth = contr.sum, Ratio = contr.sum ))

> Anova( mod2, type="III" )

The results are below.

Anova Table (Type III tests)

Response: CO
Sum Sq Df F value Pr(>F)
(Intercept) 86198 15496.351 1.939e-14 xx*x*

1
Eth 319 2 28.715 0.0002235 **x*
Ratio 511 2 45.973 4.105e-05 **x
Eth:Ratio b55 4 24.945 0.0001427 **x
Residuals 44 8

Signif. codes: O *xx 0.001 **x 0.01 * 0.05 . 0.1 1

In order to get means that have expectations pu + 81, p + B2, p + B3 when
there are an unequal number of replicates per cell, the adjusted means should
be computed. The adjusted means (sometimes called least-squares means or
Ismeans for short) are computed by calculating the marginal means of the
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predicted cell means, (fi+d; + Bj + ozAﬁij) obtained from the least squares esti-
mates of the model parameters. Remember that the cell means are estimable
functions. The R code below calculates the predicted cell means using the
effect estimates from the model mod2 created by the 1m function shown above
and then computes the adjusted or ls marginal means for the air/fuel ratio
using the R function tapply.

p <- data.frame( expand.grid( Eth = c(.1, .2, .3),
Ratio = c(14,15,16) ) )
pl] <- lapply(p, factor)
p <- cbind( yhat = predict( mod2, p), p)
with(p, tapply(yhat, Ratio, mean) )
14 15 16
78.500 75.500 64.833

vV V.V + V

In these results it can be seen that the means for the first two columns
are the same as the simple arithmetic average of the responses in the first
two columns as shown on page 66, but the mean from the third column is
different, and it is a more accurate estimate of u+ 3. The R package 1smeans
automatically computes the adjusted or Ismeans, and in addition it computes
their standard errors and confidence limits. The R code below illustrates the
use of this package to compute the marginal adjusted means for both ethanol
and air/fuel ratio. The NOTE: printed by the 1lsmeans function tells us what
we already know: interpretion of the marginal means may be misleading when
there is a significant interaction.

> library(lsmeans)

> lsmeans(mod2,”~ Eth)

NOTE: Results may be misleading due to involvement in interactions
Eth lsmean SE df lower.CL upper.CL

0.1 66.833 0.96285 8 64.613 69.054

0.2 75.833 0.96285 8 73.613 78.054

0.3 76.167 1.11181 8 73.603 78.730

Confidence level used: 0.95

> lsmeans(mod2, “Ratio)
NOTE: Results may be misleading due to involvement in interactions
Ratio lsmean SE df lower.CL upper.CL

14 78.500 0.96285 8 76.28 80.720

15 75.500 0.96285 8 73.28  77.720

16 64.833 1.11181 8 62.27  67.397

Confidence level used: 0.95
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In general the type II or IIT sums of squares and Ismeans should be used,
because they will test the correct hypotheses and provide unbiased factor level
means whether there is an equal or unequal number of replications per cell.

3.5.4 Testing for Interaction with One Replicate per Cell

When there is adequate power for detecting main effects with r = 1 replicate
per cell, it would make sense to run a factorial design with only one observation
per cell and axb total observations. Adding an additional replicate to each cell
would double the effort, and it would usually not be required. However, with
only one replicate per cell in a factorial design, there is no way to compute
the ANOVA ssE and therefore no way to make F-tests on the main effects
and interaction in the traditional way. If the interaction term is assumed to
be zero, then F-tests on the main effects can be made by using the additive
model y;; = pu+ay + B +€;5. Even so, this could be dangerous if the interaction
actually exists. There are ways to test whether the interaction is zero in this
case.

If the levels of both factors are quantitative as in the proposed paper he-
licopter experiments or the ethanol fuel experiment, the sums of squares for
the interaction term can be partitioned into orthogonal polynomial single de-
grees of freedom. For example, if there are three equally spaced quantitative
levels of factor A, and three equally spaced quantitative levels for factor B,
then the sums of squares for the interaction can be partitioned into four single
degrees of freedom (namely: linearxlinear, linearxquadratic, quadraticxlinear,
and quadraticxquadratic). Using the Taylor Series philosophy that low order
polynomials can approximate most functional relationships, the three higher
order terms might be assumed to be negligible and pooled to estimate the
ssE, which could then be used as an error term to test the linearxlinear por-
tion of the interaction. This will be illustrated with the data from the ethanol
fuel experiment given in Table 3.4.

First, consider the averages of the two replicates in each cell of Table 3.3
to be the result of a single experiment. The R code shown below averages the
data in each cell to produce the data frame cells with one observation per
cell. Fitting the model 3.2 to this data with the R function 1m results in an
ANOVA with zero degrees of freedom for ssF, and no F-tests.

library(daewr)

data(COdata)

Cellmeans <- tapply( COdata$CO, list(COdata$Eth, COdata$Ratio)
, mean )

dim(Cellmeans) <- NULL

Eth <- factor(rep(c(.1, .2, .3), 3))

Ratio <- factor(rep(c(14,15,16), each=3))

cells <- data.frame( Eth, Ratio, Cellmeans )

modnr <- 1lm(Cellmeans ~ Eth*Ratio, data=cells )

anova (modnr)

V VV V V V + V V YV
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The result follows.
Analysis of Variance Table

Response: Cellmeans
Df Sum Sq Mean Sq F value Pr(>F)

Eth 2 162 81.00
Ratio 2 326 163.00
Eth:Ratio 4 339 84.75
Residuals O 0

Warning message:
ANOVA F-tests on an essentially perfect fit are unreliable

To get the sums of squares for the linearxlinear portion of the interaction, the
factors Eth and Ratio are first converted to ordered factors as shown.

> Ethc <- as.ordered(cells$Eth)
> Ratioc <- as.ordered(cells$Ratio)

When ordered factors are used, the R function 1m uses orthogonal polynomial
contrasts (as shown on page 43) for columns in the X matrix rather than the
default treatment codings. In the R code below, the model mbo is fit using
only the linearxlinear orthogonal polynomial contrasts for the interaction of
Ethc and Ratioc.

> EthLin<-contr.poly(Ethc) [Ethc,".L"]

> Ratiolin <-contr.poly(Ratioc) [Ratioc,".L"]

> mbo <-1m(Cellmeans~Ethc + Ratioc + EthLin:RatiolLin, data=cells)
> anova(mbo)

Analysis of Variance Table

Response: Cellmeans
Df Sum Sq Mean Sq F value Pr(>F)

Ethc 2 162 81 16.2 0.0247 *
Ratioc 2 326 163 32.6 0.0092 *x*
EthLin:RatioLin 1 324 324 64.8 0.0040 *x*
Residuals 3 15 5

Signif. codes: O *xx 0.001 *x 0.01 * 0.05 . 0.1 1

The error or residual sum of squares in this ANOVA table is the difference in
the 4 degree of freedom interaction sums of squares shown in the table at the
top of the page and the single degree of freedom linear by linear interaction
sums of squares. This difference is used to construct the denominator for
the F-tests in the table above. The results show that the linear by linear
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portion of the interaction is significant and accounts for most of the interaction
sums of squares. Since the interaction is significant, the additive model y;; =
W+ oy + B35 + €55 is inappropriate, and the effects of the main effects will differ
depending on the level of the other factor. The results can best be interpreted
by examining the interaction plot.

The interaction plot that includes only the linearxlinear part of the in-
teraction can be constructed by plotting the predictions from the model
mbo. In the code below the R command predict is used to get the model
predictions and the aggregate command is used to create the data frame
pred.means that combines the model predictions with the factor levels. Next,
the interaction.plot command is used as previously to create the plot.

Pred <-predict(mbo, newdata=data.frame(Ethc, Ratioc, EthLin,
RatioLin))

pred.means <- aggregate(Pred, by=list(Ethc = Ethc,

Ratioc = Ratioc), "mean")

Ethanol <- pred.means$Ethc
interaction.plot(pred.means$Ratioc, Ethanol, pred.means$x,
type="b", pch = c(18,24,22), leg.bty ="o",

xlab = "Ratio", ylab = "predicted CO emissions")

+ + VV + V + V

The result is shown in Figure 3.7, which should be compared to Figure 3.6.
Figure 3.7 is quite similar to Figure 3.6 confirming what was seen in the
ANOVA table (i.e., the majority of the variation caused by the interaction is
captured in the linear by linear part).

When ethanol is at its high level (0.3) increasing air/fuel ratio from 14 to 16
causes a steep decrease in CO emissions. When ethanol is at its mid-level (0.2)
increasing air/fuel ratio from 14 to 16 causes a slight decrease in CO emissions
represented by the gentle negative sloping line. However, when ethanol is at
its low level (0.1) increasing air/fuel ratio from 14 to 16 actually causes an
increase in CO emissions illustrated by the positively sloped line.

When there is only one replicate per cell in a factorial experiment and the
factors do not have quantitative levels, partitioning the interaction sums of
squares into orthogonal polynomial contrasts and combining the higher order
terms as an error sums of squares may not be appropriate. However, Tukey
(1949b) has developed an alternate method for testing a single degree of free-
dom partitioned from interaction sums of squares. This method is equivalent
to restricting the a3;; in model 3.2 of Section 3.5 to be a second-degree poly-
nomial function of the main effects a; and §;, (see Scheffé, 1959). By doing
this, the sums of squares

_ o 72
ab [Zi > Yii¥iY.; — (ssA+ssB + aby?)y,,]
(ssA)(ssB)

ssAB = (3.7)
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Figure 3.7 Linear by Linear Interaction Plot Ethanol and Air/Fuel Ratio
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for testing the restricted hypothesis Hy : af;; = 0 for all ¢ and j will have
one degree of freedom and the difference between it and the error term for
the additive model will form the error sums of squares similar to the example
above with quantitative factor levels.

To illustrate the use of Tukey’s single degree of freedom test for interaction,
consider the data in Table 3.5, which is a portion of the data from a study

Table 3.5 logio (PFU/mL) Assay of Viral Contamination
Sample
1 2 3 4 5 6
3 1.87506 1.74036 1.79934 2.02119 1.79934 1.59106
Dilution 4 1.38021 1.36173 1.25527 1.39794 1.20412 1.25527
5 0.60206 0.90309 0.95424 1.00000 0.60206 0.60206

to validate an assay of viral contamination reported by Lin and Stephenson
(1998). Assays of viral contamination are used to determine the presence (and
amount) of a specific virus in biological products such as blood clotting Factor
Eight. An experiment, or run, consists of making a solution with a known viral
contamination, allowing the virus in a contaminated solution to grow, then
measuring the result. The experimental unit is the specific viral sample in
combination with the place and time where it is allowed to grow. Factor A
represents the sample number, or solution with which the viral sample is mixed
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(or spiked). Factor B represents different dilutions of the spiked sample. The
measured response is the logyg of the plaque forming units per mL of solution.

Since factor A (sample) is not a quantitative factor it would be inappropriate
to use orthogonal polynomial contrasts to partition its sums of squares or the
sums of squares of its interaction with factor B (Dilution). To determine if the
additive model y;; = u + a; + B; + €;; is appropriate for this data, test to see
whether there is a significant interaction using Tukey’s method. The function
Tukey1df in the R package daewr calculates the non-additivity or interaction
sums of squares, shown in Equation (3.7), and prints a report. The code to
open the data in Table 3.5 and call the function are shown below. The first
column in the data frame used by this function is a numeric response, the
second column is the indicator for the factor A, and the third column is the
indicator for the factor B. The number of rows in the data frame should be
exactly equal to the number of levels of factor A times the number of levels
of factor B, since the design has no replicates.

> library(daewr)
> Tukeyldf (virus)

Source df SS MS F Pr>F
A 5 0.1948 0.039

B 2 3.1664 1.5832

Error 10 0.1283 0.0513

NonAdditivity 1 0.0069 0.0069 0.51 0.7247
Residual 9 0.1214 0.0135

In the results, it can be seen that the interaction (or non-additivity) is not
significant. Therefore, for this data, it would be appropriate to fit the additive
model, y;; = 1 + o; + 35 + €;5, with the R function 1m or aov.

3.6 Factorial Designs with Multiple Factors—CRFD

Two-factor factorial designs are more efficient than studying each factor sep-
arately in one-factor designs. Likewise, when many factors are under study,
it is more efficient to study them together in a multi-factor factorial design
than it is to study them separately in groups of two using two-factor factorial
designs. When multiple factors are studied simultaneously, the power for de-
tecting main effects is increased over what it would be in separate two-factor
factorial designs. Also, the possibility of detecting interactions among any of
the factors is possible. If the factors were studied separately in two-factor fac-
torials, two-factor interactions could only be detected between factors studied
together in the same design. In a multi-factor factorial not only is it pos-
sible to detect two-factor interactions between any pair of factors, but it is
also possible to detect higher order interactions between groups of factors. A
three-factor interaction between factors A, B, and C, for example, means the
effect of factor A differs depending on the combination of levels of factors B
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and C. Examples of higher order interactions will be presented in examples to
follow.

The treatment combinations in a multi-factor factorial consist of all possible
combinations of the levels of all factors. A design can be produced using
expand.grid function in R (similar to the randomized plan created in Section
3.4), using the gen.factorial function in the AlgDesign package, or using
functions from other packages that will be described later. The model for
analysis is an extension of Equation (3.2), and the analysis can be made using
the R function 1m similar to the examples shown earlier.

Consider an example of a multi-factor factorial design in marketing research.
A company whose sales are made online through a Web page would like to in-
crease the proportion of visitors to their Web site that sign up for their service
by optimally configuring their Web page. In order to buy from the company,
customers must sign up and fill out a form supplying their e-mail address
along with other required fields. Once a customer signs up, the company has
contact information for their database and can e-mail advertisements, special
offers, and so forth. The company would like to experiment by testing differ-
ent configurations of their Web page to see if they can increase the number of
visitors to their site that actually sign up.

The experimental units in this study will be individuals who visit the com-
pany Web site. The response is binary; the customer either signs up or does
not. The factors under study were characteristics that change the appearance
of the Web page. For example, factor A was the background alternatives for
the page with three options. Factor B was the font size in the main banner,
with three levels; factor C was the text color with two alternatives; and fac-
tor D was a choice between a sign-up button or link. Based on these factors
there were 3 x 3 x 2 x 2 = 36 possible configurations of the Web page when
considering all possible combinations of the levels of each factor. A four-factor
factorial experiment would consist of randomly assigning visitors to the Web
site to one of the possible configurations and recording their binary response.
There are lurking variables that could affect the chance that a site visitor
will sign up. For example, the position order that the link (for the company’s
Web site) comes up in a Web search for the products they sell, promotions
offered by competitors, and attractiveness of competitors’ Web sites. Random
assignment of each sequential visitor to the site to one of the alternative con-
figurations under study should minimize the chance of bias from changes in
the lurking variables over time. The probability that a site visitor would sign
up can be expressed by the model:

Dijkl = b+ 0 + By + By + i+ avir + Byje + aByir + 0 + ady (3.8)
+ B0, + aBoiji + YOkt + ayOigr + ByOjr1 + aBYdijkis

where o; represents the effect of background choice, 3; represents the effect

of font size in the main banner, ~y; represents the effect of text color, and ¢,

represents the effect of sign-up link versus button.
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The experiment was conducted by constructing 36 Web sites consisting of
all possible combinations of the four factors described above. Each potential
customer who visited the company’s Web site during the trial period was
randomly redirected to one of the 36 configurations. The number of visitors
Nk to the ijklth configuration and the number that signed up x;jr was
logged. x;;x; is then binomially distributed

B(xijk1, Nijkl, Pijkl) = ( a:”: )'pfj,i’l”(l —pijkz)("”“ Tijnt) (3.9)
ij

where n;;; is the number of visitors to the ijkith configured Web page during
the testing period.

Below is the R code to open the raw data, and print the first six lines of
the data frame.

> library(daewr)

> data(web)
> head (web)

A B C D visitors signup
11111 1016 22
21112 1145 16
31121 1145 17
41122 1082 19
51211 1121 28
61212 1103 28

The correct procedure must be utilized to analyze the data, determine if any
of the factor effects are significant, and to predict the optimal Web page con-
figuration. Since the responses for the individual visitors to each configuration
of the Web site are Bernoulli, the aggregate response data is binomial with
large and approximately equal sample sizes (i.e., number of visitors to each
possible Web configuration). The arcsin square root transformation shown in
Table 2.4 of Section 2.6.2 could be applied and the R 1m function could be used
for analysis. However, the problem with using this procedure is that the indi-
vidual responses were summed to get the aggregate responses, and when using
these aggregate binomial responses there are no replicate observations in any
of the cells, and thus no way to calculate ssE. This would be similar to sum-
ming or averaging the replicate responses in each cell if the data were normally
distributed, leaving only one observation per cell and no way to compute ssFE.
The alternative is to use the method of maximum likelihood to fit model (3.8).
This can be done using the R glm function. It will automatically set ¢ = 1.0
and the type IIT sums of squares of the form (L3)"(L(X'X)"'L')*(LB) will
be asymptotically distributed as chi-squares under the null hypothesis. The
commands to analyze the data using glm are shown on the next page.
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modb <- glm( cbind(signup, visitors-signup) ~ A * B * C * D,
data = web, family = binomial )

anova(update(modb, .~ A+B + A:B + C + A:C + B:C + A:B:C + D +
A:D+B:D + A:B:D + C:D + A:C:D + B:C:D + A:B:C:D ),

test = "Chisq")

+ 4+ V 4+ Vv

signup/visitors is the observed proportion signing up. The option

family = binomial declares the response to be binomially distributed, and
the option test = "Chisq" in the call to the anova function requests a table
of the type III sums of squares and chi-square tests. A portion of the results are
shown below. The command summary (modb) prints a table of the parameter
estimates produced by the maximum likelihood method, which is similar to
the summary of an object created by the function 1m, and it is not shown
here.

Analysis of Deviance Table

Model: binomial, link: logit

Response: cbind(signup, visitors - signup)
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 35 56.641

A 2 10.2540 33 46.387 0.005934 *x*
B 2  6.9301 31 39.457 0.031272 *
C 1 2.9632 30 36.493 0.085182 .
D 1 4.6165 29 31.877 0.031666 *
A:B 4 6.3093 25 25.568 0.177213
A:C 2 0.6821 23 24.886 0.711026
B:C 2 4.0303 21 20.855 0.133300
A:D 2 0.2807 19 20.575 0.869069
B:D 2 3.7705 17 16.804 0.151793
C:D 1 0.0783 16 16.726 0.779629
A:B:C 4 2.2127 12 14.513 0.696712
A:B:D 4 6.3323 8 8.181 0.175671
A:C:D 2 6.1525 6 2.028 0.046132 *
B:C:D 2 0.0219 4 2.007 0.989104
A:B:C:D 4 2.0065 0 0.000 0.734562

In this output we can see that (at the o = 0.05 level of significance) factors
A (background style) and factor D (sign-up button or link) were significant
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along with the three-way interaction ACD, where factor C represents the text
color. Since there is a significant interaction, the main effects A and D cannot
be interpreted separately. Whether it is better to use a sign-up button or link
depends on whether the text color is black or white and what background
style is chosen. To interpret the three-way interaction, it is necessary to make
a table of the proportion signing up in each combination of factors A, C, and
D and a series of interaction graphs. The R code to do this are shown below.

prop <- web$signup / web$visitors

webp <- data.frame(web,prop)

par ( mfrow = c(1,3) )

webpl <- subset(webp, A == 1)

interaction.plot (webpl1$C, webpl$D, webpl$prop, type = "1",
legend=FALSE, ylim = c(.015,.0275), main = "Background = 1",
xlab = "Text Color", ylab = "Proportion Signing-up")

webp2 <- subset(webp, A == 2 )

interaction.plot( webp2$C, webp2$D, webp2$prop, type = "1",
legend = FALSE, ylim = c(.015,.0275), main = "Background = 2",
xlab = "Text Color", ylab = " ")

lines( ¢(1.7,1.85), c(.016,.016), 1ty = 2)

lines( c¢(1.7,1.85), c(.017,.017) ,lty 1)

text(1.3, .017, "Sign-up link ")

text (1.3, .016, "Sign-up Button" )

text (1.4, .018, "LEGEND" )

webp3 <- subset(webp, A == 3)

interaction.plot (webp3$C, webp3$D, webp3$prop, type = "1",
legend=FALSE, ylim = c(.015,.0275), main="Background = 3",
xlab = "Text Color", ylab = " ")

+ + VVVVVVYV+ + VYV + +V VYVVYV

The result is shown in Figure 3.8. It shows the effect of factor D (text color) for
each combination of the levels of factors A (background type) and C (sign-up
link or button).

The common way of interpreting the interaction is to compare the effect
of the variable represented on the horizontal axis between combinations of
levels of the other factors. For this example an interpretation can be made
as follows. When using background type 2 or type 3, it can be seen that
changing the text color from black=1 to white=2 causes an increase in the
proportion of site visitors signing up. The increase (represented by the slope
of the lines) is greater when a sign-up button is used rather than a sign-up
link because the overall sign up rate is higher when a link is used regardless
of the text color, and there is not that much room for improvement. However,
when background type 1 is used, the effect of text color is altogether different.
In this case changing the font from black=1 to white=2 actually causes a
decrease in the proportion signing up when a sign-up button is used, and
there is a large increase in the proportion signing up when changing from
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Figure 3.8 Text Color Effect by Background Type and Link
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black to white font when using a sign-up link. This is the opposite of the
effects seen for background types 2 and 3.

Any one of the three factors could be placed on the horizontal axis and an
equivalent interpretation could be made. Sometimes the interpretation that
results when placing the factor with the largest main effect on the horizontal
axis is easiest to explain.

When interpreting a two-factor interaction, only one graph was necessary to
illustrate the fact that the effect of one factor depended on the level of another
factor. However, in this case more than one graph is required to illustrate how
the effect of one factor depends on the combination of levels of the other two
factors. The two lines on each graph show how the effect of text color changes
when there is a sign-up link versus a button, and the different graphs show
how the effect changes when the background is changed.

From inspection of the three graphs, or the table of averages that could be
produced with the tapply function, it can be seen that the highest proportion
signing up would be for the Web page with a sign-up link, white text, and
background type 2. Here it is predicted that on the average, slightly more
than 2.7% will sign up. The font size is insignificant, so it does not matter
what font size is used.

3.7 Two-Level Factorials

As additional factors are added to a factorial design, the number of treatment
combinations (runs) in the design increases exponentially. The example in the
last section contained four factors and 36 treatment combinations. If there
were five factors in a design each having four levels, the number of treatment
combinations would be 4x4 x4 x4 x4 = 4% = 1024 runs in the design. It can be
seen that it would not take too many factors to render the design impractical.
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In other words, it would have too many treatment combinations to run in a
reasonable period of time. However, it is better to reduce the number of levels
of each factor and stay with the factorial design using all factors than it is to
revert to one-at-a-time or two-at-a-time experiments and lose the efficiency of
factorial experiments. With separate experiments the ability to detect higher
order interactions, and the ability to detect interactions between any pair
of factors, is lost. If five factors in a factorial design were studied with only
two levels each, the number of treatment combinations would be reduced to
2% = 32. For this reason factorial designs with two levels for each factor, or
two-level factorials, are popular. A shorthand for a two-level factorial with k
factors is a 2% design.

In two-level factorials, if a factor has quantitative levels, the two levels are
denoted symbolically by (-) and (+), where (-) represents the lowest level
the experimenter would consider, and (+4) represents the highest level the
experimenter would consider. The high and low are usually spread out as far
as feasibly possible in order to accentuate the signal or difference in response
between the two levels. If a factor has qualitative levels, the (=) and (+)
designations are arbitrary, but the two levels chosen normally would be two
that the experimenter believes should result in the maximum difference in
response.

3.7.1 Main Effects and Regression Slopes

The model for a factorial experiment with three factors can be written as:

Yijkl = b+ 0y + B + aBij + Vi + QVik + BYik + aBYijk + €ijki, (3.10)

where o, 3;, and so forth, are the effects as defined earlier. However, in the
case where each factor has only two levels represented by (=) and (+), 14,
j, k, and [ can be replaced with either a (=) or (+), and a_ = —ay, since
- =Y_ .-G, =Y, . —Y.,and y._. = (y_.+7,.) /2. A similar equality will
be true for all the effects and interactions. Since the two effects for each factor
are the same value with different signs, a more compact way of defining the
main effects for a two-level factorial is F4 =7%,.. —y_... This can be visualized
on the left side of Figure 3.9 and represents the change in the average response
caused by a change in the factor from its low (=) level to its high (+) level.
This effect can then be represented by the difference in two averages ¥, .. and
y_...

The regression slope 54 shown in the right side of Figure 3.9 is the vertical
change in the average response for a one-unit change (i.e., from 0 to +1) in
the factor level in symbolic units. Therefore the slope, S4, is just one half the
effect, E 4, or the difference in two averages divided by 2.

The treatment combinations in a two-level factorial can also be represented
geometrically as the corners of a cube as shown in Figure 3.10. On the left
side of this figure is a list of the treatment combinations or runs listed in stan-
dard or Yates’ order with the first column changing fastest with alternating
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Figure 3.9 Effect and Regression Coefficient for Two-Level Factorial
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— and + signs, the second column changing in pairs of — and + signs, and the
third column changing slowest in groups of four — and + signs. The treatment
combinations in two-level factorial designs have traditionally been written in
standard order to facilitate the computation of main effects and interaction
effects by hand using Yates’ algorithm (see Daniel (1976)). The main effect
for factor A can be visualized in the figure as the difference of the average of
the responses on the right side of the cube in the grey-shaded circles and the
average of the responses on the left side of the cube in the white circles. With
modern computer programs such as the R 1m function one half of the main
effects, or regression coefficients (shown on the right side of Figure 3.9), can
be computed by regression and we no longer need Yates’ algorithm.

Figure 3.10 Geometric Representation of 2° Design and Main Effect Calculation
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One of the desirable properties of a 2¥ factorial plan is that factor effects are
not obscured by planned changes in other factors. In the list of experiments for
2% design, shown in Figure 3.10, this is evident by the fact that at the high level
of each factor, there are an equal number of high and low levels of every other
factor. Also at the low level of each factor, there are an equal number of high
and low levels of every other factor. Thus the effect of a factor, or difference
in average response between the high and low level of that factor, represents
the effect of that factor alone, because the influence of all other factors has
been averaged out. Mathematically this property is called orthogonality.

3.7.2 Interactions

When all the factors have only two levels, the AB interaction effect is defined
as one-half the difference in the simple effect of factor A, (y,,. -y_,.), when
factor B is held constant at its high (+) level, and the simple effect of factor
A (y,_.-Y__.), when factor B is held constant at its low (-) level, that is,
((Yyr. —Y_y.) - (G,_. —7__.)) /2. This is illustrated on the left side of Figure
3.11. The interaction effect could also be defined as one half the difference in
the simple effect of factor B, (¥,,.—7,_.), when factor A is held constant at its
high (+) level, and the simple effect of factor B, (y_,.-y__..), when factor A is
held constant at its low (=) level. This is illustrated on the right side of Figure
3.11. Either way the interaction effect is Eap = (4. +7__.) /2= (G,_.+7_,.)/2
is the difference of two averages.

Figure 3.11 Definition of an Interaction Effect for Two-Level Factorial
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It is easy to determine which responses should be averaged and which average
should be subtracted from the other in order to calculate an interaction effect
as illustrated in Figure 3.12. To calculate the AB interaction, we add a column
of signs, X 4 - Xp to the list of treatment combinations on the left side of the
figure. The elements in this new column are just the elementwise products
of signs in the column for X4 and Xp (ie., (-)(-) = +, (-)(+) = — etc.).
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Now the interaction effect can be visualized in the figure as the difference
in the average response on one diagonal represented by grey circles and the
average response on the other diagonal represented by white circles. From this

Figure 3.12 Geometric Representation of 2° Design and Interaction Effect
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representation, it can also be seen that interaction effects are not obscured by
planned changes in other factors, or in other words they are orthogonal to
main effects.

One-half of this interaction effect (or the regression coefficient) can be cal-
culated using a regression program such as the R 1lm function by adding a
X 4 x Xp term to the model. Higher order interaction effects can be similarly
defined. Therefore, a simpler way of writing the model for a two-level factorial
is by using the familiar regression equation,

Yy =00+ PaXa+PXp+BapXaXp+BcXc+PacXaXc +BprcXBXc
+BapcXaXpXc +e
(3.11)

where the (s are one-half of the effects and X4 = -1 if factor A is at its
low level and X 4 = +1 if factor A is at its high level. If we write this model
in matrix terms, y = X3 + €, the orthogonality property of the design is
expressed by the fact that the columns of the X matrix are orthogonal and the
X'X matrix is diagonal with diagonal elements 2%, where 7 is the number
of replicates of each cell.
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3.7.8 Example of a 23 Factorial

To illustrate the design and analysis of a 23 factorial experiment, consider the
following example (see Lawson and Erjavec, 2001). Students in a university
electronics lab often complained that voltage measurements made on a circuit
they constructed in class were inconsistent. The lab teaching assistant (TA)
decided to conduct an experiment to try to identify the source of the variation.
The three factors he varied were A=the ambient temperature where the volt-
age measurement was made, B=the voltmeter warm-up time, and C=the time
the power was connected to the circuit before the measurement was taken. The
response was the measured voltage in millivolts. The two levels for factor A
were — = 22°C (room temperature) and + = 32°C (close to the temperature
in some indu