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Preface

After studying experimental design a researcher or statistician should be able
to: (1) choose an experimental design that is appropriate for the research
problem at hand; (2) construct the design (including performing proper ran-
domization and determining the required number of replicates); (3) execute
the plan to collect the data (or advise a colleague on how to do it); (4) deter-
mine the model appropriate for the data; (5) fit the model to the data; and
(6) interpret the data and present the results in a meaningful way to answer
the research question. The purpose of this book is to focus on connecting the
objectives of research to the type of experimental design required, describing
the actual process of creating the design and collecting the data, showing how
to perform the proper analysis of the data, and illustrating the interpreta-
tion of results. Exposition on the mechanics of computation is minimized by
relying on a statistical software package.

With the availability of modern statistical computing packages, the analy-
sis of data has become much easier and is well covered in statistical methods
books. In a book on the design and analysis of experiments, there is no longer
a need to show all the computational formulas that were necessary before the
advent of modern computing. However, there is a need for careful explanation
of how to get the proper analysis from a computer package. The default anal-
ysis performed by most statistical software assumes the data have come from
a completely randomized design. In practice, this is often a false assumption.
This book emphasizes the connection between the experimental units, and the
way treatments are randomized to experimental units, and the proper error
term for an analysis of the data.

R is used throughout the book to illustrate both construction of experimen-
tal designs and analysis of data. R was chosen to be illustrated in the book
because it is an open-source software that can be downloaded free of charge for
Windows, Linux, and Macintosh operating systems from www.r-project.org.
Additionally, user developed packages for R have given it extensive capabilities
in both creating experimental designs and analyzing data. Information about
many of these user written packages is available on the Web site http://cran.
r-project.org/web/views/ExperimentalDesign.html that is maintained
by Ulrike Groemping. User written packages along with base R functional-
ity are illustrated in many examples in the text. The packages simplify things
that could require extensive R coding without their use. The code examples
in the book are available for download on the Web site www.jlawson.byu.edu
and they duplicate all design creation and data analysis methods illustrated

xi
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xii PREFACE

in the earlier version of this book, Design and Analysis of Experiments with
SAS. These two books are very similar with the exception of the software
illustrated. Therefore an instructor could conceivably teach a class on design
and analysis of experiments while allowing his students to use either book
depending upon which software package they prefer. In the future, it is pos-
sible that some of the R packages illustrated in this book may be removed
from CRAN, if the developer drops support, or they may be changed by the
developer so that the examples in the book no longer work. If problems such
as this arise, revisions will be made to the code online so that a working copy
of the examples is available.

With fewer pages devoted to computational formulas, I have attempted to
spend more time discussing the following: (1) how the objectives of a research
project lead to the choice of an appropriate design, (2) practical aspects of
creating a design or list of experiments to be performed, (3) practical aspects
of performing experiments, and (4) interpretation of the results of a computer
analysis of the data. Items (1)–(3) can best be taught by giving many examples
of experiments and exercises that actually require readers to perform their own
experiments.

This book attempts to give uniform coverage to experimental designs and
design concepts that are most commonly used in practice, rather than focusing
on specialized areas. The selection of topics is based on my own experience
working in the pharmaceutical industry, and in research and development
(R&D) and manufacturing in agricultural and industrial chemicals, and ma-
chinery industries. At the end of each chapter a diagram is presented to help
identify where the various designs should be used. Examples in the book come
from a variety of application areas. Emphasis is placed on how the sample
size, the assignment of experimental units to combinations of treatment fac-
tor levels (error control), and the selection of treatment factor combinations
(treatment design) will affect the resulting variance and bias of estimates and
the validity of conclusions.

Intended audience: This book was written for first- or second-year gradu-
ate students in statistics or advanced undergraduates who intend to work in
an area where they will use experimental designs. To be fully understood, a
student using this book should have had previous courses in calculus, intro-
ductory statistics, basic statistical theory, and applied linear models such as
Kutner et al. (2004) and Faraway (2004). Matrix notation for analysis of linear
models is used throughout the book, and students should be familiar with ma-
trix operations at least to the degree illustrated in chapter 5 of Kutner et al.
(2004). Also some experience with R or command driven statistical software
is assumed, although there is a brief appendix and additional references for
students with no experience with R.

However, for students from applied sciences or engineering who do not have
all these prerequisites, there is still much to be gained from this book. There
are many examples of diagnosing the experimental environment to choose
the correct design, creating the design, analyzing data, and interpreting and
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presenting results of analysis. There is R code to create and analyze all the
example experiments in the book. One with a basic understanding of R, and
aid of the documentation for the R functions illustrated, should be able to
follow these examples and modify them to complete the exercises in the book
and solve problems in their own research without needing to understand the
detailed theoretical justification for each procedure.

For instructors: This book can be used for a one-semester or two-quarter
course in experimental design. There is too much material for a one-semester
course, unless the students have had all the prerequisites mentioned above.
The first four chapters in the book cover the classical ideas in experimental
design, and should be covered in any course for students without a prior
background in designed experiments. Later chapters start with basics, but
proceed to the latest research published on particular topics, and they include
code to implement all of these ideas. An instructor can pick and choose from
these remaining topics, although if there is time to cover the whole book, I
would recommend presenting the topics in order.

Some instructors who do not intend to cover the entire book might consider
covering factorial experiments in Chapter 3, fractional factorials in Chapter 6,
and response surface methods in Chapter 10, following the pattern established
by the DuPont Strategies of Experimentation Short Courses that were devel-
oped in the 1970s. I chose the ordering of chapters in the book so that variance
component designs in Chapter 5 would be presented before describing split
plot experiments that are so commonplace in practice. I did this because I feel
it is important to understand random factors before studying designs where
there is more than one error term.

Acknowledgments: This book is the culmination of many years of thought
prompted by consulting and teaching. I would be remiss if I did not thank the
late Melvin Carter, my advisor at Brigham Young University (BYU) who in-
troduced me to the computer analysis of experimental data over 40 years ago,
and whose enthusiasm about the subject of designed experiments inspired my
lifelong interest in this area. I would also like to thank John Erjavec, my boss
and mentor at FMC Corp., for introducing me to the ideas of Box, Hunter,
and Hunter long before their original book Statistics for Experimenters was
published. I also thank the many consulting clients over the years who have
challenged me with interesting problems, and the many students who have
asked me to explain things more clearly. Special thanks to my former students
Willis Jensen at Gore and Michael Joner at Procter & Gamble for their careful
review and comments on the first version of this book, to Ulrike Groemping
at Beuth University of Applied Sciences Berlin for her careful review of the
manuscript and R-code, and finally to the developers of the many packages
for R that are illustrated in this book. Finally, I thank my wife Francesca for
her never-ending support and encouragement during the writing of this book.

John Lawson
Department of Statistics

Brigham Young University
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CHAPTER 1

Introduction

1.1 Statistics and Data Collection

Statistics is defined as the science of collecting, analyzing, and drawing con-
clusions from data. Data is usually collected through sampling surveys, obser-
vational studies, or experiments.

Sampling surveys are normally used when the purpose of data collection is to
estimate some property of a finite population without conducting a complete
census of every item in the population. For example, if there were interest in
finding the proportion of registered voters in a particular precinct that favor
a proposal, this proportion could be estimated by polling a random sample of
voters rather than questioning every registered voter in the precinct.

Observational studies and experiments, on the other hand, are normally
used to determine the relationship between two or more measured quantities
in a conceptual population. A conceptual population, unlike a finite popu-
lation, may only exist in our minds. For example, if there were interest in
the relationship between future greenhouse gas emissions and future aver-
age global temperature, the population, unlike registered voters in a precinct,
cannot be sampled from because it does not yet exist.

To paraphrase the late W. Edwards Deming, the value of statistical meth-
ods is to make predictions which can form the basis for action. In order to
make accurate future predictions of what will happen when the environment
is controlled, cause and effect relationships must be assumed. For example, to
predict future average global temperature given that greenhouse gas emissions
will be controlled at a certain level, we must assume that the relationship be-
tween greenhouse gas emissions and global temperature is cause and effect.
Herein lies the main difference in observational studies and experiments. In
an observational study, data is observed in its natural environment, but in an
experiment the environment is controlled. In observational studies it cannot
be proven that the relationships detected are cause and effect. Correlations
may be found between two observed variables because they are both affected
by changes in a third variable that was not observed or recorded, and any
future predictions made based on the relationships found in an observational
study must assume the same interrelationships among variables that existed
in the past will exist in the future. In an experiment, on the other hand, some
variables are purposely changed while others are held constant. In that way
the effect that is caused by the change in the purposely varied variable can
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be directly observed, and predictions can be made about the result of future
changes to the purposely varied variable.

1.2 Beginnings of Statistically Planned Experiments

There are many purposes for experimentation. Some examples include: deter-
mining the cause for variation in measured responses observed in the past;
finding conditions that give rise to the maximum or minimum response; com-
paring the response between different settings of controllable variables; and
obtaining a mathematical model to predict future response values.

Presently, planned experiments are used in many different fields of applica-
tion such as: engineering design, quality improvement, industrial research and
manufacturing, basic research in physical and biological science, research in
social sciences, psychology, business management and marketing research, and
many more. However, the roots of modern experimental design methods stem
from R. A. Fisher’s work in agricultural experimentation at the Rothamsted
Experimental Station near Harpenden, England.

Fisher was a gifted mathematician whose first paper as an undergraduate
at Cambridge University introduced the theory of likelihood. He was later
offered a position at University College, but turned it down to join the staff
at Rothamsted in 1919. There, inspired by daily contact with agricultural re-
search, he not only contributed to experimental studies in areas such as crop
yields, field trials, and genetics, but also developed theoretical statistics at an
astonishing rate. He also came up with the ideas for planning and analysis of
experiments that have been used as the basis for valid inference and prediction
in various fields of application to this day. Fisher (1926) first published his
ideas on planning experiments in his paper “The arrangement of field experi-
ments”; 9 years later he published the first edition of his book The Design of
Experiments, Fisher (1935).

The challenges that Fisher faced were the large amount of variation in
agricultural and biological experiments that often confused the results, and
the fact that experiments were time consuming and costly to carry out. This
motivated him to find experimental techniques that could:

● eliminate as much of the natural variation as possible

● prevent unremoved variation from confusing or biasing the effects being
tested

● detect cause and effect with the minimal amount of experimental effort
necessary.

1.3 Definitions and Preliminaries

Before initiating an extended discussion of experimental designs and the plan-
ning of experiments, I will begin by defining the terms that will be used fre-
quently.
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● Experiment (also called a Run) is an action where the experimenter
changes at least one of the variables being studied and then observes the
effect of his or her actions(s). Note the passive collection of observational
data is not experimentation.

● Experimental Unit is the item under study upon which something is
changed. This could be raw materials, human subjects, or just a point
in time.

● Sub-Sample, Sub-Unit, or Observational Unit When the experimental unit
is split, after the action has been taken upon it, this is called a sub-sample
or sub-unit. Sometimes it is only possible to measure a characteristic sepa-
rately for each sub-unit; for that reason they are often called observational
units. Measurements on sub-samples, or sub-units of the same experimental
unit, are usually correlated and should be averaged before analysis of data
rather than being treated as independent outcomes. When sub-units can
be considered independent and there is interest in determining the vari-
ance in sub-sample measurements, while not confusing the F -tests on the
treatment factors, the mixed model described in Section 5.8 should be used
instead of simply averaging the sub-samples.

● Independent Variable (Factor or Treatment Factor) is one of the variables
under study that is being controlled at or near some target value, or level,
during any given experiment. The level is being changed in some system-
atic way from run to run in order to determine what effect it has on the
response(s).

● Background Variable (also called a Lurking Variable) is a variable that
the experimenter is unaware of or cannot control, and which could have an
effect on the outcome of the experiment. In a well-planned experimental
design, the effect of these lurking variables should balance out so as to not
alter the conclusion of a study.

● Dependent Variable (or the Response denoted by Y ) is the characteristic of
the experimental unit that is measured after each experiment or run. The
magnitude of the response depends upon the settings of the independent
variables or factors and lurking variables.

● Effect is the change in the response that is caused by a change in a fac-
tor or independent variable. After the runs in an experimental design are
conducted, the effect can be estimated by calculating it from the observed
response data. This estimate is called the calculated effect. Before the ex-
periments are ever conducted, the researcher may know how large the effect
should be to have practical importance. This is called a practical effect or
the size of a practical effect.

● Replicate runs are two or more experiments conducted with the same set-
tings of the factors or independent variables, but using different experimen-
tal units. The measured dependent variable may differ among replicate runs
due to changes in lurking variables and inherent differences in experimental
units.
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● Duplicates refer to duplicate measurements of the same experimental unit
from one run or experiment. The measured dependent variable may vary
among duplicates due to measurement error, but in the analysis of data
these duplicate measurements should be averaged and not treated as sep-
arate responses.

● Experimental Design is a collection of experiments or runs that is planned
in advance of the actual execution. The particular runs selected in an ex-
perimental design will depend upon the purpose of the design.

● Confounded Factors arise when each change an experimenter makes for
one factor, between runs, is coupled with an identical change to another
factor. In this situation it is impossible to determine which factor causes
any observed changes in the response or dependent variable.

● Biased Factor results when an experimenter makes changes to an indepen-
dent variable at the precise time when changes in background or lurking
variables occur. When a factor is biased it is impossible to determine if the
resulting changes to the response were caused by changes in the factor or
by changes in other background or lurking variables.

● Experimental Error is the difference between the observed response for
a particular experiment and the long run average of all experiments con-
ducted at the same settings of the independent variables or factors. The fact
that it is called “error” should not lead one to assume that it is a mistake or
blunder. Experimental errors are not all equal to zero because background
or lurking variables cause them to change from run to run. Experimental
errors can be broadly classified into two types: bias error and random error.
Bias error tends to remain constant or change in a consistent pattern over
the runs in an experimental design, while random error changes from one
experiment to another in an unpredictable manner and average to be zero.
The variance of random experimental errors can be obtained by including
replicate runs in an experimental design.

With these definitions in mind, the difference between observational studies
and experiments can be explained more clearly. In an observational study, vari-
ables (both independent and dependent) are observed without any attempt
to change or control the value of the independent factors. Therefore any ob-
served changes in the response, or dependent variable, cannot necessarily be
attributed to observed changes in the independent variables because back-
ground or lurking variables might be the cause. In an experiment, however,
the independent variables are purposely varied and the runs are conducted in
a way to balance out the effect of any background variables that change. In
this way the average change in the response can be attributed to the changes
made in the independent variables.
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1.4 Purposes of Experimental Design

The use of experimental designs is a prescription for successful application of
the scientific method. The scientific method consists of iterative application
of the following steps: (1) observing of the state of nature, (2) conjecturing or
hypothesizing the mechanism for what has been observed, then (3) collecting
data, and (4) analyzing the data to confirm or reject the conjecture. Statistical
experimental designs provide a plan for collecting data in a way that they can
be analyzed statistically to corroborate the conjecture in question. When an
experimental design is used, the conjecture must be stated clearly and a list of
experiments proposed in advance to provide the data to test the hypothesis.
This is an organized approach which helps to avoid false starts and incomplete
answers to research questions.

Another advantage to using the experimental design approach is the ability
to avoid confounding factor effects. When the research hypothesis is not clearly
stated and a plan is not constructed to investigate it, researchers tend toward
a trial and error approach wherein many variables are simultaneously changed
in an attempt to achieve some goal. When this is the approach, the goal may
sometimes be achieved, but it cannot be repeated because it is not known
what changes actually caused the improvement.

One of Fisher’s early contributions to the planning of experiments was pop-
ularizing a technique called randomization, which helps to avoid confusion
or biases due to changes in background or lurking variables. As an example
of what we mean by bias is “The Biggest Health Experiment Ever,” Meier
(1972), wherein a trial of a polio vaccine was tested on over 1.8 million chil-
dren. An initial plan was proposed to offer vaccinations to all children in the
second grade in participating schools, and to follow the polio experience of
first through third graders. The first and third grade group would serve as a
“control” group. This plan was rejected, however, because doctors would have
been aware that the vaccine was only offered to second graders. There are
vagaries in the diagnosis of the majority of polio cases, and the polio symp-
toms of fever and weakness are common to many other illnesses. A doctor’s
diagnosis could be unduly influenced by his knowledge of whether or not a
patient had been vaccinated. In this plan the factor purposely varied, vacci-
nated or not, was biased by the lurking variable of doctors’ knowledge of the
treatment.

When conducting physical experiments, the response will normally vary
over replicate runs due solely to the fact that the experimental units are dif-
ferent. This is what we defined to be experimental error in the last section.
One of the main purposes for experimental designs is to minimize the effect
of experimental error. Aspects of designs that do this, such as randomiza-
tion, replication, and blocking, are called methods of error control. Statistical
methods are used to judge the average effect of varying experimental factors
against the possibility that they may be due totally to experimental error.
Another purpose for experimental designs is to accentuate the factor effects
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(or signal). Aspects of designs that do this, such as choice of the number and
spacing of factor levels and factorial plans, are called methods of treatment
design. How this is done will be explained in the following chapters.

1.5 Types of Experimental Designs

There are many types of experimental designs. The appropriate one to use
depends upon the objectives of the experimentation. We can classify objec-
tives into two main categories. The first category is to study the sources of
variability, and the second is to establish cause and effect relationships. When
variability is observed in a measured variable, one objective of experimen-
tation might be to determine the cause of that variation. But before cause
and effect relationships can be studied, a list of independent variables must
be determined. By understanding the source of variability, researchers are of-
ten led to hypothesize what independent variables or factors to study. Thus
experiments to study the source of variability are often a starting point for
many research programs. The type of experimental design used to classify
sources of variation will depend on the number of sources under study. These
alternatives will be presented in Chapter 5.

The appropriate experimental design that should be used to study cause and
effect relationships will depend on a number of things. Throughout the book
the various designs are described in relation to the purpose for experimenta-
tion, the type and number of treatment factors, the degree of homogeneity
of experimental units, the ease of randomization, and the ability to block
experimental units into more homogeneous groups. After all the designs are
presented, Chapter 13 describes how they can be used in sequential experi-
mentation strategies where knowledge is increased through different stages of
experimentation. Initial stages involve discovering what the important treat-
ment factors are. Later, the effects of changing treatment factors are quanti-
fied, and in final stages, optimal operating conditions can be determined. Dif-
ferent types of experimental designs are appropriate for each of these phases.

Screening experiments are used when the researcher has little knowledge of
the cause and effect relationships, and many potential independent variables
are under study. This type of experimentation is usually conducted early in
a research program to identify the important factors. This is a critical step,
and if it is skipped, the later stages of many research programs run amuck
because the important variables are not being controlled or recorded.

After identifying the most important factors in a screening stage, the re-
searcher’s next objective would be to choose between constrained optimization
or unconstrained optimization (see Lawson, 2003). In constrained optimiza-
tion there are usually six or fewer factors under study and the purpose is to
quantify the effects of the factors, interaction or joint effects of factors, and to
identify optimum conditions among the factor combinations actually tested.

When only a few quantitative factors are under study and curvilinear re-
lationships with the response are possible, it may be possible to identify
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improved operating conditions by interpolating within the factor levels ac-
tually tested. If this is the goal, the objective of experimentation is called
unconstrained optimization. With an unconstrained optimization objective,
the researcher is normally trying to map the relationship between one or more
responses and five or fewer quantitative factors.

Specific experimental design plans for each of the stages of experimentation
will be presented as we progress through the book.

Figure 1.1 shows the relationship between the objectives of experimenta-
tion, the design of the experiment, and the conclusions that can be drawn.
The objective of a research program dictates which type of experimental de-
sign should be utilized. The experimental design plan in turn specifies how
the data should be collected and what mathematical model should be fit in
order to analyze and interpret the data. Finally, the type of data and the
mathematical model will determine what possible conclusions can be drawn
from the experiment. These steps are inseparable and dependent upon each
other. Many mistakes are made in research by trying to dissever these steps.
An appropriate analysis of data cannot be completed without knowledge of
what experimental design was used and how the data was collected, and con-
clusions are not reliable if they are not justified by the proper modeling and
analysis of the data.

Figure 1.1 Objectives, Design, and Conclusions from Experimentation

Define Objectives

Select Experimental Design

Procedures for 
Collecting Data

Model for 
Analysis of Data

Analysis of Data
Interpretation of Results

Conclusions

1.6 Planning Experiments

An effective experimental design plan should include the following items: (1)
a clear description of the objectives, (2) an appropriate design plan that guar-
antees unconfounded factor effects and factor effects that are free of bias, (3)
a provision for collecting data that will allow estimation of the variance of the
experimental error, and (4) a stipulation to collect enough data to satisfy the
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objectives. Bisgaard (1999) recommends a formal proposal to ensure that a
plan includes all of these elements. The proposal should include a checklist for
planning the experiments. Below is a checklist that is similar to Bisgaard’s.
Examples of some of the steps from this checklist will be illustrated in dis-
cussing a simple experiment in the next section.

1. Define Objectives. Define the objectives of the study. First, this statement
should answer the question of why is the experiment to be performed.
Second, determine if the experiment is conducted to classify sources of
variability or if its purpose is to study cause and effect relationships. If it
is the latter, determine if it is a screening or optimization experiment. For
studies of cause and effect relationships, decide how large an effect should
be in order to be meaningful to detect.

2. Identify Experimental Units. Declare the item upon which something will
be changed. Is it an animal or human subject, raw material for some pro-
cessing operation, or simply the conditions that exist at a point in time
or trial? Identifying the experimental units will help in understanding the
experimental error and variance of experimental error.

3. Define a Meaningful and Measurable Response or Dependent Variable. De-
fine what characteristic of the experimental units can be measured and
recorded after each run. This characteristic should best represent the ex-
pected differences to be caused by changes in the factors.

4. List the Independent and Lurking Variables. Declare which independent
variables you wish to study. Ishikawa Cause and Effect Diagrams (see SAS
Institute, 2004b) are often useful at this step to help organize variables
thought to affect the experimental outcome. Be sure that the independent
variables chosen to study can be controlled during a single run, and varied
from run to run. If there is interest in a variable, but it cannot be controlled
or varied, it cannot be included as a factor. Variables that are hypothesized
to affect the response, but cannot be controlled, are lurking variables. The
proper experimental design plan should prevent uncontrollable changes in
these variables from biasing factor effects under study.

5. Run Pilot Tests. Make some pilot tests to be sure you can control and vary
the factors that have been selected, that the response can be measured, and
that the replicate measurements of the same or similar experimental units
are consistent. Inability to measure the response accurately or to control the
factor levels are the main reasons that experiments fail to produce desired
results. If the pilot tests fail, go back to steps 2, 3, and 4. If these tests are
successful, measurements of the response for a few replicate tests with the
same levels of the factors under study will produce data that can be used
to get a preliminary estimate of the variance of experimental error.

6. Make a Flow Diagram of the Experimental Procedure for Each Run. This
will make sure the procedure to be followed is understood and will be
standardized for all runs in the design.
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7. Choose the Experimental Design. Choose an experimental design that is
suited for the objectives of your particular experiment. This will include a
description of what factor levels will be studied and will determine how the
experimental units are to be assigned to the factor levels or combination of
factor levels if there are more than one factor. One of the plans described in
this book will almost always be appropriate. The choice of the experimental
design will also determine what model should be used for analysis of the
data.

8. Determine the Number of Replicates Required. Based on the expected vari-
ance of the experimental error and the size of a practical difference, the
researcher should determine the number of replicate runs that will give a
high probability of detecting an effect of practical importance.

9. Randomize the Experimental Conditions to Experimental Units. According
to the particular experimental design being used, there is a proscribed
method of randomly assigning experimental conditions to experimental
units. In some designs, factor levels or combination of factor levels are
assigned to experimental units completely at random. In other designs,
randomizing factor levels is performed separately within groups of experi-
mental units and may be done differently for different factors. The way the
randomization is done affects the way the data should be analyzed, and
it is important to describe and record exactly what has been done. The
best way to do this is to provide a data collection worksheet arranged in
the random order in which the experiments are to be collected. For more
complicated experimental designs Bisgaard (1999) recommends one sheet
of paper describing the conditions of each run with blanks for entering the
response data and recording observations about the run. All these sheets
should then be stapled together in booklet form in the order they are to be
performed.

10. Describe a Method for Data Analysis. This should be an outline of the steps
of the analysis. An actual analysis of simulated data is often useful to verify
that the proposed outline will work.

11. Timetable and Budget for Resources Needed to Complete the Experiments.
Experimentation takes time and having a schedule to adhere to will im-
prove the chances of completing the research on time. Bisgaard (1999)
recommends a Gantt Chart (see SAS Institute, 2004a), which is a sim-
ple graphical display showing the steps of the process as well as calendar
times. A budget should be outlined for expenses and resources that will be
required.

1.7 Performing the Experiments

In experimentation, careful planning and execution of the plan are the most
important steps. As we know from Murphy’s Law, if anything can go wrong it
will, and analysis of data can never compensate for botched experiments. To
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illustrate the potential problems that can occur, consider a simple experiment
conducted by an amateur gardener described by Box et al. (1978). The purpose
was to determine whether a change in the fertilizer mixture would result in a
change in the yield of his tomato plants. Eleven tomato plants were planted in
a single row, and the fertilizer type (A or B) was varied. The experimental unit
in this experiment is the tomato plant plus the soil it is planted in, and the
treatment factor is the type of fertilizer applied. Easterling (2004) discusses
some of the nuances that should be considered when planning and carrying
out such a simple experiment. It is instructive to think about these in context
with the checklist presented in the last section.

When defining the objectives for this experiment, the experimenter needs
to think ahead to the possible implications of conclusions that he can draw.
In this case, the possible conclusions are (1) deciding that the fertilizer has no
effect on the yield of tomatoes, or (2) concluding that one fertilizer produces a
greater yield. If the home gardener finds no difference in yield, he can choose to
use the less expensive fertilizer. If he finds a difference, he will have to decide
if the increase in yield offsets any increase in cost of the better fertilizer. This
can help him determine how large a difference in yield he should look for and
the number of tomato plants he should include in his study. The answer to
this question, which is crucial in planning the experiment, would probably be
much different for a commercial grower than for a backyard enthusiast.

The experimental units for this experiment were defined in the paragraph
above, but in identifying them, the experimenter should consider the similarity
or homogeneity of plants and how far apart he is going to place the tomato
plants in the ground. Will it be far enough that the fertilizer applied to one
plant does not bleed over and affect its neighbors?

Defining a meaningful response that can be measured may be tricky in this
experiment. Not all the tomatoes on a single plant ripen at the same time.
Thus, to measure the yield in terms of weight of tomatoes, the checklist and
flow diagram describing how an experiment is conducted must be very precise.
Is it the weight of all tomatoes on the plant at a certain date, or the cumulative
weight of tomatoes picked over time as they ripen? Precision in the definition
of the response and consistency in adherence to the definition when making
the measurements are crucial.

There are many possible lurking variables to consider in this experiment.
Any differences in watering, weeding, insect treatment, the method and timing
of fertilizer application, and the amount of fertilizer applied may certainly
affect the yield; hence the experimenter must pay careful attention to these
variables to prevent bias. Easterling (2004) also pointed out that the row
position seems to have affected the yield as well (as can be seen in Figure 1.2).
The randomization of fertilizers to plants and row positions should equalize
these differences for the two fertilizers. This was one of the things that Box
et al. (1978) illustrated with this example. If a convenient method of applying
the fertilizers (such as A at the beginning of the row followed by B) had
been used in place of random assignment, the row position effect could have
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been mistaken for a treatment effect. Had this row position effect been known
before the experiment was planned, the adjacent pairs of plots could have been
grouped together in pairs, and one fertilizer assigned at random to one plot-
plant in each pair to prevent bias from the row position effect. This technique
is called blocking and will be discussed in detail in Chapter 4.

Figure 1.2 Plot of Yield by Row Position—Tomato Experiment

Easterling (2004) also raised the question: why were only eleven plants
used in the study (five fertilized with fertilizer A and six with fertilizer B)?
Normally flats of tomato plants purchased from a nursery come in flats of
twelve. Was one plant removed from the study because it appeared unhealthy
or got damaged in handling? The yield for the plant in the second row position
(see Figure 1.2) of the 11 plants used was considerably lower than the others
planted in neighboring row positions with the same fertilizer. Was this plant
unhealthy or damaged as well?

Any problems that arise during the conduct of experiments should be care-
fully observed, noted, and recorded as comments on the data collection form
described in step 9 of the checklist. Perhaps if this had been done for the
tomato experiment, the low yield at row position two could be explained.

This discussion of a very simple experiment helps to emphasize the impor-
tance of carefully considering each step of the checklist presented in Section
1.6, and the importance of strict adherence to a flowchart for conducting the
experiments, described in step 6 of that checklist. Failing to consider each point
of the checklist, and inconsistency in conducting experiments and recording
results, may lead to the demise of an otherwise useful research project.
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1.8 Use of R Software

Fisher’s original book on experimental designs clearly laid the logical prin-
ciples for experimentation, but users of experimental designs needed to have
more detailed descriptions of the most useful designs along with accompany-
ing plans. Consulting statisticians needed to have a systematic explanation of
the relation between experimental designs and the statistical theory of least
squares and linear hypotheses, and to have an enumeration of designs and
descriptions of experimental conditions where each design was most appropri-
ate.

These needs were satisfied by Cochran and Cox (1950) and Kempthorne
(1952) books. However, Cochran and Cox and Kempthorne’s books were pub-
lished before the age of computers and they both emphasize extensive tables
of designs, abundant formulas, and numerical examples describing methods of
manual analysis of experimental data and mathematical techniques for con-
structing certain types of designs. Since the publication of these books, use
of experimental designs has gone far beyond agricultural research where it
was initially employed, and a plethora of new books have been written on the
subject. Even though computers and software (to both design and analyze
data from experiments) are widely available, a high proportion of the more
recent books on experimental design still follow the traditional pattern estab-
lished by Cochran and Cox and Kempthorne by presenting extensive tables
of designs and formulas for hand calculations and methods for constructing
designs.

One of the objectives of this book is to break from the tradition and present
computer code and output in place of voluminous formulas and tables. This
will leave more room in the text to discuss the appropriateness of various de-
sign plans and ways to interpret and present results from experiments. The
particular computer software illustrated in this book is R (R Development
Core Team, 2003; Ihaka and Gentleman, 1996). In addition to R program-
ing statements that are useful for constructing experimental designs and base
functions that are useful for the analysis of experimental data, there are many
user written packages that ease the construction of specific designs and provide
analysis routines that are not available in the base R. These user written pack-
ages can be installed from CRAN. Packages illustrated in this book include:
agricolae, AlgDesign, BsMD, car, daewr, DoE.base, FrF2, GAD, gmodels,
leaps, lme4, lsmeans, mixexp, multcomp, and Vdgraph. An appendix is in-
cluded at the end of the book with a brief introduction to R and additional
references on using R.

1.9 Review of Important Concepts

This chapter describes the purpose for experimental designs. In order to de-
termine if cause and effect relationships exist, an experimental design must be
conducted. In an experimental design, the factors under study are purposely
varied and the result is observed. This is different from observational stud-
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ies or sampling surveys where data is collected with no attempt to control
the environment. In order to predict what will happen in the future, when
the environment is controlled, you must rely on cause and effect relationships.
Relationships obtained from observational studies or sampling surveys are not
reliable for predicting future results when the environment is to be controlled.

Experimental designs were first developed in agricultural research, but are
now used in all situations where the scientific method is applied. The ba-
sic definitions and terminology used in experimental design are given in this
chapter along with a checklist for planning experiments. In practice there are
many different types of experimental designs that can be used. Which design
is used in a particular situation depends upon the research objectives and the
experimental units. Figure 1.3 is a diagram that illustrates when the different
experimental designs described in this book should be used. As different ex-
perimental designs are presented in chapters to follow, reference will be made
back to this figure to describe when the designs should be used.

Figure 1.3 Design Selection Roadmap

Design Purpose
Estimate Variances                Study Factor Effects

E.U.’s

Block Factors

One Factor

Multiple Factors

Multiple Factors
with some hard

to vary

Block size

Homogeneous                  Heterogeneous

Large  Small

RCB

GCB

PBIB,BTIB

BIB

LSD

RCD
RSE                 CRD

Factors
FRSE
NSE
SNSE

CRFD         CRRS SLD RCBF BRS PCBF
CRFF SCD

PB, OA EVD CCBF

CRSP RSSP   SPMPV RBSP
SPFF        EESPRS

One                   Two

class cont.     mixture cont.      class
Factors

1.9.1 Design Name Acronym Index

RSE — random sampling experiment
FRSE — factorial random sampling experiment
NSE — nested sampling experiment
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SNSE — staggered nested sampling experiment
CRD — completely randomized design
CRFD — completely randomized factorial design
CRFF — completely randomized fractional factorial
PB — Plackett-Burman design
OA — orthogonal array design
CRSP — completely randomized split plot
RSSP — response surface split plot
EESPRS — equivalent estimation split-plot response surface
SLD — simplex lattice design
SCD — simplex centroid design
EVD — extreme vertices design
SPMPV — split-plot mixture process variable design
RCB — randomized complete block
GCB — generalized complete block
RCBF — randomized complete block factorial
RBSP — randomized block split plot
PBIB — partially balanced incomplete block
BTIB — balanced treatment incomplete block
BIB — balance incomplete block
BRS — blocked response surface
PCBF — partially confounded blocked factorial
CCBF — completely confounded blocked factorial
LSD — Latin-square design
RCD — row-column design
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1.10 Exercises

1. A series of runs were performed to determine how the wash water tem-
perature and the detergent concentration affect the bacterial count on the
palms of subjects in a hand washing experiment.

(a) Identify the experimental unit.

(b) Identify the factors.

(c) Identify the response.

2. Explain the difference between an experimental unit and a sub-sample or
sub-unit in relation to the experiments described in 1.

3. Explain the difference between a sub-sample and a duplicate in relation to
the experiment described in 1.

4. Describe a situation within your realm of experience (your work, your
hobby, or school) where you might like to predict the result of some future
action. Explain how an experimental design, rather than an observational
study, might enhance your ability to make this prediction.

5. Kerry and Bland (1998) describe the analysis of cluster randomized studies
where a group of subjects are randomized to the same treatment. For ex-
ample, when women in some randomly selected districts are offered breast
cancer screening while women in other districts are not offered the screen-
ing, or when some general practitioners are randomly assigned to receive
one or more courses of special training and the others are not offered the
training. The response (some characteristic of the patients) in the clus-
ter trials must be measured on each patient rather than the group as a
whole. What is the experimental unit in this type of study? How would
you describe the individual measurements on patients?
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CHAPTER 2

Completely Randomized Designs with
One Factor

2.1 Introduction

In a completely randomized design, abbreviated as CRD, with one treatment
factor, n experimental units are divided randomly into t groups. Each group
is then subject to one of the unique levels or values of the treatment factor.
If n = tr is a multiple of t, then each level of the factor will be applied to
r unique experimental units, and there will be r replicates of each run with
the same level of the treatment factor. If n is not a multiple of t, then there
will be an unequal number of replicates of each factor level. All other known
independent variables are held constant so that they will not bias the effects.
This design should be used when there is only one factor under study and the
experimental units are homogeneous.

For example, in an experiment to determine the effect of time to rise on
the height of bread dough, one homogeneous batch of bread dough would be
divided into n loaf pans with an equal amount of dough in each. The pans
of dough would then be divided randomly into t groups. Each group would
be allowed to rise for a unique time, and the height of the risen dough would
be measured and recorded for each loaf. The treatment factor would be the
rise time, the experimental unit would be an individual loaf of bread, and
the response would be the measured height. Although other factors, such as
temperature, are known to affect the height of the risen bread dough, they
would be held constant and each loaf would be allowed to rise under the same
conditions except for the differing rise times.

2.2 Replication and Randomization

Replication and randomization were popularized by Fisher. These are the
first techniques that fall in the category of error control that was explained
in Section 1.4.

The technique of replication dictates that r bread loaves are tested at each
of the t rise times rather than a single loaf at each rise time. By having repli-
cate experimental units in each level of the treatment factor, the variance of
the experimental error can be calculated from the data, and this variance will
be compared to the treatment effects. If the variability among the treatment
means is not larger than the experimental error variance, the treatment dif-
ferences are probably due to differences of the experimental units assigned to

17
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each treatment. Without replication it is impossible to tell if treatment differ-
ences are real or just a random manifestation of the particular experimental
units used in the study. Sub-samples or duplicate measurements, described in
Chapter 1, cannot substitute for replicates.

The random division of experimental units into groups is called random-
ization, and it is the procedure by which the validity of the experiment is
guaranteed against biases caused by other lurking variables. In the bread rise
experiment randomization would prevent lurking variables, such as variability
in the yeast from loaf to loaf and trends in the measurement technique over
time, from biasing the effect of the rise time.

When experimental units are randomized to treatment factor levels, an
exact test of the hypothesis that the treatment effect is zero can be accom-
plished using a randomization test, and a test of parameters in the general
linear model, normally used in the analysis of experimental data, is a good
approximation to the randomization test.

A simple way of constructing a randomized data collection form, dividing
n experimental units into t treatment groups, can be accomplished using base
R commands. For example, in the bread rise experiment, if the experimenter
wants to examine three different rise times (35 minutes, 40 minutes, and 45
minutes) and test four replicate loaves of bread at each rise time, the following
code will create the list.

> set.seed(7638)

> f <- factor( rep( c(35, 40, 45 ), each = 4))

> fac <- sample( f, 12 )

> eu <- 1:12

> plan <- data.frame( loaf=eu, time=fac )

> write.csv( plan, file = "Plan.csv", row.names = FALSE)

The R command factor creates a vector of the factor levels for (rise time)
and stores it in the variable f. There is also an ordered command in R that
creates a factor that is assumed to have equally spaced numerical levels. R
handles factors created by the factor and ordered commands differently
when making comparisons of treatments after fitting a model. There will be
more discussion of this in Section 2.8.

The sample function randomizes the order of the factor levels and stores the
randomized vector in the variable fac. The seq function creates a numeric
vector of experimental unit (i.e., loaf) numbers (eu). Next, the data.frame
function combines the two vectors eu, fac as columns that are stored in the
data frame object plan with column headings loaf, and time. Finally, the
write.csv function writes the data frame to a .csv file called Plan.csv. This
file can be found in your working directory. To get the path to your working
directory, type the command >getwd() at the R prompt (you can also specify
your working directory with the command >setwd()). Opening Plan.csv in
a spreadsheet program like Microsoft Excel or Open Office Calc and adding



A HISTORICAL EXAMPLE 19

an extra column (as shown in Figure 2.1) results in a convenient electronic
data collection form.

Figure 2.1 Data Collection Form in a Spreadsheet

This form shows us that the first loaf, or experimental unit, should be
allowed to rise 40 minutes, the second loaf 45 minutes, etc. If you run the
same commands in R repeatedly, you will get the same random order because
of the set.seed statement. Remove this statement to get a different random
order.

In addition to the base R commands shown above, several user written
R packages can create randomized lists of experiments, which can be conve-
niently converted into electronic data collection forms. However, these pack-
ages will be illustrated for creating more complicated designs in forthcoming
chapters, and will not be shown here.

2.3 A Historical Example

To illustrate the checklist for planning an experiment described in Section 1.6,
consider a historical example taken from the 1937 Rothamstead Experimen-
tal Station Report (unknown, 1937). This illustrates some of the early work
done by Fisher in developing the ideas of experimental design and analysis of
variance for use on agricultural experiments at the research station.
Objectives The objective of the study was to compare the times of planting,

and methods of applying mixed artificial fertilizers (NPK) prior to planting,
on the yield of sugar beets. Normally fertilizer is applied and seeds planted as
early as the soil can be worked.
Experimental Units The experimental units were the plots of ground in

combination with specific seeds to be planted in each plot of ground.
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Response or Dependent Variable The dependent variable would be the
yield of sugar beets measured in cwt per acre.
Independent Variables and Lurking Variables The independent vari-

ables of interest were the time and method of applying mixed artificial fertil-
izers. Four levels of the treatment factor were chosen as listed below:

1. (A) no artificial fertilizers applied

2. (B) artificials applied in January (plowed)

3. (C) artificials applied in January (broadcast)

4. (D) artificials applied in April (broadcast)

Lurking variables that could cause differences in the sugar beet yields be-
tween plots were differences in the fertility of the plots themselves, differences
in the beet seeds used in each plot, differences among plots in the level of
weed infestation, differences in cultivation practices of thinning the beets, and
hand harvesting the beets.
Pilot Tests Sugar beets had been grown routinely at Rothamstead, and

artificial fertilizers had been used by both plowing and broadcast for many
crop plants; therefore, it was known that the independent variable could be
controlled and that the response was measurable.
Choose Experimental Design The completely randomized design (CRD)

was chosen so that differences in lurking variables between plots would be
unlikely to correspond to changes in the factor levels listed above.
Determine the Number of Replicates A difference in yield of 6 cwt

per acre was considered to be of practical importance, and based on histori-
cal estimates of variability in sugar beet yields at Rothamstead, four or five
replicates were determined to be sufficient.
Randomize Experimental Units to Treatment Levels Eighteen plots

were chosen for the experiment, and a randomized list was constructed as-
signing four or five plots to each factor level.

2.4 Linear Model for CRD

The mathematical model for the data from a CRD, or completely randomized
design, with an unequal number of replicates for each factor level can be
written as:

Yij = µi + εij (2.1)

where Yij is the response for the jth experimental unit subject to the ith
level of the treatment factor, i = 1, . . . , t, j = 1, . . . , ri, and ri is the number of
experimental units or replications in ith level of the treatment factor.

This is sometimes called the cell means model with a different mean, µi, for
each level of the treatment factor. The distribution of the experimental errors,
εij , are mutually independent due to the randomization and assumed to be
normally distributed. This model is graphically represented in Figure 2.2.
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Figure 2.2 Cell Means Model

1μ 2μ 3μ 4μ

An alternate way of writing a model for the data is

Yij = µ + τi + εij . (2.2)

This is called the effects model and the τis are called the effects. τi represents
the difference between the long-run average of all possible experiments at the
ith level of the treatment factor and the overall average. With the normality
assumption Yij ∼ N(µ + τi, σ

2) or εij ∼ N(0, σ2). For equal number of repli-
cates, the sample means of the data in the ith level of the treatment factor is
represented by

yi⋅ =
1

ri

ri

∑
j=1

yij (2.3)

and the grand mean is given by

y⋅⋅ =
1

t

t

∑
i=1

yi⋅ =
1

n

t

∑
i=1

ri

∑
j=1

yij (2.4)

where n = ∑ ri. Using the method of maximum likelihood, which is equivalent
to the method of least squares with these assumptions, the estimates of the
cell means are found by choosing them to minimize the error sum of squares

ssE =
t

∑
i=1

ri

∑
j=1

(yij − µi)
2. (2.5)

This is done by taking partial derivatives of ssE with respect to each cell
mean, setting the results equal to zero, and solving each equation

∂ssE

∂µi
= −2

t

∑
i=1

ri

∑
j=1

(yij − µi) = 0.

This results in the estimates:
µ̂i = yi⋅.
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2.4.1 Matrix Representation

Consider a CRD with t = 3 factor levels and ri = 4 replicates for i = 1, . . . , t.
We can write the effects model concisely using matrix notation as:

y =Xβ + ε (2.6)

.
Where

y =
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⎜
⎜
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, X =
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,

and ε ∼MVN(0, σ2I).
The least squares estimators for β are the solution to the normal equations

X ′Xβ =X ′y. The problem with the normal equations is thatX ′X is singular
and cannot be inverted. Using the treatment coding for an unordered factor
created with the factor command, the R function lm makes the X matrix
full rank by dropping the column that corresponds to the first level of the
factor as shown below.

X =

⎛
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⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎜
⎜
⎜
⎝

1 0 0
1 0 0
1 0 0
1 0 0
1 1 0
1 1 0
1 1 0
1 1 0
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1 0 1
1 0 1
1 0 1
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⎟
⎟
⎟
⎟
⎟
⎟
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⎟
⎟
⎟
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This treatment coding makes the first level of the factor the standard, and
all other levels of the factor are compared to it. For the example with t = 3
factor levels the solution to the normal equations is
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(X ′X)
−1X ′y = β̂ =

⎛
⎜
⎝

µ̂ + τ̂1
τ̂2 − τ̂1
τ̂3 − τ̂1

⎞
⎟
⎠
.

2.4.2 L.S. Calculations with R Function lm

Table 2.1 shows the data from a CRD design for the bread rise experiment
described earlier in this chapter.

Table 2.1 Data from Bread Rise Experiment

Rise Time Loaf Heights
35 minutes 4.5, 5.0, 5.5, 6.75
40 minutes 6.5, 6.5, 10.5, 9.5
45 minutes 9.75, 8.75, 6.5, 8.25

Using these data we have

X ′X =
⎛
⎜
⎝

12 4 4
4 4 0
4 0 4

⎞
⎟
⎠
, X ′y =

⎛
⎜
⎝

88.0
33.0
33.25

⎞
⎟
⎠
,

and

(X ′X)
−1

=
⎛
⎜
⎝

0.25 −0.25 −0.25
−0.25 0.50 0.25
−0.25 0.25 0.50

⎞
⎟
⎠
,

β̂ = (X ′X)
−1X ′y =

⎛
⎜
⎝

µ̂ + τ̂1
τ̂2 − τ̂1
τ̂3 − τ̂1

⎞
⎟
⎠
=
⎛
⎜
⎝

5.4375
2.8125
2.8750

⎞
⎟
⎠
.

If the data had been collected and typed into the electronic spreadsheet shown
in Figure 2.1 and resaved as a .csv file, then it could be read back into an R
data frame called bread with the following command.

> bread <- read.csv("plan.csv")

However, the R package daewr contains data sets from this book and several
R functions. Running the code on the next page opens the data set shown in
Table 2.1 and computes the estimates.
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> library(daewr )

> mod0 <- lm( height ~ time, data = bread )

> summary( mod0 )

The command library(daewr) makes this package available, but before
this command can be issued the package must be installed as described in the
Appendix at the end of the book. The lm command fits the linear model and
stores the results in the object mod0, and the summary command prints the
results, a portion of which is shown below.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.4375 0.7655 7.104 5.65e-05 ***

time40 2.8125 1.0825 2.598 0.0288 *

time45 2.8750 1.0825 2.656 0.0262 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.531 on 9 degrees of freedom

Multiple R-squared: 0.5056, Adjusted R-squared: 0.3958

F-statistic: 4.602 on 2 and 9 DF, p-value: 0.042

Since the variable time is a factor in the data frame bread, and default
treatment coding was used by function lm, the estimates described above are
produced.

2.4.3 Estimation of σ2 and Distribution of Quadratic Forms

The estimate of the variance of the experimental error, σ2, is ssE/(n− t). It is
only possible to estimate this variance when there are replicate experiments at
each level of the treatment factor. When measurements on sub-samples or du-
plicate measurements on the same experimental unit are treated as replicates,
this estimate can be seriously biased.

In matrix form, ssE can be written as

ssE = y′y − β̂′X ′y = y′(I −X(X ′X)
−1X ′

)y,

and from the theory of linear models it can be shown that the ratio of ssE
to the variance of the experimental error, σ2, follows a chi-square distribution
with n − t degrees of freedom, that is, ssE/σ2 ∼ χ2

n−t.

2.4.4 Estimable Functions

A linear combination of the cell means is called an estimable function if it can
be expressed as the expected value of a linear combination of the responses,
that is,
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t

∑
i=1

bi(µ + τi) = E
⎡
⎢
⎢
⎢
⎣

t

∑
i=1

ri

∑
j=1

aijYij
⎤
⎥
⎥
⎥
⎦
. (2.7)

From this definition it can be seen that effects, τi, are not estimable, but a
cell mean, µ + τi, or a contrast of effects, ∑ ciτi, where ∑ ci = 0, is estimable.

In matrix notation Lβ is a set of estimable functions if each row of L is a lin-
ear combination of the rows ofX, and Lβ̂ is its unbiased estimator. Lβ̂ follows
the multivariate normal distribution with covariance matrix σ2L′(X ′X)−L,
and the estimator of the covariance matrix is σ̂2L′(X ′X)−1L. For example,
using the data from the bread rise experiment above,

L = (
0 1 −1 0
0 1 0 −1

) , (2.8)

Lβ = (
τ1 − τ2
τ1 − τ3

), and Lβ̂ = (
τ̂1 − τ̂2
τ̂1 − τ̂3

) = (
−2.8025
−2.8750

)

is a vector of contrasts of the effects. The number of degrees of freedom, or
number of linearly independent contrasts of effects in a CRD, is always the
number of levels of the treatment factor minus one, that is, t − 1. Whenever
there is a set of t − 1 linearly independent contrasts of the effects, they are
called a saturated set of estimable contrasts.

It can be shown that (Lβ̂)′(L(X ′X)−1L′)−1(Lβ̂) follows the noncentral
chi-square distribution, χ2(p, λ) where the noncentrality parameter

λ = (σ2
)
−1

(Lβ)′(L(X ′X)
−1L′

)
−1

(Lβ),

and L is the coefficient matrix for an estimable contrast like (2.8), and the
degrees of freedom p is equal to the rank of L.

Estimable contrasts can be obtained from the fit.contrast function in
the R package gmodels, Warnes (2012). First install the gmodels package as
described in the appendix, then the package can be loaded and the function
called as shown in the example code below. There it is used to estimate the
average difference in the cell means for the first and second levels of the
treatment factor, (µ + τ1) − (µ + τ2) = τ1 − τ2.

> library(gmodels)

> fit.contrast( mod0, "time", c(1, -1,0) )

In the function call above, the mod0 is the name of a model previously fit with
the R function lm, the string in quotes is the name of the factor in the model
whose cell means are compared, and the vector c(1 -1,0) are the contrast
coefficients, ci. This produces the result (−2.8125), which is the negative of
the second estimate produced in the R output on the previous page using the
default treatment coding in the model mod0.
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2.4.5 Hypothesis Test of No Treatment Effects

In the model for the CRD, the statistical hypothesis of interest is H0 ∶ µ1 =

µ2 = . . . µt or τ1 = τ2 = . . . = τt versus the alternative Ha ∶ at least two of the τs
differ. If the null hypothesis is true, the model yij = µi+εij = µ+τi+εij simplifies
to yij = µ + εij , which can be represented as a single normal distribution with
mean µ and variance σ2 rather than multiple normal distributions like those
shown in Figure 2.2.

The sums of squares about the mean is ssTotal = ∑
t
i=1∑

ri
j=1(yij − y⋅⋅)

2 =

y′y − (1′y)2/(1′1), where y⋅⋅ is the grand mean and 1 is a column vector of
ones. This sum of squares can be partitioned as:

ssTotal = ssT + ssE (2.9)

where ssT = β̂′X ′y − (1′y)2/(1′1) = (Lβ̂)′(L(X ′X)−1L′)−1(Lβ̂), and L is
the coefficient matrix for a saturated set of estimable contrasts. This quantity
is called the treatment sums of squares. Under the null hypothesis H0 ∶ µ1 =

µ2 = . . . µt, both ssT and ssE follow the chi-squared distribution. These sums
of squares and their corresponding mean squares, which are formed by dividing
each sum of squares by its degrees of freedom, are usually presented in an
analysis of variance or ANOVA table like that shown symbolically in Table
2.2.

Table 2.2 Analysis of Variance Table

Source df Sum of Squares Mean Squares F-ratio
Treatment t − 1 ssT msT F =msT /msE
Error n − t ssE msE
Total n − 1 ssTotal msTotal

Under the null hypothesis, the F-ratio msT /msE follows the F-distribution
with t − 1 and n − t degrees of freedom, and under the alternative it follows
the noncentral F distribution with noncentrality parameter

λ = (σ2
)
−1

(Lβ)′(L(X ′X)
−1L′

)
−1

(Lβ) =
r

σ2

t

∑
i=1

(µi − µ̄⋅)2.

It is the generalized likelihood ratio test statistic for H0, and is the formal
method of comparing the treatment effects to the experimental error variance
described in Section 2.2.

The sums of squares, mean squares, degrees of freedom in the ANOVA
table, and associated F -test statistic can be calculated by the aov function in
R. The inputs to the aov function are the same as those for the lm function
shown earlier, but the summary of an object created by the aov function is
the ANOVA table rather than the estimates produced by the lm function. The
code to produce the ANOVA table for the bread dough rise experiment is:
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> mod1 <- aov( height ~ time, data = bread )

> summary(mod1)

The resulting ANOVA table is shown below.

Df Sum Sq Mean Sq F value Pr(>F)

time 2 21.57 10.786 4.602 0.042 *

Residuals 9 21.09 2.344

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

In this table the ssT and msT and the associated degrees of freedom are
on the line labeled time, the ssE is on the line labeled Residuals, and the
ssTotal can be computed by adding the ssT to the ssE. The F-value is the
ratio msT /msE and the last column labeled Pr(>F) is the probability of
exceeding the calculated F-value if the null hypothesis is true. This is called
the P-value and is illustrated graphically in Figure 2.3. If the experimenter
chooses the significance level, α, for his hypothesis test, he would reject the
hypothesis if the Pr(>F) value on the aov output is less than the chosen value
of α.

Figure 2.3 Pr > F

9,2F

60.4== msEmsTF

042.0)6.4Pr( 9,2 =>F

For the bread rise experiment there are significant differences among the
mean risen dough heights for each rise time at the significance level α = 0.05,
since 0.042 < 0.05.
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2.4.6 A Word of Caution

When a completely randomized design in one factor is conducted, the model
for analysis is Equation (2.1) or (2.2) and the correct analysis is through the
analysis of variance as shown symbolically in Table 2.2. The use of computer
software like R makes it easy to analyze data and draw conclusions; however,
if the experiment was not properly conducted even a sophisticated analysis
of the data could be useless. The εij term in the model (2.1) or (2.2), and
its associated sums of squares, ssE, represents replicate experimental units.
In many cases experimenters do not have replicate experimental units in each
level of the treatment factor and substitute sub-samples or duplicates for
them in the analysis. In other cases the experimental units are not properly
randomized to treatment factor levels. When this is the situation, performing
the analysis as if the design had been properly conducted may be completely
wrong and misleading. Wrong conclusions can be drawn that do not hold up
to later scrutiny, and a bad reputation is unfairly ascribed to statistically
designed experiments and statistical analyses of data.

For example, consider an experiment where a professor would like to de-
termine the effect of teaching methods on student test scores. If he uses one
teaching method for the morning class, another for his evening class, and treats
test scores for individual students as replicates, the results of his analysis may
be totally wrong. This situation is similar to the cluster randomized studies
described in exercise 5 of Chapter 1. The experimental unit is the class, since
he applied the teaching method to a whole class simultaneously, and the in-
dividual students are sub-samples or observational units (since he must test
individual students, not the class as a whole). The treatment effect should be
judged against the variability in experimental units or classes. The variability
among students in a class may be much different than variability from class
average to class average. Sub-sample observations should be averaged before
analysis, as explained in Section 1.3. If this were done, he would only have one
observation per class per teaching method and no replicates for use in calcu-
lating ssE in Table 2.2. There is no denominator for calculating the F -test
statistic for teaching method. If he uses the variability in students within a
class to calculate ssE, it may be too large or too small, causing him to reach
the wrong conclusion about the significance of the treatment effect. Further,
if he did not randomize which teaching method was used in the morning and
evening classes, and if he has no replicate classes that were taught with the
same teaching method, his analysis is wide open to biases. Students in the
morning classes may be fundamentally different than students in the evening
classes, and any difference in average scores between the two teaching methods
may be entirely due to differences among the two groups of students. In fact,
if the professor knows there are differences in morning and evening students,
he may purposely use the teaching method he wants to promote on the better
class, thus ruining the objectivity of his research.
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2.5 Verifying Assumptions of the Linear Model

Two assumptions required for validity of the analysis based on the linear
model presented in the last section are constancy of the variance of the ex-
perimental error, σ2, across all levels of the treatment factor, and normality
of the experimental errors. To verify these assumptions, simple graphs can be
constructed. A scatter plot of the model residuals versus the factor levels can
show whether the variability seen at each level of the factor is approximately
equal. The model residuals are the differences of the responses yij in each
cell (or level of the factor) and the cell means, µ̂i. When the variance differs
between factor levels, it is often because the variability in the response tends
to increase when the mean level of the response increases. A graph that can
reveal this tendency is a plot of the model residuals versus the cell means
or predicted values. Finally, the normality of the experimental errors can be
checked by making a normal probability plot of the model residuals.

The most critical assumption justifying the analysis based on the linear
model is independence of the experimental error terms εij . This assumption
is justified if proper randomization of the experimental units to treatment
factor levels has been performed and true replicates are included. A simple
scatter plot of the model residuals versus the experimental unit number can
reveal inadequacies in the randomization. If there is an increasing, decreasing,
or cyclical pattern in this plot, it could indicate the randomization did not
balance heterogeneous experimental units across levels of the factor.

The four plots used to verify the assumptions of the linear model can be
easily made using R. The code below produces these plots.

> par( mfrow = c(2,2) )

> plot(mod1, which=5)

> plot(mod1, which=1)

> plot(mod1, which=2)

> plot(residuals(mod1) ~ loaf, main="Residuals vs Exp. Unit",

+ font.main=1,data=bread)

> abline(h = 0, lty = 2)

In this code, the R command par(mfrow=c(2,2)) splits the plot region
into four subregions. The resulting plots are arranged row-wise in Figure 2.4.
The command plot(mod1, which=5) produces a plot of the standardized
residuals versus the factor levels in the upper left. The command plot(mod1,

which=1) produces the plot of residuals versus the cell means or fitted values
in the top right. The command plot(mod1, which=2) produces the normal
probability plot of the standardized residuals in the lower left. The final plot
statement produces the plot of residuals versus experimental unit numbers
in the lower right. In this plot statement, the residuals(mod1) extracts the
residuals from the object mod1 that was calculated by the aov function. A
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complete list of the quantities calculated by the aov function can be obtained
by typing the command names(mod1) in the R console.

Figure 2.4 Graphs to Verify Assumptions of Linear Model

If the variability of the residuals differs between the factor levels in the plot
in the upper left of Figure 2.4, it would indicate the variance of the εij ’s is not
constant. With only four replicates in each cell this is difficult to determine.
The plot of residuals versus cell means, shown in the upper right of Figure 2.4,
may indicate that the variability in the residuals increases as the cell mean
increases, but it is not clear. A better way to determine if this is the case will
be shown in the next section. The normal probability plot of residuals in the
lower left justifies the normality assumption concerning the εij ’s if the points
fall along a straight line. When there is more data and more points on the
plot, the points must lie closer to a straight line to justify this assumption. In
the normal plot in Figure 2.4, the points fall away from the line in the lower
left and the upper right possibly indicating short tails in the distribution of
residuals, but again it is difficult to determine with only 12 data points on
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the graph. The equal variance assumption is more critical than the normality
assumption, but they sometimes go hand in hand. When the equal variance
assumption is violated, the normality assumption is often violated as well,
and the corrective measures used for modifying the analysis when there is
heterogeneity of variance will often correct both problems.

2.6 Analysis Strategies When Assumptions Are Violated

One common cause of heterogeneity of variances between levels of the treat-
ment factor is a nonlinear relationship between the response and stimulus or
treatment. For example, in the upper half of Figure 2.5, it can be seen that
the response increases nonlinearly as a function of the factor levels. The den-
sity functions, drawn on their sides at three treatment levels, represent how
nonlinearity often affects the distribution of the response. As the mean or
center of the distribution increases, the variance or spread in the distribution
also increases, and the distributions have long tails on the right. One way of
correcting this situation is to transform the response data prior to analysis.

Figure 2.5 Representation of Effect of Nonlinearities on Distribution of Response
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The bottom half of Figure 2.5 shows the potential result of a variance stabi-
lizing transformation. On the transformed scale, the variance appears constant
at different factor levels and the distributions appear more normal.

2.6.1 Box-Cox Power Transformations

One way to recognize the need for a variance stabilizing transformation is to
examine the plot of residuals versus cell means described in the last section.
If the spread in the residuals tends to increase proportionally as a function
of the cell means (as possibly indicated in the upper right of Figure 2.4) a
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transformation, Y = f(y) can usually be found that will result in a more sen-
sitive analysis. Box and Cox (1964) proposed a series of power transformations
Y = yλ that normally work well. If the variance tends to increase as the mean
increases, choose a value of λ less than one, and if the variance tends to de-
crease as the mean increases, choose a value of λ greater than one. Table 2.3
summarizes some common Box-Cox power transformations. A common situa-
tion where the σ ∝ µ is when the response is actually a measure of variability,
like the sample variance s2.

Table 2.3 Box-Cox Power Transformations
Relation between
σ and µ λ Transformation

σ ∝ µ2 -1 Reciprocal

σ ∝ µ3/2 − 1
2

Square Root of Reciprocal
σ ∝ µ 0 Log

σ ∝ µ1/2 1
2

Square Root

In a CRD design with replicate experiments in each level of the treatment
factor, one way to determine the most appropriate value of λ to use in the
Box-Cox transformation is to plot the maximum of the log likelihood function
(which is proportional to the reciprocal of the error sum of squares in the
ANOVA) versus the value of λ used in transforming the data. The value of
λ that maximizes the log likelihood (or minimizes the error sum of squares)
would be most appropriate. This plot is called a Box-Cox plot. The boxcox

function in the R package MASS makes this plot automatically.
In the example shown below the boxcox function is used with the R lm

object mod1 that was fit to the data from the bread rise experiment. The plot
is shown in Figure 2.6, and λ = −.0505 maximizes the log likelihood.

> library(MASS)

> bc <- boxcox(mod1)

> lambda <- bc$x[which.max(bc$y)]

> lambda

[1] -0.5050505

In Figure 2.6, the values of λ directly below the points where the dotted
horizontal line labeled 95% intersects the curve are 95% confidence limits for
λ. In this example the confidence interval is wide and includes λ = 1 (no
transformation) and λ = −1 (reciprocal transformation). This shows there
is considerable uncertainty about the heterogeneity of variances with only
four replicate experiments in each level of the factor. However, for illustrative
purposes the analysis using the optimal (λ = −0.5050505) will be shown. The
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Figure 2.6 Box-Cox Plot for the Bread Rise Experiment

λ

R code to add the transformation to the data frame tbread and fit the model
to the transformed data follows.

> tbread <- transform(bread, theight = height^(-.5050505))

> mod2 <- aov( theight~time, data = tbread )

> summary(mod2)

The resulting ANOVA table below shows the P-value for the factor time has
decreased to 0.0209 from the 0.042 value shown in the earlier ANOVA of
the untransformed data. Therefore the transformation has made the analysis
slightly more sensitive.

Df Sum Sq Mean Sq F value Pr(>F)

time 2 0.01732 0.008662 6.134 0.0209 *

Residuals 9 0.01271 0.001412

For experiments where the variance heterogeneity is more pronounced, the
Box-Cox transformation can greatly increase the sensitivity in detecting treat-
ment effects.

The graphs to verify the assumptions of the analysis of the transformed data
can be made by modifying the code on page 29 replacing mod1 with mod2. The
result is shown in Figure 2.7. It can be seen in this figure that the spread or
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variability of the residuals is nearly the same for each value of the predicted
value or cell mean of responses raised to the −0.505 power.

Figure 2.7 Plot of Residuals versus Cell Means after yλ Transformation for Bread
Rise Experiment
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2.6.2 Distribution-Based Transformations

The distribution assumption for the effects model for the CRD described in
Section 2.3 was Yij ∼ N(µ+τi, σ

2). However, if it is known that the data follow
some distribution other than the normal distribution, such as the Binomial,
Poisson, or Lognormal, then it would also be known that the standard devia-
tion would not be constant. For example, if the response, Y , was a binomial
count of the number of successes in n trials, then due to the central limit the-
orem, Y would be approximately normal, but µY = np and σY =

√
np(1 − p),

where p is the probability of success. In situations like this where the distri-
bution of the response is known to follow some specific form, then an appro-
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priate transformation can be found to stabilize the variance. Table 2.4 shows
the transformation for common situations often encountered.

Table 2.4 Response Distribution-Based Transformations

Variance in Transformation
Response Distribution Terms of Mean µ f(y)

Binomial µ(1−µ)
n

sin−1
√
y/n (radians)

Poisson µ
√
y or

√
y + 1

2

Lognormal cµ2 log(y)

2.6.3 Alternatives to Least Squares Analysis

When the variance of the experimental error is not constant for all levels
of the treatment factor, but it is not related to the cell means, a trans-
formation will not be an appropriate way of equalizing or stabilizing the
variances. A more general solution to the problem is to use weighted least
squares. Using weighted least squares, β̂ is the solution to the normal equa-
tions X ′WXβ = X ′Wy, where W is a diagonal matrix whose diagonal
elements are the reciprocals of the standard deviation within each treatment
level. As an illustration of this method, consider the R code below for analyz-
ing the data from the bread rise experiment.

> with(bread, { std <- tapply(height, time, sd)

+ weights <- rep( 1/std, each = 4 )

+ mod3 <- lm( height ~ time, weights = weights, data = bread )

+ anova( mod3 )

+ })

In this example, the with(bread, {...}) function causes all statements
within the { } brackets to use the variables from the data frame bread. The
(height, time , var) function is used to calculate the variance of the re-
sponse at each level of the factor time. The weights are calculated as the
reciprocal of the standard deviations and the rep( ) function is used to ex-
pand the vector of weights to the number of rows in the data frame bread.
The lm function calculates the weighted least squares estimates and the anova
function prints the ANOVA table. The results appear on the next page.
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Analysis of Variance Table

Response: height

Df Sum Sq Mean Sq F value Pr(>F)

time 2 18.209 9.1047 6.2263 0.02006 *

Residuals 9 13.161 1.4623

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

With these results, it can be seen that the F -test from the weighted least
squares is more sensitive than the unweighted least squares, and the P-value
is similar to what was obtained with the Box-Cox transformation shown in
Section 2.6.1.

When the error distribution is not normal, an alternative to analyzing a
transformation of the response is to use a generalized linear model (see Mc-
Cullagh and Nelder, 1989). In fitting a generalized linear model, the user must
specify the error distribution and a link function in addition to the model. The
method of maximum likelihood is used to estimate the model parameters and
the generalized likelihood ratio tests are used to test the hypotheses. When
the link function is the identity and the distribution is normal, the general-
ized linear model analysis will result in the method of least squares and the
ANOVA F -test. There are several R functions to fit the generalized linear
models and compute the appropriate likelihood ratio test statistics.

To illustrate the use of one of these functions to analyze experimental data,
consider the following example. A professor wanted to compare three different
teaching methods to determine how the students would perceive the course.
The treatment factor was the teaching method, the experimental unit was a
class of students, and the response was the summary of student ratings for the
course. The professor taught two sections of the course for three consecutive
semesters resulting in a total of six experimental units or classes. He con-
structed a randomized list so that two classes were assigned to each teaching
method. This would reduce the chance that other differences in the classes, or
differences in his execution of the teaching methods, would bias the results.
At the end of each semester, the students were asked to rate the course on a
five-point scale, with 1 being the worst and 5 being the best. Therefore, the
response from each class was not a single, normally distributed response, y,
but a vector (y1, . . . , y5) response that followed the multinomial distribution.
The summary data from the experiment is shown in Table 2.5.
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Table 2.5 Counts of Student Rating Scores
Class Method 1 2 3 4 5

1 1 2 14 12 8 6
2 3 1 11 15 15 10
3 2 3 8 18 14 10
4 3 1 9 17 15 12
5 2 4 12 19 9 7
6 1 3 16 13 10 4

This data is stored in the data frame teach in the package daewr. The follow-
ing R code makes this data available and uses the function polr from the R
package MASS (Venables and Ripley, 2002) to fit the full and reduced model.
The function polr by default uses the logistic link function and the multino-
mial distribution. The response score and the treatment factor method in the
data frame teach are factors, while the variable score is a numeric variable
containing the counts of the various student rating scores. The formula in
the full model, modf, includes the treatment factor, while the formula in the
reduced model, modr, only includes the intercept.

> library(daewr)

> library(MASS)

> modf <- polr( score ~ method, weight = count, data=teach)

> modr <- polr( score ~ 1, weight = count, data = teach)

> anova(modf,modr)

The anova function displays the likelihood ratio test of the significance of the
treatment factor as shown below.

Likelihood ratio tests of ordinal regression models

Response: score

Model Resid. df Resid. Dev Test Df LR stat. Pr(Chi)

1 1 294 885.9465

2 method 292 876.2986 1 vs 2 2 9.647875 0.008035088
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The P-value for the likelihood ratio chi-square statistic is small indicat-
ing there is a significant difference between the teaching methods. Teaching
method 1 had an average score of 2.98, teaching method 2 had an average
score of 3.22, and teaching method 3 appeared to be the best with an average
score of 3.47. This can also be visualized in the bar charts in Figure 2.8, which
shows that the percentage of high scores given increases for teaching method
2 and 3.

Figure 2.8 Percentage of Student Rating Scores by Teaching Method
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2.7 Determining the Number of Replicates

The significance level, α, of the ANOVA F -test of no treatment effect is the
probability of rejecting the null hypothesis H0 ∶ µ1 = µ2, . . . ,= µt, when it is
true. The power of the test is the probability of rejecting the null hypothesis
when it is false. The test statistic msT /msE follows the F-distribution when
the null hypothesis is true, but when the null hypothesis is false it follows the
noncentral F-distribution. The noncentral F-distribution has a wider spread
than the central F-distribution, as shown in Figure 2.9.

The spread in the noncentral F-distribution and probability exceeding the
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Figure 2.9 Central and Noncentral F-Distribution
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critical limit from the central F-distribution is an increasing function of the
noncentrality parameter, λ. When the distribution is the noncentral F, the
probability of exceeding the critical limit from the central F-distribution is
called the power. The power is greater than the significance level, α, when the
null hypothesis is false making the noncentrality parameter greater than zero.
The power can be computed for any scenario of differing means, if the values
of the cell means, the variance of the experimental error, and the number of
replicates per factor level are specified. For a constant difference among cell
means, represented by ∑

t
i=1(µi − µ̄⋅)

2, the noncentrality parameter and the
power increase as the number of replicates increase.

When the differences among cell means is large enough to have practical
importance, the experimenter would like to have high power, or probability of
rejecting the hypothesis of no treatment effects. When the difference among
the means has practical importance to the researcher we call it practical signif-
icance. Practical significance does not always correspond to statistical signifi-
cance as determined by the F -test from the ANOVA. Sometimes the number
of replicates in the experiment is too few and the probability or power of
detecting a difference of practical significance too low. Statistical significance
can be made to coincide with practical significance by determining the ap-
propriate number of replicates that result in the desired power. Doing this is
the second technique that falls in the category of error control discussed in
Chapter 1. The idea that increasing the number of replicates increases the
sensitivity of the experiment is also due to Fisher (1935).

For example, if there is a difference among the cell means so that the cor-
rected sum of squares (css = ∑

t
i=1(µi − µ̄⋅)

2) is greater than zero, then the
power or probability of rejecting H0 ∶ µ1 = µ2, . . . ,= µt is given by

π(λ) = ∫
∞

Ft−1,t(r−1),α
F (x, t − 1, t(r − 1), λ)dx (2.10)

where Ft−1,t(r−1),α is the αth percentile of the central F distribution with t−1
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and t(r − 1) degrees of freedom, F (x, t − 1, t(r − 1), λ) is the noncentral F-
distribution with noncentrality parameter λ = r

σ2 ∑
t
i=1(µi − µ̄⋅)

2. For a fixed

value of 1
σ2 ∑

t
i=1(µi− µ̄⋅)

2, the noncentrality parameter and the power increase
as a function of the number of replicates, r. This probability can be calculated
for various values of r until a value is found with adequate power. In this way
the appropriate number of replicates can be determined. The Fpower function
in the R package daewr facilitates these computations.

In the bread rise experiment, suppose less than a 3-inch difference in risen
dough heights is of no consequence. However, if changing the rise time from 35
minutes to 45 minutes causes a difference of more than 3 inches in risen dough
height, the experimenter would like to know about it, because he will need to
monitor rise time closely in the future to produce loaves of consistent height.
In this case, we can regard ∆ = 3.0 as a practical difference in cell means. The
smallest css = ∑

t
i=1(µi − µ̄⋅)

2 could be, with at least two cell means differing
by ∆, would be the case when one cell mean was ∆/2 higher than the grand
mean, a second was ∆/2 less than the grand mean, and a third was equal to
the grand mean. This would result in

css =
t

∑
i=1

(µi − µ̄⋅)2
= (

∆

2
)

2

+ 02
+ (−

∆

2
)

2

= (
∆2

2
) = (

32

2
) = 4.5.

Assuming the variance of the experimental error σ̂2 = 2.1 was estimated from
the sample variance in risen dough heights in a pilot experiment where several
loaves were allowed to rise for the same length of time, then the noncentrality
factor can be calculated as λ = r

2.1
× (4.5). The power is calculated for r =

2, . . . ,6 using the R code shown below. This code illustrates the use of the
Fpower1 function that takes as arguments, alpha=α, nlev=t (the number of
levels of the factor), nreps=r, Delta=∆, and sigma=σ.

> library(daewr)

> rmin <-2 #smallest number of replicates considered

> rmax <-6 # largest number of replicates considered

> alpha <- rep(0.05, rmax - rmin +1)

> sigma <-sqrt(2.1)

> nlev <- 3

> nreps <- rmin:rmax

> Delta <- 3

> power <- Fpower1(alpha,nlev,nreps,Delta,sigma)

> power

By using a vector argument for nreps, the function produces a corresponding
vector of calculated power values that are shown in the following output.
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alpha nlev nreps Delta sigma power

[1,] 0.05 3 2 3 1.4491 0.19480

[2,] 0.05 3 3 3 1.4491 0.40419

[3,] 0.05 3 4 3 1.4491 0.59034

[4,] 0.05 3 5 3 1.4491 0.73289

[5,] 0.05 3 6 3 1.4491 0.83299

From this we can see that with r = 5 replicates there would be a 73% chance
of detecting a difference in cell means as large as 3.0, and with r = 6 there is a
83% chance. With fewer than five replicates there is at least a 40% chance this
difference will be missed. As a rule of thumb, the number of replicates that re-
sult in power between 0.80 and 0.90 is usually sufficient for most experimental
studies.

2.8 Comparison of Treatments after the F -test

When the F -test for the null hypothesis H0 ∶ µ1 = µ2 = . . . µt is rejected, it tells
us that there are significant differences between at least two of the cell means,
but if there are several levels of the treatment factor, it does not necessarily
mean that all cell means are significantly different from each other. When the
null hypothesis is rejected, further investigation should be conducted to find
out exactly which cell means differ. In some cases the investigator will have
preplanned comparisons he would like to make; in other situations he may
have no idea what differences to look for.

2.8.1 Preplanned Comparisons

Considering the treatment factor levels in the sugar beet yield experiment con-
ducted at Rothamstead in 1937 and described in Section 2.3, some preplanned
comparisons that might have been of interest are:

1. H0 ∶ µ1 =
1
3
(µ2 + µ3 + µ4)

2. H0 ∶ µ2 = µ3

3. H0 ∶ µ3 = µ4

The first comparison asks the question: Does a mix of artificial fertilizers
change yield? The second comparison asks the question: Is there a difference
in yields between plowed and broadcast application of artificial fertilizer? The
third comparison asks the question: Does timing of the application change the
yield?

These hypotheses can all be expressed in the general form H0 ∶ ∑
t
i=1 ciµi = 0,

where ∑
t
i=1 ci = 0. Since ∑

t
i=1 ciµi = 0 are estimable functions, each of these

hypotheses can be tested by computing the single estimable function Lβ̂ and
its standard error sLβ̂ =

√
σ̂2L′(X ′X)−1L. The ratio of the estimable function

to its standard error follows the t-distribution. The fit.contrast function
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in the R package gmodels (described before on page 25) performs this test.
For the sugar beet experiment the code below loads the data, and sets up and
prints the contrast matrix L.

> library(daewr)

> mod4 <- aov( yield ~ treat, data = sugarbeet )

> con <- matrix(c(1, -1/3, -1/3, -1/3, 0, 1, -1, 0,

+ 0, 0, 1, -1 ), 4, 3 )

> L <- t(con)

> rownames(L) <- c("-fertilizer effect", "-plowed vs. broadcast"

+ , "-January vs. April")

> L

[,1] [,2] [,3] [,4]

-fertilizer effect 1 -0.3333333 -0.3333333 -0.3333333

-plowed vs. broadcast 0 1.0000000 -1.0000000 0.0000000

-January vs. April 0 0.0000000 1.0000000 -1.0000000

The function call below prints the results. The options statement controls the
number of digits after the decimal for printing in this book.

> options(digits = 3)

> library(gmodels)

> fit.contrast( mod4, "treat", L)

The results are as follows.

Estimate Std. Error t value Pr(>|t|)

treat-fertilizer effect -8.8 0.825 -10.664 4.19e-08

treat-plowed vs. broadcast -3.8 0.975 -3.897 1.61e-03

treat-January vs. April 0.1 0.919 0.109 9.15e-01

The P-values in the column labeled Pr >|t|, in the above output, can be
interpreted the same way the P-values for the F -statistic were interpreted, and
we can see that: (1) artificial fertilizers enhance yield, (2) broadcast application
results in higher yields than plowed application, and (3) there is no significant
difference in yield between April and January application time.

When factor levels are quantitative, such as the rise time in the bread dough
rise experiment, preplanned comparisons often involve looking for the signif-
icance of linear or higher order polynomial trends in the response. Contrast
coefficients, ci for testing orthogonal polynomial trends, can be obtained from
the R contr.poly function. The required input for this function is the number
of levels of the factor. The result is an orthogonal matrix with the contrast
coefficients desired. For example, for the bread dough rise experiment, the
commands on the next page construct and print the contrast matrix.
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> contrasts(bread$time) <- contr.poly(3)

> contrasts(bread$time)

The resulting contrast matrix below has coefficients for the linear and
quadratic contrasts.

.L .Q

35 -7.071068e-01 0.4082483

40 4.350720e-18 -0.8164966

45 7.071068e-01 0.4082483

The code using the R aov and summary.lm functions shown below calculates
the contrasts and displays the results.

> mod3 <- aov( height ~ time, bread )

> summary.lm(mod3)

In the following results, we can see that there is a significant (at the α = 0.05
level) linear trend, but no significant quadratic trend.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.3333 0.4419 16.593 4.68e-08 ***

time.L 2.0329 0.7655 2.656 0.0262 *

time.Q -1.1227 0.7655 -1.467 0.1765

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

If the levels for the factor time were created with the ordered command
rather than the factor command, R automatically creates the X matrix
using the orthogonal polynomial contrasts and the summary table above can
be obtained without creating additional contrasts for time.

2.8.2 Unplanned Comparisons

When a set of preplanned comparisons can be expressed as a saturated set
of orthogonal contrasts, like the examples shown in the last section, these
comparisons are independent and equivalent to partitioning the overall F -
test of H0 ∶ µ1 = . . . = µt. However, if the comparisons are not planned in
advance of running the experiment, the analyst might be tempted to choose
the comparisons he or she would like to make based on the means of the data.
This implicitly means that all possible comparisons have been made. When
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testing all possible comparisons, each at the α=0.05 significance level, the
overall significance level can be much higher than 0.05, greater than 50% in
some cases. This means that even when there is no difference in the cell means
µ1, . . . , µt there could be a high probability of finding one or more comparisons
significant when each is tested individually. In order to reduce the overall (or
experiment-wise) chance of a type I error, an adjustment must be made.

For pairwise comparisons of the form H0 ∶ µi = µj for i ≠ j Tukey’s HSD
(or honestly significant difference) method adjusts the critical region by us-
ing the studentized range statistic instead of the student’s t-distribution. Us-
ing the HSD reject H0 ∶ µi = µj in favor of the alternative Ha ∶ µi ≠ µj if

∣µ̂i − µ̂j ∣ > (
√

2)qI,n−t,αsµ̂i⋅−µ̂j⋅ where qI,n−t,α is the α upper percentile of the
studentized range. This is only approximate when the sample sizes are un-
equal. If X1, . . . ,XI are independent random variables following N(µ,σ2) and
R = maxiXi − miniXi then R/σ̂ follows the studentized range distribution
(see Tukey, 1949a).

The R function TukeyHSD will make pairwise comparisons using Tukey’s
HSD method. The code below illustrates how this function is called to make
the comparisons on the data from the sugar beet experiment.

> mod4 <- aov( yield ~ treat, data = sugarbeet )

> mod4.tukey <- TukeyHSD( mod4, ordered = T )

> mod4.tukey

A portion of the output is shown below.

Tukey multiple comparisons of means

95% family-wise confidence level

factor levels have been ordered

diff lwr upr p adj

B-A 6.3 3.3122236 9.287776 0.0001366

D-A 10.0 7.1655464 12.834454 0.0000004

C-A 10.1 7.2655464 12.934454 0.0000003

D-B 3.7 0.8655464 6.534454 0.0094231

C-B 3.8 0.9655464 6.634454 0.0077551

C-D 0.1 -2.5723484 2.772348 0.9995162

The first column of the output lists the comparison made, the next column
lists the difference in cell means, and the next two columns are bounds for
a 95% confidence interval on the difference of means of the form ∣µi − µj ∣ ±

(
√

2)qI,n−t,0.05sµ̂i⋅−µ̂j⋅ . The final column is a P-value for the test of the null
hypothesis that the two means are equal. For example, the confidence interval
for the last comparison, µC − µD, includes zero and the P-value is > 0.05
indicating the sugar beet yield for treatment (C—artificial applied broadcast
in January) is not significantly different than the yield for treatment (D—
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artificial applied broadcast in April). All other pairwise comparisons show a
significant difference.

A less conservative method of comparing all possible cell means was devel-
oped independently by Newman (1939) and Keuls (1952). This method is also
based on the studentized range statistic, but is based on the range of the par-
ticular pair of means being compared, within the entire set of ordered means,
rather than the range of the largest to smallest as Tukey’s HSD. The means
comparison using the student Newman-Keuls method can be made using the
Snk.test function in the R package agricolae (de Mendiburu, 2012a). The
arguments for the Snk.test function are similar to the TukeyHSD function
and are illustrated below using the data from the sugar beet experiment.

> library(agricolae)

> compare <- SNK.test( mod4, "treat", alpha = 0.05 )

> print(compare)

A portion of the output is shown below.

$statistics

Mean CV MSerror

45.68333 3.182182 2.113321

$parameters

Df ntr

14 4

$SNK

Table CriticalRange

2 3.033186 2.091573

3 3.701394 2.552344

4 4.110506 2.834454

$groups

trt means M

1 C 48.8 a

2 D 48.7 a

3 B 45.0 b

4 A 38.7 c

The critical range section of the output lists the critical values for difference
in means that range 2, 3, or 4 apart. In the last section of output, means with
the same Group indicator on the left are not significantly different. This shows
the sugar beet yield for treatment (C—artificial applied broadcast in January)
is not significantly different than the yield for treatment (D—artificial applied
broadcast in April). All other pairwise comparisons show a significant differ-
ence (in this case same results as Tukey’s HSD method).

The last section of the output of the Snk.test function illustrates a compact
way of presenting the significant differences in treatment means that are found
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by multiple comparison techniques like Tukey’s HSD method or the student
Newman-Keuls method. When reporting results in written text, this method
of presentation can be modified by listing the means horizontally in the text
from smallest to largest and using an underline in place of the Group indica-
tor to show which means are not significantly different. Means that are not
significantly different are underlined with the same line. The example below
shows the means from an experiment to determine the effect of the download
site upon the time to download a file.

B      D      A      C      E
2.73  3.20  3.79  4.03  5.27

The results show that the download time is not significantly different be-
tween sites B and D, and not significantly different between sites D and A,
but there is a significant difference in the download time between sites B and
A. Likewise, there is no significant difference in download times for sites A
and C, but the download time for site C is significantly longer than either site
B or D. Finally, site E has a significantly longer download time than any of
the other sites.

2.8.3 Comparison of All Means to a Control or the Best

In some experiments one of the treatment levels is the current or default level
and the others are new or experimental levels. One of the main objectives in
this type of experiment might be to compare the mean of each experimental
level to the default, or sometimes called the control level. Dunnett (1955) de-
veloped a method to do this and control the experiment-wise type I error rate.
In the sugar beet yield experiment, treatment level (A—no artificial fertilizer)
can be thought of as the control. All other treatment levels can be compared
to this one using the glht function in the R package multcomp (Hothorn et al.,
2008). To load the multcomp package you must also have the mvtnorm pack-
age (Genz et al., 2012), and the survival package (Therneau, 2012) installed.
When using the Dunnett method the glht function (by default) uses the first
level of the treatment factor as the control.

> summary(sugarbeet)

treat yield

A:4 Min. :36.90

B:4 1st Qu.:43.77

C:5 Median :47.25

D:5 Mean :45.68

3rd Qu.:48.58

Max. :51.30

As can be seen above the treatment level (A—no artificial fertilizer) is the
first level of the treatment factor in the data frame for the sugar beet yield
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experiment. The code to use Dunnett’s method to compare mean at each level
of the treatment factor to the control (A) by calling the glht function is shown
below.

> library(multcomp)

> sugar.dun<-glht(mod4,linfct = mcp(treat = "Dunnett"),

+ alternative = "greater")

> summary(sugar.dun)

The output below is the result of one-tailed tests. When comparing all
treatment levels to a control, the desired direction of the difference is often
known. Therefore a one-tailed test, rather than a two-tailed test, may be
required. Other options for alternative = in the code above are "less" or
"two.sided".

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

Fit: aov.default(formula = yield ~ treat, data = sugarbeet)

Linear Hypotheses:

Estimate Std. Error t value Pr(>t)

B - A <= 0 6.3000 1.0279 6.129 1.69e-05 ***

C - A <= 0 10.1000 0.9752 10.357 < 1e-05 ***

D - A <= 0 10.0000 0.9752 10.254 < 1e-05 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Adjusted p values reported -- single-step method)

When there is no control level of the treatment factor, there may still be
interest in comparing all treatment levels to the best level. For example, in
the experiment to see the effect of the download site on the time to download
a file, described at the end of Section 2.8.2, it may be of interest to find all
sites whose average download times are not significantly longer than the site
with the minimum observed average download time. In the means shown in
Section 2.8.2, site B had the shortest observed download time. To compare all
treatment means to the best level and control the experiment-wise error rate,
the MCB procedure of Hsu (1984) can be used. This procedure turns out to be
equivalent to Dunnett’s method. To use this method, first look at the observed
means and decide which is the best. Next, set up contrasts comparing each
level to the best. Finally, call the glht function to perform Dunnett’s test. For
example, if the data for the file download experiment were contained in a data
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frame called download, and the second level (or "B") of the factor site had the
minimum average download time, the code below sets up the contrasts and
calls the glht function to compare treatment means for sites "A", "C", "D",
and "E" to the mean for site "B" using Dunnett’s method.

> aov.ex <- aov(time ~ site, data=download)

> K <-rbind( c( 1, -1, 0, 0, 0), c(0, -1, 1, 0, 0),

+ c(0, -1, 0, 1, 0), c(0, -1, 0, 0, 1) )

> rownames(K) <- c( "A-B", "C-B", "D-B", "E-B" )

> colnames(K) <- names(coef (aov.ex))

> dht <- glht( aov.ex, linfct = mcp( site = "Dunnett" ),

+ alternative = "two.sided")

> summary(dht)
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2.9 Review of Important Concepts

In order to determine if cause and effect relationships exist and to make pre-
dictions about the results of future actions, experiments must be performed
wherein certain factors are purposely varied while others are held constant.
The one-factor design is the simplest case where one-factor is varied while all
other known factors are held constant.

Figure 2.10 shows a roadmap for selecting an appropriate experimental
design. When there is only one factor under study and experimental units
are homogeneous, the CRD design should be used as indicated in black in the
figure. This is the only situation presented in Chapter 2. As additional designs
are presented in subsequent chapters the other branches in Figure 2.10 will
be explained.

Figure 2.10 Design Selection Roadmap

Design Purpose
Estimate Variances Study Factor Effects
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Fisher’s technique of randomizing experimental units to treatment levels
guarantees the long run validity of the CRD and minimizes the chance that
changes in unknown factors, or lurking variables, will bias the results. The
way a series of experiments is conducted dictates what model should be used
for analysis.

The model for the analysis of the CRD or completely randomized for one-
factor design is yij = µi + εij or yij = µ + τi + εij , where yij is the observed
response for the jth replicate of the ith treatment level, µi is the cell mean
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for the ith level, and τi is the effect. εij is the experimental error for the
jth observation on treatment level i. εijs are assumed to be independent and
normally distributed with constant variance σ2. The typical analysis is to fit
the linear model by the method of least squares - maximum likelihood and
perform a likelihood ratio F -test of the H0 ∶ µ1 = . . . = µt. If the data were
not collected in a proper randomized design with replicates, analyzing data in
this way may be totally misleading.

The credibility of the conclusions of analysis depends on the degree to which
the assumptions are valid. The independence assumption is the most critical
and it is guaranteed when replicate experimental units are randomized to
treatment factor levels. The other assumptions should be checked. The con-
stant variance and normality assumptions can be checked by plotting the
residuals versus cell means and by making a normal probability plot of the
residuals. If these assumptions are violated, the data should be analyzed on
a transformed scale or by weighted least squares or the method of maximum
likelihood for the generalized linear model.

If a significant difference in cell means is found with the overall F -test, fur-
ther investigation of the differences can be made. If comparisons are planned
in advance of running the experiment and can be described by as a set of
orthogonal comparisons, the overall F -test can be partitioned to test these
comparisons. The experimentwise type I error rate for all possible compar-
isons of means can be controlled by using Tukey’s HSD or the less conservative
student Newman-Keuls method. For comparing all means to a control level,
Dunnett’s method should be used and for comparing all means to the best
(largest or smallest), Hsu’s MCB method should be used.
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2.10 Exercises

1. Consider the simple experiment described in Section 2.1 and used through-
out this chapter to determine the effect of rise time on the height of bread
dough. Describe the steps in the planning process for this experiment sim-
ilar to what was done for this historical example in Section 2.3. Describe
some of the potential problems that could occur in performing these exper-
iments (similar to Section 1.7), and discuss how careful planning using the
checklist from Chapter 1 could prevent these problems.

2. Paper helicopters can be cut from one half of an 81
2
× 11 sheet of paper as

shown below.

C
U
T

FOLD

4.25”

FO
L
D

CUT

4”

These helicopters can be made quickly and inexpensively, and can be used
to demonstrate experimental design concepts. An experiment can be per-
formed by constructing a helicopter, dropping it from a fixed height, and
clocking the time it takes to rotate to the floor, as shown above, with a
stopwatch. The wing length could be varied by trimming some paper off
the top prior to folding the wings. Trimming some paper off would reduce
the weight of the helicopter, but would also result in less surface area on
the blades. You could experiment to determine if changing the wing length
affects the flight time.

(a) Describe the experimental unit.

(b) Explain the difference in replicates and duplicates for this situation.

(c) Describe the treatment factor.

(d) Describe any lurking variables that might affect the results of experi-
ments.

(e) Explain why randomization would be important.
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(f) Create a randomized list of experiments for examining four wing lengths
of (4”, 4.75”, 5.5”, and 6”) with eight replicate experiments in each level.

(g) Carry out the experiments and collect the data.

(h) Perform an analysis of variance with your data.

(i) Check the equal variance and normality assumptions with residual plots.

(j) Test whether there is a significant linear or quadratic trend in flight
times as the wing length increases.

3. In Section 2.8.2 an experiment for determining the effect of the download
site selected upon the time to download a file was discussed. In this exper-
iment:

(a) Describe the experimental unit.

(b) Describe the treatment factor.

(c) Describe the response.

(d) Discuss the causes for experimental error in this experiment and why
the principles of replication and randomization would be important in
reaching a valid conclusion.

4. In an experiment to study the effect of the amount of baking powder in
a biscuit dough upon the rise heights of the biscuits, four levels of baking
powder were tested and four replicate biscuits were made with each level
in a random order. The results are shown in the table below.

.25 tsp .5 tsp .75 tsp 1 tsp
11.4 27.8 47.6 61.6
11.0 29.2 47.0 62.4
11.3 26.8 47.3 63.0
9.5 26.0 45.5 63.9

(a) What is the experimental unit?

(b) Perform the analysis of variance to test the hypothesis of no treatment
effect.

(c) Formulate a contrast to test the hypothesis that increase in rise height
is a linear function of the increase in baking powder in the dough, and
test this hypothesis.

(d) Estimate the variance of the experimental error σ2.

(e) Make a plot of residuals versus predicted values and normal plot of
residuals and comment on whether the assumptions of the linear model
are justified.

(f) If the dough were made in batches and the four replicate biscuit rise
heights in each column (shown in the table above) were all from the
same batch, would your answer to (a) be different? How could the data
be analyzed if this were the case?
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5. The effect of plant growth regulators and spear bud scales on spear elon-
gation in asparagus was investigated by Yang-Gyu and Woolley (2006).
Elongation rate of spears is an important factor determining final yield of
asparagus in many temperate climatic conditions. Spears were harvested
from 6-year-old Jersey Giant asparagus plants grown in a commercial plant-
ing at Bulls (latitude 40.2S, longitude 175.4E), New Zealand. Spears were
harvested randomly and transported from field to lab for investigation. Af-
ter trimming to 80mm length, spears were immersed completely for 1 h in
aqueous solutions of 10 mg l-1 concentration of indole-3-acetic acid (IAA),
abscisic acid (ABA), GA3, or CPPU (Sitofex EC 2.0%; SKW, Trostberg,
Germany) in test tubes. Control spears were submerged in distilled wa-
ter for 1 h. The experiment was a completely randomized design with five
replications (spears) per treatment. The resulting data (final spear length
in mm) is shown below.

Control IAA ABA GA3 CPPU
94.7 89.9 96.8 99.1 104.4
96.1 94.0 87.8 95.3 98.9
86.5 99.1 89.1 94.6 98.9
98.5 92.8 91.1 93.1 106.5
94.9 99.4 89.4 95.7 104.8

(a) Perform the analysis of variance to test the hypothesis of no treatment
effect.

(b) Use the Tukey method to test all pairwise comparisons of treatment
means.

(c) Use the Dunnett procedure to compare all treatment group means to
the control mean.

6. Consider an experimental situation where the investigator was interested in
detecting a maximum difference in treatment means that is twice the stan-
dard deviation of the response measured on replicate experimental units
assigned to the same level of the treatment factor, that is, ∆ = 2.0σ. If
there are 4 levels of the treatment factor:

(a) Modify the R code in Section 2.7 to calculate the power for various
numbers of replicates r per treatment level.

(b) Calculate the number of replicates necessary to have 0.90 power of de-
tecting a difference as large as ∆ = 2.0σ.

(c) How would the result you got in (c) change if the number of levels of the
treatment factor increased to 8, or decreased to 2?
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CHAPTER 3

Factorial Designs

3.1 Introduction

In Chapter 2 we examined one-factor designs. These are useful only when one
factor is under study. When multiple factors are under study, one classical
approach is to study each separately while holding all others constant. Fisher
(1935) pointed out that this approach is useful for demonstrating known rela-
tionships to students in laboratory courses when the influence of other factors
is known. However, this approach is both inefficient and potentially mislead-
ing when it comes to discovering new knowledge through experimentation. A
much better strategy for experimenting with multiple factors is to use a facto-
rial design. In a factorial design the cells consist of all possible combinations
of the levels of the factors under study. Factorial designs accentuate the factor
effects, allow for estimation of interdependency of effects (or interactions),
and are the first technique in the category of what is called treatment design.

By examining all possible combinations of factor levels, the number of repli-
cates of a specific level of one factor is increased by the product of the number
of levels of all other factors in the design, and thus the same power or precision
can be obtained with fewer replicates. In addition, if the effect of one factor
changes depending on the level of another factor, it will be seen in a factorial
plan. This phenomenon will be missed in the classical approach where each
factor is only varied at constant levels of the other factors. The example in
the next section will illustrate these facts.

3.2 Classical One at a Time versus Factorial Plans

In the exercises for Chapter 2, a set of experiments with paper helicopters
was described. In those experiments only one factor, the wing length, was
under study. However, to maximize the flight time of paper helicopters, it
would be advisable to consider more than one factor. For example, consider
varying wing length over 4 levels as before, and the body width over four levels,
such as 4.25”, 4.0”, 3.75”, and 3.5”. The left side of Figure 3.1 represents the
classical plan in which one factor is varied at a time. The circles in the diagram
represent experiments or runs. Using this approach, the experiments across
the bottom of the figure would be completed by varying wing length while
holding body width constant at 3.5”. Next, the three additional experiments
up the left side of the figure would be completed by varying body width while
holding the wing length constant at its low level of 4.0”. If eight replicate runs

55
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were to be made for each of these experiments (as suggested in exercise 2 of
Chapter 2), a total of 56 experiments would be required.

Figure 3.1 Comparison of One-at-a-Time and Factorial Designs
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If the objective were to find the combination with the longest flight time,
the classical approach would be to complete the experiments with one factor
first. Next one would calculate the cell means and then select the level with
the highest mean. Finally, the second factor would be varied while holding the
first constant at its optimal level, not the lowest level as shown in Figure 3.1.
However, Fisher’s caution to randomize would tell you this is a bad strategy.
If any unknown forces changed after the first set of experiments, the results
could be biased. Additionally, the optimal level of one factor may depend upon
the level of the other factor. Therefore, by varying one factor at a time, the
overall optimum may be missed.

The diagram on the right side of Figure 3.1 represents a factorial plan for
the helicopter experiments. Here it can be seen that experiments are run at
all combinations of the levels of the two factors. In this plan, if two replicates
of each cell are completed, there will be eight replicates of each level of wing
length, and eight replicates of each level of body width which is equivalent
to the one-at-a-time plan. Therefore the factorial plan would have the same
precision or power for detecting factor effects as the one-at-a-time plan, but
is more efficient since it requires only 2 × 16 = 32 total runs as opposed to
the 56 required by the one-at-a-time plan. The number of replicates of each
factor level in the factorial design is equal to the number of replicates per
cell times the product of the levels of all other factors in the design. This
multiplication is referred to as hidden replication. In the case shown in Figure
3.1, there are only two factors each at four levels; therefore, the number of
replicates of each factor level is 2×4 = 8. In the factorial plan, the 32 treatment
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combinations would be randomized to experimental units, thus preventing
biases from unknown sources.

In more complicated research problems many treatment factors may be un-
der study. The efficiency of factorial designs can be demonstrated even in the
simplest case where each factor has only two levels. For example, consider a
design with four factors. A factorial design would require all combinations of
four factors at two levels, or 24 = 16 cells. If two replicates were run for each
cell, there would be a total of 2×16 = 32 experiments or runs. To examine the
effect of any one of the four factors, half the runs (or 2 × 23 = 16 due to the
hidden replication) would be at one level of the factor and half at the other
level. Thus the treatment effect would consist of a difference of two averages of
16. Results from the same 32 experiments can be used to calculate the treat-
ment effect for each of the four factors. To have equal precision for comparing
treatment effects using a one-at-a-time plan, 32 runs would be required for
comparing the levels of each factor while holding the others constant. This
would result in 4× 16+ 16 = 80 experiments, or 2.5 times the number required
for a factorial design!

3.3 Interpreting Interactions

If there is an interaction or joint effect between two factors, the effect of
one factor upon the response will differ depending on the level of the other
factor. This can be illustrated graphically in Figure 3.2. On the left side of the
figure is a contour plot representing the results of a series of experiments with
paper helicopters. This plot can be interpreted like a topological map with the
lines representing contours of equal flight time. You can simulate what would
happen in a series of experiments where wing length was held constant

Figure 3.2 Contour Plot of Flight Time for Helicopter Experiment
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and body width varied by drawing a straight line parallel to the body width
axis across the contour plot. The flight time for various runs can be read off
as the label for the contour lines the straight line intersects. For example, if
wing length were held constant at a value below its mid-point on the left of the
contour plot, the flight times resulting from five runs with varying body width
are represented as the black line traced on the graph at the right in Figure 3.2.
If the wing length were held constant at a higher value, the grey line indicates
what the result of a series of experiments with body width might look like.
The fact that the two lines or curves on the right side of the figure are not
parallel indicates there is an interaction between wing length and body width.
They show that the effect of body width depends upon the wing length.

Interactions are common in the real world, but using the classical one-at-
a-time strategy of experimentation tacitly assumes that interactions do not
exist. To see the fallacy that results from this assumption, examine Figure 3.3,
which represents what would happen if one were to search for the optimum
combination of wing length and body width.

Figure 3.3 One-at-a-Time Optimization with Paper Helicopters

3.0
2.8

2.6
2.4

2.2
2.0

W
in

g 
Le

ng
th

Body Width

2.0

2.32.82.2

2.4

2.0

2.3

2.5 2.6

The vertical set of circles are drawn at the wing length, body width combi-
nations for a series of experiments that vary wing length while holding body
width constant. The numbers within the circles represent the resulting flight
times. After examining the result of this series of experiments, the optimal
wing length would be chosen and another series of experiments would be con-
ducted by holding the wing length constant at its optimal value and varying
the body width. The results of these experiments can be visualized as the
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horizontal series of circles. The maximum result, 2.8, is not the overall opti-
mum, because the optimal wing length depends on the body width and vice
versa.

Table 3.1 Mooney Viscosity of Silica B at 100○C

Naphthene Oil (phr) Filler (phr)
0 12 24 36 48 60

0 25 30 35 40 50 60
10 18 21 24 28 33 41
20 13 15 17 20 24 29
30 11 14 15 17 18 25

When the effect of the factors is close to linear, the interaction is easier
to explain in words. Table 3.1 shows the results of a factorial experiment
conducted by Derringer (1974) to determine the effect of elastomer compounds
on the viscosity silica at 100○C. The elastomer compounds were Naphthene
Oil, studied at 4 levels, and Filler content, studied at 6 levels.

Figure 3.4 shows a graphical representation of the data in the table. This
figure is called an interaction plot. As the Filler is increased from 0 to 60, the
viscosity increases along a fairly linear trend. However, the slope of the trend
line depends upon the level of Naphthene Oil. When there is no Naphthene Oil
added, increasing the Filler from 0 to 60 causes viscosity to increase rapidly
from 25 to 60; but when there is 30 phr of Naphthene Oil, increasing the Filler
from 0 to 60 causes a more gradual increase in viscosity from 11 to 25.

Figure 3.4 Interaction Plot of Filler and Naphthene Oil
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Since interactions are common in factorial experiments, it is important to
learn how to explain or interpret an interaction in order to clearly present the
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results of research studies. This is best done by describing the effect of one
factor upon the response, and then contrasting or comparing how that effect
changes depending on the level of the other factor. An interaction plot, like
Figure 3.4, can guide the description or interpretation. Many more examples
of interpreting interactions will be given throughout this chapter and the
remainder of the book.

3.4 Creating a Two-Factor Factorial Plan in R

A factorial design can be easily created using R in several ways. For exam-
ple, nested loops could be used, the base R function expand.grid, or several
functions available in user developed packages. For example, the expand.grid
function (which creates a data frame containing all possible combinations of
supplied factors) is illustrated below to create a factorial design to study paper
helicopters.

> D <- expand.grid( BW = c(3.25, 3.75, 4.25), WL = c(4, 5, 6) )

> D

BW WL

1 3.25 4

2 3.75 4

3 4.25 4

4 3.25 5

5 3.75 5

6 4.25 5

7 3.25 6

8 3.75 6

9 4.25 6

As can be seen, this code creates an unreplicated 32 factorial in factors
Body width = BW and Wing length = WL with the supplied levels for these
factors. This design is stored in the data frame D. To replicate every run in
the design, the R function rbind (which stacks one copy of the 32 factorial
design on top of the other) is used as shown below.

> D <- rbind(D, D)

To randomize the order of the runs, the sample function can be used to
create a random order of the run numbers 1 to 18. Next, the rows in the data
frame D are ordered by this random order list. Finally, the factor columns
from the data frame D can be copied into a new data frame Copterdes and
this data frame can be written to a .csv file to produce an electronic data
collection form like the example on page 19. This is illustrated in the code on
the next page.
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> set.seed(2591)

> D <- D[order(sample(1:18)), ]

> CopterDes <- D[ c( "BW", "WL" )]

> CopterDes

> write.csv(CopterDes, file = "CopterDes.csv", row.names = FALSE)

The list that was produced by this code shows that the first experiment
would consist of constructing a helicopter with a body width of 3.75” and a
wing length of 4”, dropping it from a fixed height, and timing its flight. The
second experiment consists of constructing a helicopter with a body width of
3.75” and a wing length of 5”, dropping it from the same fixed height, and
timing its flight, and so forth. The randomization will help prevent biases
from any lurking variables such as changes in air currents, changes in temper-
ature, or learning curves in dropping or timing helicopters. By removing the
set.seed(2591) statement in the above code, a different random ordering of
the experiments will result each time the code is run.

3.5 Analysis of a Two-Factor Factorial in R

The mathematical model for a completely randomized two-factor factorial
design can be written as:

yijk = µij + εijk, (3.1)

where i represents the level of the first factor, j represents the level of the
second factor, and k represents the replicate number. This model is called the
cell means model and µij represents the expected response in the ijth cell.

Another way of representing the model is the effects model

yijk = µ + αi + βj + αβij + εijk. (3.2)

In this model, αi, βj are the main effects and represent the difference between
the marginal average of all experiments at the ith level of the first factor
and the overall average, and the difference between the marginal average at
the jth level of the second factor and the overall average, respectively. The
interaction effects, αβij , represent the difference between the cell mean, µij ,
and µ +αi + βj . With these definintions, ∑i αi = 0, ∑j βj = 0, ∑i αβij = 0, and

∑j αβij = 0.
The usual assumptions are that the experimental errors are independent and

εijk ∼ N(0, σ2). The independence assumption is guaranteed if the treatment
combinations are randomly assigned to the experimental units, and the equal
variance and normality assumptions can be verified with a residual versus
predicted plot and a normal probability plot of the residuals as described in
Section 2.4.

Estimable functions, as described for the one-factor model in Section 2.4.4,
are linear combinations of the cell means that can be expressed as a lin-
ear combination of the data. For the two-factor factorial the cell means,
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µij = µ + αi + βj + αβij , are estimable functions but the individual effects,
αi, βj , and αβij are not estimable functions. Contrasts among the effects such
as ∑i ciαi and ∑j cjβj , where ∑i ci = 0,∑j cj = 0 are estimable only in the
additive model where all αβij ’s are zero. Contrasts of the form ∑i∑j bijαβij ,
where ∑i bij = 0,∑j bij = 0 are estimable even in the non-additive model.
The estimable functions and their standard errors can be computed with
the estimable function in the R package gmodels. The marginal means
µ + αi + αβi⋅ and µ + βj + αβ ⋅j are estimable functions and they and the cell
means can be computed using the R function model.tables, which will be
illustrated on page 147.

3.5.1 Matrix Representation of Model and Analysis

The effects model can be represented in matrix notation as

y =Xβ + ε = ( 1 ∣ XA ∣ XB ∣ XAB )

⎛
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⎜
⎜
⎝

µ
βA
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βAB

⎞
⎟
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⎟
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+ ε (3.3)

.
For example, consider a case where the first factor has two levels, the second

factor has three levels, and there are two replicates per cell. Then
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The X ′X is singular and to solve the normal equations (using the default
treatment coding) the R function lm drops the indicators for the first level
of each factor in the main effect columns, and creates the columns for the
interaction as all possible products of the main effect columns. This makes
the X ′X matrix full rank as was the case for the one-factor model in Sections
2.3.1 and 2.3.2. For the two-factor model where the first factor has two levels,
the second factor has three levels, and there are two replicates per cell, the y
vector and recoded X matrix would be as shown on the next page.
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This treatment coding makes the µ11 cell mean the standard, and the resulting
effect estimates are shown below.
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The error sum of squares ssE = y′y− β̂′X ′y= y′(I −X(X ′X)−1X ′)y, where
β̂ = (X ′X)−1X ′y are the estimates produced by the lm function in R. To
test the hypothesis H0 ∶ α1 = α2 = 0,H0 ∶ β1 = β2 = β3 = 0, and H0 ∶ αβ11 =

αβ21 = αβ12 = αβ22 = αβ13 = αβ23 = 0, the likelihood ratio F -tests are obtained
by calculating ratios of the ANOVA mean squares. What the lm designates
as the sums of squares for factor A is ssA = β̂′X ′y − (1′y)2/(1′1), where
the model is simplified to include only the effects for the first factor, that
is, X = ( 1 ∣ XA ). The error sums of squares for this simplified model is
ssEA. The sums of squares for factor A is denoted R(α∣µ). The sums of squares
for factor B is denoted R(β∣α,µ)=ssEA−ssEB where ssEB is the error sums of
squares from the reduced model where X = ( 1 ∣ XA ∣ XB ). Finally,
the sums of squares for the interaction AB is denoted R(αβ∣β,α,µ)=ssEB −

ssE. In general when there are a levels of factor A, b levels of factor B, and
r replicates per cell, the ANOVA table for the two-factor factorial design can
be represented symbolically as shown in Table 3.2.
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Table 3.2 Analysis of Variance Table

Source df Sum of Squares Mean Squares F-ratio

A a − 1 R(α∣µ) ssA
(a−1) F = msA

msE

B b − 1 R(β∣α,µ) ssB
(b−1) F = msB

msE

AB (a − 1)(b − 1) R(αβ∣β,α,µ) ssAB
(a−1)(b−1) F = msAB

msE

Error ab(r − 1) ssE ssE
ab(r−1)

The sums of squares ssA, ssB, and ssAB can also be written in the form

ssA = (Lαβ̂)
′
(Lα(X

′X)
−1L′

α)
−1

(Lαβ̂)

ssB = (Lββ̂)
′
(Lβ(X

′X)−1L′

β)
−1

(Lββ̂)

ssAB = (Lαββ̂)
′
(Lαβ(X

′X)
−1Lαβ

′
)
−1

(Lαββ̂),

where Lα, Lβ, and Lαβ are contrast matrices computed internally by the
lm function, see Goodnight (1980). Under the null hypotheses the F-ratios
msA/msE, msB/msE, and msAB/msE follow the F-distribution with the
degrees of freedom shown in the table, and under the alternative they follow
the noncentral F-distribution. The noncentrality parameter for F =msA/msE
is given by the expression λα = (σ2)−1(Lαβ̂)

′(Lα(X ′X)−1Lα
′
)−1(Lαβ̂). The

noncentrality parameters for the F-ratios msB/msE and msAB/msE are
similarly given. When there is an equal number, r, of replicates in each cell,
the noncentrality parameters can be shown to be equal to

λα = br∑
i

α2
i /σ

2 (3.4)

λβ = ar∑
j

β2
j /σ

2 (3.5)

and
λαβ = r∑

i

∑
j

αβ2
ij/σ

2. (3.6)

To illustrate the analysis of a two-factor factorial experiment in using the
R function aov consider the data in Table 3.3. These are the results of a
two-factor experiment given by Hunter (1983). In this data, an experiment
consisted of burning an amount of fuel and determining the CO emissions
released. The experimental unit is the portion of a standard fuel required
for one run, and the response, y, is the carbon monoxide (CO) emissions
concentration in grams/meter3 determined from that run. There were two
replicate runs for each combination of factor levels separated by commas in
Table 3.3. Factor A is the amount of ethanol added to an experimental unit or
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portion of the standard fuel, and factor B is the fuel-to-air ratio used during
the burn of that fuel.

Table 3.3 Data from Ethanol Fuel Experiment
A=ethanol additions B=air/fuel ratio y=CO emissions

0.1 14 66, 62
0.1 15 72, 67
0.1 16 68, 66
0.2 14 78, 81
0.2 15 80, 81
0.2 16 66, 69
0.3 14 90, 94
0.3 15 75, 78
0.3 16 60, 58

The data for this experiment is stored in the data frame COdata in the
daewr package where the levels of ethanol and ratio are stored as the factors
Eth and Ratio. The R commands to analyze the data are shown below.

> library(daewr)

> mod1 <- aov( CO ~ Eth * Ratio, data = COdata )

> summary(mod1)

The ANOVA table that results follows. There it can be seen that aov pro-
duces a table of the sums of squares, as described earlier. It can be seen from
the tables that the two effects and their interaction are significant as indicated
by the P-values to the right of the F-values.

Df Sum Sq Mean Sq F value Pr(>F)

Eth 2 324.0 162.0 31.36 8.79e-05 ***

Ratio 2 652.0 326.0 63.10 5.07e-06 ***

Eth:Ratio 4 678.0 169.5 32.81 2.24e-05 ***

Residuals 9 46.5 5.2

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The model.tables function produces the results shown on the next page.
The top line is the estimate of the overall mean µ̂. The next two sections
show the marginal means for each factor along with the standard deviation of
the values averaged in each mean. If the interaction was not significant, the
marginal means would reveal the direction of the factor effects, but further
preplanned comparisons or other multiple comparison procedures could be
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used to draw definite conclusions. The next section shows the cell means, and
the final section shows the standard errors of the differences in marginal and
cell means.

> model.tables( mod1, type = "means", se = T )

Tables of means

Grand mean

72.83333

Eth

Eth

0.1 0.2 0.3

66.83 75.83 75.83

Ratio

Ratio

14 15 16

78.5 75.5 64.5

Eth:Ratio

Ratio

Eth 14 15 16

0.1 64.0 69.5 67.0

0.2 79.5 80.5 67.5

0.3 92.0 76.5 59.0

Standard errors for differences of means

Eth Ratio Eth:Ratio

1.312 1.312 2.273

replic. 6 6 2

Two estimate specific contrasts of the main effects, the estimable function
from the Rpackage gmodels can be utilized. To use it we must first construct
contrasts to replace the default treatment contrasts used by the R function
aov. For example, in the first statement below we construct the contrast coef-
ficients for comparing the first factor level to the third in a three level factor.
A second contrast orthogonal to the first is also constructed, and the contrast
matrix cm is created by using the two contrasts as columns.

> c1 <- c(-1/2, 0, 1/2)

> c2 <- c(.5, -1, .5)

> cm <- cbind( c1, c2 )
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In the call of the aov function below, the cm contrast matrix will be used for
both main effects rather than the default treatment contrasts used by the aov

function. The next lines load the gmodels package, and create labels for the
contrasts which compare the first factor level to the third factor level. The
vector following each label is an indicator vector for which model coefficient
is displayed. It selects the first coefficent for ethanol and ratio. Finally, the
estimable function is called with the inputs being the mod2, that was created
by the aov function, and the contrast labels and definitions in c.

> mod2 <- aov( CO ~ Eth * Ratio, contrasts = list( Eth = cm,

+ Ratio = cm ), data = COdata)

> library(gmodels)

> c <- rbind( ’Ethanol 0.3 vs 0.1’ = c(0,1,0,0,0,0,0,0,0),

+ ’Ratio 16 vs 14’ = c(0,0,0,1,0,0,0,0,0) )

> estimable(mod2,c)

The results are shown below. These are both estimable functions, and the
estimates along with their respective standard errors and t-ratios for testing
the hypotheses, H0 ∶ ∑i ciαi = 0 and H0 ∶ ∑j cjβj = 0, are given.

Estimate Std. Error t value DF Pr(>|t|)

Ethanol 0.3 vs 0.1 9 1.312335 6.858007 9 7.406588e-05

Ratio 16 vs 14 -14 1.312335 -10.668011 9 2.083651e-06

These estimates would be estimable and meaningful if there were no significant
interaction between ethanol addition level and air/fuel ratio, but in this case
there is a significant interaction and the difference in CO emissions caused
by changing the amount of ethanol addition will depend on the air/fuel ratio
and the difference in CO emission caused by changing the air/fuel ratio will
depend on the amount of ethanol added. An interaction graph is a better
way of interpreting these results. An interaction plot can be generated using
the R function interaction.plot as shown below. This code uses the with

statement to call the interaction.plot function using variables names in
the data frame COdata to produce Figure 3.5.

> with(COdata, (interaction.plot(Eth, Ratio, CO, type = "b",

+ pch = c(18,24,22), leg.bty = "o",

+ main = "Interaction Plot of Ethanol and air/fuel ratio",

+ xlab = "Ethanol",ylab = "CO emissions")))

In this plot we can see more clearly the dependence of effects. Increasing
the amount of ethanol added to the fuel from 0.1 to 0.3 causes CO emissions
to increase linearly from 64 grams/liter to 92 grams/liter when the air/fuel
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Figure 3.5 Interaction Plot Ethanol and Air/Fuel Ratio
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ratio is at its low level of 14. This is shown by the dotted line with black
diamonds representing the cell means. However, when the air/fuel ratio is at
its high level of 16 (illustrated by the solid line with squares representing the
cell means), increasing the ethanol added to the fuel from 0.1 to 0.3 actually
causes a decrease in CO emissions from 67 grams/liter to 59 grams/liter along
a nearly linear trend. Finally, when the air/fuel ratio is held constant at its
mid-level of 15 (illustrated by the dashed line with triangles representing the
cell means), increasing ethanol from 0.1 to 0.2 causes CO emissions to increase
by 11 grams/liter; but a further increase in ethanol to 0.3 causes a decrease
in CO emissions of 4 grams/liter to 76.5.

The interpretation above again illustrates the principle of comparing the
effect of one factor across the levels of the other factor in order to describe an
interaction. This was done by comparing the effect of changing the ethanol
addition between the levels of air/fuel ratio. It could also be done in the
opposite way. For example, the R code below reverses the interaction plot as
shown in Figure 3.6.

> Ethanol <- COdata$Eth

> with(COdata, (interaction.plot(Ratio, Ethanol, CO, type = "b",

+ pch = c(18,24,22), leg.bty = "o",

+ main="Interaction Plot of Ethanol and air/fuel

+ ratio", xlab = "Ratio", ylab = "CO emissions")))

In this plot the solid line, with squares representing the cell means, shows
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the effect of increasing air/fuel ratio when ethanol is added at the high rate of
0.3. Carbon monoxide emissions decrease linearly from 92 grams/liter to 59
grams/liter. However, when ethanol is added at the low rate of 0.1, the CO
emissions actually increase slightly from 64 grams/liter to 67 grams/liter as a
result of increasing air/fuel ratio from 14 to 16. This can be seen on the dotted
line with black diamonds representing the cell means. When ethanol is added
at the mid-rate of 0.2, there is little change in CO emissions when air/fuel
ratio is increased from 14 to 15, but there is a decrease in CO emissions of
13 grams/liter caused by increasing air/fuel ratio from 15 to 16. The latter
result can be visualized on the dashed line with triangles representing the cell
means.

Figure 3.6 Interaction Plot Ethanol and Air/Fuel Ratio
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Either way of presenting and interpreting the interaction is valid as long as
one discusses how the effect of one factor changes depending upon the level
of the other. The factor effects, that should be compared, depend on which
one is of most interest in a particular research problem. Another thing to
notice about the two interpretations is that cause and effect relationships are
assumed. We say the change in the response is caused by the change in the
factor or the change in the response is the result of changing the factor. This
statement could not be made when discussing the results of an observational
study.
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3.5.2 Determining the Number of Replicates

One of two possible methods can be followed to determine the number of
replicates for a factorial experiment that will result in a power between 0.80
to 0.90 (for detecting differences that have practical significance). The first
method is to consider detecting differences among the cell means. The second
method is to consider detecting a practical size difference in the marginal
means for the factors in the experiment.

When looking for differences among the cell means, the cells in the factorial
are considered to be an unstructured group as in a one-factor design. Using
the cell means model yijk = µij + εijk the procedure is the same as it was
described for the one-factor model yij = µi + εij in Section 2.6. The non-
centrality parameter for the F -test is:

λ = (r/σ2
)
a

∑
i=1

b

∑
j=1

(µij − µ⋅⋅)
2.

When looking for differences in the marginal means for the factors, the non-
centrality factor for the first main effect is:

λa = br∑
i

α2
i /σ

2
= br∑

i

(µi⋅ − µ⋅⋅)
2
/σ2,

and for the second main effect the noncentrality factor is:

λb = ar∑
j

β2
j /σ

2
= ar∑

j

(µ⋅j − µ⋅⋅)
2
/σ2.

If ∆ is considered to be the size of a practical difference in cell means, then
the smallest λ = r/σ2

∑
a
i=1∑

b
j=1 (µij − µ⋅⋅)

2 could be with two cells differing by

at least ∆ is r∆2/2σ2. Likewise, if ∆ is considered to be the size of a practical
difference in marginal means for factor A, the smallest λa = br∑i (µi⋅ − µ⋅⋅)

2/σ2

could be with two marginal means differing by at least ∆ is br∆2/2σ2. Here
again we can see the efficiency of factorial designs because the noncentrality
factor for detecting differences in marginal factor A means is larger than the
noncentrality factor for detecting differences of cell means by a factor of b, the
number of levels of factor B.

Consider the following example. A paper helicopter experiment is planned
to investigate the effects of four levels of factor A = wing length, and four
levels of factor B = body width, upon the flight time. If pilot experiments
with nine replicates of one design resulted in flight times of 2.8, 2.6, 3.5, 3.0,
3.1, 3.5, 3.2, 3.4, and 3.4 seconds. How many replicates would be required to
detect a difference in flight times of 1 second with a power of .90?

From the pilot tests the standard deviation of experimental error can be
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estimated as s = 0.32. If ∆ = 1.0 is considered to be a practical size difference
in cell means, the R code in Section 2.7 can be modified to give the answer.
In a 4-by-4 factorial there are 16 cells so the number of levels of the factor is
considered to be 16. The modified R code is shown below.

> library(daewr)

> rmin <- 2 # smallest number of replicates

> rmax <- 8 # largest number of replicates

> sigma <- .32

> alpha <- .05

> Delta <- 1

> nlev <- 16

> nreps <- c(rmin:rmax)

> power <- Fpower1(alpha, nlev, nreps, Delta, sigma)

> options(digits = 5)

> power

The results of running this code show that 6 replicates per cell would be
required to obtain a power of at least 0.90.

alpha nlev nreps Delta sigma power

[1,] 0.05 16 2 1 0.32 0.24173

[2,] 0.05 16 3 1 0.32 0.48174

[3,] 0.05 16 4 1 0.32 0.69246

[4,] 0.05 16 5 1 0.32 0.83829

[5,] 0.05 16 6 1 0.32 0.92326

[6,] 0.05 16 7 1 0.32 0.96664

[7,] 0.05 16 8 1 0.32 0.98655

If ∆ = 1.0 is considered to be a practical size difference in marginal means
for one of the factors, the results will be different. The degrees of freedom for
the numerator would be ν1 = 4−1, the degrees of freedom for the denominator
would be ν2 = 16(r − 1), the noncentrality factor for a main effect A would be
λa = br∆

2/2σ2, and the non-centrality factor for a main effect B would be λb =
ar∆2/2σ2. The R code below demonstrates the use of the Fpower2 function in
the daewr package for determining the number of replicates required to detect
a difference of ∆ in marginal means of the factors in a two-factor factorial.
The arguments that must be supplied to Fpower2 are: alpha, nlev (a vector
of length 2 containing the number of levels of the first factor (A) and the
second factor (B)), nreps=r, Delta=∆, and sigma=σ.

> library(daewr)

> rmin <- 2 # smallest number of replicates

> rmax <- 4 # largest number of replicates

> alpha <- .05
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> sigma <- .32

> Delta <- 1.0

> nlev <- c(4,4)

> nreps <- c(rmin:rmax)

> result <- Fpower2(alpha, nlev, nreps, Delta, sigma)

> options(digits = 5)

> result

The results of running this code appear below. Here it can be seen that with
only r=two replicates per cell the power for detecting a ∆ = 1.0 difference
in marginal means for factor A or B is greater than the power for detecting
differences of ∆ = 1.0 in cell means with r = 8 replicates per cell. Again this
demonstrates the efficiency of factorial experiments through hidden replica-
tion.

alpha a b nreps Delta sigma powera powerb

[1,] 0.05 4 4 2 1 0.32 0.99838 0.99838

[2,] 0.05 4 4 3 1 0.32 1.00000 1.00000

[3,] 0.05 4 4 4 1 0.32 1.00000 1.00000

With the ability to calculate power quickly, it is possible to explore many
potential designs before actually running the experiments. The number of
factors, the number of levels of each factor, and the number of replicates in
each cell all affect the power to detect differences. Power calculations help an
experimenter to determine an effcient use of his or her resources.

3.5.3 Analysis with an Unequal Number of Replicates per Cell

Although it would be unusual to plan a factorial experiment with an unequal
number of replicates per cell, the data from a factorial experiment may end
up with an unequal number of replicates due to experiments that could not be
completed, or responses that could not be measured, or simply lost data. As
long as the chance of losing an observation was not related to the treatment
factor levels, the data from a factorial experiment with an unequal number of
replicates per cell can still be analyzed and interpreted in a manner similar
to the way it would be done for the equal replicate case. However, the com-
putational formulas for analyzing the data differ for the case with an unequal
number of replicates.

To illustrate why the analysis shown in Section 3.5.1 is inappropriate, con-
sider again the data from the ethanol fuel experiment described in Section
3.5.1. This time assume one observation in the cell where air/fuel ratio = 16
and ethanol level = 0.3 was missing. Then Table 3.4 shows the data with each
response value written above its symbolic expected value.

The R code below the table creates a data frame containing the data in
Table 3.4, by inserting a missing value into the 18th row and third column.



ANALYSIS OF A TWO-FACTOR FACTORIAL IN R 73

Table 3.4 Fuel Experiment with Unequal Reps

air/fuel air/fuel air/fuel
Ethanol 14 15 16

66 72 68
0.1 62 67 66

µ + α1 + β1 + αβ11 µ + α1 + β2 + αβ12 µ + α1 + β3 + αβ13

78 80 66
0.2 81 81 69

µ + α2 + β1 + αβ21 µ + α2 + β2 + αβ22 µ + α2 + β3 + αβ23

90 75 60
0.3 94 78

µ + α3 + β1 + αβ31 µ + α3 + β2 + αβ32 µ + α3 + β3 + αβ33

> COdatam <- COdata

> COdatam[18, 3] <- NA

The marginal column means for the levels of air/fuel ratio factor computed
using the model.tables statement as shown on page 66 and the modified
data frame COdatam would be 78.5, 75.5, and 65.8, respectively. The expected
value of the marginal means for the first two columns would be: µ+β1, µ+β2,
since (α1 +α2 +α3)/3 = 0 and (αβ1i +αβ2i +αβ3i)/3 = 0 for i = 1,2. However,
the expected value of the last marginal column mean would be µ+β3 +(2α1 +

2α2+α3)/5+(2αβ13+2αβ23+αβ33)/5 and is not an unbiased estimate of µ+β3.
The comparison between the first and third column means would not be an
unbiased estimate of β1 −β3. Likewise, the last marginal row mean would not
be an unbiased estimate of µ + α3.

If the ANOVA table of the data in COdatam is produced with the R function
aov, the F -tests will not test the same hypotheses that they do in the case of
equal number of replicates in the cells. When there is an unequal number of
replicates in the cells, the noncentrality parameter for the F -test of H0 ∶ α1 =

⋅ ⋅ ⋅ = αa, that is based on R(α∣µ) will not be λa = rb∑i α
2
i but a quadratic

form involving the elements of α,β as well as αβ. The noncentrality for the
F -test test of H0 ∶ β1 = ⋅ ⋅ ⋅ = βb based on R(β∣µ,α) will be a quadratic form
involving the elements of β and αβ.

To calculate adjusted sums of squares for the null hypothesis for the main
effects, use the contr.sum option in the R lm function and the Anova function
from the R package car (Fox and Weisberg, 2011). The option type II in the
Anova function computes the type II sums of squares, and the option type III
produces the type III sums of squares. The type II sum of squares for the fac-
tors A and B can be represented as ssAII = R(α∣µ,β), and ssBII = R(β∣µ,α).
R(α∣µ,β) is the difference in the error sums of squares for the reduced model
where X = (1∣XB) and the full model where X = (1∣XA∣XB ∣XAB). The
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corresponding noncentrality factor for the corresponding F -test will be a
quadratic form that only involves α′ = (α1, α2, α3) and αβ′. When there
is an equal number of replications per cell, the sums of squares computed by
the aov function are identical to the type II sums of squares.

The type III sum of squares for the factors A and B can be represented
as ssAIII = R(α∣µ,β,αβ), and ssBIII = R(β∣µ,α,αβ). R(α∣µ,β,αβ) is
the difference in the error sums of squares for the reduced model where
X = (1∣XB ∣XAB) and the full model where X = (1∣XA∣XB ∣XAB). The
corresponding noncentrality factor for the corresponding F -test will be a
quadratic form that only involves α′ = (α1, α2, α3). When there is an equal
number of replications per cell, the sums of squares computed by the aov

function are identical to the type III sums of squares.
Some analysts prefer to use the type II sums of squares and others prefer

the type III sums of squares when there is an unequal number of replicates
per cell. In this book we illustrate the type III sums of squares and hypothesis
tests, although the type II sums of squares can be obtained by changing the
option from type = "III" to type = "II" in the call to the Anova function.

The code to produce the type III ANOVA table ethanol fuel experiment
after removing the observation with the value of 58 (from the cell with the
air/fuel ratio = 16 and the ethanol level = 0.3) is shown below.

> library(car)

> mod2 <- lm( CO ~ Eth*Ratio, data = COdatam, contrasts

+ = list( Eth = contr.sum, Ratio = contr.sum ))

> Anova( mod2, type="III" )

The results are below.

Anova Table (Type III tests)

Response: CO

Sum Sq Df F value Pr(>F)

(Intercept) 86198 1 15496.351 1.939e-14 ***

Eth 319 2 28.715 0.0002235 ***

Ratio 511 2 45.973 4.105e-05 ***

Eth:Ratio 555 4 24.945 0.0001427 ***

Residuals 44 8

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

In order to get means that have expectations µ + β1, µ + β2, µ + β3 when
there are an unequal number of replicates per cell, the adjusted means should
be computed. The adjusted means (sometimes called least-squares means or
lsmeans for short) are computed by calculating the marginal means of the
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predicted cell means, (µ̂+ α̂i+ β̂j + α̂βij) obtained from the least squares esti-
mates of the model parameters. Remember that the cell means are estimable
functions. The R code below calculates the predicted cell means using the
effect estimates from the model mod2 created by the lm function shown above
and then computes the adjusted or ls marginal means for the air/fuel ratio
using the R function tapply.

> p <- data.frame( expand.grid( Eth = c(.1, .2, .3),

+ Ratio = c(14,15,16) ) )

> p[] <- lapply(p, factor)

> p <- cbind( yhat = predict( mod2, p), p)

> with(p, tapply(yhat, Ratio, mean) )

14 15 16

78.500 75.500 64.833

In these results it can be seen that the means for the first two columns
are the same as the simple arithmetic average of the responses in the first
two columns as shown on page 66, but the mean from the third column is
different, and it is a more accurate estimate of µ+β3. The R package lsmeans

automatically computes the adjusted or lsmeans, and in addition it computes
their standard errors and confidence limits. The R code below illustrates the
use of this package to compute the marginal adjusted means for both ethanol
and air/fuel ratio. The NOTE: printed by the lsmeans function tells us what
we already know: interpretion of the marginal means may be misleading when
there is a significant interaction.

> library(lsmeans)

> lsmeans(mod2,~ Eth)

NOTE: Results may be misleading due to involvement in interactions

Eth lsmean SE df lower.CL upper.CL

0.1 66.833 0.96285 8 64.613 69.054

0.2 75.833 0.96285 8 73.613 78.054

0.3 76.167 1.11181 8 73.603 78.730

Confidence level used: 0.95

> lsmeans(mod2,~Ratio)

NOTE: Results may be misleading due to involvement in interactions

Ratio lsmean SE df lower.CL upper.CL

14 78.500 0.96285 8 76.28 80.720

15 75.500 0.96285 8 73.28 77.720

16 64.833 1.11181 8 62.27 67.397

Confidence level used: 0.95
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In general the type II or III sums of squares and lsmeans should be used,
because they will test the correct hypotheses and provide unbiased factor level
means whether there is an equal or unequal number of replications per cell.

3.5.4 Testing for Interaction with One Replicate per Cell

When there is adequate power for detecting main effects with r = 1 replicate
per cell, it would make sense to run a factorial design with only one observation
per cell and a×b total observations. Adding an additional replicate to each cell
would double the effort, and it would usually not be required. However, with
only one replicate per cell in a factorial design, there is no way to compute
the ANOVA ssE and therefore no way to make F -tests on the main effects
and interaction in the traditional way. If the interaction term is assumed to
be zero, then F -tests on the main effects can be made by using the additive
model yij = µ+αi+βj +εij . Even so, this could be dangerous if the interaction
actually exists. There are ways to test whether the interaction is zero in this
case.

If the levels of both factors are quantitative as in the proposed paper he-
licopter experiments or the ethanol fuel experiment, the sums of squares for
the interaction term can be partitioned into orthogonal polynomial single de-
grees of freedom. For example, if there are three equally spaced quantitative
levels of factor A, and three equally spaced quantitative levels for factor B,
then the sums of squares for the interaction can be partitioned into four single
degrees of freedom (namely: linear×linear, linear×quadratic, quadratic×linear,
and quadratic×quadratic). Using the Taylor Series philosophy that low order
polynomials can approximate most functional relationships, the three higher
order terms might be assumed to be negligible and pooled to estimate the
ssE, which could then be used as an error term to test the linear×linear por-
tion of the interaction. This will be illustrated with the data from the ethanol
fuel experiment given in Table 3.4.

First, consider the averages of the two replicates in each cell of Table 3.3
to be the result of a single experiment. The R code shown below averages the
data in each cell to produce the data frame cells with one observation per
cell. Fitting the model 3.2 to this data with the R function lm results in an
ANOVA with zero degrees of freedom for ssE, and no F -tests.

> library(daewr)

> data(COdata)

> Cellmeans <- tapply( COdata$CO, list(COdata$Eth, COdata$Ratio)

+ , mean )

> dim(Cellmeans) <- NULL

> Eth <- factor(rep(c(.1, .2, .3), 3))

> Ratio <- factor(rep(c(14,15,16), each=3))

> cells <- data.frame( Eth, Ratio, Cellmeans )

> modnr <- lm(Cellmeans ~ Eth*Ratio, data=cells )

> anova(modnr)
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The result follows.

Analysis of Variance Table

Response: Cellmeans

Df Sum Sq Mean Sq F value Pr(>F)

Eth 2 162 81.00

Ratio 2 326 163.00

Eth:Ratio 4 339 84.75

Residuals 0 0

Warning message:

ANOVA F-tests on an essentially perfect fit are unreliable

To get the sums of squares for the linear×linear portion of the interaction, the
factors Eth and Ratio are first converted to ordered factors as shown.

> Ethc <- as.ordered(cells$Eth)

> Ratioc <- as.ordered(cells$Ratio)

When ordered factors are used, the R function lm uses orthogonal polynomial
contrasts (as shown on page 43) for columns in the X matrix rather than the
default treatment codings. In the R code below, the model mbo is fit using
only the linear×linear orthogonal polynomial contrasts for the interaction of
Ethc and Ratioc.

> EthLin<-contr.poly(Ethc)[Ethc,".L"]

> RatioLin <-contr.poly(Ratioc)[Ratioc,".L"]

> mbo <-lm(Cellmeans~Ethc + Ratioc + EthLin:RatioLin, data=cells)

> anova(mbo)

Analysis of Variance Table

Response: Cellmeans

Df Sum Sq Mean Sq F value Pr(>F)

Ethc 2 162 81 16.2 0.0247 *

Ratioc 2 326 163 32.6 0.0092 **

EthLin:RatioLin 1 324 324 64.8 0.0040 **

Residuals 3 15 5

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The error or residual sum of squares in this ANOVA table is the difference in
the 4 degree of freedom interaction sums of squares shown in the table at the
top of the page and the single degree of freedom linear by linear interaction
sums of squares. This difference is used to construct the denominator for
the F -tests in the table above. The results show that the linear by linear
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portion of the interaction is significant and accounts for most of the interaction
sums of squares. Since the interaction is significant, the additive model yij =
µ +αi + βj + εij is inappropriate, and the effects of the main effects will differ
depending on the level of the other factor. The results can best be interpreted
by examining the interaction plot.

The interaction plot that includes only the linear×linear part of the in-
teraction can be constructed by plotting the predictions from the model
mbo. In the code below the R command predict is used to get the model
predictions and the aggregate command is used to create the data frame
pred.means that combines the model predictions with the factor levels. Next,
the interaction.plot command is used as previously to create the plot.

> Pred <-predict(mbo, newdata=data.frame(Ethc, Ratioc, EthLin,

+ RatioLin))

> pred.means <- aggregate(Pred, by=list(Ethc = Ethc,

+ Ratioc = Ratioc), "mean")

> Ethanol <- pred.means$Ethc

> interaction.plot(pred.means$Ratioc, Ethanol, pred.means$x,

+ type="b", pch = c(18,24,22), leg.bty ="o",

+ xlab = "Ratio", ylab = "predicted CO emissions")

The result is shown in Figure 3.7, which should be compared to Figure 3.6.
Figure 3.7 is quite similar to Figure 3.6 confirming what was seen in the
ANOVA table (i.e., the majority of the variation caused by the interaction is
captured in the linear by linear part).

When ethanol is at its high level (0.3) increasing air/fuel ratio from 14 to 16
causes a steep decrease in CO emissions. When ethanol is at its mid-level (0.2)
increasing air/fuel ratio from 14 to 16 causes a slight decrease in CO emissions
represented by the gentle negative sloping line. However, when ethanol is at
its low level (0.1) increasing air/fuel ratio from 14 to 16 actually causes an
increase in CO emissions illustrated by the positively sloped line.

When there is only one replicate per cell in a factorial experiment and the
factors do not have quantitative levels, partitioning the interaction sums of
squares into orthogonal polynomial contrasts and combining the higher order
terms as an error sums of squares may not be appropriate. However, Tukey
(1949b) has developed an alternate method for testing a single degree of free-
dom partitioned from interaction sums of squares. This method is equivalent
to restricting the αβij in model 3.2 of Section 3.5 to be a second-degree poly-
nomial function of the main effects αi and βj , (see Scheffé, 1959). By doing
this, the sums of squares

ssAB =
ab [∑i∑j yijyi⋅y⋅j − (ssA + ssB + aby2

⋅⋅)y⋅⋅]
2

(ssA)(ssB)
(3.7)
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Figure 3.7 Linear by Linear Interaction Plot Ethanol and Air/Fuel Ratio
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for testing the restricted hypothesis H0 ∶ αβij = 0 for all i and j will have
one degree of freedom and the difference between it and the error term for
the additive model will form the error sums of squares similar to the example
above with quantitative factor levels.

To illustrate the use of Tukey’s single degree of freedom test for interaction,
consider the data in Table 3.5, which is a portion of the data from a study

Table 3.5 log10(PFU/mL) Assay of Viral Contamination

Sample
1 2 3 4 5 6

3 1.87506 1.74036 1.79934 2.02119 1.79934 1.59106
Dilution 4 1.38021 1.36173 1.25527 1.39794 1.20412 1.25527

5 0.60206 0.90309 0.95424 1.00000 0.60206 0.60206

to validate an assay of viral contamination reported by Lin and Stephenson
(1998). Assays of viral contamination are used to determine the presence (and
amount) of a specific virus in biological products such as blood clotting Factor
Eight. An experiment, or run, consists of making a solution with a known viral
contamination, allowing the virus in a contaminated solution to grow, then
measuring the result. The experimental unit is the specific viral sample in
combination with the place and time where it is allowed to grow. Factor A
represents the sample number, or solution with which the viral sample is mixed
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(or spiked). Factor B represents different dilutions of the spiked sample. The
measured response is the log10 of the plaque forming units per mL of solution.

Since factor A (sample) is not a quantitative factor it would be inappropriate
to use orthogonal polynomial contrasts to partition its sums of squares or the
sums of squares of its interaction with factor B (Dilution). To determine if the
additive model yij = µ + αi + βj + εij is appropriate for this data, test to see
whether there is a significant interaction using Tukey’s method. The function
Tukey1df in the R package daewr calculates the non-additivity or interaction
sums of squares, shown in Equation (3.7), and prints a report. The code to
open the data in Table 3.5 and call the function are shown below. The first
column in the data frame used by this function is a numeric response, the
second column is the indicator for the factor A, and the third column is the
indicator for the factor B. The number of rows in the data frame should be
exactly equal to the number of levels of factor A times the number of levels
of factor B, since the design has no replicates.

> library(daewr)

> Tukey1df(virus)

Source df SS MS F Pr>F

A 5 0.1948 0.039

B 2 3.1664 1.5832

Error 10 0.1283 0.0513

NonAdditivity 1 0.0069 0.0069 0.51 0.7247

Residual 9 0.1214 0.0135

In the results, it can be seen that the interaction (or non-additivity) is not
significant. Therefore, for this data, it would be appropriate to fit the additive
model, yij = µ + αi + βj + εij , with the R function lm or aov.

3.6 Factorial Designs with Multiple Factors—CRFD

Two-factor factorial designs are more efficient than studying each factor sep-
arately in one-factor designs. Likewise, when many factors are under study,
it is more efficient to study them together in a multi-factor factorial design
than it is to study them separately in groups of two using two-factor factorial
designs. When multiple factors are studied simultaneously, the power for de-
tecting main effects is increased over what it would be in separate two-factor
factorial designs. Also, the possibility of detecting interactions among any of
the factors is possible. If the factors were studied separately in two-factor fac-
torials, two-factor interactions could only be detected between factors studied
together in the same design. In a multi-factor factorial not only is it pos-
sible to detect two-factor interactions between any pair of factors, but it is
also possible to detect higher order interactions between groups of factors. A
three-factor interaction between factors A, B, and C, for example, means the
effect of factor A differs depending on the combination of levels of factors B
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and C. Examples of higher order interactions will be presented in examples to
follow.

The treatment combinations in a multi-factor factorial consist of all possible
combinations of the levels of all factors. A design can be produced using
expand.grid function in R (similar to the randomized plan created in Section
3.4), using the gen.factorial function in the AlgDesign package, or using
functions from other packages that will be described later. The model for
analysis is an extension of Equation (3.2), and the analysis can be made using
the R function lm similar to the examples shown earlier.

Consider an example of a multi-factor factorial design in marketing research.
A company whose sales are made online through a Web page would like to in-
crease the proportion of visitors to their Web site that sign up for their service
by optimally configuring their Web page. In order to buy from the company,
customers must sign up and fill out a form supplying their e-mail address
along with other required fields. Once a customer signs up, the company has
contact information for their database and can e-mail advertisements, special
offers, and so forth. The company would like to experiment by testing differ-
ent configurations of their Web page to see if they can increase the number of
visitors to their site that actually sign up.

The experimental units in this study will be individuals who visit the com-
pany Web site. The response is binary; the customer either signs up or does
not. The factors under study were characteristics that change the appearance
of the Web page. For example, factor A was the background alternatives for
the page with three options. Factor B was the font size in the main banner,
with three levels; factor C was the text color with two alternatives; and fac-
tor D was a choice between a sign-up button or link. Based on these factors
there were 3 × 3 × 2 × 2 = 36 possible configurations of the Web page when
considering all possible combinations of the levels of each factor. A four-factor
factorial experiment would consist of randomly assigning visitors to the Web
site to one of the possible configurations and recording their binary response.
There are lurking variables that could affect the chance that a site visitor
will sign up. For example, the position order that the link (for the company’s
Web site) comes up in a Web search for the products they sell, promotions
offered by competitors, and attractiveness of competitors’ Web sites. Random
assignment of each sequential visitor to the site to one of the alternative con-
figurations under study should minimize the chance of bias from changes in
the lurking variables over time. The probability that a site visitor would sign
up can be expressed by the model:

pijkl = µ + αi + βj + αβij + γk + αγik + βγjk + αβγijk + δl + αδil

+ βδjl + αβδijl + γδkl + αγδikl + βγδjkl + αβγδijkl,
(3.8)

where αi represents the effect of background choice, βj represents the effect
of font size in the main banner, γk represents the effect of text color, and δl
represents the effect of sign-up link versus button.
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The experiment was conducted by constructing 36 Web sites consisting of
all possible combinations of the four factors described above. Each potential
customer who visited the company’s Web site during the trial period was
randomly redirected to one of the 36 configurations. The number of visitors
nijkl to the ijklth configuration and the number that signed up xijkl was
logged. xijkl is then binomially distributed

B(xijkl, nijkl, pijkl) = (
nijkl
xijkl

)p
xijkl
ijkl (1 − pijkl)

(nijkl−xijkl) (3.9)

where nijkl is the number of visitors to the ijklth configured Web page during
the testing period.

Below is the R code to open the raw data, and print the first six lines of
the data frame.

> library(daewr)

> data(web)

> head(web)

A B C D visitors signup

1 1 1 1 1 1016 22

2 1 1 1 2 1145 16

3 1 1 2 1 1145 17

4 1 1 2 2 1082 19

5 1 2 1 1 1121 28

6 1 2 1 2 1103 28

The correct procedure must be utilized to analyze the data, determine if any
of the factor effects are significant, and to predict the optimal Web page con-
figuration. Since the responses for the individual visitors to each configuration
of the Web site are Bernoulli, the aggregate response data is binomial with
large and approximately equal sample sizes (i.e., number of visitors to each
possible Web configuration). The arcsin square root transformation shown in
Table 2.4 of Section 2.6.2 could be applied and the R lm function could be used
for analysis. However, the problem with using this procedure is that the indi-
vidual responses were summed to get the aggregate responses, and when using
these aggregate binomial responses there are no replicate observations in any
of the cells, and thus no way to calculate ssE. This would be similar to sum-
ming or averaging the replicate responses in each cell if the data were normally
distributed, leaving only one observation per cell and no way to compute ssE.
The alternative is to use the method of maximum likelihood to fit model (3.8).
This can be done using the R glm function. It will automatically set σ2 = 1.0
and the type III sums of squares of the form (Lβ̂)′(L(X ′X)−1L′)−1(Lβ̂) will
be asymptotically distributed as chi-squares under the null hypothesis. The
commands to analyze the data using glm are shown on the next page.
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> modb <- glm( cbind(signup, visitors-signup) ~ A * B * C * D,

+ data = web, family = binomial )

> anova(update(modb, .~ A+B + A:B + C + A:C + B:C + A:B:C + D +

+ A:D+B:D + A:B:D + C:D + A:C:D + B:C:D + A:B:C:D ),

+ test = "Chisq")

signup/visitors is the observed proportion signing up. The option
family = binomial declares the response to be binomially distributed, and
the option test = "Chisq" in the call to the anova function requests a table
of the type III sums of squares and chi-square tests. A portion of the results are
shown below. The command summary(modb) prints a table of the parameter
estimates produced by the maximum likelihood method, which is similar to
the summary of an object created by the function lm, and it is not shown
here.

Analysis of Deviance Table

Model: binomial, link: logit

Response: cbind(signup, visitors - signup)

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 35 56.641

A 2 10.2540 33 46.387 0.005934 **

B 2 6.9301 31 39.457 0.031272 *

C 1 2.9632 30 36.493 0.085182 .

D 1 4.6165 29 31.877 0.031666 *

A:B 4 6.3093 25 25.568 0.177213

A:C 2 0.6821 23 24.886 0.711026

B:C 2 4.0303 21 20.855 0.133300

A:D 2 0.2807 19 20.575 0.869069

B:D 2 3.7705 17 16.804 0.151793

C:D 1 0.0783 16 16.726 0.779629

A:B:C 4 2.2127 12 14.513 0.696712

A:B:D 4 6.3323 8 8.181 0.175671

A:C:D 2 6.1525 6 2.028 0.046132 *

B:C:D 2 0.0219 4 2.007 0.989104

A:B:C:D 4 2.0065 0 0.000 0.734562

In this output we can see that (at the α = 0.05 level of significance) factors
A (background style) and factor D (sign-up button or link) were significant
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along with the three-way interaction ACD, where factor C represents the text
color. Since there is a significant interaction, the main effects A and D cannot
be interpreted separately. Whether it is better to use a sign-up button or link
depends on whether the text color is black or white and what background
style is chosen. To interpret the three-way interaction, it is necessary to make
a table of the proportion signing up in each combination of factors A, C, and
D and a series of interaction graphs. The R code to do this are shown below.

> prop <- web$signup / web$visitors

> webp <- data.frame(web,prop)

> par ( mfrow = c(1,3) )

> webp1 <- subset(webp, A == 1)

> interaction.plot(webp1$C, webp1$D, webp1$prop, type = "l",

+ legend=FALSE, ylim = c(.015,.0275), main = "Background = 1",

+ xlab = "Text Color", ylab = "Proportion Signing-up")

> webp2 <- subset(webp, A == 2 )

> interaction.plot( webp2$C, webp2$D, webp2$prop, type = "l",

+ legend = FALSE, ylim = c(.015,.0275), main = "Background = 2",

+ xlab = "Text Color", ylab = " ")

> lines( c(1.7,1.85), c(.016,.016), lty = 2)

> lines( c(1.7,1.85), c(.017,.017) ,lty = 1)

> text(1.3, .017, "Sign-up link ")

> text(1.3, .016, "Sign-up Button" )

> text(1.4, .018, "LEGEND" )

> webp3 <- subset(webp, A == 3)

> interaction.plot(webp3$C, webp3$D, webp3$prop, type = "l",

+ legend=FALSE, ylim = c(.015,.0275), main="Background = 3",

+ xlab = "Text Color", ylab = " ")

The result is shown in Figure 3.8. It shows the effect of factor D (text color) for
each combination of the levels of factors A (background type) and C (sign-up
link or button).

The common way of interpreting the interaction is to compare the effect
of the variable represented on the horizontal axis between combinations of
levels of the other factors. For this example an interpretation can be made
as follows. When using background type 2 or type 3, it can be seen that
changing the text color from black=1 to white=2 causes an increase in the
proportion of site visitors signing up. The increase (represented by the slope
of the lines) is greater when a sign-up button is used rather than a sign-up
link because the overall sign up rate is higher when a link is used regardless
of the text color, and there is not that much room for improvement. However,
when background type 1 is used, the effect of text color is altogether different.
In this case changing the font from black=1 to white=2 actually causes a
decrease in the proportion signing up when a sign-up button is used, and
there is a large increase in the proportion signing up when changing from
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Figure 3.8 Text Color Effect by Background Type and Link
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black to white font when using a sign-up link. This is the opposite of the
effects seen for background types 2 and 3.

Any one of the three factors could be placed on the horizontal axis and an
equivalent interpretation could be made. Sometimes the interpretation that
results when placing the factor with the largest main effect on the horizontal
axis is easiest to explain.

When interpreting a two-factor interaction, only one graph was necessary to
illustrate the fact that the effect of one factor depended on the level of another
factor. However, in this case more than one graph is required to illustrate how
the effect of one factor depends on the combination of levels of the other two
factors. The two lines on each graph show how the effect of text color changes
when there is a sign-up link versus a button, and the different graphs show
how the effect changes when the background is changed.

From inspection of the three graphs, or the table of averages that could be
produced with the tapply function, it can be seen that the highest proportion
signing up would be for the Web page with a sign-up link, white text, and
background type 2. Here it is predicted that on the average, slightly more
than 2.7% will sign up. The font size is insignificant, so it does not matter
what font size is used.

3.7 Two-Level Factorials

As additional factors are added to a factorial design, the number of treatment
combinations (runs) in the design increases exponentially. The example in the
last section contained four factors and 36 treatment combinations. If there
were five factors in a design each having four levels, the number of treatment
combinations would be 4×4×4×4×4 = 45 = 1024 runs in the design. It can be
seen that it would not take too many factors to render the design impractical.
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In other words, it would have too many treatment combinations to run in a
reasonable period of time. However, it is better to reduce the number of levels
of each factor and stay with the factorial design using all factors than it is to
revert to one-at-a-time or two-at-a-time experiments and lose the efficiency of
factorial experiments. With separate experiments the ability to detect higher
order interactions, and the ability to detect interactions between any pair
of factors, is lost. If five factors in a factorial design were studied with only
two levels each, the number of treatment combinations would be reduced to
25 = 32. For this reason factorial designs with two levels for each factor, or
two-level factorials, are popular. A shorthand for a two-level factorial with k
factors is a 2k design.

In two-level factorials, if a factor has quantitative levels, the two levels are
denoted symbolically by (−) and (+), where (−) represents the lowest level
the experimenter would consider, and (+) represents the highest level the
experimenter would consider. The high and low are usually spread out as far
as feasibly possible in order to accentuate the signal or difference in response
between the two levels. If a factor has qualitative levels, the (−) and (+)

designations are arbitrary, but the two levels chosen normally would be two
that the experimenter believes should result in the maximum difference in
response.

3.7.1 Main Effects and Regression Slopes

The model for a factorial experiment with three factors can be written as:

yijkl = µ + αi + βj + αβij + γk + αγik + βγjk + αβγijk + εijkl, (3.10)

where αi, βj , and so forth, are the effects as defined earlier. However, in the
case where each factor has only two levels represented by (−) and (+), i,
j, k, and l can be replaced with either a (−) or (+), and α− = −α+, since
α− = y−⋅⋅⋅ − y⋅⋅⋅⋅, α+ = y+⋅⋅⋅ − y⋅⋅⋅⋅, and y⋅⋅⋅⋅ = (y−⋅⋅⋅ + y+⋅⋅⋅) /2. A similar equality will
be true for all the effects and interactions. Since the two effects for each factor
are the same value with different signs, a more compact way of defining the
main effects for a two-level factorial is EA = y+⋅⋅⋅ − y−⋅⋅⋅. This can be visualized
on the left side of Figure 3.9 and represents the change in the average response
caused by a change in the factor from its low (−) level to its high (+) level.
This effect can then be represented by the difference in two averages y+⋅⋅⋅ and
y−⋅⋅⋅.

The regression slope βA shown in the right side of Figure 3.9 is the vertical
change in the average response for a one-unit change (i.e., from 0 to +1) in
the factor level in symbolic units. Therefore the slope, βA, is just one half the
effect, EA, or the difference in two averages divided by 2.

The treatment combinations in a two-level factorial can also be represented
geometrically as the corners of a cube as shown in Figure 3.10. On the left
side of this figure is a list of the treatment combinations or runs listed in stan-
dard or Yates’ order with the first column changing fastest with alternating
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Figure 3.9 Effect and Regression Coefficient for Two-Level Factorial
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− and + signs, the second column changing in pairs of − and + signs, and the
third column changing slowest in groups of four − and + signs. The treatment
combinations in two-level factorial designs have traditionally been written in
standard order to facilitate the computation of main effects and interaction
effects by hand using Yates’ algorithm (see Daniel (1976)). The main effect
for factor A can be visualized in the figure as the difference of the average of
the responses on the right side of the cube in the grey-shaded circles and the
average of the responses on the left side of the cube in the white circles. With
modern computer programs such as the R lm function one half of the main
effects, or regression coefficients (shown on the right side of Figure 3.9), can
be computed by regression and we no longer need Yates’ algorithm.

Figure 3.10 Geometric Representation of 23 Design and Main Effect Calculation
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One of the desirable properties of a 2k factorial plan is that factor effects are
not obscured by planned changes in other factors. In the list of experiments for
2k design, shown in Figure 3.10, this is evident by the fact that at the high level
of each factor, there are an equal number of high and low levels of every other
factor. Also at the low level of each factor, there are an equal number of high
and low levels of every other factor. Thus the effect of a factor, or difference
in average response between the high and low level of that factor, represents
the effect of that factor alone, because the influence of all other factors has
been averaged out. Mathematically this property is called orthogonality.

3.7.2 Interactions

When all the factors have only two levels, the AB interaction effect is defined
as one-half the difference in the simple effect of factor A, (y++⋅⋅ − y−+⋅⋅), when
factor B is held constant at its high (+) level, and the simple effect of factor
A, (y+−⋅⋅ − y−−⋅⋅), when factor B is held constant at its low (−) level, that is,
((y++⋅⋅ − y−+⋅⋅) − (y+−⋅⋅ − y−−⋅⋅)) /2. This is illustrated on the left side of Figure
3.11. The interaction effect could also be defined as one half the difference in
the simple effect of factor B, (y++⋅⋅−y+−⋅⋅), when factor A is held constant at its
high (+) level, and the simple effect of factor B, (y−+⋅⋅−y−−⋅⋅), when factor A is
held constant at its low (−) level. This is illustrated on the right side of Figure
3.11. Either way the interaction effect is EAB = (y++⋅⋅+y−−⋅⋅)/2−(y+−⋅⋅+y−+⋅⋅)/2
is the difference of two averages.

Figure 3.11 Definition of an Interaction Effect for Two-Level Factorial
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It is easy to determine which responses should be averaged and which average
should be subtracted from the other in order to calculate an interaction effect
as illustrated in Figure 3.12. To calculate the AB interaction, we add a column
of signs, XA ⋅XB to the list of treatment combinations on the left side of the
figure. The elements in this new column are just the elementwise products
of signs in the column for XA and XB (i.e., (−)(−) = +, (−)(+) = − etc.).
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Now the interaction effect can be visualized in the figure as the difference
in the average response on one diagonal represented by grey circles and the
average response on the other diagonal represented by white circles. From this

Figure 3.12 Geometric Representation of 23 Design and Interaction Effect
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representation, it can also be seen that interaction effects are not obscured by
planned changes in other factors, or in other words they are orthogonal to
main effects.

One-half of this interaction effect (or the regression coefficient) can be cal-
culated using a regression program such as the R lm function by adding a
XA ×XB term to the model. Higher order interaction effects can be similarly
defined. Therefore, a simpler way of writing the model for a two-level factorial
is by using the familiar regression equation,

y = β0 + βAXA + βBXB + βABXAXB + βCXC + βACXAXC + βBCXBXC

+ βABCXAXBXC + ε

(3.11)

where the βs are one-half of the effects and XA = −1 if factor A is at its
low level and XA = +1 if factor A is at its high level. If we write this model
in matrix terms, y = Xβ + ε, the orthogonality property of the design is
expressed by the fact that the columns of theX matrix are orthogonal and the
X ′X matrix is diagonal with diagonal elements r2k, where r is the number
of replicates of each cell.
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3.7.3 Example of a 23 Factorial

To illustrate the design and analysis of a 23 factorial experiment, consider the
following example (see Lawson and Erjavec, 2001). Students in a university
electronics lab often complained that voltage measurements made on a circuit
they constructed in class were inconsistent. The lab teaching assistant (TA)
decided to conduct an experiment to try to identify the source of the variation.
The three factors he varied were A=the ambient temperature where the volt-
age measurement was made, B=the voltmeter warm-up time, and C=the time
the power was connected to the circuit before the measurement was taken. The
response was the measured voltage in millivolts. The two levels for factor A
were − = 22○C (room temperature) and + = 32○C (close to the temperature
in some industrial settings). An oven was used and the circuit was allowed to
stabilize for at least five minutes prior to measurements. The settings for fac-
tors B and C were − =30 seconds or less, and + =5 minutes. The same circuit
was measured for each combination of treatment factors so the experimental
unit was nothing more than the trial or point in time at which the particular
combination of treatment factor levels were applied to make the measurement.
Two replicates of each of the eight experimental combinations were run in a
random order to help prevent biases. The results of the experiment are shown
in Table 3.6.

Table 3.6 Factor Settings and Response for Voltmeter Experiment
Factor Levels Coded Factors

Run A B C XA XB XC Rep Order y
1 22 0.5 0.5 − − − 1 5 705
2 32 0.5 0.5 + − − 1 14 620
3 22 5.0 0.5 − + − 1 15 700
4 32 5.0 0.5 + + − 1 1 629
5 22 0.5 5.0 − − + 1 8 672
6 32 0.5 5.0 + − + 1 12 668
7 22 5.0 5.0 − + + 1 10 715
8 32 5.0 5.0 + + + 1 9 647
1 22 0.5 0.5 − − − 1 4 680
2 32 0.5 0.5 + − − 1 7 651
3 22 5.0 0.5 − + − 1 2 685
4 32 5.0 0.5 + + − 1 3 635
5 22 0.5 5.0 − − + 1 11 654
6 32 0.5 5.0 + − + 1 16 691
7 22 5.0 5.0 − + + 1 6 672
8 32 5.0 5.0 + + + 1 13 673

In this table, the actual factor settings are shown on the left, and the coded
− and + levels are shown on the right. The actual settings on the left form a list
of recipes or directions for performing each experiment. The order number on
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the far right next to the response was created with a random number generator
and represents the order in which the experiments should be run. The coded
factor levels are used as the independent variables in a regression program in
order to calculate the regression coefficients or half effects.

The coded factor levels can be easily calculated from the actual factor set-
tings using the coding and scaling formula. In this formula we subtract the
mid-point of the two factor settings, then divide by half the range. For exam-
ple, for factor A the mid-point between 22 and 32 is 27, and half the range is
5, thus

XA = (
ActualFactorSetting − 27

5
) .

The R function contr.FrF2 performs this coding and scaling on R factors.
A data frame volt (in the daewr package) contains R factors with the actual
factor levels and response from Table 3.6. The code to open the data frame,
code and scale the factors, and fit the regression model with the lm function
(along with the resulting table of regression coefficients) are shown below. The
contr.FrF2 function labels the coded and scaled linear contrasts A1, B1, and
C1 in the output, instead of XA, XB , and XC as in equation 3.11.

> library(daewr)

> modv <- lm( y ~ A*B*C, data=volt, contrast=list(A=contr.FrF2,

+ B=contr.FrF2, C=contr.FrF2))

> summary(modv)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 668.5625 4.5178 147.985 4.86e-15 ***

A1 -16.8125 4.5178 -3.721 0.00586 **

B1 0.9375 4.5178 0.208 0.84079

C1 5.4375 4.5178 1.204 0.26315

A1:B1 -6.6875 4.5178 -1.480 0.17707

A1:C1 12.5625 4.5178 2.781 0.02390 *

B1:C1 1.8125 4.5178 0.401 0.69878

A1:B1:C1 -5.8125 4.5178 -1.287 0.23422

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

In the output, it can be seen that factor A (ambient temperature) and
the A×C interaction, or interaction between the ambient temperature and the
circuit warm-up time, are significant. The main effect has direct interpretation.
The effect of factor A is twice the regression coefficient shown above or EA =

2 × β̂A = 2(−16.8125) = −33.625. This means that, on the average, when the
ambient temperature is increased from 22○ to 32○, the voltage measurement
will decrease by 33.6 millivolts. However, since the interaction is significant in
this example, it really is not meaningful to talk about the average main effect
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because the effect of ambient temperature depends on the circuit warm-up
time.

Describing or interpreting the interaction is best done by looking at the
interaction plot shown in Figure 3.13. Here it can be seen that when the
circuit warm-up time is short (0.5 minutes or 30 seconds) changing the ambient
temperature from 22○ to 32○ causes a large (58.7 millivolt) decrease in the
voltage reading. However, when the circuit warm-up time is long (5 minutes),
changing the ambient temperature from 22○ to 32○ only causes a small (8.5
millivolt) decrease in the voltage reading. Therefore, to make voltage readings
more consistent, the lab TA recommended that his students allow their circuits
to warm up 5 minutes before making voltage measurements.

Figure 3.13 Interaction between Ambient Temperature and Circuit Warm-Up Time
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The regression was performed on the coded factor levels so that the regres-
sion coefficients produced by the lm function are exactly one-half of the effects.
However, the actual factor names and levels should be used for clarity when
presenting the results graphically for inclusion in a report or presentation, as
shown in Figure 3.13. Most readers or listeners will not remember what the −
and + levels represent.

The code to produce Figure 3.13 is shown on the next page. In this code
there was no need to produce a table of predicted values from the reduced
model that contains only the significant factors A and AC (as was done when
creating Figure 3.7) since the orthogonal design guarantees that the aver-
age response in the four A by C combinations will be the same as the pre-
dicted values from the reduced model. An even simpler interaction plot can
be made quickly with the command (IAPlot(modv, select = c(1,3)) using
the IAPlot function in the FrF2 package.
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> C_Warmup=volt$C

> with(volt, (interaction.plot(A, C_Warmup, y, type = "b",

+ pch = c(24,22), leg.bty = "o",

+ xlab = "Temperature",ylab = "Voltage")))

The orthogonality of the design also allows a reduced prediction equation to
be written from the regression results by simply eliminating the insignificant
terms. This equation can be used to predict the voltage reading in millivolts
for any ambient temperature between 22○ and 32○, and any circuit warm-up
time between 30 seconds and 5 minutes.

y = 668.563 − 16.813(
Temp − 27

5
) − 6.688(

CWarm − 2.75

2.25
)(

Temp − 27

5
)

3.7.4 Shortcut Formula for Determining the Number of Replicates

Wheeler (1974) has developed a shortcut approximation formula for calculat-
ing the number of runs necessary to achieve power equal to 0.95 when the
significance level for a two-level factorial is α = 0.05. This formula is

N = ((8σ)/∆)
2

(3.12)

where σ is the standard deviation of the experimental error, ∆ is the practical
size of an effect. In this case the difference in average response between the
low and high level of a factor and N = r×2k is the total number of experiments
in the 2k factorial. Since this formula is so compact, it is easy to use on the
spot in meetings where experiments are being planned. As an illustration of
its use, consider an example based on the voltage meter experiment presented
in the last section.

The lab instructor felt that the standard deviation of the experimental error
was about σ = 15.0 and the practical size of an effect was about ∆ = 30.0. σ
would be known by the lab instructors experience in making repeat voltage
measurements of the same circuit under exactly the same conditions (i.e.,
factor levels), and ∆ would be known from the amount of inconsistency in
measurements claimed by the students who were getting inconsistent readings.
∆ is the size of the effect the TA would like to detect in his experiments. Using
the shortcut formula, this says that

N = ((8 × 15.0)/30.0)
2
= 16

or that r = 2 replicates of each of the 23 = 8 runs should result in a power
of 0.95 for detecting effects of size 30.0 at significance level α = 0.05. Using
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a more exact formula like shown in Section 3.5.2, the actual power for r = 2
replicates is closer to 0.94 than 0.95. However, this approximate formula is
accurate enough for most planning purposes.

The simple formula can also be used backwards by solving for ∆ as a func-
tion of N , that is, ∆ = 8×σ/

√
N . That way, if an experimenter knows his bud-

get for experimentation, which dictates the largest N can be, he can calculate
the size of the effect ∆ that he is likely to be able to detect. If the experi-
menter does not have an accurate estimate of σ, the formula can still be used
by talking about practical effect size in units of the unknown σ. For example,
if an experimenters’ budget allows him to make at most N = 64 experiments,
he can hope to detect effects that are no more than one standard deviation
of the experimental error, that is, ∆ = 8 × σ/

√
64 = σ. This result will be true

regardless of the number of factors in the two-level experiment. Consequently,
with 64 runs he may have one factor with r = 32 replicates of each level, or
six factors with r = 1 replicate of each of the 26 = 64 treatment combinations.

3.7.5 Analysis with One Replicate per Cell

Factorial designs with one replicate per cell are often referred to as unrepli-
cated designs. When there is adequate power for detecting effects with r = 1
replication per cell, or treatment combination, there is no need to double the
experimental work by replicating each experiment. However, in an unrepli-
cated factorial, the same problem arises that was discussed in Section 3.5.4.
There will be zero degrees of freedom for calculating ssE and thus no F -tests
for the effects. However, when there are multiple factors in a two-level factorial,
there are simple graphical tools that allow detection of the significant effects.
Since not all main effects and interactions in a 2k experiment are expected to
be significant, the levels of insignificant factors and combinations of levels de-
fined by the insignificant interactions are equivalent to having replicates in the
design. Graphical tools allow the significant effects (or equivalently regression
coefficients) to be recognized.

The most common graphical tool used to spot significant effects are normal
or half-normal plots that were first suggested by Daniel (1959). These are easy
to produce using the DanielPlot function in the R package FrF2 (Groemp-
ing, 2011a) or the LGB function in the package daewr. Additional graphical
tools such as Lenth Plots and Bayes Plots are also useful for detecting signifi-
cant effects and interactions and can be generated using functions in the BsMD

package (Barrios, 2009). These graphical tools are also available for interactive
analysis via the R DoE plugin (Groemping, 2011b) for the graphical user inter-
face for R called R Commander (Fox, 2005). Examples of the menu selections
and output available for analysis of two-level factorials using the R Comman-
der DoE plugin are shown in files on the web page (jlawson.byu.edu) for
this book.

To illustrate the analysis of an unreplicated two-level factorial, consider
an example from the chemical industry. Experimental design principles were

http://jlawson.byu.edu
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developed by Fisher in the early part of the twentieth century and were orig-
inally used in agricultural experiments. Within 40 years there was extensive
use of experimental design techniques in the chemical industry. Figure 3.14 is
a diagram of a continuous chemical process. In this process continuous streams

Figure 3.14 Diagram of a Chemical Process
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of two reactants, A and B, are combined at a juncture called the mixing-T
where they begin to react. The mixture then flows into a reactor and is com-
bined with solvent and a catalyst and the reaction is completed. The result of
the reaction flows into a separator tank where the final product floats to the
top in a solvent phase while the catalyst and water go to the bottom of the
tank. The catalyst is concentrated and sent back into the reactor, while the
product, byproducts, and solvent are taken to a distillation column where the
product is removed and the solvent is recycled to the reactor.

One of the problems experienced in this process was the production of
byproduct (tars). Over time these tars would clog the reactor and force a
shutdown of the process for cleaning. It also required an additional process
step to purify the final product. Engineers decided to conduct experiments to
see if they could increase the percent conversion which would lower the amount
of byproducts. The factors they thought might affect the percent conversion
are shown in the table below.

Symbol Factor Name
A Excess of Reactant A (over molar amount)
B Catalyst Concentration
C Pressure in the Reactor
D Temperature of the Coated Mixing-T

Two levels of each factor were chosen that were spread apart as wide as
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the engineers thought feasible in order to maximize the chance of detecting
factor effects with only two levels. During experimentation, the factor levels
would be changed after a fixed interval of time. The experimental unit for this
would be the particular reactants, catalyst, and solvent entering the reaction
zone during a given run, and the response, Y , would be the percent conversion
calculated from the product produced during a run.

It was felt that if the percent conversion could be increased by ∆ = 12%
(or more) it would substantially reduce the maintenance and extra processing
currently required and would be worth detecting. From past experience with
the process, the standard deviation in percent conversion on this process for
product produced in the same length intervals as the runs in the proposed
experimental design (with no changes in the factor levels) was σ = 6%. Using
the shortcut formula, the number of runs required to have a power of 0.95 for
detecting factor effects of ∆ = 12% or more was

N = (8σ/∆)
2
= ((8)(6)/12)

2
= 16.

Sixteen runs with four factors means the design would be unreplicated. The
experimental conditions (in coded units), a list of random run orders, and
results of the experiments are shown in Table 3.7.

Table 3.7 List of Experiments and Results for Chemical Process
Random Run No. A B C D Y

15 − − − − 45
13 + − − − 41
11 − + − − 90
1 + + − − 67
10 − − + − 50
2 + − + − 39
3 − + + − 95
12 + + + − 66
16 − − − + 47
8 + − − + 43
9 − + − + 95
14 + + − + 69
6 − − + + 40
5 + − + + 51
7 − + + + 87
4 + + + + 72

The R code to open the data frame and perform a regression analysis to
estimate the half effects or regression coefficients are shown below. The data
frame chem in the daewr package contains numeric vectors of coded and scaled
values for the factor levels, and the contr.FrF2 function was not needed.
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> library(daewr)

> modf <- lm( y ~ A*B*C*D, data = chem)

> summary(modf)

In the results below, unlike the example in Section 3.7.3, there will be no
estimate of ssE and thus no t-tests on the regression coefficients in the lm

summary. The regression coefficients for main effects A and B along with the
A×B interaction are the largest effects, but a graph must be used to determine
which are significant.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 62.3125 NA NA NA

A -6.3125 NA NA NA

B 17.8125 NA NA NA

C 0.1875 NA NA NA

D 0.6875 NA NA NA

A:B -5.3125 NA NA NA

A:C 0.8125 NA NA NA

B:C -0.3125 NA NA NA

A:D 2.0625 NA NA NA

B:D -0.0625 NA NA NA

C:D -0.6875 NA NA NA

A:B:C -0.1875 NA NA NA

A:B:D -0.6875 NA NA NA

A:C:D 2.4375 NA NA NA

B:C:D -0.4375 NA NA NA

A:B:C:D -0.3125 NA NA NA

Residual standard error: NaN on 0 degrees of freedom

Multiple R-squared: 1, Adjusted R-squared: NaN

F-statistic: NaN on 15 and 0 DF, p-value: NA

The effects in a two-level factorial are the difference of two averages. If
changes in factor levels do not cause a change in the response, the effect will
be just the difference in averages of random data (due to random fluctuations
in experimental error). If none of the factors or interactions cause changes in
the response, the entire set of effects, or regression coefficients, should appear
as a sample from the normal distribution with zero mean due to the Central
Limit Theorem. Therefore if we make a normal probability plot of the effects,
the insignificant effects should lie along a straight line and any significant
effects or interactions should appear as outliers on the plot.

The R code on the next page illustrates how to create a normal plot of the
regression coefficients in the object modf that was created by the lm function.
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This code calls the function fullnormal from the daewr package. A similar
plot, with the axis reversed, can be made with the DanielPlot function in
the FrF2 package.

In this normal plot (Figure 3.15), most of the points lie along a straight
line drawn through the origin at (0,0). However, the points representing main
effects A, B, and the A × B interaction tend to be below and to the left or
above and to the right of the straight line. This indicates that these three
effects are significant. The points along the straight line are insignificant and
the slope of this line is an estimate of the standard error of an effect σ̂β .

> library(daewr)

> fullnormal(coef(modf)[-1],alpha=.025)

Figure 3.15 Normal Probability Plot of Regression Coefficients
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Another way of looking at the effects graphically is to make a half-normal
plot. The half-normal plot is created by essentially folding the normal plot at
45○ along the line y = −x. This puts the origin of the graph in the lower left
corner and makes the straight line of insignificant effects appear to come out
of the origin. For this reason it is easy to add a reference line to the plot, and
the significant effects are identified as those above the reference line on the
far right. To make a half-normal plot, plot the absolute value of the effects or
regression coefficients on the vertical axis and their corresponding half normal
scores on the horizontal axis.
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One way to create a half-normal plot of the coefficients in modf is to use the
LGB function in the package daewr. By default this function draws a signifi-
cance limit and produces a report indicating which effects are significant. The
option rpt=FALSE suppresses the printed report. The code below produces
Figure 3.16.

> library(daewr)

> LGB( coef(modf)[-1], rpt = FALSE)

Figure 3.16 Half-Normal Plot of Absolute Regression Coefficients
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The half-normal plot shows effects A, B, and the A × B interaction fall
above the upper prediction limit line and are clearly significant. The reference
line and upper limit in Figure 3.16 were added automatically by the function
LGB using the method described by Lawson et al. (1998). When drawing the
reference line by hand on a plot, it is easier to use the half-normal plot than
the normal plot, because the first half to two thirds of the points trending
from the lower left will almost always form a straight line. However, on the
half-normal plot the signs of the coefficients are lost. For example, in the lm

summary and the normal plot it can be clearly seen that main effect A (the
excess of reactant A) has a negative effect, and that increasing the excess of
reactant A will on the average cause a decrease in the percent conversion. In
the half-normal plot, it can be seen that main effect A is significant but one
must refer back to the table of coefficients to see whether it has a positive or
negative effect.
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Of course, in this example there is a significant interaction, and therefore
the main effects cannot be interpreted separately. To assist in interpreting the
interaction, an interaction plot should be created. The R code to create the
interaction plot between factor A (excess of reactant A) and factor B (catalyst
concentration) is below, and the resulting graph is shown in Figure 3.17.

> library(daewr)

> with(chem, (interaction.plot( A, B, y, type = "b", pch =

+ c(18,24), main = "Interaction Plot of Catalyst by Excess A",

+ xlab = "Excess Reactant A", ylab = "Percent Conversion")))

Figure 3.17 Interaction Plot Catalyst by Excess A
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This figure shows that increasing the level of catalyst increases conversion.
Increasing the excess of reactant A has little effect on conversion when a low
level of catalyst is used. However, if a high level of catalyst is used, increasing
the excess of reactant A decreases conversion by more than 20%. Therefore,
to achieve the highest level of conversion, a high level of catalyst and a low
level of excess reactant A should be used.

Two other graphical tools that are used to identify significant effects and
interactions in unreplicated factorials are the Lenth plot (Lenth, 1989), and the
Bayes plot (Box and Meyer, 1986a). The Lenth plot is similar to the analysis
of means plot (Ott, 1967) with additional limits provided. The estimates that
fall within the margin of error (ME) limits are unlikely to be significant;
the estimates that fall within the simultaneous margin of error (SME) limits
but outside the margin of error limits (ME) are possibly significant, while
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those that fall outside the SME limits are likely significant. The Bayes plot
graphically represents the Bayes posterior probabilities that the effects are
active. The LenthPlot and the BsProb functions in the package BsMD facilitate
making these plots. The R code to make these plots with the data in the
chemical process experiment is shown below.

> par( mfrow = c(2,1) )

> library(BsMD)

> LenthPlot(modf, main = "Lenth Plot of Effects")

> X <- model.matrix(modf)[ , 2:16]

> y <- chem$y

> Chem.BsProb <- BsProb( X = X, y = y, blk = 0, mFac = 15,

+ mInt = 1, p = 0.2, g = 2.49, ng = 1, nMod = 10)

> plot( Chem.BsProb, main = "Bayes Plot of Effects" )

Figure 3.18 Lenth and Bayes Plots of Effects from Chemical Process Experiment
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The result is shown in Figure 3.18 where it can be seen that effects A, B, and
the AB interaction are identified as likely significant on the Lenth plot. The
Bayes plot labels the effect by their Yates order (i.e., x1=A, x2=B, x3=AB,
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x4=C, x5=AC, x6=BC, ... etc.) rather than by their name. However, the same
effects (A, B, and AB) are identified as having large posterior probabilities.
These results are consistent with what was seen in the normal and half-normal
plot of effects.

3.8 Verifying Assumptions of the Model

When there are replicate experimental units in each cell of a factorial model,
or when an interaction term can be assumed negligible and removed from the
model (as a result of a preliminary test like those described in Section 3.5.4 or
3.7.5), the normality and constant variance assumptions of the factorial model
can be verified with residual plots as described in Section 2.4.

However, in the case of 2k design with only one replicate per cell it is a little
more difficult to check the assumption of normality. The normality assumption
is most often violated by having one outlier or atypical value. The calculated
main effects and interactions in a two-level factorial can always be represented
as the difference of two averages, ȳ+ − ȳ−. When experimental errors follow a
normal distribution, the calculated effects for factors and interactions that
have a negligible influence on the response should be normally distributed
with mean zero. The significance of potential influential factors are judged by
their relation to a reference line of points on a normal or half-normal plot of
effects formed by the negligible factors. However, one atypical value will bias
each calculated effect positively or negatively away from zero. The variability
of the calculated effects for the non-influential factors and interactions will be
much larger and it will be more difficult to judge significance of effects, much
less check the normality assumption of residuals.

Daniel (1960) proposed a manual method for detecting and correcting an
outlier or atypical value in an unreplicated 2k design. This method consists of
three steps. First, the presence of an outlier is detected by a gap in the center
of a normal plot of effects. Second, the outlier is identified by matching the
signs of the insignificant effects with the signs of the coded factor levels and
interactions of each observation. The third step is to estimate the magnitude
of the discrepancy and correct the atypical value.

As an example, consider the normal plot of effects (Figure 3.19) from an
unreplicated 24 experiment described by Box (1991). In this plot it appears
that main effects B and C may be significant, but there is a vertical gap in
the line of insignificant effects that indicates an outlier may be present.

Lawson and Gatlin (2006) automated Daniel’s procedure identifying and
correcting an atypical value by making two passes through the data. If the
gap statistic (the ratio of the vertical gap in Figure 3.19 divided by Lenth’s
PSE statistic) is above the 50th percentile of its reference distribution in the
first pass through the data, PSE is recalculated after correcting the outlier
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Figure 3.19 Normal Plot of Effects with a Vertical Gap

and the gap statistic is tested again on a second pass through the data. If the
gap statistic is above the 95th percentile in the second pass through the data,
the function prints a table showing which observation is the potential outlier,
and which effects are significant after correcting the outlier. A half-normal
plot is used to identify the significant effects after correcting the outlier.

An R function called Gaptest for performing this procedure is available in
the package daewr. The function call is shown below, and results are below it
and continue onto the next page. The data frame BoxM in the call statement
contains the data from Box (1991). The first four columns in the data frame
are the factors A, B, C, and D in the unreplicated 24 design and the last
column is a numeric response y.

> library(daewr)

> data(BoxM)

> Gaptest(BoxM)

Initial Outlier Report

Standardized-Gap = 3.353227 Significant at 50th percentile

Final Outlier Report

Standardized-Gap = 13.18936 Significant at 99th percentile
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Corrrected Data Report

Response Corrected Response Detect Outlier

47.46 47.46 no

49.62 49.62 no

43.13 43.13 no

46.31 46.31 no

51.47 51.47 no

48.49 48.49 no

49.34 49.34 no

46.10 46.10 no

46.76 46.76 no

48.56 48.56 no

44.83 44.83 no

44.45 44.45 no

59.15 52.75 yes

51.33 51.33 no

47.02 47.02 no

47.90 47.90 no

Effect Report

Label Half Effect Sig(.05)

A 5.634463e-19 no

B -1.710000e+00 yes

C 1.455000e+00 yes

D 1.050000e-01 no

AB 5.500000e-02 no

AC -8.450000e-01 yes

AD 1.100000e-01 no

BC -3.024924e-18 no

BD -1.900000e-01 no

CD 3.450000e-01 no

ABC 2.000000e-01 no

ABD -4.000000e-02 no

ACD 6.000000e-01 no

BCD -3.900000e-01 no

ABCD 3.600000e-01 no

Lawson, Grimshaw & Burt Rn Statistic = 1.626089

95th percentile of Rn = 1.201
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The method detected an outlier on the 13th run, and it corrected the re-
sponse by changing 59.15 to 52.15. Reanalysis of the corrected data shows that
main effects B, C, and the AC interaction are significant. The AC interaction
could not be detected in Figure 3.19 because the outlier inflated the estimates
of the insignificant effects and the AC effect was buried in the noise.

Figure 3.20 shows the half-normal plot of the coefficients calculated with the
corrected data. In this plot it can be seen that the AC interaction is clearly
significant in addition to the main effects B and C that were identified in
Figure 3.19.

Whenever an outlier is discovered, using this method or residual plots, and
the conclusions of the analysis change when the outlier is removed or corrected,
the experimenter should proceed cautiously. When there are more than two
replicates at the same factor settings where the outlier was found, it may be
clear that something is amiss. However, if there are two or less observations
at factor settings where the outlier was found, it may be advisable to rerun
the questionable experiment.

Figure 3.20 Half-Normal Plot of Coefficients Calculated with Corrected Data

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

0.0 0.5 1.0 1.5 2.0

Half-Normal Scores

A
bs

ou
lu

te
 E

ffe
ct

s

0.
0

0.
5

1.
0

1.
5

B

C

AC



106 FACTORIAL DESIGNS

3.9 Review of Important Concepts

When experimenting with more than one treatment factor, factorial designs
with all possible treatment combinations randomized to experimental units
are much more efficient than separate one factor designs. When there are
homogeneous experimental units and multiple factors under study, the CRFD
or completely randomized factorial design should be used.

Figure 3.21 shows when CRD and CRFD should be used. If there is one
factor under study with homogeneous experimental units, use a CRD. How-
ever, if there are multiple experimental units under study, use the CRFD. In

Figure 3.21 Design Selection Roadmap

Design Purpose
Estimate Variances Study Factor Effects

E.U.’s

Block Factors

One Factor

Multiple Factors

Multiple Factors
with some hard

to vary

Block size

Homogeneous                  Heterogeneous

Large        Small

RCB

GCB

PBIB,BTIB

BIB

LSD

RCD
RSE CRD

Factors
FRSE
NSE
SNSE

CRFD CRRS    SLD    RCBF           BRS         PCBF
CRFF                        SCD

PB, OA                      EVD                                         CCBF

CRSP          RSSP   SPMPV   RBSP
SPFF         EESPRS

One                   Two

class cont.     mixture cont.      class
Factors

a factorial design the total number of replicates of each level of one factor
is the number of replicates per cell multiplied by the product of the number
of levels of all other factors in the design. This hidden replication increases
the power for detecting factorial effects or reduces the number of experiments
needed to obtain the same power as a series of separate one-factor designs.
The CRFD should be used when the experimental units are homogeneous and
it is reasonable to run all combinations of levels of the factors.

By studying more than one treatment factor simultaneously in a factorial
design, interaction or joint effects of the factors can be detected. Interactions
occur when the effect of one factor is different depending on the level of an-
other factor or on a combination of levels of other factors. Interactions are
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common in the real world, and ignoring them by experimenting with one fac-
tor at a time can be very misleading. Examples in this chapter show that it is
easy to describe or interpret the meaning of an interaction by comparing or
contrasting the effect of one factor over the levels of another factor. Interaction
graphs are helpful in describing interactions.

The model for analysis of a factorial with two factors can be written as

yijk = µ + αi + βj + αβij + εijk

and can be easily extended to multiple factors. The assumptions for the analy-
sis are homogeneity and normality of experimental errors, and can be checked
using the residual plots described in Chapter 2.

When there is an equal number of replications per cell or treatment combi-
nation, the F -tests in the ANOVA table produced by the R aov function or
the anova summary of an lm object will be correct, and the marginal means
and cell means produced by the R model.tables function will be unbiased
estimates that will be useful in revealing the direction of factor effects and in-
teractions. However, if there is an unequal number of replicates per cell, these
F -tests and marginal means may be misleading. In that case, type II or type
III sums of squares should be used in the ANOVA table. These are produced
by the Anova function in the car package by selecting the desired option. In
addition, the least squares or lsmeans produced by the lsmeans function in
the lsmeans package will produce unbiased estimates of cell means and factor
level means.

When multiple factors are studied in a factorial experiment, often only
two levels of each factor are used in order to reduce the total amount of
experimentation required. In that case, the model simplifies to a regression
model

y = β0 + βAXA + βBXB + βABXAXB + βCXC + βACXAXC + βBCXBXC

+ βABCXAXBXC + ε

and the regression coefficients are exactly one half the effect or difference in
the average response between the low and high levels of the factors. Interaction
effects are also easily defined as differences of averages in this case. There is
a shortcut formula for approximating the power in two-level factorials, and
when there is only one replicate per treatment combination, the significance of
effects and interactions can be determined using normal or half-normal plots.
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3.10 Exercises

1. A consultant was called to assist the police department of a large metropoli-
tan city in evaluating its human relations course for new officers. He planned
a two-factor factorial experiment where the treatments were A—the type
beat to which officers were assigned, and B—the length of the human rela-
tions course. A sample of 45 new officers was chosen, and 5 were randomly
assigned to each of the 9 treatment combinations. A test was developed to
measure officers’ attitude toward minority groups and was administered to
the participating officers after their training had ended and they had ex-
perienced two weeks on their beat. Better attitudes result in higher scores
on this test. Analysis of the data revealed a significant A×B interaction
effect between the type beat and length of human relations course. The
table below shows the mean test scores for the 9 combinations of treatment
levels.

Length of Human Relations Course
Type Beat 5 Hours 10 Hours 15 Hours
upper-class beat 34.4 35.5 39.2
middle-class beat 30.2 32.4 34.7
inner-city beat 20.1 39.4 54.3

(a) Construct an interaction graph.

(b) Write an interpretation of the interaction in a few complete sentences.

2. A wooden catapult can be used to flip a foam ball. The catapult has three
factors that can be adjusted: the start angle, the stop angle, and the pivot
height. The distance the ball travels can be measured with a tape measure.

Start Angle

Stop Angle

Pivot 
Height

(a) If experiments were to be conducted with the catapult by flipping the
ball and measuring the distance, what would the experimental unit be?

(b) Using the numbers 1, 2, and 3 to represent the levels of start angle and
stop angle, and holding the pivot height constant at its high level, make
a randomized list of experiments for a 3×3 factorial experiment with
r = 2 replicates per cell.
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(c) If the variance of the experimental error in the measured distance was
σ2 = 12 inches, calculate the number of replicates you would need to
have a power of 0.90 for detecting a difference in 10 inches in cell means.

(d) Calculate the number of replicates you would need to have a power of
0.90 for detecting a difference of 24 inches in marginal means for either
factor.

(e) If a catapult is available, conduct the list of experiments you wrote in
part (b).

(f) Calculate the ANOVA with your resulting data and test the main effects
and interaction.

(g) Explain or interpret any significant effects (use graphs if necessary to
aid in your explanation).

3. In an experiment to maximize the Y= resolution of a peak on a gas chro-
matograph, a significant interaction between A = column temperature and
C = gas flow rate was found. The table below shows the mean resolution
in each combination of column temperature and gas flow rate.

Column Gas Flow Rate
Temperature Low High
120 10 13
180 12 18

(a) Construct an interaction graph.

(b) Write a sentence, or two, to interpret this interaction.

4. Consider performing experiments to determine the effect of popcorn brand,
power level, and time on the percentage of edible popcorn (unpopped or
burnt is not edible) kernels made in a microwave oven. The object is to
maximize the proportion of edible kernels. Start with 1

3
cup of kernels and

do pilot experiments to determine the range of the factors you would like
to study and provide an estimate of the standard deviation of replicates
made under the same conditions.

(a) What is the experimental unit for this experiment?

(b) Determine how many replicates will be required to detect a maximum
difference in marginal (main effect) means of 0.25.

(c) Determine the number of levels of the factors you would like to study,
and create a randomized list of the experiments for a factorial design.

(d) Actually perform the experiments and collect the data.

(e) Analyze the data. Partition any significant effects of power level and
time into orthogonal polynomial contrasts. Interpret the results, and
determine the optimum combination of factor levels from among those
you tested.
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(f) How many experiments would it have taken to get the same power for
detecting main effects using a vary one-factor-at-a-time plan? Would you
detect the same optimum using the vary one-factor-at-a-time plan?

5. Modify the R code on page 72 to verify that the power would be 0.80
for detecting differences in marginal means of ∆ = 1.0 inch in the paper
helicopter experiments with four levels of wing length, four levels of body
width, and r = 2 replicates per cell (as shown in Section 3.5.2).

6. In a continuation of the experiments to investigate the effect of plant growth
regulators and spear bud scales on spear elongation in asparagus, described
in exercise 5 of Chapter 2, Yang-Gyu and Woolley (2006) conducted a 4×3
factorial experiment varying the concentration of the plant growth regulator
CPPU in the solution, and the time the asparagus spears were dipped in
the solution. The results are shown in the table below.

Dipping Time (sec)
CPPU Conc. 30 60 90
0 (control) 92.5 92.9 91.3
0.5 ppm 97.8 94.9 101.3
1.0 ppm 97.0 98.5 101.6
10.0 ppm 103.4 102.9 98.6

(a) Partition the sums of squares for CPPU concentration and dipping time
into orthogonal polynomial contrasts. Partition the interaction of CPPU
conc. by dipping time into linear×linear, quadratic×linear, cubic×linear,
linear×quadratic, quadratic×quadratic, and cubic×quadratic. Pool (sum)
all sums of squares but the linear×linear portion to form an error sum
of squares and use it to test the linear×linear part of the interaction and
the polynomial contrasts you found for the main effects. Interpret your
results.

(b) Use the Tukey1df function to test the significance of the interaction.

(c) Based on the results you obtained in (a) and (b) would you recommend
the additive model for this data?

7. Kenett and Steinberg (1987) described a two-level factorial experiment con-
ducted by students to study the time required to boil 1 qt of water. Factors
were A=flame level (low or high), B=pan size (small or large), C=pan cover
(none or glass cover), and D=salt added to water (no or yes).

(a) If the standard deviation in boiling time (tested at the same conditions)
was found to be σ̂=0.236 minutes, use the shortcut formula to determine
how many experiments you will need to perform in order to have power
of 0.95 for detecting effects of size ∆=0.50 minutes. Would this answer
change if you decided to only perform an experiment with 3 of the 4
factors?



EXERCISES 111

(b) Create a list of experiments in random order for performing these ex-
periments.

(c) Actually perform the experiments by boiling the water and collect the
data.

(d) Analyze the data to determine which effects and interactions are signif-
icant.

(e) Interpret and explain any significant effects you find.

8. Consider the data in Table 3.7 with the third observation (90) replaced by
an atypical value (78) for those factor settings.

(a) Calculate the effects for this data.

(b) Make a normal or half-normal plot of the effects.

(c) What effects do you judge to be significant?

(d) Run the Gaptest function for detecting and correcting an outlier with
this data.

9. Nyberg (1999) has shown that silicon nitride (SiNx) grown by Plasma En-
hanced Chemical Vapor Deposition (PECVD) is a promising candidate for
an antireflection coating (ARC) on commercial crystalline silicon solar cells.
Silicon nitride was grown on polished (100)-oriented 4A silicon wafers using
a parallel plate Plasma Technology PECVD reactor. The diameter of the
electrodes of the PECVD is 24 cm and the diameter of the shower head
(through which the gases enter) is 2A. The RF frequency was 13.56 MHz.
The thickness of the silicon nitride was one-quarter of the wavelength of
light in the nitride, the wavelength being 640 nm. This wavelength is ex-
pected to be close to optimal for silicon solar cell purposes. The process
gases were ammonia and a mixture of 3% silane in argon. The experiments
were carried out according to a 25 factorial design. The results are shown
in the table on the next page.

(a) Fit the factorial model to the response y1 including all interactions up
to the 5-way.

(b) Make a normal plot of the effects or regression coefficients to determine
which main effects and interactions are significant.

(c) Drop insignificant terms from the model and make residual plots to check
the assumptions of the model fit.

(d) Use your model to determine the conditions (i.e., factor levels that will
minimize the refractive index).
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A B C D E y1 y2

Silane Total
to Gas

Ammonia Flow Growth
Exp. Flow Rate Rate Press. Temp. Power Refract. Rate
No. Ratio (sccm) (mtorr) (C○) (W) Index (nm/min)

1 0.1 40 300 300 10 1.92 1.79
2 0.9 40 300 300 10 3.06 10.1
3 0.1 220 300 300 10 1.96 3.02
4 0.9 220 300 300 10 3.33 15
5 0.1 40 1200 300 10 1.87 19.7
6 0.9 40 1200 300 10 2.62 11.2
7 0.1 220 1200 300 10 1.97 35.7
8 0.9 220 1200 300 10 2.96 36.2
9 0.1 40 300 460 10 1.94 2.31

10 0.9 40 300 460 10 3.53 5.58
11 0.1 220 300 460 10 2.06 2.75
12 0.9 220 300 460 10 3.75 14.5
13 0.1 40 1200 460 10 1.96 20.7
14 0.9 40 1200 460 10 3.14 11.7
15 0.1 220 1200 460 10 2.15 31
16 0.9 220 1200 460 10 3.43 39
17 0.1 40 300 300 60 1.95 3.93
18 0.9 40 300 300 60 3.16 12.4
19 0.1 220 300 300 60 2.01 6.33
20 0.9 220 300 300 60 3.43 23.7
21 0.1 40 1200 300 60 1.88 35.3
22 0.9 40 1200 300 60 2.14 15.1
23 0.1 220 1200 300 60 1.98 57.1
24 0.9 220 1200 300 60 2.81 45.9
25 0.1 40 300 460 60 1.97 5.27
26 0.9 40 300 460 60 3.67 12.3
27 0.1 220 300 460 60 2.09 6.39
28 0.9 220 300 460 60 3.73 30.5
29 0.1 40 1200 460 60 1.98 30.1
30 0.9 40 1200 460 60 2.99 14.5
31 0.1 220 1200 460 60 2.19 50.3
32 0.9 220 1200 460 60 3.39 47.1



CHAPTER 4

Randomized Block Designs

4.1 Introduction

In order to eliminate as much of the natural variation as possible and increase
the sensitivity of experiments, it would be advisable to choose the experimen-
tal units for a study to be as homogeneous as possible. In mathematical terms
this would reduce the variance, σ2, of the experimental error and increase the
power for detecting treatment factor effects. On the other hand, most exper-
imenters would like the conclusions of their work to have wide applicability.
Consider the following example. An experimenter would like to compare sev-
eral methods of aerobic exercise to see how they affect the stress and anxiety
level of experimental subjects. Since there is wide variability in stress and
anxiety levels in the general population, as measured by standardized test
scores, it would be difficult to see any difference among various methods of
exercise unless the subjects recruited to the study were a homogeneous group
each similar in their level of stress. However, the experimenter would like to
make general conclusions from his study to people of all stress levels in the
general population.

Blocking can be used in this situation to achieve both objectives. Blocking
is the second technique that falls in the category of error control defined in
Section 1.4. In a randomized block design, a group of heterogeneous exper-
imental units is used so that the conclusions can be more general; however,
these heterogeneous experimental units are grouped into homogeneous sub-
groups before they are randomly assigned to treatment factor levels. The act
of grouping the experimental units together in homogeneous groups is called
blocking. Randomly assigning treatment factor levels to experimental units
within the smaller homogeneous subgroups of experimental units, or blocks,
has the same effect as using only homogeneous units, yet it allows the conclu-
sions to be generalized to the entire class of heterogeneous experimental units
used in the study.

If experimental units represent physical entities, blocking or grouping by
similar physical characteristics often results in more homogeneous groups.
For example, plots of land in agricultural experiments are usually blocked by
proximity because plots in close proximity normally have similar soil char-
acteristics. When experimental units are animals, the grouping of genetically
similar animals, such as littermates, often reduces variability within groups.
When experimental units are simply trials, or points in time where treatments
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will be applied, they are often blocked by time since many lurking variables
may change over time and trials in close temporal proximity are more alike.

In a randomized complete block design, or RCB, with one treatment factor,
when the factor has t levels there will be b blocks (or subgroups of homoge-
neous experimental units) that each contain exactly t experimental units for a
total of t×b experimental units. The t experimental units within each block are
as similar as possible, and the groups of experimental units vary enough from
block to block to allow general conclusions to be drawn. The randomization of
experimental units to treatment factor levels, described in Chapter 2, is per-
formed within each block. Fisher first proposed block designs for agricultural
experiments where the experimental units were plots of ground. Blocks repre-
sented compact plots in close proximity which were similar. Variability among
blocks represented the range of conditions over which conclusions would be
generalized.

If there are more than t experimental units within each block, so that treat-
ment factor levels are replicated r times within each block, there will be a total
of r × t × b experimental units. In this situation we call the design a general
complete block design. Normally the RCB would be preferred over the general
complete block design because smaller blocks of experimental units allow for
greater homogeneity within the blocks and thus smaller experimental error
and more precise tests and estimates.

4.2 Creating an RCB in R

The randomization of experimental units to treatment factor levels in a ran-
domized block design can be accomplished using the base R code, or using
functions from user written packages. To illustrate how to do this using base
R code, consider the following experimental situation. A student wanted to
investigate old wive’s tales of methods for extending the life of cut flowers.
The treatment factor was the liquid to fill the vase. The levels were:

1. Tap water

2. Tap water with one spoonful of sugar added

3. Tap water with one cup of carbonated water

4. Tap water with one cup of 7-up

The experimental units were single flowers and the response was the time in
days until the flower wilted. The student wanted the conclusions of his study
to apply to many types of flowers, so she used an RCB design. The blocks
were:

1. Rose

2. Carnation

3. Daisy

4. Tulip
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In the R code below, a vector f, of factor levels is created to represent the
four treatments. Next, the sample function is used to create a random ordering
of the treatment levels. This is repeated four times because a different random
ordering is required for each of the four blocks or types of flowers. Finally, these
vectors are stacked together, merged with the block indicators in a data frame,
and written to a .csv file that can be used as an electronic data collection form
like the example on page 19.

> f <- factor( c(1,2,3,4) )

> b1t <- sample(f,4)

> b2t <- sample(f,4)

> b3t <- sample(f,4)

> b4t <- sample(f,4)

> block <- factor( rep(c("carnation", "daisy", "rose", "tulip"),

+ each=4))

> flnum <- rep(f,4)

> plan<-data.frame(TypeFlower = block, FlowerNumber = flnum,

+ treatment = t)

> write.table(plan, file = "RCBPlan.csv", sep = ",", row.names

+ = FALSE)

This code will produce a different randomized list each time it is run. To
use the list it produces, the student would number the flowers in each block
from 1 to 4. Then using the list, the carnation number 1 would be placed in
a vase with the treatment factor level that is indicated on the first line of the
data collection form. Carnation number 2 would be placed in a vase with the
treatment level that is indicated on the second line of the data collection form,
and so forth.

RCB designs can also be easily created using user written packages. The
code below shows an example. In this case, the function design.rcbd from
the package agricolae (de Mendiburu, 2012b) is illustrated. By default this
function labels the experimental units as “plots,” and uses integers for the
block numbers. The next statement renames the levels of the blocks. The
seed argument in the function call is for the randomization, and running the
code with the same seed will allow the user to reproduce the same randomized
list multiple times.

> library(agricolae)

> treat<-c(1,2,3,4)

> outdesign <- design.rcbd(treat, 4, seed = 11)

> rcb <- outdesign$book

> levels(rcb$block) <- c("carnation", "daisy", "rose", "tulip")
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4.3 Model for RCB

The model for the analysis of an RCB design is

yij = µ + bi + τj + εij , (4.1)

where bi represent the block effects, τj represent the treatment effects. The
usual assumptions of normality of experimental error and homogeneity of
variance of experimental error across levels of the treatment factors and blocks
are required for this model. These assumptions can be checked with residual
plots as shown in Section 2.4.

Notice that this is an additive model which does not include the interaction
between block and treatment. Since there are only t × b experimental units,
there would be zero degrees of freedom for the error term ssE if a block by
treatment interaction term were included in the model. However, the block by
treatment interaction is in fact the correct error term for testing the treatment
effects. The experimenter wants to generalize his conclusions about treatment
effects over all the experimental units, so the average treatment effects should
be larger than any differences in treatment effects among blocks of experimen-
tal units. The difference in treatment effects among blocks is exactly what the
interaction measures and is therefore the correct error term. By leaving the
interaction out of the model, the ssE becomes identical to the interaction
sums of squares.

The ANOVA table for an RCB design is shown symbolically in Table 4.1.
Representations for the type I sums of squares for blocks and treatments are
shown in the table, similar to what was shown in Section 3.5.1, but they
will be identical to the type III sums of squares for this design. The error
sums of squares is ssE = y′y − β̂′X ′y = y′(I −X(X ′X)−X ′)y, where β̂ =

(X ′X)−X ′y.

Table 4.1 Analysis of a Variance Table

Sum of Mean
Source df Squares Squares F-ratio

Blocks b − 1 ssBlk ssBlk/(b − 1)
R(b∣µ)

Treatments t − 1 ssT ssT/(t − 1) msT /msE
R(τ ∣b, µ)

Error (b − 1)(t − 1) ssE ssE/(b − 1)(t − 1)

The degrees of freedom for the error (b−1)(t−1) is smaller than it would be
in a completely randomized design with b replicates of each treatment level;
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however, if the groups of experimental units within the blocks are more homo-
geneous, the msE should be smaller and the power for detecting differences
among the treatment levels higher.

The estimate of the variance of the homogeneous experimental units within
each block is given by

σ̂2
rcb =

ssE

(b − 1)(t − 1)
. (4.2)

An estimate of the variance of the entire group of heterogenous experimental
units can be made from the mean squares in the RCB ANOVA. It is given by
the formula

σ̂2
crd =

ssBlk + ssE

t(b − 1)
(4.3)

which is a weighted average of the mean square for blocks and the mean square
for error. However, the weights are not simply the degrees of freedom for each
mean square. If the msBlk is zero, it can be seen that σ̂2

crd < σ̂
2
rcb. The ratio

of σ̂2
crd and σ̂2

rcb is a measure of the efficacy of blocking.
The error degrees of freedom for the RCB is νrcb = (b−1)(t−1), and the error

degrees of freedom for a completely randomized design (CRD) with the same
number of experimental units would be νcrd = t(b − 1). The relative efficiency
of the RCB is then given by the formula:

RE =
(νrcb + 1)(νcrd + 3)

(νrcb + 3)(νcrd + 1)

σ̂2
crd

σ̂2
rcb

(4.4)

RE can be used to determine the number of observations that would be re-
quired in a CRD, with heterogeneous experimental units, in order to have the
variances for the treatment means equivalent to that achieved with the RCB.
If b × t experimental units were used in the RCB design, then RE × (b × t)
experimental units would be required in a CRD design, without blocking, to
attain equivalent variances of treatment means.

4.4 An Example of an RCB

Consider the data in Table 4.2 from Lim and Wolfe (1997), partially modified
from Heffner et al. (1974). The effect of the drug d-amphetamine sulfate on
the behavior of rats was the object of the experiment.

The behavior under study was the rate at which water-deprived rats pressed
a lever to obtain water. The response was the lever press rate defined as
the number of lever presses divided by the elapsed time of the session. The
treatment factor levels were five different dosages of the drug in milligrams
per kilogram of body weight, including a control dosage consisting of saline
solution. An experiment, or run, consisted of injecting a rat with a drug dosage,
and after one hour an experimental session began where a rat would receive
water each time after a second lever was pressed. The experimental unit in
these experiments was not a rat, but the state of a single rat during one
experiment or run, since an individual rat could be used in many experiments
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Table 4.2 Rat Behavior Experiment

Rat 0.0 0.5 1.0 1.5 2.0
1 0.60 0.80 0.82 0.81 0.50
2 0.51 0.61 0.79 0.78 0.77
3 0.62 0.82 0.83 0.80 0.52
4 0.60 0.95 0.91 0.95 0.70
5 0.92 0.82 1.04 1.13 1.03
6 0.63 0.93 1.02 0.96 0.63
7 0.84 0.74 0.98 0.98 1.00
8 0.96 1.24 1.27 1.20 1.06
9 1.01 1.23 1.30 1.25 1.24
10 0.95 1.20 1.18 1.23 1.05

by repeatedly injecting it with different doses of the drug (after an appropriate
washout period) and by observing the lever pressing behavior. Because there
was wide variability in the lever pressing rate between rats, an RCB design
was used, and a rat represented the blocking factor. Each rat received all five
doses in a random order with an appropriate washout period in between.

In this case, the rat is represented by the term bi in the model yij = µ+ bi +
τj + εij . The experimental error, represented by εij , is the effect of the state of
rat i during the run when it received dose j. If data were presented without
describing the experimental unit and the randomization process, the model
could be easily misspecified as yij = µ+ τi + εij resulting in the wrong analysis
and conclusions.

To utilize the R function aov to produce the ANOVA using the correct
model, the following commands are used.

> library(daewr)

> mod1 <- aov( rate ~ rat + dose, data = drug )

> summary(mod1)

Df Sum Sq Mean Sq F value Pr(>F)

rat 9 1.6685 0.18538 22.20 3.75e-12 ***

dose 4 0.4602 0.11505 13.78 6.53e-07 ***

Residuals 36 0.3006 0.00835

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

In the resulting ANOVA table above, the F -tests show that there is a sig-
nificant difference in treatment factor levels.

To interpret the differences in treatment factor levels, comparisons of means
should be made. Since the factor levels are quantitative, orthogonal polynomial
contrasts as described in Section 2.8 are useful. The R function contr.poly

that was introduced in Section 2.8 can be used to calculate the linear,
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quadratic, cubic, and quartic contrasts for dose. The code is shown be-
low. There the split option in the summary.aov is used rather than the
summary.lm function that was used in Section 2.8, since we only need to see
the single degree of freedom partition for the dose factor in the model.

> contrasts(drug$dose) <- contr.poly(5)

> mod2 <- aov( rate ~ rat + dose, data = drug)

> summary.aov(mod2,split = list(dose = list("Linear" = 1,

+ "Quadratic" = 2,"Cubic" = 3, "Quartic" = 4) ) )

The results show that there is a significant linear and quadratic trend in
lever press rate over the dose of the drug.

Df Sum Sq Mean Sq F value Pr(>F)

rat 9 1.6685 0.1854 22.205 3.75e-12 ***

dose 4 0.4602 0.1151 13.781 6.53e-07 ***

dose: Linear 1 0.0610 0.0610 7.308 0.0104 *

dose: Quadratic 1 0.3943 0.3943 47.232 4.83e-08 ***

dose: Cubic 1 0.0041 0.0041 0.491 0.4882

dose: Quartic 1 0.0008 0.0008 0.094 0.7613

Residuals 36 0.3006 0.0083

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The significant linear and quadratic trends over the dose range can be visu-
alized by plotting the means as a function of dose. The R code below produces
the graph in Figure 4.1. The quadratic trend line on the plot fits the means
well and shows that the lever press rate increases as a function of dose until it
reaches a maximum somewhere between 1.0 and 1.5 milligrams per kilogram
of body weight.

> R <- do.call("cbind", split(drug$rate, drug$rat))

> y <- apply(R, 1, mean )

> x <- as.double( levels(drug$dose) )

> plot( x, y, xlab = "dose", ylab = "average lever press rate" )

> xx <- seq( 0.0, 2.0, .1 )

> rate.quad <- lm( y ~ poly( x, 2) )

> lines(xx, predict( rate.quad, data.frame( x = xx) ))

The estimated variance of the experimental units (trials) within a block
(or rat) is the mean square error σ̂2

rcb = 0.00834867. The variance of the
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Figure 4.1 Lever Press Rate Means as Function of Drug Dose
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heterogeneous experimental units is given by

σ̂2
crd =

ssBlk + ssE

t(b − 1)

=
1.6685 + 0.3006

(5)(10 − 1)
= 0.043758.

(4.5)

This is approximately five times larger than the variance within a rat and
demonstrates the effectiveness of blocking by rat in the experiment. The rel-
ative efficiency is given by

RE =
(νrcb + 1)(νcrd + 3)

(νrcb + 3)(νcrd + 1)

σ̂2
crd

σ̂2
rcb

=
(37)(48)

(39)(46)
⋅

0.043758

0.0083487
= 5.2413. (4.6)

This means that blocking has reduced the variance of experimental units ap-
proximately 80%= 1 − 0.0083487

0.043758
, and that it would take approximately five

times as many trials to have the equivalent variances for treatment means if
each rat had been used for only one trial in a CRD design, and the rat-to-rat
variability had not been removed from the error term.
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4.5 Determining the Number of Blocks

The F -test for treatment or dose effect in the last example was highly signif-
icant (P < .0001). If the experiment were to be repeated in a situation where
the variability of the response (lever press rate within a rat) and differences
in treatment means were to remain approximately the same, fewer blocks or
rats would be required to detect significant differences in treatments. The
noncentrality parameter for the F -test of treatment effects in the randomized
complete block design is λ = (b/σ2)∑j τ

2
j , and the degrees of freedom are

ν1 = t−1, and ν2 = (b−1)(t−1). Therefore, in order to calculate the number of
blocks that will result in a power between 0.8 and 0.9 for detecting a difference
in treatment means, the R code in Section 3.5.2 can be modified by chang-
ing the formula for the denominator degrees of freedom and the noncentrality
factor.

The R code below can be used for calculating the power for a randomized
block design as a function of the number of blocks. Using the results from
the last experiment, the estimate of σ2

rcb = 0.00834867 and css = ∑j τ
2
j can be

estimated to be

(.764 − .9142)2
+ . . . + (0.850 − .9142)2

= 0.460208.

Using these as inputs to a more general F-power function that takes the
degrees of freedom, and the noncentrality parameter as arguments, the re-
sults are created that are shown below the code. There it can be seen that a
power greater than 0.99 can be achieved with only b = 2 blocks or rats in the
experiment.

> library(daewr)

> bmin <- 2

> bmax <- 3

> alpha <- .05

> sigma2 <- 0.0083487

> css <- 0.460208

> nu1 <- 5-1

> blocks <- c(bmin:bmax)

> nu2 <- (blocks - 1) * 4

> nc <- (blocks * css) / sigma2

> Power <- Fpower( alpha, nu1, nu2, nc )

> data.frame(blocks, nu1, nu2, nc, Power)

blocks nu1 nu2 nc Power

1 2 4 4 110.2466 0.9966799

2 3 4 8 165.3699 1.0000000

If an estimate σ2
crd were available from previous experiments or pilot studies,

Hinkelmann and Kempthorne (1994) have shown the relative efficiency (RE)
σ2
crd can also be used to get a rough estimate of the number of blocks required
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for an RCB design. For example, suppose σ2
crd were estimated to be 0.040865

from previous experiments and the number of replicates of each treatment
required for a CRD design to achieve adequate power for detecting a practical
difference in means was r = 20, determined by the methods of Section 3.5.2. If
blocking was expected to reduce the variance by 90% (i.e., σ2

rcb = 0.10 × σ2
crd,

or RE = 10.0). Then the number of blocks required to achieve the same power
with an RCB design is b = r

RE
= 20

10
= 2.

4.6 Factorial Designs in Blocks

Blocking is even more effective when combined with a factorial design in treat-
ment factors. In the case where more than one treatment factor is studied,
the number of experimental units in each block must be equal to the product
of levels of all the factors. This is called a randomized complete block facto-
rial or RCBF. As an example of a blocked factorial experiment consider the
data in Table 4.3. This experiment was conducted by Festing (2003) to deter-
mine whether BHA (a common antioxidant used in processed foods) induced
activity of the liver enzyme EROD in mice and whether this activity was in-
dependent of the strain of mice. It was part of a larger study to determine if
antioxidants help protect against cancer.

Table 4.3 Activity of EROD Liver Enzyme in Control and BHA-Treated Mice
Block 1 Block 2

Strain Treated Control Treated Control
A/J 18.7 7.7 16.7 6.4

129/Ola 17.9 8.4 14.4 6.7
NIH 19.2 9.8 12.0 8.1

BALB/c 26.3 9.7 19.8 6.0

The factors in this experiment were A, whether a mouse was treated with
BHA or not, and B, the strain of the mouse. Since you cannot assign a partic-
ular mouse to be of a certain strain, the experimental unit is not the mouse
but the trial or conditions existing in the lab when a particular experiment
was run. One run consisted of selecting a mouse from a specified strain; then
either incorporating BHA in the diet (for a 3-week period) or not (depending
on what was specified); and finally humanely sacrificing the mouse and per-
forming an autopsy to determine the activity level of the enzyme EROD in the
liver. Since the results of in vivo experiments like this can vary substantially
from time to time in the same laboratory due to differences in reagents used for
the enzyme analysis, calibration of instruments, and environmental factors in
the animal husbandry, the experiments were blocked in time. Two mice were
selected from each of four strains, one was randomly chosen to receive BHA
in the diet, and eight trials or runs were conducted simultaneously. This rep-
resented one block. Three months later, the whole process was repeated for a
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second block of runs. Since there are two levels of the treatment factor (BHA
treated or control) and four levels of the factor strain, there were 2 × 4 = 8
experimental units or runs per block.

The model for analysis of a two-factor factorial in a randomized block de-
sign, like that shown in Table 4.3, is

yijk = µ + bi + αj + βk + αβjk + εijk, (4.7)

where bi represents the block effect, αj represents the treatment factor effect,
and βk represents the strain factor effect. This model is easily generalized to
multi-factor factorial designs in randomized blocks. Notice that in the model
(4.7) there is an interaction αβjk between the two factorial factors, but there
is no interaction between the block factor, bi, and the factorial factors, αj and
βk. The interactions with blocks are the error term for the analysis and if they
are included in the model there will be zero degrees of freedom for ssE.

The R code commands to perform the analysis are shown below with the
resulting ANOVA table. There it can be seen that BHA treatment, strain, and
the interaction are significant. The block sums of squares is also large resulting
in a relative efficiency RE = 2.11. This means that it would take more than
twice as many mice to have the same power or sensitivity if the experiments
were not blocked by time.

> library(daewr)

> mod3 <- aov( y ~ block + strain * treat, data = bha)

> summary(mod3)

Df Sum Sq Mean Sq F value Pr(>F)

block 1 47.6 47.6 18.372 0.00363 **

strain 3 33.0 11.0 4.240 0.05274 .

treat 1 422.3 422.3 162.961 4.19e-06 ***

strain:treat 3 40.3 13.4 5.189 0.03368 *

Residuals 7 18.1 2.6

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Figure 4.2 helps in interpreting the factorial effects and interaction. It can
be seen that on the average, BHA added to the diet increases activity of the
enzyme EROD in the mouse liver. However, this increase is nearly doubled
for mice of strain BALB/c.
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Figure 4.2 BHA Effect for Each Strain
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4.7 Generalized Complete Block Design

When experimental units represent physical entities, smaller groups or blocks
of experimental units usually result in greater homogeneity. The larger the
group, the more likely it is to have many experimental units that are widely
different than the norm or average. For that reason it is inadvisable to have
blocked designs with more than the minimum, t, experimental units per block,
where t is the number of levels or combination of levels of treatment factors.
However, in some cases where experimental units represent trials rather than
physical entities and the experimental runs can be made quickly, larger block
sizes may not increase the variability of experimental units within a block.
In that case, a design with replicates of each treatment level within a block
(called a generalized complete block design or GCB) can be used.

Consider the following example from Golf Magazine (Bastable, 2006, June).
An experiment was conducted to determine the ideal tee height for driving a
golf ball as far as possible. The purpose was to recommend to all readers of
the article what tee height they should use. The treatment factor was the tee
height as shown in Table 4.4. The data is in Table 4.7 (page 140).

An experiment consisted of a golfer hitting a golf ball from a specified
height, and the response was the distance the ball traveled. To make a general
conclusion, a representative group of golfers had to be used rather than one
golfer. Since the ability to drive the ball by the golfers used in the study
differed, it made sense to group or block the trials by golfer and randomize
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Table 4.4 Treatment Factor Levels for Golf Experiment

Level Tee Height
1 Entire ball below crown
2 Half the ball above the crown
3 Bottom of ball at top of club-face

the order that each golfer hit a ball from each of the tee heights. However,
since hitting more than three golf balls would not be likely to fatigue a golfer
and cause more variability in his driving distance, there was no need to restrict
a golfer to hitting just three balls. Instead, each golfer hit r = 5 golf balls from
each of t = 3 tee heights. The results from this experiment are shown in the
Appendix at the end of this chapter. Nine golfers were used in this part of
the study; each golfer hit five balls from each tee height (15 balls total) in a
random order.

Since there are replicate experimental units for each treatment in each block,
it is possible to fit the model

yijk = µ + bi + τj + bτij + εijk. (4.8)

However, this leaves a dilemma. The msE in the traditional ANOVA and the
denominator for the F -tests for treatment effect and the block by treatment
interaction is based on the variability of experimental units within the same
treatment and block (in this case golfer). If the interaction between block
(golfer) and treatment factor (tee height) were significant, its interpretation
would imply that the optimal tee height could be different for different golfers.
The golfers in the study were just a sample of golfers, and if the optimal
tee height were different for them, there would be no way to recommend an
optimal tee height for all readers of the Golf Magazine article.

To make a general recommendation, the treatment factor should be tested
using the block by treatment interaction mean square as the denominator of
the F -test. If the mean square for tee height is significantly larger than the
mean square for the interaction between golfer and tee height, it would be
justification for making a general recommendation for the optimal tee height
(another justification for using the block by treatment interaction as the de-
nominator of the F -test for treatment will be given in Chapter 5, Section 5.8).
An F -test for treatments constructed in this way is not made automatically
by the aov function in R, but can be specified using the Error(id/teehgt)

option in the aov function as shown in the code below where id represents
block or golfer id and teehgt represents the level of the treatment factor.
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> library(daewr)

> mod4 <- aov(cdistance ~ teehgt + Error(id/teehgt), data = rcb)

> summary(mod4)

Error: id

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 8 124741 15593

Error: id:teehgt

Df Sum Sq Mean Sq F value Pr(>F)

teehgt 2 1724 862.0 5.854 0.0124 *

Residuals 16 2356 147.3

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 108 7341 67.97

The sum of squares and mean square for block or golfer id is shown in the
section of output labeled Error: id and the test for the treatment effect (or
tee height) is shown in the section of output labeled Error: id:teehgt. In
that section, what is labeled as Residuals is actually the block by treatment
interaction sum of squares, and that mean square is used in the denominator
of the F -test. The final section of the output shows the residual sum of squares
and mean square, which is not used in testing.

In the results, it can be seen that the tee height is significant at the α =

0.0124 level. This is much different than the incorrect P-value (1.13e−05) that
would result from the command:

> mod4a <- aov( cdistance ~ id*teehgt, data = rcb)

> summary(mod4a)

This model uses the residual mean square with 108 degrees of freedom for the
denominator of the F -test. In this example, either way of making the F -test
for treatment indicates significance, but in general the F -test for treatment
may sometimes be significant when testing with the error mean square as the
denominator of the F -test while insignificant when testing with the block by
treatment mean square as the denominator to the F -test. In that case, the
result of the F -test using the interaction mean square should be used if you
want to generalize conclusions to all potential blocks. An alternate way of
accomplishing the correct test is to create a new response by averaging the
responses in each block by treatment combination and then fitting the normal
RCB model as shown on the next page.
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> cellmeans <- tapply( rcb$cdistance, list(rcb$id, rcb$teehgt),

+ mean)

> dim(cellmeans) <- NULL

> teehgt <- factor( rep(c(1,2,3), each = 9) )

> id<-factor( rep(c(1,2,3,4,5,6,7,8,9), 3) )

> mod5 <- aov( cellmeans ~id + teehgt )

The F-value for treatment in this model will be identical to that in model
mod4 shown above. The aov object mod5 can also be used to aid in interpreting
the meaning of the significant treatment effects. The correct error for use in
Tukey pairwise comparisons of means (like the example shown in Section
2.8.2) will result when using this object. The R code below calculates the
mean distance for each level of tee height.

> model.tables( mod5, type = "means" )$tables$teehgt

1 2 3

171.4578 177.8378 179.8378

Additionally, the code below produces Tukey’s HSD comparisons of the
means.

> TukeyHSD( mod5, "teehgt" )

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = cellmeans ~ id + teehgt)

$teehgt

diff lwr upr p adj

2-1 6.38 -0.2211713 12.981171 0.0589879

3-1 8.38 1.7788287 14.981171 0.0124851

3-2 2.00 -4.6011713 8.601171 0.7192035

The means, and Tukey comparisons, show the average driving distance for the
tee height = 1 (entire ball below crown) is 171.45 yards. It is significantly less
than the average driving distance (177.8 yds.) for tee height = 3 (bottom of
ball at top of club-face) at the α = 0.0125 level and marginally significantly
less than the distance (179.8 yds.) for tee height = 2 (half the ball above
the crown). The average distance for tee heights 2 and 3 were not significantly
different at α = 0.7192. Therefore the recommendation to readers of the article
was to tee their golf ball up so that at least half the ball is above the crown
of the driver club-face in order to maximize their driving distance.

Sometimes there is a more powerful test of treatment effects than can be
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obtained using the block by treatment interaction term as the denominator
of the F -test. If the block by treatment interaction term itself is insignificant,
the additive model yijk = µ + bi + τj + εijk can be fit to the data and the
denominator of the default F -test for treatments will use the msE term that
is a pooled or weighted average of the interaction and error term from model
(4.8). If the interaction is negligible, the interaction mean square is estimating
the same experimental error as the error mean square. In that case, pooling
these two mean squares increases the degrees of freedom for the error term
and increases the power or sensitivity of the F -test for treatment effects.

Normally the preliminary F -test of the interaction, which is used to decide
whether to fit the additive model or not, is conducted at a higher significance
level like α = 0.25. If the interaction is significant at the α = 0.25 level, use
the interaction mean square as the denominator of the appropriate F -test
for treatment effects. If the interaction is not significant at α = 0.25, fit the
additive model and use the default F -test for treatments. This procedure
is called the “Pool or not to Pool” procedure. For the golf experiment, the
interaction sum of squares is significant at the α = 0.0102 < 0.25 level, and thus
the additive model should not be fit, and there is no more powerful F -test for
treatments than the one shown above.

4.8 Two Block Factors LSD

It was first shown in agricultural experiments (Fisher, 1935) that the process
of grouping experimental plots into homogeneous blocks might profitably be
duplicated. For example, on the left side of Figure 4.3 we see a representation
of a randomized block design RCB laid out in a field. In this design, one field,
roughly square in shape, is divided into four rectangular blocks. Each block
is further divided into four plots and the treatment levels (A, B, C, D) are
randomly assigned to one plot within each block. In the figure the random
assignment within the block is represented by each letter only appearing once
in each row that represents a block. If there is a fertility gradient running
from top to bottom in this field, the plots within a block will be more alike
in fertility than plots in different blocks or rows, and the randomized block
design would work well to reduce the variance of experimental errors within
a block.

If there were no clear gradient in the field, but adjacent plots tended to be
more alike than plots at different ends of the same block, a design like the one
shown on the right side of Figure 4.3 assigns each treatment level only once to
each row and once to each column. In that way, the variability from column to
column can also be removed from the error sums of squares, further increasing
the sensitivity for detecting treatment effects. The design shown on the right
side of Figure 4.3 is called a Latin-square design or LSD, and it is blocked both
horizontally and vertically. The restriction with an LSD is that the number
of row blocks equals the number of column blocks, which equals the number
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of levels of the treatment factor. This restriction will be relaxed in Chapter 7,
where more general row-column blocking schemes will be discussed.

Figure 4.3 Comparison of RCB and Latin-Square Designs

RCB                                           Latin Square

1

2

3

4

Block

B

A

B

C

C

D

D

B

A

C

A

D A

B

C

D

B D C A

D C A B

C A B D

A B D C

The model for an LSD is written

yijk = µ + ri + cj + τk + εijk, (4.9)

where ri represents the row blocking factor, cj represents the column blocking
factor, and τk represents the treatment factor. Like model (4.1) for the RCB
design, no interactions are included in the model so that any differences in
treatment factor levels can be generalized over rows and columns.

Latin-square designs can be used whenever there are two independent block-
ing factors that can be used to group experimental units. For example, if an
experiment were being conducted to determine the effect of tread design on
the wear life of automobile tires, the experimental unit would be a wheel on
a car and the treatment factor would be the tread design of the tire mounted
on that wheel. It would make sense to block the experimental units by type
of automobile, since tires may wear faster on heavier cars than they do on
lighter cars. It would also make sense to block by position of the tire on a
car since front right tires wear at a different rate than left rear tires, and so
forth. These are independent blocking factors because all four wheel positions
exist on any type car. To use an LSD, the number of tread types compared
and the number of car types used in the study must be four in order to equal
the number of wheel positions on a car. The row blocking factor in the Latin
square would represent the type of car, with four alternatives ranging over
the class of cars to which the experimenter would like to make inference. The
column blocking factor would represent the position of a tire on the car (FL,
FR, RL, RR), and the treatment factor would represent the four different
tread designs being tested.
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4.8.1 Creating and Randomizing Latin-Square Designs

Latin-square designs are easy to create by cyclically rotating the letters or
symbols used to represent the treatment factor levels. For example, for a 5×5
Latin square, let the letters A, B, C, D, E represent the levels of the treatment
factor. Then the design is created as:

A B C D E
B C D E A
C D E A B
D E A B C
E A B C D

To prevent biases from unknown lurking variables, randomization should be
used in LSDs. However, care must be taken so that after randomization each
treatment level still occurs once in each row and once in each column. This
can be accomplished by first randomizing the order of the rows (keeping the
column positions fixed in each row), then randomizing the columns (keeping
row positions fixed within each column), and finally randomizing the order of
the treatment labels. This can be easily accomplished with the design.lsd

function in the R package agricolae.
The code below illustrates the use of the function design.lsd to create

and randomize a plan to study the effect of the number of shelf facings on the
sales of toothpaste in drugstores. The treatment factor is the number of shelf
facings (1-4), the column blocking factor is the store (to account for store-to-
store differences), and the row blocking factor is the calendar week (to account
for seasonal factors). The response would be the weekly sales in dollars. The
first six lines of the resulting randomized data frame lsd is shown below the
function call, and it could be used to make an electronic data collection form
as shown in previous chapters.

> library(agricolae)

> tmts <- c(1, 2, 3, 4)

> outdesign <- design.lsd( tmts, seed = 23)

> lsd <- outdesign$book

> levels(lsd$row) <- c("Week 1", "Week 2", "Week 3", "Week 4")

> levels(lsd$col) <- c("Store 1", "Store 2", "Store 3",

+ "Store 4")

> head(lsd)

plots row col tmts

1 101 Week 1 Store 1 1

2 102 Week 1 Store 2 2

3 103 Week 1 Store 3 3

4 104 Week 1 Store 4 4

5 201 Week 2 Store 1 2

6 202 Week 2 Store 2 3



TWO BLOCK FACTORS LSD 131

4.8.2 Analysis of a Latin-Square Design

Latin-square designs are frequently used in steer or dairy cow feeding exper-
iments and in bioequivalence studies to compare different formulations of a
drug in phase II clinical trials. In these studies the column blocking factor is
time and the row blocking factor is animal or human subject. In some cases,
the treatment administered in one time period may have a carryover effect
on the response in the next period. However, if there is a sufficient washout
period between column blocks, there will be no carryover effects and the data
can be analyzed as a traditional Latin square.

To illustrate the analysis of data from a Latin-square, consider the following
bioequivalence study. The data is shown in Table 4.5 (taken from Selwyn and
Hall, 1984).

Table 4.5 Treatment and Resulting AUC for Bioequivalence Study
Period

Subject 1 2 3
1 A 1186 B 642 C 1183
2 B 984 C 1135 A 1305
3 C 1426 A 1540 B 873

A=solution, B=tablet, C=capsule

The purpose was to test the bioequivalence of three formulations
(A=solution, B=tablet, C=capsule) of a drug as measured by the AUC or
area under the curve, which relates the concentration of the drug in the blood
as a function of the time since dosing. Three volunteer subjects took each
formulation in succession with a sufficient washout period between. After dos-
ing, blood samples were obtained every half-hour for four hours and analyzed
for drug concentration. AUC was calculated with the resulting data. Since
there may be a large variation in metabolism of the drug from subject to
subject, subject was used as a row blocking factor. Since the absorption and
metabolism of a drug will vary from time to time for a particular subject,
time was used as a column blocking factor.

The R code to open the data frame and fit model (4.9) is shown below.

> library(daewr)

> mod6 <- aov( AUC ~ Subject + Period + Treat, data = bioeqv)

> summary(mod6)

The resulting ANOVA table, shown on the next page, indicates that there
is no difference in the three formulations.
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Df Sum Sq Mean Sq F value Pr(>F)

Subject 2 114264 57132 0.258 0.795

Period 2 45196 22598 0.102 0.907

Treat 2 15000 7500 0.034 0.967

Residuals 2 442158 221079

For illustrative purposes, the code and results below show the means for
the three treatments, and a Tukey multiple comparison.

> model.tables( mod6, type = "means" )$tables$Treat

Treat

A B C

1198.667 1105.667 1120.333

> TukeyHSD( mod6, "Treat")

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = AUC ~ Subject + Period + Treat, data=bioeqv)

$Treat

diff lwr upr p adj

B-A -93.00000 -2354.511 2168.511 0.9686678

C-A -78.33333 -2339.844 2183.178 0.9775653

C-B 14.66667 -2246.844 2276.178 0.9991960

4.8.3 Determining the Number of Replicates

The number of replicates of each treatment factor level, in an LSD with t rows
and t columns must be equal to t. The only way the power for detecting differ-
ences in treatment means can be increased would be to increase the number
of rows or columns. In the last example the row blocking factor represented
subjects, and the column blocking factor represented periods. One way of in-
creasing the power for detecting differences in treatment means would be to
increase the number of subjects. If the number of subjects, r, were doubled,
that is, r = 2t, it would be essentially the same as replicating the Latin square
with t additional subjects.

In general, if we consider a replicated Latin square to have r = nt rows
(where n is an integer), t columns and t levels of the treatment factor, the
model for the data will still be Equation (4.9), but the degrees of freedom for
the error term will be ν2 = (r − 2)(t − 1). The noncentrality factor for the F -
test of no treatment effects is λ = nt∑k τ

2
k /σ

2 where n is the number of times
the square has been repeated. Therefore in order to calculate the number of
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replicates of the square, n, that will result in a power between 0.8 and 0.9 for
detecting a difference in treatment means, the R code in Section 4.5 can be
modified by changing the formula for the numerator and denominator degrees
of freedom, and the noncentrality factor.

4.9 Review of Important Concepts

When experimental units are not homogeneous and the experimenter does not
want to restrict the conclusions of his study to a homogeneous subset of ex-
perimental units, the randomized block design can be used. In the randomized
block design, heterogenous experimental units are grouped into homogeneous
subgroups or blocks prior to assigning them to treatment levels. This allows
the variation between blocks to be removed from the error sums of squares and
increases the power or sensitivity for detecting treatment effects. The relative
efficiency (RE) is a measure of the efficacy of blocking, and the higher the
value for RE the more effective the blocking. Figure 4.4 illustrates when the
various types of blocked designs should be used.

Figure 4.4 Design Selection Roadmap

Design Purpose

Estimate Variances Study Factor Effects
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Block Factors
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Multiple Factors
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with some hard
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Factors

When there is one treatment factor and the heterogeneous experimental
units can be grouped into categories based on one blocking factor the ran-
domized complete block or RCB design is used. If the block size, or num-
ber of experimental units in a block, can be larger without increasing the
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variance of experimental units within a block the generalized complete block
or GCB design can be used. If there are multiple factors under study, then
the randomized complete block factorial or RCBF should be used. If the het-
erogeneous experimental units can be grouped into classifications based on
two independent blocking factors and there is only one treatment factor, the
Latin-square design or LSD should be used.

A randomized complete block design or RCB has only one experimen-
tal unit per treatment level per block. The model for the RCB design is
yij = µ + bi + τj + εij , which does not include the interaction between block
and treatment because this is the correct error for testing treatment effects if
the experimenter wants general conclusions. In a generalized complete block
design, replicates of each treatment level within each block are included. Be-
cause of the replicates in the GCB, the interaction between block and treat-
ment can be included in the model, yijk = µ+ bi + τj + bτij + εijk, but it should
still be used as the error term for testing the treatment effects and this can be
accomplished by using the + Error( ) in the aov model as shown in Section
4.7.

In RCBF every combination of levels of the factors is randomized to ex-
perimental units within a block. The model for analysis is the usual factorial
model with the addition of a block term, yijk = µ + bi + αj + βk + αβjk + εijk.
No interaction between blocks and factorial effects or interactions should be
included in the model if the experimenter wants general conclusions. Writing
a model that does not represent the way the experiment was conducted can
result in using the wrong mean squares in the denominators of the F -tests
and may cause the wrong conclusions to be drawn.

With two independent blocking factors, LSDs can be used to further de-
crease the variance of experimental error. The model for the Latin square is
yijk = µ+ri+cj+τk+εijk, and again no interaction between row blocks, column
blocks, or treatment factors is included in the model. When randomizing a list
of experiments for an LSD, care must be taken so that after randomization
each treatment factor level still occurs exactly once in each row block and
each column block.
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4.10 Exercises

1. Consider planning an experiment to determine how the flavor duration of
gum is affected by the characteristics of the gum such as Factor A (type
of gum stick or tablet), Factor B (flavor of gum), and Factor C (regular or
sugar-free), see Rogness and Richardson (2003).

(a) If several subjects were recruited to participate in the study and each
was asked to chew and record the flavor duration (in minutes) of one or
more types of gum, what would the experimental unit be?

(b) How could experimental units be blocked to reduce the variance of ex-
perimental error and increase the power for detecting differences?

(c) Choose at least two of the factors listed above and provide a randomized
list for an RCB design.

(d) Recruit subjects and actually perform the experiment within a week.

(e) Analyze your data. Did treatment factors and interactions affect the
flavor duration? Was the blocking scheme you employed effective at re-
ducing experimental error?

2. Consider room temperature as an additional blocking factor for the cut-
flower experiment described in Section 4.2.

(a) What design could you use to incorporate the two blocking factors of
flower type and room temperature?

(b) Set up a randomization plan to conduct this experiment.

(c) What is the model you would use to analyze the data resulting from this
experiment?

3. The data in Table 4.6 show the yields of five varieties of barley in a ran-
domized complete block experiment carried out in Minnesota reported in
The Journal of the American Society of Agronomy by Immer et al. (1934).

(a) What would be the purpose of running these experiments in different
locations and years?

(b) How was variance of experimental error reduced in these experiments?

(c) Compute the ANOVA for the RCB design model (4.1) and determine if
there is a significant difference in varieties.

(d) Calculate the Relative Efficiency, RE, and determine how many exper-
iments would have been needed to have the same power using a com-
pletely randomized (CRD) design.

(e) Use the Tukey method to make pairwise comparisons of the variety mean
yields.

4. Horiuchi et al. (2005) conducted an experiment during Japan’s 2004 Upper
House election. The purpose of the experiment was to test the hypothesis
that voter turnout is influenced by the amount of information available
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Table 4.6 Total Yields of Barley Varieties in 12 Independent Trials
Variety

Place Year Manchuria Svansota Velvet Trebi Peatland
1 1931 81.0 105.4 119.7 109.7 98.3
1 1932 80.7 82.3 80.4 87.2 84.2
2 1931 146.6 142.0 150.7 191.5 145.7
2 1932 100.4 115.5 112.2 147.7 108.1
3 1931 82.3 77.3 78.4 131.3 89.6
3 1932 103.1 105.1 116.5 139.9 129.6
4 1931 119.8 121.4 124.0 140.8 124.8
4 1932 98.9 61.9 96.2 125.5 75.7
5 1931 98.9 89.0 69.1 89.3 104.1
5 1932 66.4 49.9 96.7 61.9 80.3
6 1931 86.9 77.1 78.9 101.8 96.0
6 1932 67.7 66.7 67.4 91.8 94.1

to voters. Potential voters were contacted by e-mail and asked to fill out
a screening survey and participate in the study. In the screening survey
potential voters were asked what their gender was and whether they were
planning to vote in the upcoming election (yes, no, or undecided). This
information is known to be correlated with voter participation. Next, the
respondents to the screening survey were randomly assigned to one of four
groups. The first group was asked via e-mail to view the official Web site
of the LDP party that shows their policy proposal. The second group was
asked to view the Web site of the DPJ party that shows their policy pro-
posal. A third group was asked to view both Web sites, and a fourth group
was not asked to visit any Web site prior to the election. Each participant
was again contacted after the election to find out whether he or she had
voted in the election or not.

(a) What was the treatment factor in this study?

(b) What was the experimental unit?

(c) What is the response?

(d) If potential voters were classified into the following six groups based on
the screening survey

● Male—plans to vote
● Female—plans to vote
● Male—does not plan to vote
● Female—does not plan to vote
● Male—undecided
● Female—undecided

should this information be used in assigning respondents to the four
groups? Why or why not?
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(e) Explain how you would analyze the resulting data. What model would
you use, what is the distribution of the dependent variable, etc.?

5. Lew (2007) presents the data from an experiment to determine whether
cultured cells respond to two drugs. The experiment was conducted using
a stable cell line plated onto Petri dishes, with each experimental run in-
volving assays of responses in three Petri dishes: one treated with drug 1,
one treated with drug 2, and one untreated serving as a control. The data
are shown in the table below:

Control Drug 1 Drug 2
Experiment 1 1147 1169 1009
Experiment 2 1273 1323 1260
Experiment 3 1216 1276 1143
Experiment 4 1046 1240 1099
Experiment 5 1108 1432 1385
Experiment 6 1265 1562 1164

(a) Analyze the data as if it came from a completely randomized design
using the model yij = µ+τi+ εij . Is there a significant difference between
the treatment groups?

(b) Analyze the data as an RCB design, where experiment number repre-
sents a blocking factor.

(c) Is there any difference in the results you obtain in (a) and (b)? If so
explain what may be the cause of the difference in the results and which
method would you recommend?

6. le Riche and Csima (1964) evaluated four hypnotic drugs and a placebo to
determine their effect on the quality of sleep in elderly patients. The treat-
ment levels were labeled (A=Placebo, B=Ethchlorvynol, C=Glutethimide,
D=Chloral hydrate, and E=Secobarbitol sodium). Elderly patients were
given one of the capsules for five nights in succession and their quality of
sleep was rated by a trained nurse on a 4-point scale (0=poor to 3=excel-
lent) each night. An average score was calculated for each patient over the
five nights in a week. Each patient received all five treatments in successive
weeks. A Latin-square design was used to account for patient-to-patient
differences and week-to-week effects. The design and the response (mean
quality of sleep rating) are shown in the table on the next page.

(a) What is the appropriate model for this data?

(b) Complete the ANOVA and determine if there are any significant differ-
ences among the treatments.

(c) Use an appropriate method to determine if there is a significant difference
between the placebo and the average of the other drugs, and if there are
significant differences among the four drugs.
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Week
Patient 1 2 3 4 5

1 B (2.92) E (2.43) A (2.19) C (2.71) D (2.71)
2 D (2.86) A (1.64) E (3.02) B (3.03) C (3.03)
3 E (1.97) B (2.50) C (2.47) D (2.65) A (1.89)
4 A (1.99) C (2.39) D (2.37) E (2.33) B (2.71)
5 C (2.64) D (2.31) B (2.44) A (1.89) E (2.78)

(d) Use residual plots to check the assumptions for the model you fit.

7. Woodward (1970) conducted an experiment to determine the fastest path
to second base in baseball. The three paths investigated were the round-
out, narrow angle, and wide angle shown in the figure below. The best path
is defined to be the one that minimizes the time to reach second base.

round out

narrow angle

wide angle
Home plate

First base

Second base

Third base

He used a stopwatch to time a runner going from home to second. He started
the watch when the runner crossed a point 35 feet from home plate and
stopped the watch at a point 15 feet short of second base. This eliminated
the variability in times caused by stopping and starting. Finally, he timed
a random sample of 22 different runners, so that his conclusions could be
generalized to all runners. In addition, after an appropriate rest period, he
had each runner take each path (in a random order). In that way he could
use the runners as blocks and eliminate the runner-to-runner variability
from the error. The data is shown in the table below.

(a) What is the appropriate model for this data?
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Player Round-Out Narrow Angle Wide Angle
1 5.40 5.50 5.55
2 5.85 5.70 5.75
3 5.20 5.60 5.50
4 5.55 5.50 5.40
5 5.90 5.85 5.70
6 5.45 5.55 5.60
7 5.40 5.40 5.35
8 5.45 5.50 5.35
9 5.25 5.15 5.00
10 5.85 5.80 5.70
11 5.25 5.20 5.10
12 5.65 5.55 5.45
13 5.60 5.35 5.45
14 5.05 5.00 4.95
15 5.50 5.50 5.40
16 5.45 5.55 5.50
17 5.55 5.55 5.35
18 5.45 5.50 5.55
19 5.50 5.45 5.25
20 5.65 5.60 5.40
21 5.70 5.65 5.55
22 6.30 6.30 6.25

(b) Complete the ANOVA and determine if there are any significant differ-
ences among the three paths.

(c) Use an appropriate multiple comparison procedure to determine what
paths are different from each other.

(d) Was blocking effective in this experiment? Why or why not?

(e) Use residual plots to check the assumptions for the model you fit. If the
assumptions do not hold, what would you recommend doing?

8. Consider the situation described in Exercise 6 of Chapter 2 with t = 4 levels
of the treatment factor, and ∆ = 2.0σ.

(a) If by blocking the experimental units into blocks it was believed that
the variance of the experimental error, σ2, could be reduced by 50%,
calculate the number of blocks that would be required to have a power
of 0.90 for detecting a maximum difference in treatment means as large
as ∆.

(b) If by using a Latin-square design the variance of the experimental error,
σ2, could be reduced another 10%, determine the power for detecting
treatment differences when using a 4 × 4 Latin-square design.
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4.11 Appendix—Data from the Golf Experiment

Table 4.7 Data from the Golf Experiment

Golfer ID
Tee
Hgt. 1 2 3 4 5 6 7 8 9

1 142.0 169.5 142.7 185.4 222.2 133.6 165.2 174.3 229.7
1 141.8 177.0 136.2 164.8 201.9 132.6 173.2 160.1 220.7
1 153.7 169.1 140.2 173.9 192.5 135.0 174.2 162.8 240.4
1 130.6 176.5 143.3 191.9 182.0 147.6 176.9 174.6 219.5
1 147.8 173.8 145.8 164.5 224.8 136.7 166.4 172.6 225.6
2 142.7 185.6 137.8 184.7 197.7 145.5 178.8 184.4 241.6
2 136.2 164.8 159.0 172.8 229.8 154.5 163.4 181.8 242.1
2 140.2 173.9 151.1 175.8 203.3 150.5 160.2 185.0 243.4
2 143.3 191.9 154.1 184.7 214.3 137.9 160.6 192.4 240.8
2 145.8 164.5 135.0 172.2 220.9 154.4 169.3 193.3 240.7
3 137.8 184.7 142.0 176.0 221.8 145.9 172.8 180.6 243.3
3 159.0 183.0 141.8 177.0 240.0 146.0 183.2 172.5 242.1
3 151.1 195.9 153.7 175.3 221.4 149.2 170.2 181.2 236.1
3 154.1 194.4 130.6 176.5 234.9 145.2 169.6 178.4 248.3
3 135.0 182.2 147.8 173.8 213.2 147.2 169.9 167.6 240.4



CHAPTER 5

Designs to Study Variances

5.1 Introduction

In the experiments described in Chapters 2 through 4, the purpose was to
compare the response between different levels of controllable variables or fac-
tors in order to predict what the response might be in the future at specific
levels of the factors, or to recommend the best factor level for future use.
Another purpose of experimentation is to study sources of variability in the
response. For example, cholesterol, blood glucose, and other diagnostic tests
made by doctors are known to vary with the procedures and the equipment
used to make the measurements. Experiments might be conducted to find out
how much of the variability is due to equipment and how much is due to pro-
cedure. Symbolically σ2

T = σ2
p + σ

2
e where σ2

T is the total variance, σ2
p and σ2

e

are the portions of the total due to procedure and equipment, respectively.
σ2
p and σ2

e are called the components of variance or variance components. An
experiment can be conducted to collect data so that the variance components
can be estimated. In this type of experiment, there might not be any inter-
est in the difference in average diagnostic readings between specific pieces of
equipment because there are (and will continue to be) many in use.

There are at least three reasons for conducting experiments to study the
sources of variability. In some cases the purpose may be descriptive, and the
variance components have value in themselves. A second reason for quantifying
the sources of variability is to gain insight into how to reduce the variance
of the response. A third reason for studying the sources of variability is to
stimulate ideas about the causes of variability that could be tested in further
experiments.

Two examples of where variance components are useful as descriptive mea-
sures are in genetics and in educational and psychological testing (see Searle
et al., 1992). In dairy cow breeding, the variability in milk production can
be partitioned into the amount due to the sire and the daughter, that is,
σ2
T = σ2

s + σ
2
d. The ratio of h = 4σ2

s/(σ
2
s + σ

2
d) is called the heritability and is

highly important to dairy farmers. In psychological and educational testing
the variability in test scores can be partitioned into the person-to-person vari-
ability and the repeat test scores for the same person, that is, σ2

T = σ2
p + σ

2
r .

In this case, σ2
p/(σ

2
p + σ

2
r) is called the intra-class correlation, and high values

of it imply reliability of the testing procedure.
In industrial quality control there is a need to reduce variability in in-

process measurements of key product and process characteristics. If one cannot

141
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measure accurately, there is no hope of controlling or improving quality. Total
measurement variability within a plant can be attributed to the measurement
equipment (or gage) and the operator (or inspector) making the measurement,
that is, σ2

T = σ2
g +σ

2
o . In order to reduce measurement variability, management

needs to know where to concentrate its efforts. If the major proportion of vari-
ability is σ2

g , perhaps effort needs to be placed on recalibrating measurement
equipment or buying more new and more precise and consistent equipment.
On the other hand, if the major source of measurement variability is σ2

o , per-
haps better training of operator-inspectors may solve the problem.

In some cases, a researcher would like to conduct an experiment like those
described in Chapters 2–4 to compare the average response caused by different
levels of controllable factors; however, he or she has such limited knowledge
about the mechanism under study that it is difficult to hypothesize what
factors or levels of factors to study. In this situation, determining the sources of
variability in the response may prompt ideas about what factors would be most
profitable to study. For example, knowing whether the majority of variability
in an industrial process is batch-to-batch or within a batch would give insight
as to whether factors that could be varied within a batch, or factors that
could be varied from one batch to another, should be studied in optimization
experiments. In cases where one factor experiment or a factorial experiment
has been conducted and nothing was found to be significant, Leitnaker and
Cooper (2005) suggest that a follow-up sampling study (to classify the sources
of variability in the response) may explain why no significant factors were
found.

5.2 Random Factors and Random Sampling Experiments

When the purpose of experimentation is to study differences in the average
response caused by differences in factor levels (like the experiments described
in Chapters 2–4), the factors in the experiment are called fixed factors. The
levels of these factors are specifically selected by the experimenter. On the
other hand, when the purpose of experimentation is to study the variance
caused by changing levels of a factor, the factor is called a random factor .
For example, the model yij = µ + τi + εij in Chapter 2, the factor τi would be
considered a fixed factor. Although we have not called it a factor before, the
term εij in this model would be considered a random factor. εij represents
the effect of the jth experimental unit within the ith level of the treatment
factor. In the bread rise experiment described in Chapter 2, the experimental
unit was the loaf of bread. Replicate loaves (i.e., j = 1, . . . ,4) were used in
this experiment so that σ2, the variance of the experimental units, could be
estimated and used to judge the significance of the fixed factor (rise time).
Since the purpose of including multiple levels (or loaves) within each rise time
was to estimate σ2, εij is considered a random factor.

Whereas the levels of fixed factors are specifically chosen by the experi-
menter, the levels of random factors are just samples of possible levels that
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could have been used. For example, in the bread rise experiment, the experi-
menter chose 35, 40, and 45 minutes to study for the levels of rise time. How-
ever, the four replicate loaves used for each rise time represent only a sample of
the loaves that could have been used in the experiment. For this reason, exper-
iments that are used to study variances can be thought of as random sampling
experiments or RSE since the factor levels are just a sample of possible levels.
For example, consider the data in Table 5.1 patterned after the international
survey of apolipoproteins conducted in 1984–1985 (Henderson et al., 1987).
Apo A–I is known to help clear cholesterol from arteries. However, the apo
genotype yields poor predictive values when screening for clinically defined
atherosclerosis. This may be in part due to difficulty in measurement.

Table 5.1 Measured Apo A–I Concentrations by Laboratory Code

Lab A B C D
1.195 1.155 1.021 1.163
1.144 1.173 1.037 1.171
1.167 1.171 1.022 1.182
1.249 1.175 1.064 1.184
1.177 1.153 1.094 1.175
1.217 1.139 0.992 1.134
1.187 1.185 1.072 1.169

1.144 1.136

The purpose of the study was to examine and quantify the variation among
laboratories with respect to their measurement of an international reference
material for apo A-I and B. Several measurements of the relative concen-
trations of preparations of the reference material were made by 28 selected
laboratories. Table 5.1 shows data from four representative labs. The model
for the data can be written as:

yij = µ + ti + εij , (5.1)

where yij is the jth measurement of apo A-I concentration at the ith labo-
ratory, µ is the overall average measured concentration, ti is the laboratory
effect, and εij is the effect of the jth measurement in the ith lab. There was
no interest in comparing measured apo A-I concentrations among the specific
laboratories in the study since they can be considered a random sample, or
representative sample, of several labs around the world. Since the purpose
of including several labs was to estimate the component of variance, σ2

t , in
measured concentration due to lab, ti can be considered a random factor and
the experiment can be thought of as a sampling experiment. Note that the
Roman letter ti was used to represent the random region effect, whereas in
model (2.2) in Chapter 2 the Greek letter τi was used to represent the fixed
treatment factor. The replicate measurements of apo A-I made in each lab are
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only samples of the possible measurements that could be made in that lab.
Since multiple measurements were made in each lab in order to estimate σ2,
εij can also be considered a random factor. Except for the ε used to represent
the random experimental unit, the convention in this book will be to use Ro-
man letters to represent random factors and Greek letters to represent fixed
factors.

The usual assumptions regarding model (5.1) are that the random effects,
ti and εij , are independent and normally distributed with zero means and
variances equal to the variance components σ2 and σ2

t , respectively. Since the
variance of a sum of independent random variables is the sum of the variances,
σ2
y = σ2

t + σ
2. Data from sampling experiments can be used to partition the

variance in the response, σ2
y, into the two variance components of which it is

composed.

5.3 One-Factor Sampling Designs

One-factor sampling experiments can be used to partition variability into two
sources. As an example of partitioning variance into two sources, consider the
paper helicopter experiments described in Exercise 2.2. In that exercise there
might have been some differences in the description of the experimental unit
among students. Some might argue that the experimental unit was a sheet
of paper from which a helicopter design was cut. Others might argue that
it was the trial, or air conditions, at the time a helicopter was dropped and
timed. If the first definition was used, then replicate experiments would con-
sist of making, dropping, and timing several helicopters of the same design
once, where each one was made from a different sheet of paper. If the second
definition was used, replicate experiments would consist of repeatedly drop-
ping and timing one helicopter. One practical way to decide how to define
the experimental unit would be to partition the variability in drop times into
helicopter-to-helicopter variability and variability among repeat drops of the
same helicopter. If a substantial part of the variability was among helicopters
of the same design cut from different pieces of paper, there would be reason
to make multiple helicopters for replicates. If, on the other hand, all of the
variability was among drop times of the same helicopter, there would be no
reason to make multiple helicopters of the same design for replicates. In that
case, repeat drops of the same helicopter could be considered replicates.

The variability in helicopter drop times can be partitioned into the
helicopter-to-helicopter variability and within helicopter variability using a
one-factor sampling experiment. To do this, first randomly select six sheets of
paper. From each of these sheets, cut and fold one standard helicopter with
body width = 4.25”, tail length = 4.0”, and wing length = 6.5”. Drop and
time each of the six helicopters three times each according to a randomized
order like that created in Section 2.2.

As a second example of partitioning variability into two sources, consider
the following example presented by Davies (1949). A dye manufacturer wanted
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to know if there was an appreciable contribution to variability in dyestuff color
yields owing to the quality of the intermediate acid batch used. It was a two-
step process. Intermediate acid batches were produced in one step, and in a
later step the acid was used to produce the dyestuff. The goal was to keep
dyestuff color yields consistently high. If the majority of variation was caused
by differences among the intermediate acid batches, then improvement efforts
should be concentrated on the process that makes the acid batches. If the ma-
jority of variation was within preparations of the dyestuff made from the same
acid batch, improvement efforts should be focused on the process step of mak-
ing the dyestuff. A sampling experiment was run wherein six representative
samples of H acid intermediate were taken from the step manufacturing pro-
cess that produces it. From each acid sample, five preparations of the dyestuff
Naphthalene 12B were made in a laboratory, and these were representative
of the preparations that could be made with each sample. The data from the
sampling experiment is shown in Table 5.2. The yields are given in grams of
standard color.

Table 5.2 Yields of Naphthalene Black 12B

Sample of H Acid 1 2 3 4 5 6
Individual yields in 1440 1490 1510 1440 1515 1445
grams of standard 1440 1495 1550 1445 1595 1450

color 1520 1540 1560 1465 1625 1455
1545 1555 1595 1545 1630 1480
1580 1560 1605 1595 1635 1520

5.4 Estimating Variance Components

The model (5.1) can be expressed in matrix terms as:

y =Xβ + ε, (5.2)

where β′ = (µ, t′) and t′ is the vector of random effects, and the independence
and normality assumptions can be expressed as:

(
t
ε

) ∼MVN ((
0
0

) ,(
σ2
t It 0
0 σ2In

)) , (5.3)

where MVN represents the multivariate normal distribution, It is a t×t iden-
tity matrix, t is the number of levels of the random factor ti, and n = tr is the
total number of experiments or runs. With the independence and normality
assumptions, there are several methods of estimating variance components
from the data obtained in sampling experiments.
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5.4.1 Method of Moments Estimators

Fisher was the first to show how to estimate the variance components from an
analysis of variance. To do this, the method of moments is used. The model
for the one-factor sampling experiment is given by Equation (5.1), and the
analysis of variance table is identical to Table 2.2 in Chapter 2. The F -test in
the analysis of variance table can be used to test the null hypothesis H0 ∶ σ

2
t = 0

against the alternative Ha ∶ σ
2
t > 0.

To estimate the variance components from the ANOVA, the mean squares
are equated to their expected values and the simultaneous equations are
solved. When the treatment factor is a random factor, as in model (5.1),
and there are an equal number of replicates in each level, the msT term in the
ANOVA table follows a distribution that is a multiple of the central chi-square
distribution. This is different than the model with a fixed effect treatment fac-
tor. In that case, described in Section 2.3.5, the distribution of msT was a
noncentral chi-square. In either case, the msT from the ANOVA can be rep-
resented as the quadratic form y′Ay; and in the random effects model (5.1),
Hartley (1967) has shown that its expected value can be written as σ2 + cσ2

t ,
where c = ∑i x

′

i
Axi, and xi is an indicator of the ith level of ti (that is the

(i + 1)th column in the X matrix as shown in Equation (2.6). When there is
an equal number of replicates, r, in each level of the random factor, the coeffi-
cient in the expected mean square simplifies to c = r. The method of moments
estimators for the variance components can be used when there are an equal
number of replicates in each level of the random factor as shown in Table 5.2,
or an unequal number as shown in Table 5.1. For the equal replicates case,
the estimates turn out to be uniformly best unbiased estimators, but for the
unequal case, estimators that are uniformly best do not exist (see Searle et al.,
1992).

To illustrate the estimation of the variance components using R, the code
to open the data frame containing data from the apo measurement sampling
experiment, shown in Table 5.1, along with the aov function call to produce
the ANOVA are shown below.

> library(daewr)

> mod1 <- aov( conc ~ lab, data = Apo )

> sm1 <- summary(mod1)

> sm1

Df Sum Sq Mean Sq F value Pr(>F)

lab 3 0.09223 0.03074 42.11 4.01e-10 ***

Residuals 26 0.01898 0.00073

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

In this case, the ANOVA table is not only printed, but also stored in the
object sm1. By doing this, the mean squares for treatment and error can be
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retrieved for later calculations. The first step in calculating the expected mean
square coefficient c using Hartley’s (1967) method is to extract the indicators
of each level of the treatment factor, xi, from the model matrix. The R code
to do that is shown below.

> X <- as.matrix( model.matrix(mod1) )

> labB <- X[,2]

> labC <- X[,3]

> labD <- X[,4]

> labA <- X[,1]-(labB+labC+labD)

The next step is to compute an ANOVA using each indicator vector as the
response, extract the treatment mean square from each ANOVA, and finally
sum the results to get the coefficient c as shown below.

> s1 <- summary(aov (labA ~ Apo$lab ))

> x1 <- as.matrix( s1[[1]][1,3] )

> s2 <- summary(aov( labB ~ Apo$lab ))

> x2 <- as.matrix( s2[[1]][1,3] )

> s3 <- summary(aov(labC ~ Apo$lab ))

> x3 <- as.matrix( s3[[1]][1,3] )

> s4 <- summary(aov(labD ~ Apo$lab ))

> x4 <- as.matrix( s4[[1]][1,3] )

> c <- x1+x2+x3+x4

As shown in Section 2.4.3 the expected value of the msE in the ANOVA table
is σ2, therefore two simultaneous equations, in the two unknown variance
components σ2 and σ2

t , can be created by equating the mean squares for
model and error to their expected values. The R code to retrieve the mean
squares and print the results is shown below.

> sigma2 <- as.matrix( sm1[[1]][2,3] )

> mslab <- as.matrix( sm1[[1]][1,3] )

> cat(" Mean Square for Lab = ",mslab,"\n"," Mean Square for Error

+ = ", sigma2,"\n"," Expected Mean Square for Lab","\n",

+ "Var(error)+",c,"Var(Lab)","\n")

Mean Square for Lab = 0.03074443

Mean Square for Error = 0.0007301573

Expected Mean Square for Lab

Var(error)+ 7.488889 Var(Lab)

The solution to the equations equating the mean squares to their expected



148 DESIGNS TO STUDY VARIANCES

values are shown below.

0.03074443 = σ2
+ 7.4889σ2

t

0.00073016 = σ2

⇒ σ̂2
= 0.00073016

and ⇒ σ̂2
t = (0.03074443 − 0.00073016)/7.4889 = 0.0040078

These equations could be solved using R as shown in the code below.

> sigma2t <- (mslab - sigma2) / c

> cat("Method of Moments Variance Component Estimates","\n",

+ "Var(error)=",sigma2,

+ "\n","Var(Lab)=",sigma2t,"\n")

Method of Moments Variance Component Estimates

Var(error)= 0.0007301573

Var(Lab)= 0.00400784

Since σ̂2 < σ̂2
t , these estimates show there is much or more variability among

labs than within a lab.

5.4.2 Interval Estimates

When the normality assumptions apply and there is an equal number of repli-
cates for each level of the random factor in model (5.1), exact interval estimates
exist for σ2, σ2

t /(σ
2 +σ2

t ), σ
2/(σ2 +σ2

t ), and σ2
t /σ

2 based on the distributions
of the means squares. The aov function in R does not produce these confi-
dence intervals, but they can be easily calculated by hand from the statistics
produced in the ANOVA table. If there are i = 1, . . . , T levels of the random
factor and j = 1, . . . , r replicates in each level of the random factor, then Ta-
ble 5.3 (that was taken from Searle et al. (1992)) contains exact formulas for
confidence intervals on lines 1, 3-5, and an approximate formula on line 2.

As an example of calculating the confidence intervals, consider the data
in the sampling experiment shown in Table 5.2 to study the variability in
dyestuff color yields. From the ANOVA ssT = 56,358, ssE = 58,830, T = 6,
r = 5, and F = msT /msE = 4.59847. The upper 0.975 percentile of the chi-
square distribution with 24 degrees of freedom is 39.36. This can be obtained
using the R function qchisq as qchisq(.975,24). The upper 0.975 percentile
of the F -distribution with 5 and 24 degrees of freedom is 3.15482. This can
be obtained using the R function qf function as qf(.975,5,24). The other
percentiles of the F and chi-square can be obtained similarly. The exact 95%
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Table 5.3 Confidence Intervals for Functions of Variance Components in One-Factor
Random Model with Equal Replication

Confidence Interval

Lower Upper Confidence
Line Parameter Limit Limit Coefficient

1 σ2 ssE
χ2
T (r−1),U

ssE
χ2
T (r−1),L

1 − α

2 σ2
t

ssT (1−FU /F )
rχ2
T−1,U

ssT (1−FL/F )
rχ2
T−1,L

1 − 2α

3
σ2
t

σ2
t+σ2

F /FU−1
r+F /FU−1

F /FL−1
r+F /FL−1

1 − α

4 σ2

σ2
t+σ2

r
r+F /FL−1

r
r+F /FU−1

1 − α

5
σ2
t

σ2

F /FU−1
r

F /FL−1
r

1 − α

Notation: F =msT /msE,

Pr{χ2
ν,L ≤ χ2

ν ≤ χ
2
ν,U} = 1 − α

Pr{FL ≤ Fν1,ν2 ≤ FU} = 1 − α

confidence interval on σ2 is given by:

(
ssE

χ2
24,0.975

,
ssE

χ2
24,0.025

) = (
58830

39.36
,
58830

12.4
)

= (1494.51,4744.35).

The approximate 90% confidence interval on σ2
t is given by:

(
ssT (1 − F5,24,0.975/F )

rχ2
5,0.975

,
ssT (1 − F5,24,0.025/F )

rχ2
5,0.025

)

= (
56358(1 − 3.15482/4.60)

5(12.8325)
,
56385(1 − 0.15929/4.60)

5(0.83121)
)

= (275.9551,13,097.168),
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and the exact 95% confidence interval on σ2
t /(σ

2
t + σ

2) is given by:

(
F /F5,24,0.975 − 1

r + F /F5,24,0.975 − 1
,
F /F5,24,0.025 − 1

r + F /F5,24,0.025 − 1
)

= (
4.59847/3.15482 − 1

5 + 4.59847/3.15482 − 1
,

4.59847/0.15929 − 1

5 + 4.59847/0.15929 − 1
)

= (0.0838,0.8479).

Notice the interval estimate of σ2
t is much wider than the interval estimate of

σ2. This is because ssT only has 5 degrees of freedom in the ANOVA, while
ssE has 24 degrees of freedom.

5.4.3 Maximum Likelihood and REML Estimators

Although the method of moments estimators are uniformly best unbiased
estimators, they have one unfortunate property. When msT is less than msE
in the analysis of variance, the estimator of σ2

t will be negative. This can
happen quite frequently if σ2

t /σ
2 ≤ 0.10, and there are less than T = 10 levels

of the random factor ti. Maximum likelihood (ML) and (reduced or restricted)
maximum likelihood (REML) are preferred methods of estimation that avoid
this problem. REML is an adaptation of the maximum likelihood technique
that maximizes part of the likelihood. The fact that maximum likelihood
estimators cannot lie outside their parameter space prevents both the ML and
REML methods from obtaining negative estimates of σ2

t . To understand how
maximum likelihood and REML work, we will consider the equal replication
case. Given the model and assumptions in Equations (5.2) and (5.3), the
distribution of y can be written as:

y ∼MVN(µ1,V ), (5.4)

where V is a block diagonal matrix with T blocks of (σ2
tJr +σ

2Ir) along the
diagonal. The likelihood function is

L(µ,V ∣y) =
exp [− 1

2
(y − µ1n)

′V −1
(y − µ1n)]

(2π)
1
2n∣V ∣

1
2

. (5.5)

For the equal replication case, this can be simplified to:

L(µ,σ2, λ∣y) =
exp{− 1

2
[ ssE
σ2 + ssT

λ
+

(ȳ⋅⋅−µ)2
λ/n ]}

(2π)
1
2nσ2[ 1

2n]λ
1
2T

, (5.6)

where λ = σ2 + rσ2
t . The maximum likelihood estimates are obtained by max-

imizing the likelihood with respect to µ,σ2, and λ.
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The REML estimates of σ2 and σ2
t are obtained by maximizing

L(σ2, σ2
t ∣ssT, ssE) with respect to σ2 and σ2

t , where

L(σ2, σ2
t ∣ssT, ssE) =

L(µ,σ2, λ∣y)

L(µ∣ȳ⋅⋅)
(5.7)

can be obtained by factoring L(µ,σ2, λ∣y) using the fact that ssE and ssT are
independent of ȳ⋅⋅. The maximization can be done analytically for the equal
replication case as shown by Searle et al. (1992), and can be done numerically
for the unbalanced case.

A desirable property of the REML estimates is that they are the same as
the method of moments (analysis of variance estimates) when there is equal
replication in each level of the random factor and msT >msE. The maximum
likelihood estimators and REML estimators are calculated by the R package
lme4 using a numerical solution for both the unbalanced and balanced cases.

To illustrate the REML estimators, consider the following case. A manu-
facturer of packaged dry soup mixes was experiencing excessive variability in
the package weights of a dry soup mix component called the “intermix.” The
intermix is a mixture of flavorful ingredients such as vegetable oil, salt, and
so forth. Too much intermix in a soup packet gives it too strong a flavor, and
not enough gives too weak a flavor. It was a two-step process to make the
packaged soup mix. The first step was to make a large batch of soup and dry
it on a rotary dryer. Next, the dried soup batch was placed into a mixer, where
the intermix was added through ports as it was mixed. Then it was packaged
in sealed bags of uniform weight. There were several factors that could be
changed in the first step (production of the dried soup batch), and several
factors that could be changed in the second step (adding the intermix and
mixing) that could possibly affect the variability of the weight of the intermix
in each sealed bag. A factorial experiment was to be planned to find out which
factors affected variability in intermix weights. In order to determine which
factors to include in a factorial experiment, a reasonable first step would be
to partition the variability in intermix weight into the variability from soup
batch to soup batch and the variability within a batch caused by the process
to mix and add intermix to the dried soup. If there was little variability from
batch to batch, the experiment would only need to consider factors involved
in the mixing step.

In order to partition the variability in package weights into batch-to-batch
and within batch, a sampling experiment was performed. A random sample of
four batches was selected over a month of production runs. From each batch,
three 1-lb samples of the finished soup mix were taken from the mixing tank
as it was being packaged. The weight of the intermix was determined for each
sample. The results of the sampling experiment are shown in Table 5.4.

The lmer function in the R package lme4 can compute the REML estimates
of variance components. The code to open the data frame for the dry soup mix
data and call the lmer function to produce the REML estimates of σ2

t and σ2

are shown on the next page, and the results are shown below the commands.
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Table 5.4 Variability in Dry Soup Intermix Weights

Batch Weight
1 0.52, 2.94, 2.03
2 4.59, 1.26, 2.78
3 2.87, 1.77, 2.68
4 1.38, 1.57, 4.10

The model formula (weight~1 +(1|batch)) for the function lmer is different
than the model statement for the lm or aov functions shown in Chapter 2.
The response is on the left of the “~” operator as before, but the 1 on the
right indicates that a global mean will be fit. The vertical bar “∣” in the second
term of the model formula separates the fixed effects from the random effects.
The term to the left of the vertical bar is a fixed effect (the overall mean) and
the term to the right (batch) is a random effect.

> library(daewr)

> library(lme4)

> rmod2 <- lmer( weight ~ 1 + (1|batch), data = soupmx)

> summary(rmod2)

Linear mixed model fit by REML

Formula: weight ~ 1 + (1 | batch)

Data: soupmx

AIC BIC logLik deviance REMLdev

43.48 44.94 -18.74 37.13 37.48

Random effects:

Groups Name Variance Std.Dev.

batch (Intercept) 0.00 0.0000

Residual 1.41 1.1875

Number of obs: 12, groups: batch, 4

Fixed effects:

Estimate Std. Error t value

(Intercept) 2.3742 0.3428 6.926

In the output, the familiar ANOVA table is missing because it is not needed to
obtain the REML estimates. The output instead shows the resulting numerical
estimators. It can be seen that σ̂2

t , the batch-to-batch variability, is estimated
to be zero, while σ̂2, the variability caused by the mixing process within a
batch, is estimated to be 1.41. If the method of moments estimators is used
with this data (left as an exercise), the estimator of σ2

t turns out to be negative.
The conclusions from this sampling experiment indicate that further exper-

iments to identify the causes of variability in the intermix should concentrate
on factors that can be varied in the second step of the process where the
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intermix is added and mixed with the batch. These further experiments were
performed and will be shown in the next chapter.

In processes that contain more than two steps, Leitnaker and Cooper (2005)
show that multistage sampling experiments, to be described in Section 5.6,
are very useful for identifying process steps and factors within those steps that
would be good candidates for further study with factorial type experiments.

An asymptotic approximate confidence interval for the variance compo-
nents can be obtained in the R package lme4 using the likelihood profile
method. The profile and confint functions provide a confidence interval
on the square root (i.e., standard deviations) of the variance components.
The code below shows how to get the confidence intervals using the data in
Table 5.2.

> library(daewr)

> library(lme4)

> pr1 <- profile( fm1M <- lmer( yield ~ 1 + (1| sample),

+ data = Naph, REML = FALSE))

> confint (pr1) # 95% confidence interval on sigma

2.5 % 97.5 %

.sig01 12.19853 84.06305

.sigma 38.22998 67.65770

(Intercept) 1486.45150 1568.54849

Squaring the left and right end-point of the interval for .sigma gives the 95%
confidence interval (1461.53–4577.56) for σ2, the variance component of the
within sample yields of napthalene black 12B. This is very close to the exact
confidence interval on page149.

A similar interval estimate can be obtained for σ2
t . The asymptotic con-

fidence intervals will be reasonably close to the exact confidence intervals
produced using the formulas in Table 5.3, when the degrees of freedom for
the term corresponding to the variance component being estimated is greater
than 45.

5.4.4 Determining the Sample Size For One-Factor Sampling Studies

Since there are two variance components being estimated in a one-factor sam-
pling design, there are two things to consider when determining the sample
size. In order to accurately estimate the replicate variance, σ2, the important
thing to consider is the number of degrees of freedom for error ν2 = t(r − 1).
The accuracy of the estimate of the random factor, σ2

t , will always be relative
to the accuracy in estimating σ2.

The accuracy for estimating σ2 can be expressed in terms of the width of
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the confidence interval given on line 1 of Table 5.3. Since E(ssE) = t(r−1)σ2,
the expected width of the 95% confidence interval can be written as:

σ2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

t(r − 1) × (χ2
t(r−1),0.975 − χ

2
t(r−1),0.025)

χ2
t(r−1),0.975

× χ2
t(r−1),0.025

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5.8)

Therefore, if you would like the half-width of the confidence interval to be
50% of σ2, search for the number of levels of the random factor, t, and the
number of replicates, r, such that the multiplier of σ2 in Equation (5.8) is
1.0. This can be done easily using the qchisq function in R by enumerating
various cases. The example below shows the calculation of the multiplier of σ2

that determines the expected width of the confidence interval. The resulting
output below the code shows that any combination of t and r that result in
ν2 = t(r−1) in the range of 36 to 38 will give the desired accuracy in estimating
σ2.

> nu2 <- 36:44

> chiu <- qchisq(.975, nu2)

> chil <- qchisq(.025, nu2)

> width <- nu2 * (chiu - chil) / (chil * chiu)

> halfw <- width/2

> data.frame(nu2, width, halfw)

nu2 width halfw

1 36 1.0259871 0.5129936

2 37 1.0091269 0.5045635

3 38 0.9930584 0.4965292

4 39 0.9777224 0.4888612

5 40 0.9630653 0.4815327

6 41 0.9490392 0.4745196

7 42 0.9356004 0.4678002

8 43 0.9227095 0.4613548

9 44 0.9103307 0.4551654

A simple rule of thumb can be used to get an idea as to how many levels
of the random factor, t, to include in the sampling experiment. When σ2

t is
expected to be larger than σ2, t should be as large as possible, so t = ν2, and
r = 2 would be reasonable.

Another way of determining both t and r would be to consider the power
of the F -test for testing the hypothesis H0 ∶ σ2

t = 0. Under the alternative
hypothesis Ha ∶ σ

2
t > 0, the statistic F = msT /msE follows a multiple of the

central F-distribution and the power or probability of exceeding the critical
limit can be expressed by

1 − β = Pr (Ft−1,t(r−1) >
1

1 + r × ρ
Ft−1,t(r−1),α) , (5.9)
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where ρ = σ2
t /σ

2.
Again the sample sizes t and r that give adequate power for specified al-

ternatives can be determined by enumerating several cases in R. In this case,
the use of the R functions qf and pf make it easy. For example, if you wanted
to have a power greater than 1 − β = 0.90 for rejecting H0 ∶ σ2

t = 0, when
ρ = σ2

t /σ
2 ≥ 3.0 the R code below will find some alternatives. The resulting

output below the code shows several combinations of t and r that result in
power greater than 0.90.

> alpha <- .05

> rho <- 3.0

> t <- rep(5:7, each = 3)

> r <- rep(2:4, 3)

> nu_1 <- t-1

> nu_2 <- t * (r - 1)

> fcrit <- qf( 1 - alpha, nu_1, nu_2 )

> factor <- 1 / ( 1 + r * rho )

> plimit <- factor * fcrit

> power <- 1 - pf( plimit, nu_1, nu_2 )

> data.frame( t, r, power)

t r power

1 5 2 0.6025330

2 5 3 0.8397523

3 5 4 0.9142402

4 6 2 0.6876308

5 6 3 0.8972133

6 6 4 0.9523702

7 7 2 0.7565926

8 7 3 0.9346005

9 7 4 0.9737459

Of course this method does not consider the accuracy of the estimate of
σ2. One might consider using the first method shown above to determine
ν2 = t(r − 1) to have the desired accuracy in estimating σ2; and then with
ν2 = t(r − 1) fixed at the number determined, use the second method shown
above to determine how large t should be for adequate power in rejecting
H0 ∶ σ

2
t = 0, at a specified significance level α, in favor of Ha ∶ σ

2
t > 0 when

σ2
t /σ

2 ≥ ρ.

5.5 Two-Factor Sampling Designs

When the purpose of experimentation is to study the variance in the response
caused by varying the levels of two independent factors, the design is similar
to the two-factor factorial design presented in Chapter 3. However, in the two-
factor factorial designs presented in Chapter 3, the levels of the factors would
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be specifically selected by the experimenter because he would be interested in
comparing the average response between these levels. In the two-factor sam-
pling experiment, on the other hand, the levels of the factors are just a random
or representative sample of possible levels, and the purpose is to determine
how much of the variance in the response can be attributed to varying levels
of the factors. In general these designs are called factorial random sampling
experiments or FRSE.

Consider the example data presented in Table 5.5 taken from Sower et al.
(1999). These are data from a Gage R&R study commonly performed in in-
dustrial quality assurance departments.

Table 5.5 Data from Gage R & R Study
Operator

Part 1 2 3
1 0.71 0.56 0.52

0.69 0.57 0.54
2 0.98 1.03 1.04

1.00 0.96 1.01
3 0.77 0.76 0.81

0.77 0.76 0.81
4 0.86 0.82 0.82

0.94 0.78 0.82
5 0.51 0.42 0.46

0.51 0.42 0.49
6 0.71 1.00 1.04

0.59 1.04 1.00
7 0.96 0.94 0.97

0.96 0.91 0.95

8 0.86 0.72 0.78
0.86 0.74 0.78

9 0.96 0.97 0.84
0.96 0.94 0.81

10 0.64 0.56 1.01
0.72 0.52 1.01

In these studies the purpose is to classify the variability in measured fea-
tures of manufactured products or product components. Assuming the gage
or measuring instrument is properly calibrated, a measured value determined
during a quality control inspection can be considered to be a function of the
true feature dimension, the gage repeatability, and the gage reproducibility.
Gage repeatability is the ability of a single operator to obtain the same mea-
surement value multiple times using the same measuring instrument (or gage)
on the same feature of a single manufactured component (or part). Gage re-
producibility is the ability of different operators to obtain the same measured
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value multiple times using the same gage on the same part. If the variability
in measurements caused by the gage repeatability plus the gage reproducibil-
ity is more than 10% of the tolerance range, the measurements may not be
accurate enough to be used in monitoring product quality.

The Gage R&R sampling experiment consists of selecting a set of manufac-
tured parts or components that are representative of the part-to-part variabil-
ity in normal manufacturing. In Table 5.5, a sample of 10 parts was selected
and these parts represent the levels of the first factor in the sampling ex-
periment. Next, a random or representative sample of inspectors is selected.
The inspectors or operators represent the levels of the second factor in the
sampling experiment. Finally, each inspector measures each part twice in a
random order and the results are assembled in a table like Table 5.5. The
replicate measurements represent the replicates in each cell.

Since each operator or inspector measured each part, the model for the data
in Table 5.5 can be written in the form of a factorial model

yijk = µ + ai + bj + abij + εijk, (5.10)

where yijk is the kth measurement (k = 1, . . . , r) made by the jth operator
(j = 1, . . . , b) on the ith part (i = 1, . . . , a), ai is the part effect, bj is the
operator or inspector effect, and abij is the interaction effect.

The difference between this model and model (3.2) in Chapter 3 is the
fact that the effects ai, bj , and abij are now assumed to be independent,
normally distributed random variables with zero means and variances σ2

a,
σ2
b , and σ2

ab. Since the variance of a sum of independent random variables
is the sum of the variances, the total variance in the response Var(y)= σ2

y =

σ2
a + σ

2
b + σ

2
ab + σ

2. σ2
a represents the portion of the total variance due to

actual differences in part features, σ2
b is the portion of the variance caused by

differences among operators, σ2
ab is the portion of the variance caused by the

interaction of operator and part, and σ2 is the portion of the variance caused
by replicate measurements or gage repeatability. The sum of σ2

b + σ
2
ab is the

gage reproducibility. The repeatability plus reproducibility σ2
b + σ

2
ab + σ

2 is a
measure of the variance attributable to measurement error.

5.5.1 Estimating Variance Components

For the case with an equal number of replicates per subclass, like the example
in Table 5.5, it is convenient to use either the method of moments or REML
estimators of the variance components. When using the method of moments,
it is necessary to know the coefficients of the variance components in the ex-
pected mean squares. For a balanced two-factor sampling design, the expected
value of the mean squares can be found using the tabular method of Bennett
and Franklin (1954, sec. 7.6) and are shown in Table 5.6. The estimates of
the variance components can then be obtained by equating the mean squares
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in the ANOVA to the expected mean squares and solving for the variance
components.

Table 5.6 Expected Mean Squares in Two-Factor Sampling Design
Source df EMS

A a − 1 σ2 + rσ2
AB + rbσ2

A

B b − 1 σ2 + rσ2
AB + raσ2

B

AB (a − 1)(b − 1) σ2 + rσ2
AB

Error (r − 1)ab σ2

The R code to produce the ANOVA table is shown below.

> library(daewr)

> modr1 <- aov( y ~ part + oper + part:oper, data = gagerr)

> summary(modr1)

Df Sum Sq Mean Sq F value Pr(>F)

part 9 1.4489 0.16099 214.18 < 2e-16 ***

oper 2 0.0297 0.01485 19.76 3.35e-06 ***

part:oper 18 0.4839 0.02689 35.77 1.87e-15 ***

Residuals 30 0.0226 0.00075

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Using the mean squares in the above table, the R code below calculates the
variance component estimates using the method of moments.

> sigma2 <- .000752

> sigma2po <- (0.026885 - sigma2) / 2

> sigma2o <- (0.014852 - sigma2 - 2 * sigma2po ) / 20

> sigma2p <- (.160991 - sigma2 - 2 * sigma2po ) / 6

> cat("Method of Moments Variance Component Estimates","\n",

+ "Var(error)=",sigma2,"\n","Var(part x oper)=",sigma2po,"\n",

+ "Var(oper)=",sigma2o,"\n","Var(part)=",sigma2p,"\n")

Method of Moments Variance Component Estimates

Var(error)= 0.000752

Var(part x oper)= 0.0130665

Var(oper)= -0.00060165

Var(part)= 0.022351

For this example the method of moments estimator of σ2
b is negative. One

or two atypical observations can result in an estimated variance component
that is too large, too small, or even negative. Graphical techniques, like those
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described in Section 5.9, can often reveal atypical values and increase the
chance of a useful interpretation of the data.

In cases where atypical values are not the cause of negative variance compo-
nent estimates, the REML estimators avoid the negative values. The R code
to produce the REML estimates is shown below. From these results it can be
seen that most 94.3% = 100×[0.01247/(0.01247+0.0007517)] of the measure-
ment error is due to reproducibility. Therefore to reduce measurement error,
efforts should be concentrated on better training of operator inspectors rather
than investing in more precise gages.

> library(lme4)

> modr2 <- lmer(y ~ 1 + (1|part) + (1|oper) + (1|part:oper),

+ data = gagerr)

> summary(modr2)

Linear mixed model fit by REML [’lmerMod’]

Formula: y ~ 1 + (1 | part) + (1 | oper) + (1 | part:oper)

Data: gagerr

REML criterion at convergence: -133.9447

Random effects:

Groups Name Variance Std.Dev.

part:oper (Intercept) 0.0124650 0.11165

part (Intercept) 0.0225514 0.15017

oper (Intercept) 0.0000000 0.00000

Residual 0.0007517 0.02742

Number of obs: 60, groups: part:oper, 30; part, 10; oper, 3

Fixed effects:

Estimate Std. Error t value

(Intercept) 0.7982 0.0518 15.41

5.5.2 Confidence Intervals on Variance Components in Two-Factor Designs

When there is an equal number of replicates per subclass, and the normality
assumptions hold, the ANOVA mean squares are independently distributed
as multiples of chi-square random variables. Therefore confidence intervals on
any expected mean square can be obtained similar to line 1 in Table 5.3. How-
ever, except for E(msE) = σ2, the expected value of all other mean squares
are linear combinations of two or more variance components. Although exact
confidence intervals can be obtained on individual variance components in the
balanced two-factor design following the formula on line 2 of Table 5.3, they
are not applicable to all designs or unbalanced data. Burdick and Graybill
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(1992) show a method of computing approximate confidence intervals that is
more generally applicable.

Whenever a variance component can be expressed in the form δ =

c1E(ms1) − c2E(ms2) where ms1 and ms2 are mean squares in the ANOVA
table and c1 and c2 are positive, the approximate confidence interval shown by
Burdick and Graybill is applicable. For example, in the ANOVA table shown
above for the gage R&R study,

E(msPartOperator) = σ2
+ 2σ2

ab

and
E(msOperator) = σ2

+ 2σ2
ab + 20σ2

b ,

therefore

δ = 0.05 ×E(msOperator) − 0.05 ×E(msPartOperator) = σ2
b .

An approximate 1 − α confidence interval on δ is given by:

(δ̂ −
√
VL, δ̂ +

√
VU) , (5.11)

where δ̂ = c1ms1 − c2ms2, ν1 is the degrees of freedom for ms1, ν2 is the
degrees of freedom for ms2,

VL = G2
1c

2
1ms1

2
+H2

2 c
2
2ms2

2
+G12c1c2(ms1)(ms2)

VU =H2
1 c

2
1ms1

2
+G2

2c
2
2ms2

2
+H12c1c2(ms1)(ms2),

G1 = 1 −
1

Fα,ν1,∞

H2 =
1

F1−α,ν2,∞
− 1

G12 =
(Fα,ν1,ν2 − 1)2 −G2

1F
2
α,ν1,ν2 −H

2
2

Fα,ν1,ν2

H1 =
1

F1−α,ν1,∞
− 1

G2 = 1 −
1

Fα,ν2,∞
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and

H12 =
(1 − F1−α,ν1,ν2)

2 −H2
1F

2
1−α,ν1,ν2−G2

2

F1−α,ν1,ν2
.

Although these formulas look formidable, they can be easily evaluated using
R. A function vci, in the package daewr, will compute confidence intervals
using these formulas. The inputs to this function are confl=1 − α, c1=c1,
ms1=ms1, nu1=ν1, c2=c2, ms2=ms2, and nu2=ν2. As an illustration of the
use of this function, consider making confidence intervals on the variance com-
ponent for operator, and the variance component for the part by operator
interaction in the gage R&R study data.

To get a confidence interval on the variance component for operator, σ2
b ,

ms1=0.01485 with 2 degrees of freedom, ms2=0.02689 with 18 degrees of
freedom. The function call and output is shown below.

> library(daewr)

> options(digits = 3)

> vci(confl = .90, c1 = .05, ms1 = .01485, nu1 = 2, c2 = .05,

+ ms2 = .02689, nu2 = 18)

delta= -0.000602 Lower Limit= -0.00158 Upper Limit= 0.00572

This shows that even though the method of moments estimator for σ2
b =

−0.000602 is negative, the upper 90% confidence bound is positive. The 90%
confidence interval for σ2

ab is found to be (0.008936−0.021895) using the same
approximation formula.

5.5.3 Determining Sample Sizes for Two-Factor Sampling Experiments

In a two-factor sampling experiment, there are three sample sizes to be con-
sidered. First the number of levels of factor A, a, second the number of levels
of factor B, b, and finally the number of replicates within each cell, r. The
degrees of freedom for the replicate mean square is ab(r − 1). By replacing
t(r − 1) by ab(r − 1) in formula (5.8), it can be used to determine the value
of ab(r − 1) that will result in the desired width of the confidence interval for
σ2. Next, using a rule of thumb like that expressed in Section 5.4.4 the levels
of factor A and factor B can be determined.

5.5.4 Two-Factor Studies with Unequal Replication

When there are an unequal number of replicates in each subclass, the method
of moments or analysis of variance estimators of the variance components are
more difficult to compute. The coefficients of the variance components in the
expected mean squares are no longer integer functions of the number of levels
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of the factors and number of replicates as shown in Table 5.6. Instead, they
must be computed using Hartley’s method as described on pages 146–147.
Additionally, the variance component estimates obtained solving the equations
that equate the mean squares to their expected values are not unique. The
estimates will be different depending on whether the sequential or type III
sums of squares are used in the equations. On the other hand, the maximum
likelihood estimators and REML estimators are unique and may be preferred
in this situation.

As an example of computing the variance components using the REML
method, consider the data in Table 5.7 taken from a sampling study to esti-
mate the sources of variability in an inter-laboratory assay of calcium in blood
serum that was shown by Rao and Rao (1997).

Table 5.7 Calcium in Blood Serum Solutions with Unknown Concentrations
Standard Solution

Laboratory 1 2 3 4
A 87 92 179 177

84 83 173
80 76 166

B 80 69 138 151
70 46 138

132

C 70 67 173 176
60 63 166
44 48

The code to open the data frame and compute the variance components
using the lmer function in the lme4 package are similar to those shown in
the last section for balanced data. The code and results of the analysis are
shown on the next page. The estimated variance component for the lab by
solution interaction is near zero, but the method of moments estimator of
the same component would be negative. It can be seen that the majority of
the variability in the assay for calcium in blood serum is due to differences
among the standard solutions and among the repeat analyses using the same
solution in the same lab. A very small proportion of the variability is caused
by differences in labs.
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> library(daewr)

> library(lme4)

> rmod3 <- lmer( calcium ~ 1 + (1|lab) + (1|sol) + (1|lab:sol),

+ data = blood)

> summary(rmod3)

Linear mixed model fit by REML

Formula: calcium ~ 1 + (1 | lab) + (1 | sol) + (1 | lab:sol)

Data: blood

AIC BIC logLik deviance REMLdev

275.2 281.7 -132.6 273.1 265.2

Random effects:

Groups Name Variance Std.Dev.

lab:sol (Intercept) 2.3045e-15 4.8006e-08

sol (Intercept) 1.4937e+03 3.8649e+01

lab (Intercept) 2.8028e+01 5.2941e+00

Residual 1.0499e+03 3.2402e+01

Number of obs: 27, groups: lab:sol, 12; sol, 4; lab, 3

Fixed effects:

Estimate Std. Error t value

(Intercept) 103.18 20.69 4.987

Since there are only three labs, any asymptotic confidence interval for σ2
a

would not be accurate. With unequal replication the ANOVA mean squares
are no longer distributed as multiples of chi-square random variables, so the
confidence intervals using line 2 in Table 5.3 are also not appropriate.

Approximate confidence intervals can still be obtained if unweighted mean
squares are substituted for the mean squares in Formula (5.11). The un-
weighted mean squares for factor A, B, and the interaction can be obtained
by performing an ANOVA on the cell means. Table 5.8 is a symbolic repre-
sentation of the ANOVA with unweighted mean squares (and their expected
values) from a two-factor sampling design.

Table 5.8 Symbolic ANOVA with Unweighted Mean Squares
Source df MS EMS
Factor A a − 1 msAU σ2 + c̄σ2

ab + bc̄σ
2
a

Factor B b − 1 msBU σ2 + c̄σ2
ab + ac̄σ

2
b

Interaction AB (a − 1)(b − 1) msABU σ2 + c̄σ2
ab

Error ∑i∑j rij − ab msE σ2

The symbol c̄ = ab/∑i∑j(1/rij) and rij is the number of replicates in the

ijth cell. From this table it can be seen that σ̂2
a = ( 1

bc̄
)msAU − ( 1

bc̄
)msABU

which is of the form δ = c1E(ms1) − c2E(ms2) shown in Section 5.5.2.
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For the data in Table 5.7, the unweighted mean squares are obtained by
the R code below. In that code, the first statement uses the tapply function
to calculate the cell means of the response calcium in the data frame blood.
Next, factors are created that are the same length as the vector of cell means,
and the aov function is used to make the unweighted means ANOVA table.

> cellmeans <- tapply( blood$calcium, list(blood$lab,

+ blood$sol), mean)

> dim(cellmeans) <- NULL

> Lab <- factor( rep(c("A", "B", "C"), 4))

> Solution <- factor(rep( c( 1, 2, 3, 4), each = 3))

> mod2 <- aov( cellmeans ~ Lab + Solution + Lab:Solution )

> summary(mod2)

Df Sum Sq Mean Sq

Lab 2 826 413

Solution 3 15035 5012

Lab:Solution 6 625 104

In the results, the unweighted means square for factor A, maAU = 413, and
the unweighted mean square for factor B, msABU = 104. The factor

c̄ = ab/∑
i

∑
j

(1/rij)

=
(3)(4)

( 1
1
+ 1

3
+ 1

3
+ 1

3
+ 1

1
+ 1

2
+ 1

2
+ 1

3
+ 1

1
+ 1

3
+ 1

3
+ 1

2
)

= 1.846,

and c1 = c2 = 1
bc̄

= 1
4(1.846) = 0.13541. Thus the inputs needed for the vci

function to calculate a 90% confidence interval for σ2
a is shown in the code

below.

> library(daewr)

> vci(confl = .90, c1 = .1354166, ms1 = 413, nu1 = 2,

+ c2 = .1354166, ms2 = 104, nu2 = 6)

delta= 41.84373 Lower Limit= 4.137887 Upper Limit= 516.7725

and the resulting confidence interval is (4.138, 516.772) is very wide, again
due to the fact that there were only three labs in the data.

5.6 Nested Sampling Experiments (NSE)

Many sampling experiments with more than one factor use nested factors or
a hierarchical design. The levels of a nested factor are physically different
depending on the level of factor it is nested within. That was not the case
for the factors described in the last section. For example, in the gage R&R
study, each operator measured each part; therefore, the operator number was
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uniquely defined and referred to the same operator regardless of which part
he measured. We would call the operator and the part in the gage R&R study
crossed factors. To change the design so that the operator was a nested fac-
tor, consider an experiment where n parts were selected and each part was
measured by two operators, although it does not have to be the same two op-
erators measuring each part. This might be a more convenient way to conduct
the sampling experiment if parts were selected over a long period of time and
the same operators were not always present to make the measurements. The
fact that the operators differ depending upon the part number being measured
makes the operator a nested factor (nested within part). The first operator
measuring the first part is not physically the same person as the first operator
measuring a subsequent part. Another common example where a nested design
occurs is when the measurements are destructive. In that case, each operator
must measure a different set of parts, and the part becomes the nested factor
(nested within operator) because the first part measured by the first operator
is not physically the same as the first part measured by subsequent operators.
This type of sampling design is called a nested sampling experiment or NSE.

One example where we have already seen nested factors is in the term εij in
the models we have used thus far. It represents the effect of the jth replicate
experimental unit, and since different experimental units are used for each
factor level or combination of factor levels, the experimental unit is always
nested within another factor level or cell in the design.

When two factors are crossed factors we can include their interaction in
the model to represent the extra variability caused by changes in the level of
one factor between levels of the other factor. However, if a factor is nested
within another factor we cannot include an interaction between them because
the nested factor includes the degrees of freedom that could be taken by the
interaction. The model for a two-stage nested design with factor B nested
within factor A is written as:

yijk = µ + ai + b(i)j + εijk (5.12)

and if there is an equal number of replicates, r, per cell, the ANOVA table for
the nested model can be represented as:

Table 5.9 Symbolic ANOVA for Two-Factor Nested Design
Source df MS EMS

Factor A a − 1 msA σ2 + rσ2
b + brσ

2
a

Factor B a(b − 1) msB σ2 + rσ2
b

Error ab(r − 1) msE σ2

Here it can be seen that the degrees of freedom for factor B,

a(b − 1) = (b − 1) + (a − 1)(b − 1)

is equal to the degrees of freedom for a crossed factor plus the degrees for the
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interaction AB. The expected mean squares in the table can again be obtained
using the tabular method of Bennett and Franklin (1954).

Nested or hierarchical designs can easily be extended to include several
stages or factors. For example, Table 5.10 shows the results of a four-stage
nested sampling study on the variability of properties of crude rubber, taken
from Bennett and Franklin (1954). In this study a sample of four batches of
rubber was taken from each of four suppliers. Since the first batch obtained
from the first supplier is not physically the same as the first batch taken from
the second supplier, batch is nested within supplier. Next, two sample mixes
were made from each batch, and since the two sample mixes for one batch
are physically different than the sample mixes for any other batch, the sample
mix is nested within the batch. Finally, three replicate tests were performed
on each sample mix to determine the elasticity.

The model for the data can be written as:

yijkl = µ + ai + b(i)j + c(ij)k + εijkl,

where yijkl is the lth elasticity determination made from the kth sample mix,
taken from the jth batch from the ith supplier, ai is the random supplier
effect, b(i)j is the random batch effect, c(ij)k is the random sample mix effect,
and εijkl is the random replicate determination effect, i = 1, . . . ,4, j = 1, . . . ,4,
k = 1, . . . ,2, and l = 1, . . . ,3.

This model can be written in the notation of R function aov as

> mod2 <- aov( elasticity ~ supplier + supplier:batch +

+ supplier:batch:sample, data = rubber)

or in the notation of the R function lmer in the package lme4 as

> modr3 <- lmer( elasticity ~ 1+ (1|supplier) +

+ (1|supplier:batch) + (1|supplier:batch:sample), data = rubber)

The ‘:’ notation indicates that the batch is nested in the supplier, and so
forth. The variance components σ2

a, σ2
b , σ2

c , and σ2 can be estimated using the
method of moments or REML.

In order to increase confidence in estimates of variance components, the
number of levels of a random factor should be increased. However, in hier-
archical designs with several stages, increasing the number of levels of the
topmost factor greatly increases the overall sample size, even if all the other
nested factors have only two levels. For example, in the design shown in Ta-
ble 5.10, if the number of suppliers was increased from 4 to 20 in order to
get a more precise estimate of σ2

a, the number of determinations that would
have to be made would increase from the 96 shown in Table 5.10 to 480.
Even if the number of batches per supplier and the number of sample mixes
per batch and determinations per mix were reduced to 2 each, there would
still be 20 × 2 × 2 × 2 = 160 determinations. If the sampling study had been
done in this way there would be a − 1 = 19 degrees of freedom for the sup-
plier effect, a(b − 1) = 20(2 − 1) = 20 degrees of freedom for the batch effect,
ab(c − 1) = 20 × 2(2 − 1) = 40 degrees of freedom for the sample effect, and
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abc(r − 1) = 20(2)(2)(2 − 1) = 80 degrees of freedom for the random replicate
effect. Therefore the majority of the 160 observations are used to increase the
precision of the bottom two variance components σ2 and σ2

c . For this reason,
balanced hierarchical designs are usually not recommended if there are more
than three stages or sources of variability being studied. Staggered nested de-
signs presented in the next section allow the convenience of nested factors in
sampling studies, but allow the various variance components to be estimated
with more uniform precision.

Table 5.10 Modulus of Elasticity at 700% Elongation of 96 Prepared Specimens of
Smoked Sheet Rubber

Supplier A B C D
Sample Mix Sample Mix Sample Mix Sample Mix
1 2 1 2 1 2 1 2

211 171 196 196 200 240 323 262
Batch I 215 198 186 210 221 229 279 234

197 268 190 156 198 217 251 249

229 234 209 200 191 196 255 249
Batch II 196 210 193 186 189 198 235 247

200 226 204 196 186 175 223 239

204 225 204 174 211 196 228 262
Batch III 221 215 165 172 197 184 250 227

238 196 194 171 210 190 260 272

229 248 198 202 196 180 273 273
Batch IV 250 249 209 211 197 166 241 256

238 249 221 204 186 172 221 230

5.7 Staggered Nested Designs

Staggered nested sampling experiments, or SNSE, were developed indepen-
dently by Bainbridge (1965) and Prairie and Anderson (1962). In a completely
nested design as discussed in the last section, each level of the topmost factor
leads down into two (or more) levels of each succeeding factor or stage. In a
staggered nested design, on the other hand, only one of the two levels of the
succeeding factor leads to the next two-level stage. Figure 5.1 illustrates the
difference between a nested and staggered nested design for three stages. If
there are a levels of the topmost factor, the nested design requires 4a total
observations while the staggered nested design only requires 3a observations.

The savings in observations are multiplied as the number of stages in a
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Figure 5.1 Comparison of 3 Stage Nested and 3 Stage Staggered Nested Design

nested design increases. Figure 5.2 shows the schematic for staggered nested
designs from three through six stages.

Figure 5.2 Staggered Nested Designs for 3 to 6 Stages

While the information or degrees of freedom available for estimating vari-
ance components in a completely nested design is concentrated in the lower
tier factors, the information is balanced in a staggered nested design. Table
5.11 compares the degrees of freedom distribution between a staggered nested
design and a completely nested design where each factor except the topmost
has only two levels.

Although the expected mean square coefficients for the staggered nested
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Table 5.11 Comparison of Degrees of Freedom between Staggered Nested and Nested
Designs

Staggered
Nested Nested

Source df df
A a − 1 a − 1
B in A a a
C in B a 2a
D in C a 4a
E in D a 8a
F in E a 16a

designs can be determined using Hartley’s method (Hartley, 1967), his method
is not available in any R function. Fortunately, the EMS coefficients have been
tabulated by Nelson (1983) and are shown in Table 5.12. They are needed when
calculating the variance components estimators by the method of moments.

Table 5.12 Expected Mean Square Coefficients for Staggered Nested Designs
Stages Term EMS
3 A σ2

C + (5/3)σ2
B + 3σ2

A

B σ2
C + (4/3)σ2

B

C σ2
C

4 A σ2
D + (3/2)σ2

C + (5/2)σ2
B + 4σ2

A

B σ2
D + (7/6)σ2

C + (3/2)σ2
B

C σ2
D + (4/3)σ2

C

D σ2
D

5 A σ2
E + (7/5)σ2

D + (17/5)σ2
B + 5σ2

A

B σ2
E + (11/10)σ2

D + (13/10)σ2
C + (8/5)σ2

B

C σ2
E + (7/6)σ2

D + (3/2)σ2
C

D σ2
E + (4/3)σ2

D

E σ2
E

6 A σ2
F + (4/3)σ2

E + 2σ2
D + 3σ2

C + (13/12)σ2
B + 6σ2

A

B σ2
F + (14/15)σ2

E + (6/5)σ2
D + (7/5)σ2

C + (5/3)σ2
B

C σ2
F + (11/10)σ2

E + (13/10)σ2
D + (8/5)σ2

C

D σ2
F + (7/6)σ2

E + (3/2)σ2
D

E σ2
F + (4/3)σ2

E

F σ2
F

Mason et al. (1989) described a study where a staggered nested design was
used to estimate the sources of variability in a continuous polymerization
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process. In this process polyethylene pellets are produced in lots of one hun-
dred thousand pounds. A four-stage design was used to partition the source
of variability in tensile strength between lots, within lots and due to the mea-
surement process. Thirty lots were sampled at random. Lot represented the
topmost factor or source of variability A. From each lot two boxes of pellets
were randomly selected. This represented the second stage or source of vari-
ability B. From the first box selected from each lot, two preparations were
made for strength testing, but from the second box selected from each lot
only one preparation was made. This represented the third stage or source
of variability C. Finally, two repeat strength tests were made from the first
preparation from box one, while only one strength test was made from the
other three preparations.

This sampling scheme is diagramed in Figure 5.3, and the data is shown in
Table 5.13 on the next page.

Figure 5.3 Diagram of Sampling Scheme for Polymerization Study

The R code to open the data frame and compute the ANOVA table for use
in estimating the variance components by the method of moments is shown
below.

> library(daewr)

> mod2<-aov(strength ~ lot + lot:box + lot:box:prep, data =

+ polymer)

> summary(mod2)

Df Sum Sq Mean Sq F value Pr(>F)

lot 29 856.0 29.516 45.552 < 2e-16 ***

lot:box 30 50.1 1.670 2.577 0.005774 **

lot:box:prep 30 68.4 2.281 3.521 0.000457 ***

Residuals 30 19.4 0.648

The method of moments estimators of the variance components are found by
equating the mean squares in the ANOVA table above to the expected mean



STAGGERED NESTED DESIGNS 171

Table 5.13 Data from Polymerization Strength Variability Study

Box 1 Box 2
Preparation Preparation

1 2 1
Lot test 1 test 2 test 1 test 1
1 9.76 9.24 11.91 9.02
2 10.65 7.77 10.00 13.69
3 6.50 6.26 8.02 7.95
4 8.08 5.28 9.15 7.46
5 7.84 5.91 7.43 6.11
6 9.00 8.38 7.01 8.58
7 12.81 13.58 11.13 10.00
8 10.62 11.71 14.07 14.56
9 4.88 4.96 4.08 4.76
10 9.38 8.02 6.73 6.99
11 5.91 5.79 6.59 6.55
12 7.19 7.22 5.77 8.33
13 7.93 6.48 8.12 7.43
14 3.70 2.86 3.95 5.92
15 4.64 5.70 5.96 5.88
16 5.94 6.28 4.18 5.24
17 9.50 8.00 11.25 11.14
18 10.93 12.16 9.51 12.71
19 11.95 10.58 16.79 13.08
20 4.34 5.45 7.51 5.21
21 7.60 6.72 6.51 6.35
22 5.12 5.85 6.31 8.74
23 5.28 5.73 4.53 5.07
24 5.44 5.38 4.35 7.04
25 3.50 3.88 2.57 3.76
26 4.80 4.46 3.48 3.18
27 5.35 6.39 4.38 5.50
28 3.09 3.19 3.79 2.59
29 5.30 4.72 4.39 6.13
30 7.09 7.82 5.96 7.14

squares in Table 5.12 and solving. The results are shown on the next page.
Once again the method of moments procedure produces a negative estimate
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for one of the sources.

σ2
R = 0.648

σ2
P = (2.281 − 0.648)/(4/3) = 1.22475

σ2
B = (1.670 − [0.648 + (7/6)1.22475])/(3/2) = −0.27125

σ2
L = (29.516 − [0.648 + (3/2)(1.22475) + (5/2)(−0.27125)])/4 = 6.92725

To estimate the variance components using the REML method, the function
lmer from the package lme4 is used as shown below. The results follow the
code. The REML estimator of the variance component for box within lot is
essentially zero rather than the negative value obtained from the method of
moments.

> library(lme4)

> modr3 <- lmer( strength ~ 1 + (1|lot) + (1|lot:box)+

+ (1|lot:box:prep), data = polymer)

> summary(modr3)

Linear mixed model fit by REML

Formula: strength~1+(1|lot)+(1|lot:box)+(1|lot:box:prep)

Data: polymer

AIC BIC logLik deviance REMLdev

478.9 492.8 -234.4 469.3 468.9

Random effects:

Groups Name Variance Std.Dev.

lot:box:prep (Intercept) 1.0296e+00 1.0147e+00

lot:box (Intercept) 4.5538e-12 2.1340e-06

lot (Intercept) 7.2427e+00 2.6912e+00

Residual 6.5680e-01 8.1043e-01

Number of obs: 120, groups:lot:box:prep, 90; lot:box,60; lot,30

From these results, we see that 81% =(100×(7.2427)/(7.2427+1.0296+0.6568))
of the total variation is due to variability among lots, while the within lot or
box-to-box variability is negligible. Therefore, if the manufacturers would like
to decrease the variability in tensile strength, they should focus on reducing
the variation on influential factors that change between lots.

While no exact closed form confidence intervals have been developed for
variance components estimated from data in staggered nested designs, when
the number of levels of the topmost factor is greater than 30, approximate
asymptotic estimates can be created using the likelihood profile method with
the R package lme4 as discussed in Section 5.4.3. Bayesian interval estimates
of variance components are also useful for these designs (see Lawson, 2008).

To determine the sample size for a staggered nested design, follow the pro-
cedure outlined in Section 5.4.4 for determining the sample size for estimating
the replicate variance in a one-factor sampling design. Since the degrees of
freedom for all factors or stages in the staggered nested design are near equal,
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following this procedure will give you approximately the same precision on all
variance components.

5.8 Designs with Fixed and Random Factors

In some cases where fixed treatment factors are being studied in an experi-
mental design like those discussed in Chapters 2 through 4, random factors
are also introduced in the model by the way the experiment is conducted.
For example, consider the data in Table 5.14 that resulted from an experi-
ment comparing different formulations and methods of applying a pesticide
to the leaves of cotton plants. The goal was to increase the amount of active
pesticide remaining on cotton plant leaves one week after application. The
pesticide being studied degrades in sunlight and a certain additive to the for-
mulation retards this process. Different application techniques may differ in
the amount of pesticide delivered to the plant leaves. The treatment factors
in this experiment were two different formulations of the pesticide and two
different application methods, resulting in a 22 factorial experiment.

The experimental unit was a 20′ row of cotton plants called a plot, because
this was a convenient area within which the application of pesticide could be
controlled. Eight plots were selected and two were randomly assigned to each
of the four treatment combinations, resulting in two replicates per treatment
combination. One week after application, the experimenters were ready to de-
termine the pesticide residue remaining on the plant leaves. However, there
was too much plant material in an entire plot to send to the lab for analy-
sis. Therefore, two samples of leaves in an amount convenient for laboratory
analysis of pesticide residues were selected from each plot. Each sample was
sent to the lab resulting in the data shown in Table 5.14.

Formulation, application technique, and their interaction are fixed factors
because the experimenters were interested in comparing the average response
between levels of these factors. The plot, on the other hand, is a random
factor that represents differences in experimental units. It is nested within the
combinations of formulation by application technique. There is no interest
in comparing experimental units within each combination of formulation and
application. Instead, multiple plots per treatment combination were included
in the design so that the variance caused by differing plots could be estimated
and used to judge significance of formulation and application effects. The
replicate samples taken from each plot were for convenience in conducting the
experiment. They would be classified as sub-samples or observational units
defined in Chapter 1.

The simplest way of analyzing the data would be to average the two sub-
samples and proceed as illustrated in Section 3.5. However, if the sub-samples
can be assumed independent and it is desirable to include all the data (shown
in Table 5.14) in the analysis, then an additional term for sample must be
included in the model. Sample is another random effect since there is no



174 DESIGNS TO STUDY VARIANCES

specific interest in comparing the response between the two samples from
each plot.

Table 5.14 Pesticide Residue on Cotton Plants

Application Sample
Formulation Technique Plot 1 2

A 1 1 0.237 0.252
A 1 2 0.281 0.274
B 1 1 0.247 0.294
B 1 2 0.321 0.267
A 2 1 0.392 0.378
A 2 2 0.381 0.346
B 2 1 0.351 0.362
B 2 2 0.334 0.348

The model for the data can be written in the form

yijkl = µ + αi + βj + αβij + p(ij)k + εijkl, (5.13)

where yijkl is the pesticide residue found on the lth sample taken from the kth
plot, treated with formulation level i and application technique j. In general
i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , r, and l = 1, . . . , s. In this specific example,
a = 2, b = 2, r = 2, and s = 2, αi is the formulation effect, βj is the application
effect, αβij is the interaction effect, p(ij)k is the random plot effect, and εijkl
is the random sample effect.

The model can be written in matrix notation as:

y =Xβ +Zγ + ε, (5.14)

.
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.

β represents the vector of fixed effects, while γ and ε represent the vec-
tors of random effects. The assumption of independent and normally dis-
tributed random effects can be expressed by γ ∼ MVN(0, σ2

pIabr), and ε ∼

MVN(0, σ2Iabrs); therefore, y ∼MVN(Xβ,V ), where V = Z(σ2
pIabr)Z

′ +

σ2Iabrs. The least squares estimator of β would be β̂ = (X ′V −X)−X ′V −y,
where − refers to a generalized inverse; however, σ2

p, σ2 are unknown, and
therefore V is unknown.

R function aov solves the problem by treating both β and γ as fixed. The
ANOVA sums of squares for each term in the model are computed like those
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shown in Table 3.2, with an additional term called Residuals, which repre-
sents the sub-samples.

The commands to open the data frame with the data from Table 5.14 and
create the ANOVA table are shown below.

> library(daewr)

> mod4 <- aov( residue ~ form + tech + form:tech + plot:form:tech,

+ data = pesticide)

> summary(mod4)

Df Sum Sq Mean Sq F value Pr(>F)

form 1 0.00002 0.00002 0.040 0.8455

tech 1 0.03231 0.03231 72.434 2.79e-05 ***

form:tech 1 0.00219 0.00219 4.900 0.0578 .

form:tech:plot 4 0.00234 0.00059 1.314 0.3432

Residuals 8 0.00357 0.00045

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The F - and P -values are incorrect in this table because they use the sub-
sample or Residuals term as the denominator of the F -tests. The expected
mean squares for this balanced design can be found using Bennett and
Franklin’s (1954) tabular method and are shown in Table 5.15. In this ta-
ble σ2 and σ2

P are the variances of the random effects εijkl and p(ij)k in model
5.13. The τ2 terms represent quadratic functions of the fixed effects (αi, βj ,
and αβij).

Table 5.15 Expected Mean Squares for Two-Factor Design with Sub-Samples
Source df EMS

A a − 1 σ2 + rσ2
P + srbτ

2
A

B b − 1 σ2 + rσ2
P + sraτ

2
B

AB (a − 1)(b − 1) σ2 + rσ2
P + srτ

2
AB

Plot (r − 1)ab σ2 + rσ2
P

Sub-Sample (s − 1)rab σ2

Since the expected mean squares for formulation, application, and their
interaction all contain σ2 + 2σ2

p in addition to a quadratic form involving the
fixed effects, the correct mean square to use for the denominator of the F-
ratio for testing these fixed effects is the plot term or form:tech:plot whose
expectation is σ2 + 2σ2

p. The expected value of the error or Residuals mean

square is σ2, and it is too small for use as a denominator in the F-ratio for
testing the fixed effects. However, this is what the aov function ANOVA table
uses.
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The correct F-values and P-values for the ANOVA are:

form: F1,4 = 0.00002/0.00059 = 0.03, P=0.8709,
tech: F1,4 = 0.03231/0.00059 = 54.76, P=0.0.0018,
form:tech F1,4 = 0.00219/0.00059 = 3.71, P=0.1264,

where the P-values can be obtained using the R probability functions (i.e.,
1-pf(0.03,1,4). Now it can be seen that the only significant term is the
application technique.

In many cases where observational units are different than the experimen-
tal units, the observational units will not be independent. In this example,
common application of the pesticide to each plot might induce a correlation,
E(εijkl × εijkl′) = ρ, between sub-samples from the same plot. Even though
the independence assumption is violated, Casella (2008) shows the F -test on
fixed effects using the plot mean square as the denominator is still valid.

In this example where the application technique was found to be significant,
we should look at the marginal means for application (since there is equal
replication) in order to determine which application technique was best. The
marginal means can be expressed as ȳ⋅1⋅⋅ and ȳ⋅2⋅⋅. The expected value E(ȳ⋅j⋅⋅) =
µ+βj + ᾱβ ⋅j . The variance V ar(ȳ⋅j⋅⋅) = σ2

p/ar+σ
2/ars, and the variance of the

difference in two marginal means would be 2(σ2
p/ar + σ

2/ars). However, the
standard error of the difference in means reported by the estimable function
in the R package gmodels is

√
2σ2/ars = 0.01056, as shown below.

> c1 <- c(-.5, .5)

> mod4 <- aov( residue ~ form + tech + form:tech +

+ plot:form:tech, contrasts = list( form = c1, tech = c1,

+ plot = c1 ), data = pesticide)

> c <- (’application effect’ = c(0,0,1,0,0,0,0,0))

> library(gmodels)

> estimable(mod4,c)

Estimate Std. Error t value DF Pr(>|t|)

(0 0 1 0 0 0 0 0) 0.089875 0.0105601 8.510813 8 2.789427e-05

The R aov function does not estimate the variance component for σ2
p, since

plot is treated as a fixed effect in the calculations. A similar problem occurs
with all the standard errors of estimable functions of fixed effects in the model
when the estimable function in gmodels is operating on an object created
by aov.

When there are both fixed and random effects in the model, due to the
way the experiment was conducted, we call it a mixed model and the lmer

function in the R package lme4 is a better option for analysis. By default,
lmer uses the REML method to estimate the variance components for the
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random effects in the model, and then estimates the fixed effects using the
formula β̂ = (X ′V̂ −1X)−1X ′V̂ −1y. The correct standard errors for estimable
functions of fixed effects are produced by lmer.

The commands to run lmer with the data in Table 5.14 are shown below.

> library(lme4)

> c1 <- c( -.5, .5 )

> mod5 <- lmer( residue ~ 1 + form + tech + form:tech +

+ (1|plot:form:tech), contrasts = list( form = c1,

+ tech = c1), data = pesticide)

> summary(mod5)

Linear mixed model fit by REML

Random effects:

Groups Name Variance Std.Dev.

plot:form:tech (Intercept) 6.9938e-05 0.0083629

Residual 4.4606e-04 0.0211202

Number of obs: 16, groups: plot:form:tech, 8

Fixed effects:

Estimate Std. Error t value

(Intercept) 0.316563 0.006051 52.31

form1 -0.002125 0.012103 -0.18

tech1 0.089875 0.012103 7.43

form1:tech1 -0.046750 0.024205 -1.93

Correlation of Fixed Effects:

(Intr) form1 tech1

form1 0.000

tech1 0.000 0.000

form1:tech1 0.000 0.000 0.000

In these results, the estimates of the variance components σ̂2
p = 0.00006994 and

σ̂2 = 0.000446 are found, and it can be seen that the correct standard error for
the difference of the two application technique means is shown as, 2(σ2

p/ar +

σ2/ars) = 0.012103. For designs with more than two levels for the fixed factors,
the estimable function in gmodels package, as well as the lsmeans function
in the lsmeans package, described in Chapters 3 and 4, produce the correct
standard errors of the means when operating on an object created by lmer

rather than aov. The lsmeans package can also compute Tukey’s adjusted
pairwise comparisons of the means using the correct standard errors as shown
in the code below.

> library(lsmeans)

> lsmeans(mod5, pairwise ~ tech, adjust = c("tukey"))
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lmer also produces the correct F -tests for the fixed factors as shown below.

> anova(mod5)

Analysis of Variance Table

Df Sum Sq Mean Sq F value

form 1 0.0000138 0.0000138 0.0308

tech 1 0.0245964 0.0245964 55.1411

form:tech 1 0.0016638 0.0016638 3.7299

Another design whose model contains both fixed and random effects is the
randomized block designs discussed in the last chapter. For example, consider
the example from Golf Magazine discussed in Section 4.7. In that experiment
the treatment factor (tee height) can be considered to be a fixed effect, since
the object of the experiment was to determine if there is any difference in
driving distance caused by different tee heights. However, there was no interest
in comparing the specific golfers used in the experiment since they just denoted
a sample of representative golfers. Therefore the block factor, or golfer, can
be considered to be a random effect. The interaction between a random and
fixed effect is also defined to be a random effect. Therefore the interaction of
golfer and tee height should also be considered a random effect, and the model
for the golf experiment can be written as:

yijk = µ + bi + τj + bτij + εijk, (5.15)

where bi represents the random golfer effect, τj represents the fixed tee height
effect, bτij represents the random interaction effect, and εijk represents the
random repeat hit effect, i = 1, . . . ,3, j = 1, . . . ,9, and k = 1, . . . ,5. By assuming
the random golfer, interaction, and repeat hit effects to be independent and
normally distributed with variances σ2

b , σ2
bτ , and σ2, respectively, the expected

value and variance of yijk are given by:

E(yijk) = µ + τi

V ar(yijk) = σ
2
b + σ

2
bτ + σ

2.

The expected values for the ANOVA mean squares are given in Table 5.16,
where Q(τ) = 8∑

3
i=1(τi − τ̄⋅)

2/(3 − 1).
These expected mean squares show that to test the hypothesis of no differ-

ence in tee height effect, i.e., H0 ∶ τ1 = τ2 = τ3, the correct denominator for the
F-ratio would be the interaction Golfer×Tee Height, as used in Section 4.7, and
not the error mean square that is used by default in the ANOVA tables pro-
duced by the aov function. Also, the correct variance of a difference in marginal

or least squares means for different tee heights V ar(ȳi⋅⋅ − ȳi′⋅⋅) = 2 (
σ2
bτ

45
+ σ2

45
).



180 DESIGNS TO STUDY VARIANCES

Table 5.16 Expected Mean Squares for Randomized Block Design with Replicates
within a Block

Source df Expected Mean Square
Golfer (bi) (9 – 1)=8 σ2 + 5σ2

bτ + 3σ2
b

Tee Height (τj) (3 – 1)=2 σ2 + 5σ2
bτ +Q(τ)

Golfer×Tee Height (bτij) 8 × 2=16 σ2 + 5σ2
bτ

Repeat (εijk=Error) (5 – 1) ×16=64 σ2

By default the R function aov does not estimate σ2
bτ . Therefore in Chapter

4, the Error(id/teehgt) option was used in the aov function call in order to
get the correct F -test for tee height. Another way of getting the correct F -
test for tee height is to use the lmer function in the package lme4. In addition
to producing the correct F -statistic, this function will calculate the correct
standard error for the differences in tee height means.

5.9 Graphical Methods to Check Model Assumptions

Graphical analysis of data from sampling experiments to study variances are
useful for checking assumptions of the statistical models and identifying atyp-
ical observations which may have a heavy influence on the resulting variance
component estimates. Snee (1983) explains that another important advantage
of graphical analysis is that it forces the analyst to become more familiar with
the data, and think critically about the mechanisms to explain the observed
variation. He suggests simple graphical tools such as half-normal plots, gamma
plots in the analysis of nested sampling designs. Normal plots can also be used
to check the normality assumption for random effects.

5.9.1 Simple Plots

Consider again the data in Table 5.2. Model (5.1) is appropriate for the data
from this experiment, where the random sample effects, ti, and the random
experimental errors, εij , are assumed to be normally distributed. The assump-
tion of constant variance of εijs across the various samples is also implied by
εij ∼ N(0, σ2). A simple way to verify these assumptions is to make a simple
boxplot of the data like that shown in Figure 2.3. There, nonconstant variances
or outlier observations can be quickly detected. The normality of the εij can
also be checked with a normal probability plot like that shown in Figure 2.3.

For the Gage R&R two-factor sampling experiment presented in Section
5.5 using the method of moments resulted in a negative variance component
estimate for σ2

b the variance due to operators. This estimate was negative
because the mean square for interaction of part by operator was larger than
the mean square for operator. Simple interaction plots like Figures 3.4 to 3.6
can facilitate an explanation of this result. Figure 5.4 shows the interaction
plot for part by operator. An interaction is characterized by the fact that the
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trace of the average response across the levels of one factor plotted separately
for each level of the other factor will not be parallel. In Figure 5.4, it can be
seen that the line segments are close to parallel, except for the segments joining
parts 5 through 7 and 9 through 10. This is due to the fact that operator 1
had a much lower average measurement on part number 6 than the other two
operators, and operator 3 had a much higher measurement on part number
10 than the other two operators.

Figure 5.4 Interaction Plot for Part by Operator
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When the interaction mean square is largely due to one or two observations,
as it is in this case, it might be wise to question the results. Table 5.17 shows
the variance component estimates from the data from the Gage R&R study
after eliminating parts 6 and 10. With these parts eliminated, the method of
moments does not produce a negative variance component estimate, and the
results obtained from the method of moments and REML are quite similar.

Table 5.17 Comparison of Method of Moments and REML Estimates on Gage R&R
Study after Eliminating Parts 6 and 10

Method of Moments REML
Component Estimator Estimator
part (σ2

a) 0.03191 0.02808
oper (σ2

b ) 0.0008601 0.0008089
part*oper (σ2

ab) 0.0020045 0.0020082
Error (σ2) 0.0004062 0.0004063

In a situation like this, if the parts are still available, it might be wise to have
the operators remeasure parts 6 and 10 to see if there were mistakes.
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5.9.2 Gamma and Half-Normal Plots to Check Constant Variance
Assumption

Wilk et al. (1962) proposed gamma probability plots as effective tools for
investigating homogeneity of groups of variances. Sample of variances, with
ν degrees of freedom, follow the gamma distribution with shape parameter
ν/2, and thus the points on a gamma probability plot sample variances that
are estimating the same constant σ2 should appear as a straight line. Many
nested sampling designs and staggered nested sampling designs involve only
samples of size two. In this case, half-normal plots of standard deviations can
be used in the same way. To illustrate this, consider again the data in Table
5.2. The R code below computes the variances within each sample using the
tapply function, stores them in the data frame s2, then uses qgamma function
to compute the gamma quantiles. The plot of the gamma scores versus the
sample variances is shown in Figure 5.5.

> library(daewr)

> data(Naph)

> s2 <- tapply( Naph$yield, Naph$sample, var )

> os2 <- sort(s2)

> r <- c( 1:length(s2) )

> gscore <- qgamma( (r - .5 ) / length (s2), 2)

> plot(gscore, os2, main = "Gamma plot of within sample

+ variances", xlab = "Gamma score", ylab = "Sample Variance")

Figure 5.5 Gamma Plot of within Sample Variances from Data in Table 5.2
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If the variances are homogeneous, the points on the gamma probability plot
will lie roughly along a straight line. Individual points above the line to the
far right would indicate variances that are larger than the norm. In Figure 5.5
with only 6 points it appears that the points fall fairly close to a straight line
indicating constant variances.

For an example where there are more variances to plot, consider the poly-
merization study shown in Table 5.13. The methods of moments estimator
for the box within lot variance component for this staggered nested sampling
study was negative. As with the gage R&R study, one or two atypical values
may be the cause of this result, and a graphical analysis of the data may
reveal that. The mean squares in the ANOVA presented in Section 5.7 are
pooled estimates of the variances for each source in the design. If the four
observations for lot number i are denoted by Y1i, Y2i, Y3i, and Y4i as shown
below,

Box 1 Box 2
Preparation Preparation

1 2 1
Lot test 1 test 2 test 1 test 1
i Y1i Y2i Y3i Y4i

Snee (1983) shows that the variances to be pooled from each source to create
the ANOVA mean squares are given by:

Source Variance s2
i

Error or test(prep) (Y2i − Y1i)
2/2

prep(box) 2
3
(Y3i −

(Y1i+Y2i)
2

)
2

box 3
4
(Y4i −

(Y1i+Y2i+Y3i)
3

)
2

The R code to compute the standard deviations within each source is shown
below.

> library(daewr)

> data(polymer)

> y <- array( polymer$strength, c(4,30) )

> sd1 <- sqrt( (y[2,] - y[1,])**2 / 2)

> sd2 <- sqrt( (2/3) * ( y[3,] - (y[1,] + y[2,]) / 2)**2 )

> sd3 <- sqrt( (3/4) * (y[4,] - (y[1,] + y[2,] + y[3,] )

+ /3 )**2)
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The method of moments estimator of the variance component for box within
lot was negative because the mean square for prep within box and lot was
larger than the mean square for box. This would suggest an investigation of
the variances that are pooled to form the mean square for prep within box.
The code to make a half-normal plot of the standard deviations for prep within
box (sd2) is shown below.

> osd2 <- sort(sd2)

> r <- c( 1: length(sd2))

> zscore <- qnorm( ( ( r - .5 ) / length(sd2) +1 )/ 2)

> plot( zscore, osd2, main = "Half-normal plot of prep(box)

+ standard deviations", xlab = "Half Normal Score", ylab =

+ "std. due to prep within box")

Figure 5.6 Half-Normal Plot of Standard Deviations of Prep(Box)
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In the plot, shown in Figure 5.6, we see a relatively straight line of points
extending from the lower left of the plot, except there is one standard deviation
that sticks out above the line at the right side. Table 5.18 shows the standard
deviations, that were calculated with the R code above, within each source for
each lot. In this table the standard deviation for prep within box is labeled s2,
and it can be seen that there is a large value for s2 in lot 19, which is primarily
due to the high result for Y3=16.79, the first test of the second preparation
for box 1.
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Table 5.18 Raw Data for Each Lot and Calculated Standard Deviations
lot Y1 Y2 Y3 Y4 s1 s2 s3

1 9.76 9.24 11.91 9.02 0.368 1.968 1.111
2 10.65 7.77 10.00 13.69 2.036 0.645 3.652
3 6.50 6.26 8.02 7.95 0.170 1.339 0.886
4 8.08 5.28 9.15 7.46 1.980 2.017 0.038
5 7.84 5.91 7.43 6.11 1.365 0.453 0.823
6 9.00 8.38 7.01 8.58 0.438 1.372 0.390
7 12.81 13.58 11.13 10.00 0.544 1.686 2.171
8 10.62 11.71 14.07 14.56 0.771 2.372 2.102
9 4.88 4.96 4.08 4.76 0.057 0.686 0.104

10 9.38 8.02 6.73 6.99 0.962 1.608 0.912
11 5.91 5.79 6.59 6.55 0.085 0.604 0.393
12 7.19 7.22 5.77 8.33 0.021 1.172 1.389
13 7.93 6.48 8.12 7.43 1.025 0.747 0.069
14 3.70 2.86 3.95 5.92 0.594 0.547 2.093
15 4.64 5.70 5.96 5.88 0.750 0.645 0.387
16 5.94 6.28 4.18 5.24 0.240 1.576 0.196
17 9.50 8.00 11.25 11.14 1.061 2.041 1.348
18 10.93 12.16 9.51 12.71 0.870 1.662 1.596
19 11.95 10.58 16.79 13.08 0.969 4.511 0.023
20 4.34 5.45 7.51 5.21 0.785 2.135 0.482
21 7.60 6.72 6.51 6.35 0.622 0.531 0.514
22 5.12 5.85 6.31 8.74 0.516 0.674 2.581
23 5.28 5.73 4.53 5.07 0.318 0.796 0.095
24 5.44 5.38 4.35 7.04 0.042 0.865 1.718
25 3.50 3.88 2.57 3.76 0.269 0.914 0.384
26 4.80 4.46 3.48 3.18 0.240 0.939 0.924
27 5.35 6.39 4.38 5.50 0.735 1.217 0.110
28 3.09 3.19 3.79 2.59 0.071 0.531 0.664
29 5.30 4.72 4.39 6.13 0.410 0.506 1.149
30 7.09 7.82 5.96 7.14 0.516 1.221 0.159

If lot number 19 is removed from the data, the method of moments estimate
of the variance component for box within lot is no longer negative and method
of moments and REML estimators are quite consistent, as can be seen in the
results shown in Table 5.19 (on the next page). This might lead one to question
the result of test 1 of preparation 2 of box from lot 19. If the material was
still available, a repeat test would be in order.
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Table 5.19 Comparison of Method of Moments and REML Estimates for Polymer-
ization Study after Removing Lot 19

Method of Moments REML
Component Estimator Estimator
Lot (σ2

a) 5.81864 6.09918
Box(Lot) (σ2

b ) 0.13116 0.04279
Prep(Box) (σ2

c ) 0.76517 0.79604
Error (σ2) 0.63794 0.64364

5.9.3 Probability Plots of Empirical Best Linear Unbiased Estimates of
Random Effects

In Section 2.4, to verify the assumption that the experimental errors follow a
normal distribution, a normal probability plot of the residuals was made. In
matrix notation, the vector of residuals can be written as:

ε̂ = y −Xβ̂. (5.16)

When there are random terms in the model in addition to the experimental
error term, ε, we can check the normality of these random effects by making
normal probability plots of the estimated random effects. A straight line of
points in this plot would justify the assumption of normality for the random
effect in question. This graphical technique will be useful in detecting atypical
observations or departures from normality when there are at least 12 to 15
points on the plot. In the model

y =Xβ +Zγ + ε (5.17)

the empirical best linear unbiased predictors (EBLUPs) of the random effects
γ are given by the equation

γ̂ = ĜZ′V̂ −1
(y −Xβ̂), (5.18)

where Ĝ is the estimated variance covariance matrix of γ. The lmer function
in R package lme4 calculates the EBLUPs, and it can be used for models with
all random effects as well as for models with both fixed and random effects.
On the next page is the R code for fitting the nested random effects model
for the polymerization data using lmer. The EBLUPs can be retrieved from
the object created by lmer with the ranef() command.

The points on the normal plot of the EBLUPs for prep within box shown
in Figure 5.7 nearly follow a straight line. However, there are two apparent
outliers on the upper right tail of the plot. When comparing the values of
these two EBLUPs to a list of the data, it can be seen that the largest EBLUP
(2.2488) corresponds to the first test of the second preparation for box 1 in
lot 19.
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> library(lme4)

> modr3 <- lmer( strength ~ 1 + (1|lot) + (1|lot:box) +

+ (1|lot:box:prep), data =

polymer)

> qqnorm( ranef(modr3)$"lot:box:prep"[[1]], main=

+ "prep within box and lot", ylab="EBLUP",xlab =

+ "Normal Score" )

Figure 5.7 Normal Plot of Estimated Random Effects for Prep(Box)
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This is the same point identified by the half-normal plot in the last section
and warrants further investigation. The second largest EBLUP (1.8905) is
associated with the test on preparation 1 in box 2 of lot 2. This value (13.69)
is higher than any other value for lot 2 and again might warrant further
investigation.
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5.10 Review of Important Concepts

Sampling experiments are conducted to estimate variances and to partition
variances into various sources called variance components. Sometimes estimat-
ing variances or partitioning variances into various sources may be the end
goal. In other cases partitioning the variance may be an intermediate step in a
study trying to reduce the variance or an intermediate step in a study seeking
to determine the causes of variability. The factors in a sampling experiment
are called random factors as opposed to fixed factors described in Chapters
1–4. The purpose for including random factors in a design is to estimate the
variability caused by varying levels of the random factor. Levels of the random
factor are a representative sample of possible levels.

When the goal is to partition variance into two sources, one-factor random
sampling experiments, or RSEs, are useful. Two-factor sampling experiments
or factorial random sampling experiments (FRSEs), like those used in classi-
cal gage R&R studies, are used to partition variance into three independent
sources. Nested sampling experiments, or NSEs, are used when it is more con-
venient to use a different set of levels of one factor for each level of another
factor. Several stages of nesting can be utilized in one design to partition vari-
ance into several sources. Staggered nested sampling experiments, or SNSEs,
are a variation of nested designs that balance the information collected over
the various sources. Figure 5.8 illustrates where these designs should be used
in relation to the designs described in earlier chapters.

Variance components can be estimated using the analysis of variance
method of moments or the maximum likelihood or REML methods. This can
be accomplished using the R function aov, and the function lmer from the
R package lme4. Formulas were presented in the chapter for exact confidence
intervals on variance components estimated from one factor random sampling
experiments RSE. Formulas were presented for approximate confidence lim-
its on variance components from two-factor FRSE, or nested design NSE,
and a function vci was introduced for evaluating these formulas. Asymptotic
confidence intervals can be calculated for variance components using the like-
lihood profile method. These intervals will be reasonably accurate when there
are 30–40 degrees of freedom associated with the term in question.

Sample sizes for sampling experiments can be determined to make the width
of the confidence interval for σ2 the desired multiple of σ̂2. The number of
levels for other random factors in the design should be chosen to partition the
degrees of freedom among the various sources in the design according to their
perceived importance relative to the replicate variance σ2.

In designs to study the effects of fixed factors, random factors can be intro-
duced into the model by the way the experiment is conducted. For example,
when response measurements are made on sub-samples of experimental units
an additional nested error term must be included in the model for analysis.
Block terms and block by treatment interactions in randomized block experi-
ments would normally be considered to be random factors. When both fixed
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Figure 5.8 Design Selection Roadmap
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and random effects are included in the model, the expected values of the
ANOVA mean squares (EMS) show which mean square should be used in the
denominator of the F -test for each fixed effect or interaction in the model.
The function lmer in the R package lme4 is most useful for analyzing data
from designs that include both fixed and random factors. It uses the REML
method for estimating the variance components of the random effects, and it
automatically computes the correct standard error for estimable functions of
fixed effects.

Atypical response values can have a heavy influence on variance compo-
nent estimates from sampling experiments. Simple plots, such as plots of the
response versus the level in one-factor designs or interaction plots for two-
factor random sampling experiments, can help to identify atypical response
values. For nested designs (or staggered nested designs), gamma plots of sam-
ple variances (or half-normal plots of standard deviations) within each source
are useful for checking homogeneity of variances and identifying cells where
atypical values may occur. Normal probability plots of empirical best linear
unbiased estimators of random effects (EBLUPs) are useful for checking nor-
mality assumptions and again for identifying cells where atypical response
values may lie.
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5.11 Exercises

1. Carry out the sampling experiment described in Section 5.3 to partition
the variability in paper helicopter flight times.

(a) Read your data into R and estimate the variance components using the
method of moments.

(b) Using the lmer function, estimate the variance components using the
REML method.

(c) Using the formulas in Table 5.3, calculate 90% confidence intervals for
the two variance components.

(d) Write your conclusions. What should you use as the experimental unit
in future studies to optimize flight time?

2. Read the data from Table 5.2 into R and

(a) Calculate the ANOVA sums of squares and mean squares used in calcu-
lating the confidence limits in Section 5.4.2.

(b) Calculate and compare the method of moments and REML estimates of
the variance components.

3. Using the mean squares and expected mean squares from the gage R&R
study presented in Section 5.5, use the macro in the appendix of this chapter
to compute a 90% confidence interval on the variance component for the
interaction of operator and part.

4. Plan a sampling experiment to partition the source of variability in auto
gas mileage in your community between drivers, cars, and replicates.

(a) Describe how you would plan the study if drivers and cars were crossed
factors.

(b) Describe how you would plan the study if drivers were nested within
cars.

(c) Determine the number of degrees of freedom you would need for the error
or replicate term in your model if you desire the width of the confidence
interval on the variance component for replicate to be 75% of σ2.

5. Consider the data in Table 5.9.

(a) Enter the data into R and estimate the variance components σ2
a, σ2

b , σ2
c ,

and σ2 using the method of moments and REML.

(b) What are the major source or sources of variability?

(c) Is there any difference between the method of moments or REML esti-
mators of the variance components?

6. Consider the data (Anderson and McLean, 1974) in the following table
to come from a sampling study to determine the source of variability in
the average amount spent on health care per year in thousands of dollars.
Towns are nested within state and households are nested within town.
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State
1 2 3

Town Town Town
1 2 1 2 1 2

Household
1 10 7 6 6 15 12
2 13 12 5 12 18 15
3 16 11 9 7 20 18
4 12 9 3 10 19 16

(a) Use the method of moments and REML methods to determine the vari-
ance components for state, town, and household.

(b) What percent of the total variance is due to households? Towns and
households?

(c) Using formula (5.11) obtain a 90% confidence interval on the variance
component due to towns.

7. Consider the data in Table 5.20 from Smith and Beverly (1981) taken from a
staggered nested design to investigate the sources of variability in impurities
in raw materials received at a plant in trailer loads. Two samples of material
were taken from each of nine trailer loads of pellets. Two measurements of
impurities were made on the first sample from each trailer but only one
measurement for the second sample from each trailer.

Table 5.20 Variability in Impurities in Received Pellets
Sample

1 2
Measurement Measurement

Trailer 1 2 1
1 47.06 44.37 49.3
2 47.43 50.35 50.42
3 48.90 48.05 50.64
4 52.32 52.26 53.47
5 46.53 45.60 53.98
6 46.99 50.87 51.87
7 47.49 51.55 58.57
8 47.41 47.63 48.63
9 48.37 51.03 50.15
10 54.80 51.57 54.52

(a) Write the model for the data.

(b) Analyze the data and estimate the three variance components using the
method of moments.
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(c) Analyze the data using REML and check to see if your estimates remain
the same.

(d) Make half-normal plots of the square root of the variances pooled to get
the mean squares for sample(trailer) and measurement(sample). Does
the assumption of homogeneous variances appear reasonable?

(e) Calculate the EBLUPs for the random trailer effect and make a normal
plot to check the normality assumption. What is your conclusion?

8. Reanalyze the data from the golf experiment, presented in the Appendix
of Chapter 4, using the lmer function. Check to see if you get the same
P-values and conclusions shown in Section 4.7.



CHAPTER 6

Fractional Factorial Designs

6.1 Introduction

There are two benefits to studying several treatment factors simultaneously
in a factorial design. First, the interaction or joint effects of the factors can
be detected. Second, the experiments are more efficient. In other words, the
same precision of effects can be achieved with fewer experiments than would
be required if each of the factors was studied one-at-a-time in separate ex-
periments. The more factors included in a factorial design, the greater the
efficiency and the greater the number of interactions that may be detected.
However, the more factors included in a factorial experiment, the greater the
number of runs that must be performed. When many factors are included in
a factorial experiment, one way to reduce the number of runs is to use only
two levels of each factor and run only one experiment per cell or treatment
combination. These ideas were discussed in Sections 3.7 and 3.7.5.

In the preliminary stage of experimentation, where the objective may be
to determine which factors are important from a long list of candidates, a
factorial design may require too many experiments to perform even when
there are only two levels of each factor and only one replicate per cell. Table
6.1 shows the number of experiments required for a 2k factorial design as a
function of the number of factors, k. With k = 7 or more factors, the large
number of runs required for a 2k is usually impractical.

Table 6.1 Number of Experiments Required for 2k Design
Number Number

of of
Factors (k) Experiments (2k)

4 16
5 32
6 64
7 128
8 256
9 512

When the number of factors under study is large, researchers will often
abandon the efficiency of factorial experiments altogether and revert to a “seat
of the pants” approach or vary one-factor-at-a-time plan. Others will run a
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factorial experiment with a subset of the factors, chosen from the longer list
by guessing which ones may be more important. However, these approaches
are less than optimal and do not retain the benefits of factorial experiments
with a large number of factors. A better solution to this problem is to use a
fraction of the experiments, or runs, required for a full factorial experiment.
To be effective, the fraction of runs used must be carefully selected in order
to preserve some of the benefits of a full factorial experiment.

One of the desirable properties of a 2k factorial plan is that factor effects
are not obscured by (or correlated with) planned changes in other factors.
This property was called orthogonality in Section 3.7.

6.2 Half-Fractions of 2k Designs

Consider first choosing a half-fraction of a 2k factorial experiment. Careless
choice of half the n = 2k runs may not retain the desirable orthogonality
property of a 2k design. One way to preserve this property, when selecting
a one-half fraction of a 2k factorial experiment, is to choose the runs where
the coded factor levels for an interaction term (preferably the highest order
interaction) are constant.

Table 6.2 illustrates this procedure. On the left side of the table is a repre-
sentation of the coded factor levels for a 24 design. On the right side of the
table are the runs that have a constant (+) value for XA ×XB ×XC ×XD.
These runs represent the half-fraction. The order of the runs on the right side
of the table have been reordered so that it can be easily seen that the standard
factorial pattern is present in the first three columns. Therefore it can be seen
that the orthogonality property is preserved for the first three columns. By
further inspection, it can be seen that the fourth factor is also orthogonal to
the other three.

With 16 runs in a full 24 factorial, 15 effects can be estimated in addition
to the grand mean. The 15 effects consist of the four main effects, six two-
factor interaction effects, four three-factor interactions, and one four-factor
interaction. In a half-fraction of a 24 experiment, however, there are only 8
runs. Thus only 7 effects can be estimated in addition to the grand mean.
By choosing the runs from a full factorial that have a constant value for
an interaction, we automatically lose the ability to estimate that interaction
effect. By studying the right half of Table 6.2, it can also be seen that the
coded factor levels or column of signs for XD is exactly the product of signs
in the first three columns, that is, XD = XA × XB × XC . This means that
the effect we can estimate for XD will be completely obscured or confused
by the three-factor interaction XAXBXC . This is not all. As will be shown
later, each main effect and interaction in the design is obscured or confounded
with one other interaction. This is the price we pay for running one-half the
total number of experiments. However, in preliminary experiments where a
large number of factors are included in order to find out which ones are truly
important, this may not be a serious price to pay.
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Table 6.2 Creating a Half-Fraction by Choosing the Runs in a Full Fraction with
Constant Values for an Interaction

Full Factorial Half-Fraction

run XA XB XC XD XAXBXCXD run XA XB XC XD

1 − − − − + 1 − − − −

2 + − − − − 10 + − − +

3 − + − − − 11 − + − +

4 + + − − + 4 + + − −

5 − − + − − 13 − − + +

6 + − + − + 6 + − + −

7 − + + − + 7 − + + −

8 + + + − − 16 + + + +

9 − − − + −

10 + − − + +

11 − + − + +

12 + + − + −

13 − − + + +

14 + − + + −

15 − + + + −

16 + + + + +

In preliminary experiments involving a large number of factors, usually only
a small proportion of the factors will have significant effects. This fact has
been called the effect sparsity principle by Box and Meyer (1986a). Just as
two planets will line up with the moon in the night sky more frequently than
three planets will, main effects are more likely to be important than two-factor
interactions, and two-factor interactions are more likely to be important than
three-factor interactions, and so forth. This general rule has been called the
hierarchical ordering principle by Wu and Hamada (2000). Therefore, if frac-
tions of factorial experiments can be planned in a way that main effects are
confounded with three-factor and higher-order interactions, the amount of in-
formation lost by fractionating the number of runs will be small in comparison
to the benefit of a reduced number of runs.

The way a fractional factorial of a 2k is created in practice is actually
the opposite order of what was shown above. Instead of starting with a full
factorial and eliminating runs to get the desired fraction, start with a full
factorial containing the desired number of runs and add additional factors
to the design. For example, to construct a one-half fraction of a 2k design,
denoted by 1

2
2k or 2k−1, the procedure is as follows:
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1. Write down the base design, a full factorial plan in k − 1 factors using the
coded factor levels (−) and (+).

2. Add the kth factor to the design by making its coded factor levels equal to
the product of the other factor levels (i.e., the highest order interaction).

3. Use these k columns to define the design.

A complete list of interactions confounded with each main effect and inter-
action in a half-fractional factorial is called the confounding pattern or alias
structure of the design. This list is easy to construct based on the assignment
of the kth factor in item 2 of the list above. For example, in the 24−1 design, if
the levels of the fourth factor are equal to the product of the levels of the first
three factors in the design, we write symbolically D = ABC. This is called the
generator of the design. Multiplying on both sides of the generator we get:

D2
= ABCD

or

I = ABCD

where I represents a column of plus signs and is the multiplicative identity
for elementwise products of columns of coded factor levels. The equation, I =
ABCD, is called the defining relation for the fractional factorial design, and
by multiplying on both sides of this equation, the interaction confounded with
any main effect or interaction can be determined. For example, multiplying
by the first factor on both sides of the defining relation we see:

A(I) = A(ABCD)

or

A = BCD

This means that the effect of the first factor A is confounded with the
three-factor interaction BCD. When data is collected, the effect of factor A is
estimated as the difference in the average response at the high and low levels
of factor A. However, that effect really estimates the sum of the effects of
factor A and the three-factor interaction. Therefore we write it as A +BCD.

The complete alias pattern for this 24−1 design can be determined by mul-
tiplying the defining relation by each main effect and interaction resulting
in:
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I +ABCD

A +BCD

B +ACD

C +ABD

D +ABC

AB +CD

AC +BD

AD +BC

There are only eight unique results in this alias pattern, and they rep-
resent the eight effects (I being the overall mean) that can be estimated
from the 8-run fractional factorial design. The alias pattern can also be rep-
resented graphically as a color map of the correlation matrix computed from
the columns of the design matrix as can be seen in Figure 6.1.

Figure 6.1 Color Map of Correlations
Color map of correlations
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In this graph the color intensity in each grid square represents the correla-
tion between the columns in the design matrix. For example, it can be seen
that factor A has a correlation of 1 with itself, and the BCD interaction, and
zero correlation with all other factors and interactions. This gives the same
information as the alias pattern. When the correlation between a factor and
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an interaction is 1, they both cannot be included in the model fit by least
squares or they will cause singularities in the X ′X matrix.

Replicates are not included in a one-half fractional factorial design because
replicates would take as many additional experiments as it would to complete
the full factorial. Therefore, there is no estimate of σ2, the variance of ex-
perimental error, when running a fractional factorial. In order to judge the
significance of the effects in a fractional factorial design, graphical methods
like those described in Section 3.7.5 should be used. The effects found to be
significant should be interpreted with the hierarchical ordering principle in
mind. For example, if the effect for B +ACD were found to be significant, it
will be assumed to represent the effect of factor B rather than the three-way
interaction.

The easiest way to create a 2k−1 factorial in R is to use the function FrF2

in the R package FrF2. The example below creates the 16-run 25−1 design
with generator E = ABCD. If the generator is left off, FrF2 finds one that is
optimal in the sense that will be described in Section 6.4.

> library(FrF2)

> design <- FrF2( 16, 5, generators = "ABCD", randomize = FALSE)

> design

A B C D E

1 -1 -1 -1 -1 1

2 1 -1 -1 -1 -1

3 -1 1 -1 -1 -1

4 1 1 -1 -1 1

5 -1 -1 1 -1 -1

6 1 -1 1 -1 1

7 -1 1 1 -1 1

8 1 1 1 -1 -1

9 -1 -1 -1 1 -1

10 1 -1 -1 1 1

11 -1 1 -1 1 1

12 1 1 -1 1 -1

13 -1 -1 1 1 1

14 1 -1 1 1 -1

15 -1 1 1 1 -1

16 1 1 1 1 1

class=design, type= FrF2.generators

In practice the treatment combinations should be randomized to the experi-
mental units, and a randomized list like the one shown in Section 3.4 should
be used. This design is then called a completely randomized fractional facto-
rial design of CRFF. The design resulting from the code above is in standard
order (not randomized), remove the option randomize=FALSE to get a ran-
domized list. The FrF2 package function design.info(design) will print out
information about a design previously created by the FrF2 function such as
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the generator, the factor names, the alias pattern, whether or not there are
replicates, and whether the order has been randomized. The FrF2 function
alias will just print the alias structure for a design previously constructed.
This function requires a response vector, and, y, a vector of random uniform
numbers was used in the example below.

> library(FrF2)

> y <- runif(16, 0, 1)

> aliases( lm( y~ (.)^4, data = design))

A = B:C:D:E

B = A:C:D:E

C = A:B:D:E

D = A:B:C:E

E = A:B:C:D

A:B = C:D:E

A:C = B:D:E

A:D = B:C:E

A:E = B:C:D

B:C = A:D:E

B:D = A:C:E

B:E = A:C:D

C:D = A:B:E

C:E = A:B:D

D:E = A:B:C

In this alias pattern for the 25−1 design, it can be seen that main effects
are confounded with four-way interactions, and two-factor interactions are
confounded with three-factor interactions. Therefore, if three and four-factor
interactions could be assumed negligible, estimates of all main effects and
two-factor interactions could be made.

To illustrate the analysis of a 2k−1 design, consider a continuation of the dry
soup mix example presented in Section 5.4.3. In that example, the majority of
variability in the soup “intermix” was found to be within a batch rather than
between batches. The researchers responsible for the project made a list of
factors that they thought might influence the variability within a batch (see
Hare, 1988). These were options that could be changed on the mixer where a
batch was mixed and the intermix was added through ports. The list consisted
of: (1) the number of ports where intermix was added, (2) the temperature
of the mixer (that could be controlled by adding cooling water to the jacket
surrounding it), (3) the mixing time, (4) weight of the batch, and (5) the delay
time between mixing and packaging. The response or variability in fill weights
of the intermix was obtained by taking five consecutive samples of the soup
mix every 15 minutes as the batch was being packaged. The factor labels and
levels are shown in Table 6.3.
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Table 6.3 Factors and Levels for Soup Mix 25−1 Experiment
Factor Label Name Low Level High Level
A Number of Ports 1 3
B Temperature Cooling Water Ambient
C Mixing Time 60 sec. 80 sec.
D Batch Weight 1500 lb 2000 lb
E Delay Days 7 1

The normal batch size was 2000 lb and the normal mixing time was 60
seconds. Since this experiment was to be run in a production facility, the
research and production staff both had to agree to the plan. The plan agreed
upon was the 25−1 created on page 198, and Table 6.4 shows a list of the
experiments in actual factor levels. The list is in standard order as on page
198, with the random run orders listed in the first column.

Table 6.4 25−1 Experiment to Determine Which Factors Are Associated with Fill
Variation in Random Order

(A) (B) (C) (D) (E)
Random Number Mixing Batch

Run of Time Weight Delay Response
Order Ports Temperature (sec) (lb) (days) σ̂p

12 1 Cool Water 60 1500 1 1.13
13 3 Cool Water 60 1500 7 1.25
5 1 Ambient 60 1500 7 0.97
3 3 Ambient 60 1500 1 1.70
6 1 Cool Water 80 1500 7 1.47
4 3 Cool Water 80 1500 1 1.28
16 1 Ambient 80 1500 1 1.18
14 3 Ambient 80 1500 7 0.98
1 1 Cool Water 60 2000 7 0.78
15 3 Cool Water 60 2000 1 1.36
7 1 Ambient 60 2000 1 1.85
10 3 Ambient 60 2000 7 0.62
11 1 Cool Water 80 2000 1 1.09
2 3 Cool Water 80 2000 7 1.10
9 1 Ambient 80 2000 7 0.76
8 3 Ambient 80 2000 1 2.10

All factor levels could be changed between batches with relatively little
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effort and randomization was not a problem. The requested reduction in batch
weight and the increase in mixing time for some batches in the planned list
of experiments would not seriously interfere with the production schedule
if the list was short, but it would slow production if a 32-run design were
used. For this reason the 16-run half fractional factorial was agreed upon.
The experimental unit for this experiment was the batch of dried soup mix
put in the mixer. The response σ̂p was an estimate of the standard deviation
of fill weight within a batch, computed from a sampling study made during
packaging of each batch.

The same design created on 198 can be created with actual factor names
and levels. In the R code below this is demonstrated along with the use of the
add.response function from the DoE.base package to include the response.
After adding the response, the model (mod1) was fit to the soup experiment
data using the R function lm, and part of the summary of the lm object (mod1)
includes the actual factor names.

> library(FrF2)

> soup <- FrF2(16, 5, generators = "ABCD", factor.names =

+ list(Ports=c(1,3), Temp=c("Cool","Ambient"), MixTime=c(60,80),

+ BatchWt=c(1500,2000), delay=c(7,1)), randomize = FALSE)

> y <- c(1.13, 1.25, .97, 1.70, 1.47, 1.28, 1.18, .98, .78,

+ 1.36, 1.85, .62, 1.09, 1.10, .76, 2.10 )

> library(DoE.base)

> soup <- add.response( soup , y )

> mod1 <- lm( y ~ (.)^2, data = soup)

> summary(mod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.22625 NA NA NA

Ports1 0.07250 NA NA NA

Temp1 0.04375 NA NA NA

MixTime1 0.01875 NA NA NA

BatchWt1 -0.01875 NA NA NA

delay1 0.23500 NA NA NA

Ports1:Temp1 0.00750 NA NA NA

Ports1:MixTime1 0.04750 NA NA NA

Ports1:BatchWt1 0.01500 NA NA NA

Ports1:delay1 0.07625 NA NA NA

Temp1:MixTime1 -0.03375 NA NA NA

Temp1:BatchWt1 0.08125 NA NA NA

Temp1:delay1 0.20250 NA NA NA

MixTime1:BatchWt1 0.03625 NA NA NA

MixTime1:delay1 -0.06750 NA NA NA

BatchWt1:delay1 0.15750 NA NA NA
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The formula formula = y (.)^2 in the call to the lm function causes it
to fit a saturated model in the main effects and two-factor interactions. Since
there are no replicates, a normal probability plot of the regression coefficients
was used to aid in judging which effects are significant. This is the same thing
that was done in Section 3.7.5, except each effect in this model is confounded
with one other interaction as shown in the alias pattern on page 199. Therefore
only 15 effects can be estimated. In the code below, the data frame is recreated
using coded factor labels and the LGB function is used to make a half-normal
plot.

> soupc<-FrF2(16,5,generators="ABCD",randomize=FALSE)

> soupc<-add.response(soupc, y)

> modc<-lm(y~(.)^2, data=soupc)

> library(daewr)

> LGB(coef(modc)[-1], rpt = FALSE)

As can be seen in the plot of effects shown in Figure 6.2, the main effect
E (Delay Time between mixing and packaging), BE (the interaction between
Temperature and Delay Time), and DE (the interaction between Batch Weight
and Delay Time) appear to be significant. If the hierarchical effect ordering
can be assumed, this is the correct interpretation, and the three-factor and
four-factor interactions can be assumed negligible.

Figure 6.2 Normal Plot of Effects from the Fill Variability Experiment
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E=Delay Time has a positive effect; this would normally mean that increas-
ing the Delay Time between mixing and packaging would increase the response
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(or within batch variation). However, due to the unconventional assignment
of 7 to the low (coded) level of factor E and 1 to the high (coded) level in
Table 6.3, it actually tells us that on the average increasing the delay time
between mixing and packaging decreases the within batch variability. Since
the interactions BE and DE also appear to be significant, the average main
effect of factor E does not tell the whole story. Figure 6.3 shows the interac-
tion plot for Temperature and Delay Time. Here it can be seen that Delay
Time has little effect on the within batch variability when the mixer is cooled
with cooling water during mixing. However, the within batch variability is de-
creased substantially by increasing delay time between mixing and packaging
when the mixing was done at ambient temperature.

Figure 6.3 Interaction Plot for Mixing Temperature by Delay Time
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Figure 6.4 shows the interaction plot for Batch Weight and Delay Time.
There it can be seen that increasing the delay time between mixing and
packaging has little effect on the variability within a batch for small (1500
lb) batches, while increasing the delay time between mixing and packaging
decreases within batch variability for large (2000 lb) batches. The IAPlot

function can also be used to make several interaction plots simultaneously as
shown in the code examples for this chapter.

Based on the results of this study, the minimum variation of intermix within
a batch could be obtained by using the larger batch size (2000 lb), the ambient
temperature at mixing, and a 7-day delay between mixing and packaging. It
did not answer a new question prompted by the results: does it take a full 7-day
delay between mixing and packaging or could a 3-day or 4-day delay reduce
variability just as much? However, the production and research staff agreed
that the current results made sense, since the uniformity of intermix related
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to the hardness of the vegetable oil, which is affected by temperature and
agitation. Production staff implemented the optimal conditions while research
continued investigating the new question.

It is interesting to think that neither of the interactions would have been
detected if one-factor-at-a-time experiments had been conducted, rather than
the fractional factorial plan. The conclusions of one-factor-at-a-time type ex-
periments may not be reproducible because it would not be realized that the
effects (or absence of effects) seen could depend on other factor settings that
are deemed to be insignificant.

Figure 6.4 Interaction Plot for Batch Weight by Delay Time
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6.3 Quarter and Higher Fractions of 2k Designs

In 2k−1 designs only half the experimental runs are made, and each effect that
can be estimated is confounded with one interaction. Likewise, in a quarter
fraction 2k−2 design, only one-fourth the experimental runs from the full 2k

design are run, and each effect that can be estimated is confounded with
three other interactions. In a one-eighth fraction, only one-eighth of the runs
in the full factorial are made and each estimated effect will be confounded with
seven other interactions, and so on. These designs may sound confusing at first
because of the large number of effects confounded with each estimable effect.
However, they are used quite frequently in practice, and by following the effect
sparsity principle and the hierarchical ordering principle useful conclusions can
usually be reached after just a fraction of the total runs required for a full
factorial.

To construct a quarter fraction of a 2k design, start with a base design in
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2k−2 factors, then add two additional factors by making their coded factor
levels equal to two interactions among the first k − 2 columns, as illustrated
on the next page.

XD XE

XA XB XC

³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µ
XAXB

³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µ
XAXC XBXC XAXBXC

− − − + + + −

+ − − − − + +

− + − − + − +

+ + − + − − −

− − + + − − +

+ − + − + − −

− + + − − + −

+ + + + + + +

⇓

XA XB XC XD XE

− − − + +

+ − − − −

− + − − +

+ + − + −

− − + + −

+ − + − +

− + + − −

+ + + + +

There are two generators for the design created as above, D = AB and E = AC.
From these it can be seen that I = ABD and I = ACE. Also, since I2 = I,
a third equality, called the generalized interaction, is I = ABD(ACE) or
I = BCDE. Combining the three equations obtained from the two generators
and the generalized interaction results in the defining relation for the design
I = ABD = ACE = BCDE. The confounding pattern, or alias structure, for
the design is found by multiplying through the defining relation by each effect
that can be estimated:

A +BD +CE +ABCDE

B +AD +ABCE +CDE

C +ABCD +AE +BDE

D +AB +ACDE +BCE

E +ABDE +AC +BCD

BC +ACD +ABE +DE

BE +ADE +ABC +CD
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Construction of one-eighth and higher fractions is similar. To construct a
one-eighth fraction of a 26 design or 26−3 design, start with a base design in
6 − 3 = 3 factors, then add three additional factors by confounding them with
interactions. For example, if we choose the generators D = AB, E = AC, and
F = BC, the R code using FrF2 below could be used to generate the design.

> library(FrF2)

> frac <- FrF2( 8, 6, generators = c("AB", "AC", "BC"))

> frac

There are eight runs in this design, and seven effects in addition to the overall
mean can be estimated. Each effect will be aliased with seven interactions. To
find what interactions are aliased with each effect that can be estimated, first
find the defining relation. From the generators I = ABD = ACE = BCF . The
two-factor generalized interactions are ABD(ACE) = BCDE, ABD(BCF ) =

ACDF , and ACE(BCF ) = ABEF . The three-factor generalized interaction
is ABD(ACE)(BCF ) =DEF . Combining the equations found from the gen-
erators and the generalized interactions the defining relation is:

I = ABD = ACE = BCF = BCDE = ACDF = ABEF =DEF

Multiplying through the defining relation by the main effects (A − F ), and
the three-factor interaction (ABC), the aliases for the seven effects that may
be estimated can be determined. One quick way to do this in R is to use the
aliases function in the FrF2 package as shown previously on page 199.

6.4 Criteria for Choosing Generators for 2k−p Designs

There is more than one alternative when selecting the generators for a 2k−p

design. For example, to create a quarter fraction of a 26 design the generators
E = ABC and F = ABD could be used, or the generators E = AB and
F = ACD could be used. The first selection results in the defining relation
and alias structure (for the main effects only) shown below:

I = ABCE = ABDF = CDEF

A +BCE +BDF +ACDEF

B +ACE +ADF +BCDEF

C +ABE +ABCDF +DEF

D +ABCDE +ABF +CEF

E +ABC +ABDEF +CDF

F +ABCEF +ABD +CDE
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The second set of generators results in the defining relation and alias struc-
ture (for the main effects only) below:

I = ABE = ACDF = BCDEF

A +BE +CDF +ABCDEF

B +AE +ABCDF +CDEF

C +ABCE +ADF +BDEF

D +ABDE +ABF +CEF

E +ABC +ACF +ABEF

F +ABEF +ACD +BCDE

Both generators result in 16-run fractional factorials, but the first set of gen-
erators might be preferable, since each main effect is confounded with three-
factor interactions and higher order interactions, while using the second set
of generators results in a design where main effects A and B are confounded
with one two-factor interaction each. The first design has a smaller chance for
confusion since the hierarchical ordering principle tells us that three-factor
interactions are less likely to be important than two-factor interactions.

Three general criteria have been proposed for guiding the choice among the
various possible sets of generators for any possible 2k−p design. These criteria
are the resolution criteria, the aberration criteria, and the clear effects criteria.

Box and Hunter (1961) first proposed the resolution criteria. The resolution
of the design is defined to be the length of the shortest word in the defining
relation. For example, in the first defining relation for a 26−2 design shown
above, the shortest word has length 4. Thus it is a resolution IV design. The
shortest word for the second defining relation for a 26−2 design shown above
has length 3, and it is therefore a resolution III design. In general, if the number
of runs in two designs is the same, the design with the higher resolution is
preferred.

In a resolution R design no effect involving i factors is aliased with effects of
order less than R − i. For example, in designs with resolution V, main effects
are aliased with four-factor interactions and higher order interactions, and
two-factor interactions are aliased with three-factor interactions and higher
order interactions. Therefore if all three-factor and higher order interactions
can be assumed negligible, all main effects and two-factor interactions can be
estimated from a resolution V design. In resolution IV designs, main effects
are aliased with three-factor and higher order interactions. While in a res-
olution III design, main effects are confounded with two-factor interactions.
Resolution III designs are normally used only in screening experiments where
the purpose is to discover which factors are important enough to be studied
further in follow-up experiments.

The projective property of a fractional factorial is another attribute that
can be determined from its resolution. In a resolution R design, any subset of
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k = R − 1 factors will form a full 2k design (with possible replication of some
runs). Therefore, if an experiment is started with a resolution R fractional
factorial design and only R − 1 of the factors appear to be significant, then
the data can be reanalyzed including only the R − 1 significant factors. Since
the design in these factors is a full factorial, interactions of all orders possible
among the R − 1 factors can be examined.

When two or more designs, created with different sets of generators, have
the same number of runs and the same resolution, Fries and Hunter (1980)
proposed another criteria for deciding which design is preferable. They called
this criteria the minimum aberration criteria. If the number of words of length
r in the defining relation of a design is defined to be Ar, then a design d1 is
said to have less aberration than a design d2 if r is the smallest integer such
that Ar(d1) ≠ Ar(d2) and Ar(d1) < Ar(d2). For example, if d1 is a resolution
IV 27−2 design created with the generators F = ABCD and G = ABCE, it
has less aberration than design d2, created with the generators F = ABC
and G = ADE, since the defining relation for d1 (I = ABCDF = ABCEG =

DEFG) has only one word of length 4, while the defining relation for d2

(I = ABCF = ADEG = BCDEFG) has two words of length 4. For any k and p
there is always a minimum aberration 2k−p design that has less aberration than
any other 2k−p design. For two designs of the same resolution, the minimum
aberration design will have less confounding of main effects with low order
interactions and is generally preferred.

A final criterion that is useful selecting the generators for a 2k−p design is the
number of clear effects. Chen et al. (1993) define an effect to be clear if none of
its aliases are main effects or two-factor interactions. In some cases, a design
that is not the minimum aberration design may have more clear effects than
the minimum aberration design. For example, Wu and Hamada (2000) explain
that the 26−2 design with defining relation I = ABCE = ABDF = CDEF
has all six main effects clear, while the 26−2 design with defining relation
I = ABE = ACDF = BCDEF has three main effects (C, D, and F ) clear
along with six two-factor interactions BC, BD, BF , CE, DE, and EF . In
cases where some two-factor interactions are believed to be important a priori,
the second design may be preferred over the first. Wu and Hamada’s (2000)
Table 4A lists the generators for the minimum aberration design and the
design with the maximum number of clear effects (if different) for 8-run to
64-run designs.

The FrF2 function in the R package FrF2 can create minimum aberration
designs. If the user does not specify generators when calling FrF2, like the
example on page 206, FrF2 automatically selects the set of generators that will
result in a minimum aberration design. The code on the next page creates the
minimum aberration 28−4 design, and the generators and aliases functions
show the generators and alias pattern for the design FrF2 created.
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> library(FrF2)

> des1 <- FrF2( 16, 8 )

> y <- runif( 16, 0, 1 )

> library(DoE.base)

> generators(des1)

$generators

[1] "E=ABC" "F=ABD" "G=ACD" "H=BCD"

> aliases( lm( y ~ (.)^3, data = des1) )

A = B:C:E = B:D:F = B:G:H = C:D:G = C:F:H = D:E:H = E:F:G

B = A:C:E = A:D:F = A:G:H = C:D:H = C:F:G = D:E:G = E:F:H

C = A:B:E = A:D:G = A:F:H = B:D:H = B:F:G = D:E:F = E:G:H

D = A:B:F = A:C:G = A:E:H = B:C:H = B:E:G = C:E:F = F:G:H

E = A:B:C = A:D:H = A:F:G = B:D:G = B:F:H = C:D:F = C:G:H

F = A:B:D = A:C:H = A:E:G = B:C:G = B:E:H = C:D:E = D:G:H

G = A:B:H = A:C:D = A:E:F = B:C:F = B:D:E = C:E:H = D:F:H

H = A:B:G = A:C:F = A:D:E = B:C:D = B:E:F = C:E:G = D:F:G

A:B = C:E = D:F = G:H

A:C = B:E = D:G = F:H

A:D = B:F = C:G = E:H

A:E = B:C = D:H = F:G

A:F = B:D = C:H = E:G

A:G = B:H = C:D = E:F

A:H = B:G = C:F = D:E

FrF2 can also create designs with the maximum number of clear effects. For
example, the call FrF2(32,9) produces the minimum aberration 29−4 design
that has nine clear main effects and eight clear two-factor interactions. How-
ever, the call FrF2(32,9,MaxC2=TRUE) produces a 29−4 design that has all
nine main effects and 15 clear two-factor interactions.

Consider the following example of the design and analysis of a 28−4 frac-
tional factorial. AlmeidaeSilva et al. (1998) conducted an experiment to find
the optimal conditions for culturing Paecilomyces variotii (a fungus commonly
found in the air and soils of tropical countries) on eucalyptus hemicellulosic
hydrolyzate with a view to producing microbial protein. Only 51.6% of the
total dry mass of eucalyptus wood is utilized by Brazilian industry while the
rest (branches, leaves, small trees, etc.) is left in the fields. The hemicellulose
fraction of this waste can be easily removed by acid treatment, and the re-
sulting hydrolyzate is rich in fermentable sugars. The fungus P. variotii was
selected from among 21 species of yeasts and filamentous fungus for its perfor-
mance on eucalyptus hemicellulose hydrolyzate. Protein biomass produced by
this fungus during 72 hours of fermentation has an amino acid profile that is
equal to or exceeds conventional products used for animal feed. The purpose
of the experiments was to study the influence of inhibitors, nutrients, and
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fermentation time on the biomass growth produced by P. variotii. Table 6.5
shows the factors and levels that were to be studied.

Table 6.5 Factors and Levels for Biomass Experiment
Levels

Label Factors − +

A Inhibitors (Furfural and Acetic Acid) 1.25g/L 7.8g/L
B Rice Bran 10.0g/L 30.0g/L
C Urea 0.0g/L 2.0g/L
D Magnesium Sulfate 0.0g/L 1.5g/L
E Ammonium Sulfate 0.0g/L 2.0g/L
F Potassium Nitrate 0.0g/L 2.0g/L
G Sodium Phosphate 0.0g/L 2.0g/L
H Fermentation Time 72 hrs 96 hrs

A 28−4 fractional factorial design was used with generators E = BCD, F =

ACD, G = ABC, and H = ABD. This is the minimum aberration resolution
IV design, and the clear effects in this design are the eight main effects. There
are also seven aliased strings of two-factor interactions (shown below) that
can be estimated.

CG +DH +AB +EF

AC +BG +DF +EH

CF +AD +EG +BH

CH +DG +AE +BF

CD +GH +AF +BE

BC +AG +DE + FH

CE + FG +AH +BD

The design as created by FrF2 is shown on the next page along with the
resulting data.
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> library(FrF2)

> culture <- FrF2( 16, generators = c("BCD", "ACD", "ABC",

+ "ABD"), randomize = FALSE)

> y1 <- c(5.75, 6.7, 11.12, 10.67, 4.92, 5.35, 2.81, 10.83,

+ 6.08, 7.27, 9.68, 4.2, 3.9, 3.78, 11.57, 7.39 )

> culture <- add.response( culture, y1 )

> culture

A B C D E F G H y1

1 -1 -1 -1 -1 -1 -1 -1 -1 5.75

2 1 -1 -1 -1 -1 1 1 1 6.70

3 -1 1 -1 -1 1 -1 1 1 11.12

4 1 1 -1 -1 1 1 -1 -1 10.67

5 -1 -1 1 -1 1 1 1 -1 4.92

6 1 -1 1 -1 1 -1 -1 1 5.35

7 -1 1 1 -1 -1 1 -1 1 2.81

8 1 1 1 -1 -1 -1 1 -1 10.83

9 -1 -1 -1 1 1 1 -1 1 6.08

10 1 -1 -1 1 1 -1 1 -1 7.27

11 -1 1 -1 1 -1 1 1 -1 9.68

12 1 1 -1 1 -1 -1 -1 1 4.20

13 -1 -1 1 1 -1 -1 1 1 3.90

14 1 -1 1 1 -1 1 -1 -1 3.78

15 -1 1 1 1 1 -1 -1 -1 11.57

16 1 1 1 1 1 1 1 1 7.39

class=design, type= FrF2.generators

The R function lm is used to fit a model to the data. The code and results are
shown on the next page. The formula formula = y (.)^2 in the call to the
lm function causes it to fit a saturated model in the main effects and two-factor
interactions. However, in this example there are 28 two-factor interactions but
only seven of them are estimable, since they are confounded in strings of four
interactions. The lm function estimates all the two-factor interactions with A,
that is, AB, AC, AD, AE, AF , AG, and AH. The estimates for the remaining
two-factor interactions are labeled NA in the output and are not shown on the
next page. Referring to the strings of aliased two-factor interactions on page
210, it can be seen that AB actually represents CG+DH +AB +EF , and so
forth.
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> modf <- lm( y1 ~ (.)^2, data = culture)

> summary(modf)

Call:

lm.default(formula = y1 ~ (.)^2, data = culture)

Residuals:

ALL 16 residuals are 0: no residual degrees of freedom!

Coefficients: (21 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.00125 NA NA NA

A1 0.02250 NA NA NA

B1 1.53250 NA NA NA

C1 -0.68250 NA NA NA

D1 -0.26750 NA NA NA

E1 1.04500 NA NA NA

F1 -0.49750 NA NA NA

G1 0.72500 NA NA NA

H1 -1.05750 NA NA NA

A1:B1 -0.28375 NA NA NA

A1:C1 0.49625 NA NA NA

A1:D1 -1.09625 NA NA NA

A1:E1 -0.39875 NA NA NA

A1:F1 0.60875 NA NA NA

A1:G1 0.29875 NA NA NA

A1:H1 -0.05625 NA NA NA

Figure 6.5 shows a half-normal plot of effects that was produced by the
halfnorm function in the daewr package. In this plot, there are no effects
that are obviously above the line of points in the upper right of the plot.
However, the researchers felt that the threefold increase in biomass pro-
duced in run 15, compared to run 14, was caused by something other than
random variation in experimental units. Main effects for B-Rice Bran, E-
Ammonium Sulfate, H-Fermentation time, and the confounded string of in-
teractions CF +AD+EG+BH are largest in absolute value and are in the tails
of the normal distribution of estimated effects. If the three-factor interactions
are assumed to be negligible, the effects for the three main effects could be
interpreted as the cause of the large effects, but it was unclear what the string
of confounded two-factor interactions represents.
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Figure 6.5 Half-Normal Plot of Effects from 28−4 Paecilomyces variotii Culture Ex-
periment
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The authors of the article felt that the experiment had given them evidence
that factor A (the inhibitor) had little effect, and they confirmed this by citing
other published reports. They also felt the experiment showed main effects D
(magnesium sulfate) and F (potassium nitrite) were insignificant. However,
due to the confounding of two-factor interactions with the second largest effect
(in absolute value) and the fact that nothing clearly stuck out on the half-
normal plot of effects, no definite conclusions could be drawn. They decided
to run another resolution V 25−1 follow-up experiment using factors B, C, E,
G, and H with defining relation I = BCEGH and factors A, D, and F held
constant at the mid-point of the levels used in the first experiment. This was a
16-run design, but if it could be safely assumed that main effects A, D, and F
were negligible in the first set of sixteen experiments, then eight of the sixteen
runs for the proposed follow-up design were already completed.

The 25−1 design as created by FrF2 is shown on the next page along with
the resulting data. Run numbers 3, 4, 7, 8, 11, 12, 15, and 16 were already
completed in the 28−4 design as runs 14, 7, 6, 15, 13, 8, 12, and 16, respectively.
The remaining eight experiments were completed in random order to get the
results shown. Since this design is resolution V, all main effects and two-factor
interactions are clear and can be estimated if three-factor and higher order
interactions can be assumed negligible.
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> culture2 <- FrF2( 16, 5, factor.names = c("B", "C", "E", "G",

+ " H"), randomize = FALSE)

> y <- c(3.37, 3.55, 3.78, 2.81, 5.53, 10.43, 5.35, 11.57, 2.93,

+ 7.23, 3.9, 10.83, 11.69, 10.59, 4.92, 7.39)

> culture2 <- add.response( culture2, y )

> culture2

B C E G H y

1 -1 -1 -1 -1 1 3.37

2 1 -1 -1 -1 -1 3.55

3 -1 1 -1 -1 -1 3.78

4 1 1 -1 -1 1 2.81

5 -1 -1 1 -1 -1 5.53

6 1 -1 1 -1 1 10.43

7 -1 1 1 -1 1 5.35

8 1 1 1 -1 -1 11.57

9 -1 -1 -1 1 -1 2.93

10 1 -1 -1 1 1 7.23

11 -1 1 -1 1 1 3.90

12 1 1 -1 1 -1 10.83

13 -1 -1 1 1 1 11.69

14 1 -1 1 1 -1 10.59

15 -1 1 1 1 -1 4.92

16 1 1 1 1 1 7.39

class=design, type= FrF2

Figure 6.6 shows the half-normal plot of effects from the follow-up design.
The results of this follow-up experiment suggest that main effects, B-Rice
Bran, G-Sodium Phosphate, and E-Ammonium Sulfate along with interac-
tions CH (Urea × Fermentation Time) and BH (Rice Bran × fermentation
Time) and CE (Urea × Ammonium Sulfate) appear to be significant. Since
interactions exist, the main effects should not be interpreted in isolation.

Figure 6.7 shows the BH interaction plot. It shows how the effect of fer-
mentation time depends upon the level of rice bran. When there is only 10
g/L of rice bran in the growth medium, it can be seen that increasing the
fermentation time from 72 to 96 hrs increases the biomass produced. How-
ever, if there are 30 g/L of rice bran in the growth medium, increasing the
fermentation time actually decreases the biomass produced.

Figure 6.8 shows the CE interaction plot. It shows the effect of ammonium
sulfate upon biomass production depends upon the level of urea. Here it can be
seen that increasing the level of ammonium sulfate from 0.0 to 2.0 g/L causes
a greater increase in biomass when there is no urea added to the nutrients
than when 2.0 g/L of urea is added to the nutrients. The maximum biomass
occurs when there is 2 g/L of ammonium sulfate and no urea added to the
nutrients.
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Figure 6.6 Half-Normal Plot of Effects from 25−1 Paecilomyces variotii Culture Ex-
periment
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Figure 6.7 Interaction Plot for Fermentation Time and Level of Rice Bran
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Figure 6.9 shows the interaction plot of fermentation time and urea, CH.
On average, it can be seen that increasing the fermentation time seems to have
little effect on biomass production. Also, on average, adding urea to the growth
medium seems to have little effect on the biomass produced. However, as can
be seen in the graph, the effect of fermentation time upon biomass depends
upon whether urea is present, and its effect appears to be exactly opposite
depending on whether 2.0 g/L of urea is added to the growth medium.
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Figure 6.8 Interaction Plot for Urea and Ammonium Sulfate
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Figure 6.9 Interaction Plot of Fermentation Time and Urea
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While it is possible to have an interaction between two factors that do not
have significant main effects (like the example shown in Figure 6.9), it is rare.
In Li et al.’s (2006) study of 113 published factorial experiments this happened
less than 1% of the time. Usually interactions occur between factors where at
least one of the two main effects are significant. This has been described as the
effect heredity principle by Hamada and Wu (1992). In this experiment, since
the two-factor interaction between fermentation time and urea is confounded
with the three-factor interaction between rice bran, ammonium sulfate, and
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sodium phosphate (i.e., CH = BEG), and all three of the latter factors have
significant main effects, it is possible that the large effect labeled as CH on
the normal plot is actually the three-factor interaction. In this case, the effect
heredity principle may overshadow the hierarchical ordering principle.

A three-factor interaction means that the effect of one factor depends upon
the combination of levels of two other factors. A series of interaction plots (like
those in the example in Section 3.6) are useful for explaining or interpreting
a three-factor interaction. Figure 6.10 shows the effect of ammonium sulfate
upon biomass at the four combinations of rice bran and sodium phosphate.

Figure 6.10 Interaction Plots to Interpret Three-Factor Ammonium Sulfate by Rice
Bran by Sodium Phosphate Interaction
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If this three-factor interaction is assumed to be important, the two-factor
interactions do not tell the whole story. In Figure 6.10 it can be seen that
adding 2.0 g/L of ammonium sulfate to the growth medium increases the
biomass produced in general. However, this effect is greatest when there is
30 g/L of rice bran and no sodium phosphate in the growth medium. The
optimum result appears to be with a fermentation time of 72 hours, 30 g/L
of rice bran, 2.0 g/L of ammonium sulfate, and 0.0 g/L of urea in the growth
medium. There the biomass yield was predicted to be 11.57 g/L.

One way to validate the model predictions is to run one confirmation exper-
iment at the predicted optimal conditions. However, the authors of the article
instead chose to continue experimenting with three of the four factors (rice
bran, ammonium sulfate, and fermentation time) to further increase biomass
protein. They found conditions producing over 12.5 g/L, and these results will
be shown in Chapter 10 exercises.

To recap this example, the researchers started with eight factors with two
levels each as shown in Table 6.5. It would have required 28 = 256 experiments
to complete a full factorial experiment. The effect sparsity principle and the
hierarchical ordering principle suggest that this many experiments is probably
not needed. With eight factors, it is doubtful that all main effects and a
large number of interactions would be significant. A series of two fractional
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factorial experiments, employing a total of 24 runs, revealed that four of the
main effects are significant and at most three interactions. Interaction graphs
helped make a plausible interpretation of the results and identification of factor
levels for optimal results. The interpretation of the interactions was critical
for identification of optimal results and would never have been discovered if a
seat-of-the-pants approach or vary one-factor-at-a-time plan had been utilized.

6.5 Augmenting Fractional Factorials

The last example introduced the idea of augmenting fractional factorial de-
signs with additional experiments. Sometimes this consists of a simple confir-
mation experiment to validate a model prediction. In other cases additional
experiments may be performed to de-confound certain main effects or inter-
actions and increase the odds of discovering the correct model. In this section
some formal procedures will be described that allow this to be done. Section
6.5.1 describes procedures that will preserve the optimal orthogonality prop-
erty of the augmented design. Section 6.5.2 describes a procedure that reduces
the number of additional experiments but does not preserve orthogonality.

6.5.1 Augmenting by Foldover or Mirror Image Designs

In a resolution III fractional factorial design, main effects are confounded with
some two-factor interactions. If more than one effect appears to be significant
after the analysis of data from a resolution III design, it is not clear whether
all effects are due to main effects or whether some could be two-factor in-
teractions. For example, in an eight-run resolution III design in six factors
(designated by 26−3

III ) with generators D = AB, E = AC, and F = BC, the
defining relation is

I = ABD = ACE = BCF =DEF = BCDE = ACDF = ABEF.

If after analysis of data from this design, effects B and D appear to be signifi-
cant, it could be that the two main effects are the active effects. However, the
effect heredity principle tells us there are two alternative explanations. The
first alternative is the following. Since D is confounded with AB and EF ,
it could be that main effect B and the AB interaction are the active effects
and that D only appears large because it is confounded with AB. The second
alternative is that main effect D and the AD interaction are the active effects
and B only appears large because it is confounded with AD and CF . With-
out additional experiments, there is no way to determine which of the three
explanations of the data is correct.

One way to break the confounding between main effects and two-factor
interactions is to run an additional set of experiments that is the same as
the first except that the coded factor levels on one or more factors has been
reversed (Box et al., 1978). This is called a foldover fraction. For example, in
the 26−3

III described in the last paragraph, if the signs were reversed for factor
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B, the defining relation would become I = −ABD = ACE = −BCF = DEF =

−BCDE = ACDF = −ABEF . If the two eight-run designs were combined, as
shown in Table 6.6, the resulting 16-run design would have defining relation
I = ACE =DEF = ACDF . Although this is still a resolution III design, main
effect B is clear, and main effect D is no longer confounded with the AB
interaction.

Table 6.6 26−3
III Design Augmented by 26−3

III Design with Signs Reversed on Factor B

Run A B C D E F
1 − − − + + +

2 + − − − − +

3 − + − − + −

4 + + − + − −

5 − − + + − −

6 + − + − + −

7 − + + − − +

8 + + + + + +

9 − + − + + +

10 + + − − − +

11 − − − − + −

12 + − − + − −

13 − + + + − −

14 + + + − + −

15 − − + − − +

16 + − + + + +

In general, augmenting a resolution III design with another resolution III
design, with the coded factor levels for one factor reversed, will make that fac-
tor and all of its two-factor interactions clear of other two-factor interactions.
Montgomery and Runger (1996) show the defining relation for the combined
design from the original plus foldover will contain those effects in the original
design that were not sign reversed in the foldover fraction.

If a resolution III design is augmented with another resolution III design,
with the coded factor levels reversed for all factors (called the mirror image
design), the combined design will be resolution IV and all main effects will be
clear of two-factor interactions. The defining relation for the combined design
in this situation will only contain even length words from the original defining
relation. For example, the 25−2

III design with generators D = AB, E = AC has
defining relation I = ABD = ACE = BCDE. If it is combined with its mirror
image fraction where the signs of all the coded factor levels have been reversed,
the defining relation of the combined design will be I = BCDE.

The R package FrF2 function fold.design() can augment a design with
its mirror image as shown in the example on the next page. This function can
also augment with a foldover fraction by changing the columns option from
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’full’ to a character vector of factor names or a numeric vector of factor
positions that should have their signs reversed.

> library(FrF2)

> des <- FrF2(8, 6, generators = c("AB", "AC", "BC"),

+ randomize = FALSE)

> desa <- fold.design(des, columns = ’full’)

> desa

A B C fold D E F

1 -1 -1 -1 original 1 1 1

2 1 -1 -1 original -1 -1 1

3 -1 1 -1 original -1 1 -1

4 1 1 -1 original 1 -1 -1

5 -1 -1 1 original 1 -1 -1

6 1 -1 1 original -1 1 -1

7 -1 1 1 original -1 -1 1

8 1 1 1 original 1 1 1

9 1 1 1 mirror -1 -1 -1

10 -1 1 1 mirror 1 1 -1

11 1 -1 1 mirror 1 -1 1

12 -1 -1 1 mirror -1 1 1

13 1 1 -1 mirror -1 1 1

14 -1 1 -1 mirror 1 -1 1

15 1 -1 -1 mirror 1 1 -1

16 -1 -1 -1 mirror -1 -1 -1

class=design, type= FrF2.generators.folded

When creating a resolution IV design by combining a resolution III design with
its mirror image (i.e., signs reversed on all factors), it is possible to add one
additional blocking factor that can account for any difference in the average
response between the two sets of experiments. By having an additional factor,
the experiments can be performed sequentially. The original resolution III de-
sign is completed first and the data analyzed. If there is only one factor that
appears to be significant, there may be no need for additional experiments.
If, on the other hand, two or more effects appear significant, the mirror image
design can be completed to clear all main effects from two-factor interactions.
The additional factor can account for any changes in the experimental envi-
ronment that have occurred since the first set of experiments. Including it in
the analysis will prevent any unanticipated changes from biasing the effects
of the factors studied.

Augmenting a resolution IV design with its mirror image design will not
help to break strings of aliased two-factor interactions since the signs will not
change on the two-factor interactions. However, augmenting a resolution IV
design by a foldover fraction can be used to break strings of aliased two-factor
interactions, when the signs are changed on only one or two of the factors. For
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example, the 28−4
IV design with E = BCD, F = ACD, G = ABC, and H = ABD

has seven strings of confounded two-factor interactions in groups of 4, i.e.,

AB +EF +CG +DH

AC +DF +BG +EH

CD +BE +AF +GH

AD +CF +EG +BH

AE +BF +DG +CH

BC +DE +AG + FH

BD +CE + FG +AH.

If this design is augmented with another design where the signs are reversed
on factor A, all the two-factor interactions involving factor A will be clear of
other two-factor interactions.

In general, Montgomery and Runger (1996) show that the alias sets for the
combined design are obtained from a partition of the alias sets in the original
fraction by grouping effects that are sign reversed. For example, in the 26−2

IV

design with generators E = ABC and F = BCD, the aliases for the 16 effects
that can be estimated (up to three-factor interactions) are:

I +ABCE +BCDF +ADEF

A +BCE +DEF

B +ACE +CDF

C +BDF +ABE

D +BCF +AEF

E +ABC +ADF

F +BCD +ADE

CE +AB

AC +BE

AD +EF

BC +AE +DF

DE +AF

CF +BD

CD +BF

ABD +CDE +ACF +BEF

ACD +BDE +CEF +ABF

If this design were augmented by the foldover design with all signs for factor
A reversed, 32 effects could be estimated, and the aliases for each of them could
be determined from the list above. Every effect containing A changes signs.
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Group effects with like signs together to get the following 32 groups.

ABCE +ADEF, I +BCDF

A, BCE +DEF

ACE, B +CDF

ABE, C +BDF

AEF, D +BCF

ABC +ADF, E

ADE, F +BCD

AB, CE

AC, BE

AD, EF

AE, BC +DF

AF, DE+

ACDE +ABEF, CF +BD

ABDE +ACEF, CD +BF

ABD +ACF, CDE +BEF

ACD +ABF, BDE +CEF

If the 26−2
IV design were augmented by the same design with signs reversed on

factors A and B, effects containing a single A or a single B will reverse signs.
Effects containing both A and B or neither A nor B will not reverse signs,
and the aliases for the 32 estimable effects will be different than those shown
above. When only a few effects are found significant after analysis of data
from a resolution IV design, a foldover that will separate the significant main
effects from two-factor interactions (that involve the significant main effects)
can usually be found.

Consider two designs used to optimize a drinking water filter to illustrate
the augmenting of a fractional factorial to estimate interactions. High con-
centrations of arsenic are reported in ground water in countries such as Ar-
gentina, Bangladesh, Chile, China, India, Japan, Mexico, Mongolia, Nepal,
Poland, Taiwan, Vietnam, and some parts of the United States, and stud-
ies have shown people exposed to high levels of arsenic are prone to develop
various forms of cancer. Iron oxide coated sand (IOCS) has been used to
remove arsenic from ground water in simple household filtration systems in
Bangladesh. Ramakrishna et al. (2006) conducted a study with the objective
of systematically studying the effects of several factors on the arsenic removal
rate for IOCS.

The experiments consisted of making a coating solution composed of ferric
nitrate and sodium hydroxide, with NAOH added to adjust the pH. This so-
lution was aged and then poured over clean dry sand and mixed. The mixture
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was dried for 12 hours, and then used to filter water solutions spiked with a
known concentration of arsenic. The response was the percentage of arsenic
removed, and the factors varied in the study are shown in Table 6.7 below.

Table 6.7 Factors and Levels for Arsenic Removal Experiment
Levels

Label Factors − +

A coating pH 2.0 12.0
B drying temperature 110○ 800○

C Fe concentration in coating 0.1 M 2 M
D number of coatings 1 2
E aging of coating 4 hrs 12 days
F pH of spiked water 5.0 8.0
G mass of adsorbent 0.1 g 1 g

A 27−4
III fraction factorial design, with generators D = AB, E = AC, F = BC,

and G = ABC, was used for the first set of experiments. The results are shown
in the top half of Table 6.8. These experiments are shown in the standard

Table 6.8 27−4
III Design Augmented by Foldover 27−4

III with Signs Reversed on all Fac-
tors

% Removal of
Run Block A B C D E F G As

1 1 − − − + + + − 69.95
2 1 + − − − − + + 58.65
3 1 − + − − + − + 56.25
4 1 + + − + − − − 53.25
5 1 − − + + − − + 94.40
6 1 + − + − + − − 73.45
7 1 − + + − − + − 10.00
8 1 + + + + + + + 2.11

9 2 + + + − − − + 16.20
10 2 − + + + + − − 52.85
11 2 + − + + − + − 9.05
12 2 − − + − + + + 31.1
13 2 + + − − + + − 7.40
14 2 − + − + − + + 9.90
15 2 + − − + + − + 10.85
16 2 − − − − − − − 48.75

order, not the random order in which they were run.
A half-normal plot of the effects calculated from the first eight runs (left

as an exercise) revealed that factors B (temperature of drying the coated
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sand) and F (pH of the arsenic spiked water) appeared to be significant. Both
factors had negative effects and the high level of each resulted in a lower
percentage of arsenic removal. This implies that the percent arsenic removed
is only influenced by the temperature of drying the coated sand and by the pH
of the spiked water solution. However, interpreting the results to mean that
only the two main effects are active could be misleading. B is confounded
with three two-factor interactions AD+CF + EG and F is confounded with
BC+DE+AG. According to the effect heredity principle, the model including
B and BC (which imply arsenic removal is influenced by the temperature of
drying the coated sand and by the Fe concentration in the coating), and the
model including F and CF (which imply arsenic removal is influenced by the
pH of the spiked water and by the Fe concentration in the coating) are also
plausible explanations of the data. From the eight experiments in the 27−3

III it
is impossible to tell which of the three plausible models is appropriate since
the effects are completely confounded.

The original eight experiments were augmented with the mirror image de-
sign, shown in the bottom half of Table 6.8, in order to de-confound the main
effects from strings of two-factor interactions. An additional blocking factor is
included in the combined design to account for any difference in the two sets
of experiments. A half-normal plot of the effects calculated from the combined
experiments (left as an exercise) revealed that the blocking factor represent-
ing the difference in the two groups of experiments, main effect F (pH of the
arsenic spiked water), main effect B (temperature of drying the coated sand),
main effect A (pH of the coating), and the effect representing the confounded
string of interactions AD + CF + EG all appeared to be significant. The ef-
fect heredity principle would suggest two plausible models to explain the data
(ignoring the block term). The first model is (F , B, A, AD), or:

% removal = 37.76 − 12.99(
pHs − 7.0

2.0
) − 11.76(

temp − 455○

345○
)

− 8.89(
pHc − 7.0

5.0
) − 10.09(

pHs − 7.0

2.0
)(

number coats − .75

.5
) .

This model suggests that increasing the pH of the ferric nitrate sodium hy-
droxide solution used to coat the sand has little effect on arsenic removal when
the sand is only coated once, but that it substantially decreases the arsenic
removal when the sand is coated twice. This can be visualized in the left side
of Figure 6.11. If this model is correct, it would imply that maximum arsenic
removal in a sand filtration system can be achieved when the coated sand
is dried at the low temperature (B = −), the coating solution has a low pH
(A = −), and the sand is coated twice (D = +).

The second plausible model is (F , B, A, CF ), or:

% removal =37.76 − 12.99(
pHs − 7.0

2.0
) − 11.76(

temp − 455○

345○
)

− 8.89(
pHc − 7.0

5.0
) − 10.09(

Fe − 1.05M

0.95M
)(

pHs − 7.0

2.0
) .
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This model suggests that increasing the Fe concentration in the coating so-
lution increases the arsenic removal when the pH of the water being filtered
is low, but decreases it when the pH of the water being filtered is high. This
can be visualized in the right side of Figure 6.11. If this model is correct, it
would imply that maximum arsenic removal in a sand filtration system can
be achieved when the coated sand is dried at the low temperature (B = −),
and when the Fe concentration in the coating solution is high if the pH of
the water to be filtered is low, or when the Fe concentration in the coating
solution is low if the pH of the water to be filtered is high.

Figure 6.11 Plausible Interaction Plots for Arsenic Removal Experiment
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The two models are contradictory. The first model implies that the pH of
the coating solution and the number of times the sand is coated influence
the percent of arsenic the sand filter can remove. However, the second model
implies the pH of the coating solution and the number of times the sand is
coated does not affect arsenic removal; rather, the Fe concentration of the
coating solution does matter. The optimum level of this concentration must
be determined by the pH of the water to be filtered.

In 16 experiments the researchers were able to narrow down the list of
factors that influence arsenic removal from the original seven down to five.
But, because the two interactions AD and CF are completely confounded,
there is no way from the results of these two sets of experiments to determine
which model is correct and what is the best way to coat sand for a filtration
system. If another foldover fraction of 16 experiments were run reversing the
signs on one of the factors A, D, C, or F , the combined set of 32 experiments
would allow for estimating all the terms (F , B, A, AD, and CF ), and a
reliable model could be established. The next section will describe another
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way of augmenting the data to estimate all the terms with fewer additional
experiments.

6.5.2 Augmenting by Optimal Design

In matrix notation the model with the terms (F , B, A, AD, and CF ), from
the last section, and the 16-run design shown in Table 6.8 can be written
as:

y =Xβ + ε,

where

y =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

69.95
58.65
56.25
53.25
94.40
73.45
10.00
2.11

16.20
52.85
9.05

31.10
7.40
9.90

10.85
48.75

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, X =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1 −1 −1 1 −1 −1
1 −1 1 −1 1 −1 −1
1 −1 −1 1 −1 1 1
1 −1 1 1 −1 1 1
1 −1 −1 −1 −1 −1 −1
1 −1 1 −1 −1 −1 −1
1 −1 −1 1 1 1 1
1 −1 1 1 1 1 1
1 1 −1 −1 −1 −1 −1
1 1 1 −1 −1 −1 −1
1 1 −1 1 1 1 1
1 1 1 1 1 1 1
1 1 −1 −1 1 −1 −1
1 1 −1 −1 1 −1 −1
1 1 1 1 −1 1 1
1 1 1 1 −1 1 1

⎞
⎟
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⎠

, β =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β0

βbl
βA
βB
βF
βAD
βCF

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

This model cannot be fit to the data since the last two columns in theX matrix
are identical, and the least squares normal equations are singular. However,
it is not necessary to double the number of runs, which would be required
if augmented by a foldover, in order to estimate all of the parameters in the
model. Doubling the number of runs could preserve the orthogonality property
so that all estimated effects would be uncorrelated. However, any additional
runs that would make the X ′X matrix nonsingular will allow estimation of
all the effects of interest.

One criterion that can be checked, to ensure the X ′X matrix nonsingular,
is ∣X ′X ∣, and Dykstra (1971) has shown that choosing a set of additional runs
that will maximize ∣X ′X ∣ for the combined set of runs is called the D-optimal
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design. The motivation for D-optimal designs comes from the fact that the
variance covariance matrix of the regression coefficients in the linear model
is σ2(X ′X)−1 and the reciprocal of the volume of a confidence ellipsoid for

β̂ is proportional to the determinant of X ′X. Orthogonal designs are always
D-optimal and have the maximum ∣X ′X ∣ for their run size, but when the
experimenter is willing to forgo uncorrelated effect estimates in order to reduce
the number of runs required, a D-optimal design for a reduced run size will
be the best choice.

Another criterion that can be used to choose additional runs is the
tr(X ′X)−1, since the variances of the regression coefficients are the diago-
nal elements of σ2(X ′X)−1. A design that minimizes tr(X ′X)−1 is said to
be A-optimal , since it minimizes the average variance of the regression coeffi-
cients.

The function optFederov in the R package AlgDesign (Wheeler, 2012) can
find both D-optimal and A-optimal designs when given the model and a list
of candidate design points. This procedure uses Federov’s (1972) algorithm to
find the subset of the candidate design points that will maximize ∣X ′X ∣ or
minimize tr(X ′X−1).

To illustrate how this function can be used to augment an existing design,
consider augmenting the design for the arsenic removal experiments (shown
in Table 6.7) so that both the AD and CF interactions can be included in the
model. The design shown in Table 6.8 was created with a modification of the
code used earlier to produce a combined file (original plus foldover). This is
shown again in the code below, and the combined file is stored in the design
data frame augm.

> library(FrF2)

> des2 <- FrF2( 8, 7, generators = c("AB", "AC", "BC", "ABC" ),

+ randomize=FALSE)

> augm <- fold.design(des2)

The columns in the design data frame augm are factors, and the optFederov
function needs a data frame of numerical candidates. Therefore, after creating
the augmented design with the FrF2 and fold.design functions from the
R package FrF2, the columns of augm are converted into numerical coded
variables and combined into the new data frame augmn as shown below.

> A <- (as.numeric( augm$A) - 1.5 ) / .5

> B <- (as.numeric( augm$B) - 1.5 ) / .5

> C <- (as.numeric( augm$C) - 1.5 ) / .5

> D <- (as.numeric( augm$D) - 1.5 ) / .5

> E <- (as.numeric( augm$E) - 1.5 ) / .5

> F <- (as.numeric( augm$F) - 1.5 ) / .5

> G <- (as.numeric( augm$G) - 1.5 ) / .5

> Block <- augm$fold

> augmn <- data.frame(A, B ,C, D, E, F, G, Block)
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Next the function gen.factorial in the R package AlgDesign is used to
create a list of 128 candidate points forming a full factorial in the data frame
cand. The columns in this data frame are numerical coded factors and do not
need to be converted for optFederov.

> library(AlgDesign)

> cand <- gen.factorial( levels = 2, nVar = 7, varNames = c("A",

+ "B", "C", "D", "E", "F", "G"))

The data frame all, consisting of the augmented fractional factorial and the
candidate points, is created. This data frame contains one factor, Block, with
indicators for the source of the data (original, mirror, cand).

> Block <- rep(’cand’, 128)

> cand <- data.frame( A=cand$A, B=cand$B, C=cand$C, D=cand$D,

+ E=cand$E, F=cand$F, G=cand$G, Block)

> all <- rbind( augmn, cand)

Finally, the optFederov function is called to select eight runs from the
cand block to augment the 16 runs in the original and mirror blocks so
that the result will contain a total of 24 runs in three blocks. The options
augment=TRUE,rows=fr tells the optFederov function to keep the first 16
runs (indicated by the elements of the vector fr) in the design and select the
next eight runs from the remaining rows in all. The option criterion="D"

statement specifies a D-optimal design. This is the default for optFederov if
this option is omitted. To generate an A-optimal design change the option to
criterion="A".

> fr<-1:16

> optim <- optFederov( ~ A + B + F + I(A*D) + I(C*F), data = all,

+ nTrials = 24, criterion = "D", nRepeats = 10, augment = TRUE,

+ rows=fr)

The eight new runs in the third block are printed as shown below. After
completing the experiments for this block, the model including main effects A,
B, and F , the AD and CF interactions, and a factor for the block differences
could be fit to the data using a regression function such as lm.

> newruns <- optim$design[ 17:24, ]

> newruns

A B C D E F G Block

20 1 1 -1 -1 -1 -1 -1 cand

32 1 1 1 1 -1 -1 -1 cand

54 1 -1 1 -1 -1 1 -1 cand

58 1 -1 -1 1 -1 1 -1 cand

63 -1 1 1 1 -1 1 -1 cand

101 -1 -1 1 -1 1 -1 1 cand

105 -1 -1 -1 1 1 -1 1 cand

131 -1 1 -1 -1 1 1 1 cand
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6.6 Plackett-Burman (PB) and Model Robust Screening Designs

Resolution III 2k−p fractional factorial designs are often used for screening
experiments where the objective is to determine which factors (from a list as-
sembled by brainstorming) are important enough to be studied in more detail
in follow-up experiments. However, the number of runs in an 2k−p fractional
factorial design is always a power of 2, i.e., 8, 16, 32, etc., and these limited
choices for run size can be restrictive in screening experiments. For example, to
examine 8 factors requires at least 16 experiments, and to examine 16 factors
requires 32 experiments when using a fractional factorial design.

Resolution III Plackett and Burman (1946) designs, or PB designs, are
available in run sizes that are multiples of 4, i.e., 8, 12, 16, 20, etc. These
designs were originally discovered by two British statisticians during World
War II while studying the effect of a number of factors on the performance of
anti-aircraft proximity fuse prototypes. Like 2k−p fractional factorial designs,
these designs have two levels for each factor; and for run sizes that are powers
of 2, they are the same as a 2k−p design. For other run sizes, they retain
the desirable orthogonality property of 2k−p designs, but they do not have
generators or a defining relation. The designs for run sizes of 12, 20, and 24
can be created by cyclically rotating the factor levels for the first run. Table
6.9 shows the factor levels for the first run in these designs.

Table 6.9 Factor Levels for First Run of Plackett-Burman Design
Run Size Factor Levels

12 + + − + + + − − − + −

20 + + − − + + + + − + − + − − − − + + −

24 + + + + + − + − + + − − + + − − + − + − − − −

Table 6.10 shows how these factor levels are used to create a 12-run Plackett-
Burman Design in 11 factors. The factor levels for the first run are copied
directly from the first line of Table 6.9. In the second run, the level for the
first factor (A) is the level of the eleventh factor (L) in the first run, and the
factor levels for factors B through L for the second run are the factor levels for
factors A through K from the first run. This pattern is continued, cyclically
rotating the factor levels for each run to create the factor levels for the next
run until the last run. For run number 12, all the factors are set to their low
(−) level.

To create a 12-run design in k factors, where k < 11, proceed exactly as
above, but after completion use only k columns in the design to define factor
setting. To create a 20- or 24-run Plackett-Burman design proceed exactly as
before, but start with the row in Table 6.9 with the correct run size.
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Table 6.10 12-Run Plackett-Burman Design
Run A B C D E F G H J K L

1 + + − + + + − − − + −

2 − + + − + + + − − − +

3 + − + + − + + + − − −

4 − + − + + − + + + − −

5 − − + + + + − + + + −

6 − − − + − + + − + + +

7 + − − − + − + + − + +

8 + + − − − + − + + − +

9 + + + − − − + − + + −

10 − + + + − − − + − + +

11 + − + + + − − − + − +

12 − − − − − − − − − − −

Plackett-Burman designs can be created easily using the FrF2 package. The
example below illustrates the use of the pb function in that package to create
the design shown in Table 6.10.

> library(FrF2)

> pb( nruns = 12, randomize=FALSE)

A B C D E F G H J K L

1 1 1 -1 1 1 1 -1 -1 -1 1 -1

2 -1 1 1 -1 1 1 1 -1 -1 -1 1

3 1 -1 1 1 -1 1 1 1 -1 -1 -1

4 -1 1 -1 1 1 -1 1 1 1 -1 -1

5 -1 -1 1 -1 1 1 -1 1 1 1 -1

6 -1 -1 -1 1 -1 1 1 -1 1 1 1

7 1 -1 -1 -1 1 -1 1 1 -1 1 1

8 1 1 -1 -1 -1 1 -1 1 1 -1 1

9 1 1 1 -1 -1 -1 1 -1 1 1 -1

10 -1 1 1 1 -1 -1 -1 1 -1 1 1

11 1 -1 1 1 1 -1 -1 -1 1 -1 1

12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

class=design, type= pb

To create a 20- or 24-run Plackett-Burman design with the pb function in FrF2,
simply substitute nruns=20 or nruns=24 for nruns=12. Equivalent Plackett-
Burman designs can be created using a different generator (or combination
of factor settings for the first run) than that shown in Table 6.9. However,
this does not mean that an arbitrary generator can be used. One set of valid
alternate generators for the 12-, 20-, and 24-run Plackett-Burman design is
shown in Lawson (2010). The R package BsMD (Barrios, 2009) contains the
data frame PB12Des, which is the equivalent to a 12-run Plackett-Burman
design that can be created with this alternate generator.
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As an example of the use of a Plackett-Burman design, consider the data in
Table 6.11, which comes from a study by Hunter et al. (1982) of the fatigue
life of weld-repaired castings. Seven factors were assigned to the first seven
columns of the Plackett-Burman design matrix shown in Table 6.11, and the
last four columns were not assigned to factors in defining the experiments.
The purpose of the experiments was to identify the factors that affect the
fatigue life of the weld repairs. The response, y, is the log of the lifetime of
each weld repair. We will use this data to illustrate the analysis of data from
a Plackett-Burman design. Analysis of this data has been presented in the
literature by several others.

Although there is no defining relation in a Plackett-Burman design, it is
a resolution III design and the unassigned columns in Table 6.11 represent
confounded strings of interactions. A first step in the analysis would be to
calculate an effect for each of the 11 columns in Table 6.11 and make a half-
normal plot.

Table 6.11 Design Matrix and Lifetime Data for Cast Fatigue Experiment
Run A B C D E F G c8 c9 c10 c11

1 + − + + + − − − + − + 4.733
2 − + + + − − − + − + + 4.625
3 + + + − − − + − + + − 5.899
4 + + − − − + − + + − + 7.000
5 + − − − + − + + − + + 5.752
6 − − − + − + + − + + + 5.682
7 − − + − + + − + + + − 6.607
8 − + − + + − + + + − − 5.818
9 + − + + − + + + − − − 5.917

10 − + + − + + + − − − + 5.863
11 + + − + + + − + − + − 6.058
12 − − − − − − − − − − − 4.809

The R code to retrieve the 12-run Plackett-Burman design data frame from
the BsMD package, rename and reorder the columns to match Table 6.11, and
then add the response data is shown below.

> library(BsMD)

> data( PB12Des, package = "BsMD" )

> colnames(PB12Des) <- c("c11", "c10", "c9", "c8", "G", "F", "E",

+ "D", "C", "B", "A")

> castf <- PB12Des[c(11,10,9,8,7,6,5,4,3,2,1)]

> y <- c(4.733, 4.625, 5.899, 7.0, 5.752, 5.682, 6.607, 5.818,

+ 5.917, 5.863, 6.058, 4.809)

> castf <- cbind( castf, y )

After organizing the data frame in the form of Table 6.11, the lm func-
tion was used to estimate the coefficients for each of the 11 columns and the
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halfnorm function in the package daewr was used (as shown below) to create
the half-normal plot of effects. The plot is shown in Figure 6.12.

> modpb <- lm( y ~ (.), data = castf )

> library(daewr)

> cfs <- coef(modpb)[2:12]

> names<-names(cfs)

> halfnorm(cfs, names, alpha = .35, refline=FALSE)

Figure 6.12 Half-Normal Plot of Absolute Regression Coefficients from Cast Fatigue
Experiment
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This plot shows that main effect F is clearly significant and that the next
largest effect is main effect D. The authors of the original article concluded
that the model including these two factors was the correct model, and they
fit it to the data by regression, obtaining an R2 = .5867. However, the same
caution should be exercised that was illustrated in the water filtration example
presented in Section 6.5. Because this Plackett-Burman design has resolution
III, two-factor interactions are confounded with main effects and there may
be other plausible models for the data. A mirror image design could be added
to the Plackett-Burman design in order to clear main effects of two-factor
interactions; however, this is not necessary due to the complex aliasing for
this type design.

By complex aliasing we mean that each interaction is partially confounded
with many main effects rather than being completely confounded with one
main effect as it would be in a 2k−pIII design. Lin and Draper (1992) and Wang
and Wu (1995) showed that designs with complex aliasing have a hidden
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projection property. The hidden projection property allows some interactions
to be estimated even though the design is resolution III. This can be illustrated
graphically as shown in Figure 6.13. The graph on the left side of the figure
shows the color map of correlations computed from the design matrix for the
Plackett-Burman design. The color map on the right side of the figure was
computed from a resolution III 27−4 fractional factorial.

Figure 6.13 Color Map Comparison of Confounding between PB and FF Designs
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In these graphs we can see that each main effect is completely correlated
or confounded with exactly three two-factor interactions for the resolution III
fractional factorial design, but for the Plackett-Burman design, each main ef-
fect is partially confounded (correlation coefficient ±0.333) with five two-factor
interactions. Since the correlations between main effects and interactions are
not ±1 for the Plackett-Burman design, some interactions can be included in
the model as long as the total number of terms in the model is less than the
number of runs in the design. The color maps were created with the colormap
function from the daewr package that is illustrated in the R code for this
chapter on web page for the book.

For Plackett-Burman designs where only a subset of the factors appear to
be important, Wang and Wu have shown that it is likely that a model can be
fit to the data by regression, which includes the important main effects and
two-factor interactions involving the important main effects. When interac-
tion terms are included in the model, the design becomes non-orthogonal and
effects must be estimated by regression, but Wang and Wu have shown that
the D-efficiency remains quite high. Usually some type of regression subset
selection procedure is used in order to identify the most appropriate model.

For the data in Table 6.11, the R code on the next page uses the regsubsets
function in the package leaps (Lumley, 2009) to perform an all-subsets
regression including all main effects and two-factor interactions. The first
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statement in the code copies the main effect and response columns from the
data frame castf into the reduced data frame castfr. The model state-
ment y ~ (.)^2 specifies that main effect and two-factor interactions will
be included. The option nvmax=4 tells the regsubsets function to include
at most four terms in the model, and the option nbest=4 tells the func-
tion to only keep the results for the best four models of each size. The first
plot statement graphs the number of terms in the model vs. the adjusted
R2
a = 1 − ((n − 1)ssE)/((n − p)ssTotal) (where n is the number of runs and

p is the number of terms in the model) for the 16 best resulting models, and
the second plot statement graphs the terms in the model vs. the model R2.

> castfr <- castf[ , c(1:7, 12)]

> library(leaps)

> modpbr<-regsubsets(y ~ (.)^2, data=castfr,

+ method="exhaustive",nvmax=4,nbest=4)

> rs <- summary(modpbr)

> plot(c(rep(1:4,each=4)), rs$adjr2, xlab="No. of Parameters",

+ ylab="Adjusted R-square")

> plot(modpbr,scale="r2")

The summary of the object modpb created by the regsubsets function is
voluminous, but Figure 6.14, Table 6.12, and Figure 6.15 condense the results.

Figure 6.14 Plot of Number of Model Terms by Adjusted R2
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Figure 6.14 shows that not much can be gained in terms of the adjusted R2

by including three or four parameters in the model. For that reason, the best
model with two parameters appears sufficient for this data. In Table 6.12, it



PLACKETT-BURMAN & MODEL ROBUST SCREENING DESIGNS 235

can be seen that the best model with two parameters includes main effect F ,
interaction FG and has an adjusted R2 = 0.8686.

Table 6.12 Results of All-Subsets Regression

Number of
Terms Adjusted Variables

in Model R-Square in Model
1 0.3921 FG
1 0.3896 F
1 0.3814 AE
1 0.0993 BC
2 0.8686 F FG
2 0.5891 AE FG
2 0.5870 F AE
2 0.5403 BD FG
3 0.9348 F AE FG
3 0.9056 F BD FG
3 0.8886 D F FG
3 0.8785 F DG FG
4 0.9507 F AE EF FG
4 0.9465 F AE CD FG
4 0.9439 F AD AE FG
4 0.9438 F BD CF FG

Figure 6.15 Plot of Model Terms by R2
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Figure 6.15 also shows that the terms appearing most frequently in all the
models fit by the all-subsets regression were the intercept F and FG.

Table 6.13 shows a summary of the data classified by the levels of factors
F and G. There it can be seen that the consistently longest log fatigue life for
the weld repaired castings occurs when factor F is at its high level and factor
G is at its low level. In this example seven factors were under study. After
just 12 experiments it was found that only two of the factors (F and G) were
important, and the conditions for maximum life (among the combinations
studied) were discovered.

Table 6.13 Summary of Data from Cast Fatigue Experiment

Factor F Factor G
− +

4.733 5.899
− 4.625 5.752

4.809 5.818

6.058 5.682
+ 7.000 5.917

6.607 5.863

Resolution V fractional factorials allow estimation of all important main
effects and all two-factor interactions involving the important main effects if
three-factor and higher order interactions are assumed negligible. But, these
designs may require too many runs to be practical for screening. Resolution IV
and resolution III fractional factorials usually require follow-up experiments
(like the examples in Section 6.5) in order to estimate all important main ef-
fects and associated two factor interactions. However, using regression subset
procedures, Plackett-Burman designs will allow fitting models involving the
important main effects and a few interactions that need not be specified in ad-
vance. In this sense they can be called model robust because they are efficient
for fitting several possible models. In a literature survey of published exper-
iments, Li et al. (2006) and Berquist et al. (2011) found that less than half
the main effects and only 5–10% of two-factor interactions turn out to be im-
portant in screening designs. Therefore, by utilizing Plackett-Burman designs,
the need for follow-up experiments to unconfound main effects from two-factor
interactions or break confounding among strings of confounded two-factor in-
teractions is reduced. In many cases, the Plackett-Burman design can be used
as a one step screening and optimization experiment as described by Lawson
(2003).

Since the number of factors in a screening design can usually be accom-
modated by a subset of the columns in a Plackett-Burman design, Fairchild
(2011) used an exhaustive search to determine which subset of columns in 12-
and 20-run PB designs would result in the highest probability of a nonsingular
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design involving the main effects and any three two-factor interactions. His
optimal subsets of Plackett-Burman designs can be produced by the OptPB

function in the daewr package, as shown below for a 20-run design in 9 factors.
In the output only the first few runs of the design are shown.

> library(daewr)

> OPB<-OptPB(20, 9, randomize = FALSE)

> head(OPB)

A B C D E H M O P

1 1 1 -1 -1 1 1 -1 -1 -1

2 -1 1 1 -1 -1 1 1 -1 -1

3 1 -1 1 1 -1 1 -1 -1 -1

4 1 1 -1 1 1 1 1 1 -1

5 -1 1 1 -1 1 -1 -1 -1 1

6 -1 -1 1 1 -1 -1 1 1 -1

Loepky et al. (2007) provide a more extensive catalog that gives the optimal
subset of columns for estimating a few main effects and all possible two-factor
interactions involving those main effects for 20-run designs.

Since 16-run Plackett-Burman designs are the same as a 16-run fractional
factorial, they do not have the model robust feature of the 12-, 20-, and 24-
run designs. For this reason, Jones and Montgomery (2010) have proposed
alternate 16-run screening designs for 6, 7, and 8 factors. These alternate
screening designs were selected from projections of Hall’s (1961) 16-run de-
signs to produce a desirable correlation matrix involving all factors and all
possible two-factor interactions involving those factors. The resulting designs
have properties similar to the 12-, 20-, and 24-run Plackett-Burman designs
and will allow fitting models that include main effects and a few interac-
tions that are not specified in advance. These designs can be produced by the
Altscreen(nfac) function in the daewr package, where nfac = 6, 7, or 8.
Below is an example where only the first few runs of the resulting design are
shown.

> library(daewr)

> ascr <- Altscreen(6, randomize = FALSE)

> head(ascr)

A B C D E F

1 1 1 1 1 1 1

2 1 1 -1 -1 -1 -1

3 -1 -1 1 1 -1 -1

4 -1 -1 -1 -1 1 1

5 1 1 1 -1 1 -1

6 1 1 -1 1 -1 1

Li and Nachtsheim (2000) also developed 8-, 12- and 16-run model-robust
screening designs using an exchange algorithm. Their designs have properties
similar to Jones and Montgomery’s (2010) 16-run designs, and allow for es-
timating m main effects and up to g two-factor interactions, which need not
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be specified in advance. These designs can be produced by the ModelRobust

function in daewr. There are three 8-run designs, five 12-run designs, and four
16-run designs, which each accommodate a different number of main effects
and interactions. They can be retrieved using the model name as the argument
to the function as shown in the example below, that retrieves the 8-run design
for m = 5 main effects and up to g = 2 interactions. Again, in this example,
only the first few runs are shown. To retrieve a list of the names of all the
designs in the catalog call the ModelRobust() function with the design name
left blank.

> library(daewr)

> MR8 <- ModelRobust(’MR8m5g2’, randomize = FALSE)

> head(MR8)

A B C D E

1 -1 1 1 1 -1

2 -1 -1 -1 -1 -1

3 -1 1 -1 -1 1

4 1 1 1 1 1

5 1 1 -1 1 -1

6 -1 -1 -1 1 1

In Jones and Montgomery’s (2010) designs, main effects are not confounded
with each other and are partially confounded with two-factor interactions.
While in Li and Nachtsheim’s (2000) designs, main effects are partially con-
founded with two-factor interactions as well as with other main effects. This
can be visualized for the 16 run designs for 7 factors shown in Figure 6.16.

Figure 6.16 Color Map Comparison of Confounding between Alternate Screening
and Model Robust Designs

Color map of correlations AltScreen(7)

FG
EG
EF
DG
DF
DE
CG
CF
CE
CD
BG
BF
BE
BD
BC
AG
AF
AE
AD
AC
AB
G
F
E
D
C
B
A

A B C D E F G A
B

AC A
D A
E A
F

AG B
C

B
D B
E B
F

B
G

C
D

C
E

C
F

C
G D
E

D
F

D
G E
F

E
G FG

0.0

0.2

0.4

0.6

0.8

1.0

(a) Alternate Screening 7 factors

Color map of correlations MRm7g5

FG
EG
EF
DG
DF
DE
CG
CF
CE
CD
BG
BF
BE
BD
BC
AG
AF
AE
AD
AC
AB
G
F
E
D
C
B
A

A B C D E F G A
B

AC A
D A
E A
F

AG B
C

B
D B
E B
F

B
G

C
D

C
E

C
F

C
G D
E

D
F

D
G E
F

E
G FG

0.0

0.2

0.4

0.6

0.8

1.0

(b) Model Robust m=7, g=5

Since the designs produced by the Altscreen and ModelRobust func-
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tions have complex aliasing, like the Plackett-Burman designs, they are best
analyzed with a regression subset procedure as described above. Some authors
such as Lin (1999) have suggested the use of forward stepwise regression to
identify an appropriate model for data arising from a design with complex
aliasing. To illustrate this proceedure in R, consider again the data for the
cast fatigue experiment. The step function could be used as shown below to
identify a model.

> null <- lm( y ~ 1, data = castfr )

> up <- lm( y ~ (.)^2, data = castfr )

> step( null, scope = list(lower = null, upper = up),

+ direction = "forward", steps=4)

This code operates on the reduced data frame castfr containing only the main
effect columns and the response from the Plackett-Burman design created in
the code shown earlier. null defines a model with the minimum number of
terms to be considered. In this case that is a model with only an intercept. up
defines the set of all terms to be considered for the model. In this statement the
model formula, y ~ (.)^2, creates all main effects and two-factor interactions.
In the call of the step function, null is specified as the starting model and the
option steps=4 specifies the maximum number of forward steps. This should
normally be set to 1/3 of the number of runs in the design because due to
the effect sparsity principle there will rarely be more than that number of
important effects. The step function uses the AIC or equivalently Mallows’s
Cp to decide whether additional terms should be added to the model. Running
this code results in two forward steps. In the first step, main effect F is added
to the model, and in the second and final step, main effect D is added to the
model.

In the analysis of the cast fatigue experiment discussed earlier, two alter-
native models were plausible. Authors of the original article describing the
experiment thought the model including main effects F and D was appropri-
ate, but using all-subsets regression, the two-variable model (F and FG) and
the three-variable model (D, F , and FG) fit the data much better. Both of
these models do not include any interactions that do not involve at least one
of the main effects in the model (effect heredity). In this example, the three-
term model contains one additional term that is not in the two term model,
and that term can be tested for significance, in a separate fit.

The downside of using a forward selection procedure is that it identifies one
and only one model for the data. In some cases, this can be misleading and
predictions from this model may not be accurate. This can be caused when
there is more than one model that fits the data well. A forward selection only
identifies one of these models and it may not be the correct one. A better
approach would be to use an all-subsets selection procedure. When choosing
the model from the all-subsets procedure make sure the adjusted R2

a is at
or slightly less than the maximum, and that the model that obeys the effect
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heredity principle (i.e., it includes no interactions where neither parent main
effect is in the model).

Hamada and Wu (1992) proposed a more involved iterative stagewise for-
ward stepwise regression approach, guided by the principle of effect heredity,
that overcomes some of the objections to using a straightforward regression.
Jones and Nachtsheim (2011) proposed a simpler approach to forward regres-
sion that also forces effect heredity. Their approach, incorporated with the
“Combine” option in the JMP forward stepwise regression, requires that any
forward step that enters an interaction effect to the model also enters the
main effects involved in that interaction. This avoids finding models that do
not obey effect heredity (a situation that occurred less than 1% of the time
in Li et al.’s (2006) study of 113 published factorial experiments).

In the daewr package, the functions ihstep and fhstep can perform a
forward regression that enforces effect heredity. ihstep fits the initial model.
The arguments for this function are a vector of response data and a data
frame containing the design. It prints a summary of the model and returns
a vector of the terms in the model. The fhstep function adds to a model
already created. An example of calling these functions on the data from the
cast fatigue experiment and a portion of the output are shown below.

> des <- castfr[ ,c(1, 2, 3, 4, 5, 6,7 )]

> y <- castfr[ ,8]

> library(daewr)

> trm <- ihstep( y, des )

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.73025 0.07260 78.930 7.4e-13 ***

F 0.45758 0.07260 6.303 0.000232 ***

G 0.09158 0.07260 1.261 0.242669

F.G -0.45875 0.07260 -6.319 0.000228 ***

Multiple R-squared: 0.9104, Adjusted R-squared: 0.8767

> trm <- fhstep( y, des, trm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.73025 0.05819 98.482 2.05e-09 ***

F 0.40085 0.06307 6.355 0.00142 **

G 0.03485 0.06307 0.553 0.60437

F.G -0.41495 0.07302 -5.682 0.00235 **

A 0.02460 0.06307 0.390 0.71258

A.E -0.17020 0.07302 -2.331 0.06715 .

E -0.06340 0.06307 -1.005 0.36094

Residual standard error: 0.2016 on 5 degrees of freedom
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In the first call to ihstep, the FG interaction correlated most with the
response, so the terms F , G, and FG were included in the initial model to
preserve effect heredity. In the call to fhstep, the additional argument trm is
required. This is the vector of terms included in the initial model by ihstep.
In the example, the function fhstep finds the AE interaction term correlates
highest with the residuals from the initial model, and therefore the terms A,
E, and AE were added to the model. fhstep can be called repeatedly adding
terms to a previous model at each call. Since the two steps, in the exam-
ple above, have included three insignificant terms in the model, the function
bstep, also in the daewr package, can be used to remove the term with the
highest p-value from the model. Three repeated calls of bstep, as shown be-
low, results in the model including F , FG, and AE. All terms in this model
are significant and the adjusted R2 is .9349, but the model does not obey
effect heredity.

> trm <- bstep(y, des, trm)

> trm <- bstep(y, des, trm)

> trm <- bstep(y, des, trm)

The use of the functions ihstep, fhstep, bstep are simple to use and have a
better chance of finding a reasonable model than forward stepwise regression.
However, in some cases, when analyzing data from a design with complex
aliasing, an all-subsets regression may reveal several models with the same
number of terms, similar R2

a’s, each obeying the effect heredity principle, and
yet have few terms in common. In this situation selecting the correct model
with the data at hand may be impossible.

If this is the case, additional follow-up experiments may still be required
to provide data that will allow accurate discrimination between the alternate
models. The optFederov function in the package AlgDesign can be used as
shown in Section 6.2.2 to find an additional block of data that will make the
augmented design D-optimal for the model composed of all the terms from
the competing models. Then a model can be fit involving all terms, and the
significance of each term can be tested.

In Plackett-Burman or alternative screening designs with a large number
of factors, the computational effort required to do an all-subsets regression to
search for the most appropriate model may be prohibitive. Methods have been
proposed to limit the number of candidate terms for a model search. Lawson
(2002) proposed limiting the interaction candidates for an all-subsets regres-
sion based on the alias structure of the design. He provides a SAS (Institute,
2012) macro to implement the method. Box and Meyer (1993) proposed a
Bayesian approach for identifying an appropriate model, and Chipman et al.
(1997) proposed using the Bayesian stochastic search algorithm that incorpo-
rates the effect heredity principle through heredity priors that capture the re-
lation between the importance of an interaction term and the main effects from
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which it is formed. Woodward (2011) has incorporated Chipman et al.’s (1997)
search algorithm using the public domain program WinBUGS (Spiegelhalter
et al., 1999) that can be called through his Excel add-in BugXLA. Wolters and
Bingham (2011) proposed a simulated annealing model search with associated
graphs that are used to identify good canditate models and assess the degree
of uncertainty in model selection. They also provide MATLAB® (MATLAB,
2010) code to implement this strategy. For designs where the CPU time re-
quired to run the regsubsets function (as illustrated in the analysis of the
cast fatigue experiment) is too long, one of these alternate analysis strategies
should be employed.

In many situations, model robust screening designs with complex aliasing
may reduce the total number of experiments required to identify the important
main effects and two factor interactions. However, the data analysis with a
regression subsetting procedure can be more involved than the simple analysis
of 2k−p designs. Also, if a three-factor interaction like that shown in Figure
6.10 is important, it would be very difficult to detect with regression subset
selection. Therefore both traditional 2k−p designs and model robust designs
with complex aliasing should have their place in an experimenter’s toolbox.

6.7 Mixed Level Factorials and Orthogonal Arrays (OAs)

In the preliminary stage of experimentation, where the objective may be to
determine which factors are important from a long list of candidates, two-level
fractional factorial designs or Plackett-Burman designs are often appropriate.
If a factor has quantitative levels, the two levels are denoted symbolically
by (−) and (+), where (−) represents the lowest level the experimenter would
consider, and (+) represents the highest level the experimenter would consider.
The high and low are usually spread out as far as feasibly possible in order
to accentuate the signal or difference in response between the two levels. If a
factor has qualitative levels, the (−) and (+) designations are arbitrary, but
the two levels chosen normally would be two that the experimenter believes
should result in the maximum difference in response.

Sometimes, however, two levels for each factor may not be adequate. In cases
where the experimenter would like to consider nonlinear effects of quantita-
tive factors or qualitative factors with more than two alternatives, two-level
fractional designs will not be suitable. For example, Fannin et al. (1981) re-
port an experiment investigating the effects of four three-level factors and two
two-level factors upon the rate of bacterial degradation of phenol for the pur-
pose of evaluating the fate of chemicals in aquatic ecosystems. A full factorial
would require 34 × 22 = 324 experiments; however, the study was completed
using only a fraction of these runs by utilizing a mixed level fractional factorial
design based on an orthogonal array. Taguchi (1986) describes an experiment
to determine the factors that affect the durability of an auto clutch spring.
The factors and levels are shown in the table on the next page.

The levels of factors A, C, F , and G represented discrete alternatives that
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were of interest. Factors B, D, and E were continuous factors and three levels
were included in order to determine whether there was a curvilinear relation
between these factor levels and durability of the clutch springs. There was
also interest in the interaction between factors D and F and the interaction
between factors D and G. A full factorial would require 35 × 22 = 972 exper-
iments, but Taguchi was able to get valid data with a fractional design that
included only 27 experiments.

Factor Description Levels
A Shape 3 alternatives
B Hole ratio 2 possibilities
C Coining 2 possibilities
D Stress σt 90 65 40
E Stress σc 200 170 140
F Shop peening 3 alternatives
G Outer perimeter planing 3 alternatives

An orthogonal array OA(N,sm1

1 , . . . , s
mγ
γ ,2) of strength 2 is an N ×m ma-

trix, m = m1 + ⋯ +mγ where mi columns have si(≥ 2) symbols (or levels)
such that for any subset of two columns all possible combinations of the sym-
bols occur equally often in the matrix. These designs are orthogonal in the
main effects and are of resolution III. However, in some cases like the Plackett-
Burman designs, they can be used to estimate a limited number of interactions
as well. A necessary condition for the existence of an orthogonal array is that
the number of runs N be divisible by the product of each possible pair of
factor levels. For example, in the experiment described by Taguchi, with five
three-level factors and two two-level factors, 35 ×22, no orthogonal array frac-
tional factorial exists with N = 54 runs because 54 is not divisible by 2×2 = 4.
In addition, no orthogonal array exists with N = 24 runs because 24 is not
divisible by 3 × 3 = 9. However, an orthogonal array with N = 36 happens to
exist since 36 is divisible by 4, 6, and 9.

Entire books have been written on methods for obtaining particular orthog-
onal array designs; however, there are R functions that will do the work. Specif-
ically, the function show.oas in the package DoE.base (Groemping, 2012) dis-
plays a list of orthogonal arrays (from a catalog taken mainly from Kuhfeld,
2009) that would be appropriate for a given number of factors and levels. The
call show.oas(factors=list(nlevels=c(3,2),number=c(5,2))) shown in
the code on the next page requests a list of orthogonal arrays that would be
appropriate for a design with five three-level factors and two two-level factors.
The result shows 10 orthogonal arrays in the catalog that would work. The
first orthogonal array (number 80 in the catalog) has 36 runs (L36) with 11
two-level factors (2.11) and 12 three-level factors (3.12), and so forth.
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> library("DoE.base")

> show.oas( factors = list(nlevels = c(3,2), number = c(5,2)))

122 designs found,

the first 10 are listed

name nruns lineage

80 L36.2.11.3.12 36 3~12;12~1;:(12~1!2~11;)

81 L36.2.10.3.8.6.1 36

85 L36.2.4.3.13 36 3~12;12~1;:(12~1!2~4;3~1;)

87 L36.2.3.3.9.6.1 36

89 L36.2.2.3.12.6.1 36 3~12;12~1;:(12~1!2~2;6~1;)

90 L36.2.2.3.5.6.2 36

374 L72.2.47.3.12 72 2~44;3~12;4~1;:(4~1!2~3;)

375 L72.2.46.3.8.6.1 72 2~43;3~8;4~1;6~1;:(4~1!2~3;)

380 L72.2.44.3.12.4.1 72

382 L72.2.43.3.8.4.1.6.1 72

The function oa.design in the package DoE.base finds an appropriate array
in the catalog, and assigns the factors to columns in the array. The code below
illustrates the use of this function to find a fractional factorial array design
that includes five three-level factors and two two-level factors. The option
columns="min3" causes the factors to be assigned to columns in an orthogonal
array in a way that aliasing of main effects with two-factor interactions is
minimal.

> des <- oa.design(nlevels = c(3, 3, 3, 3, 3, 2, 2),nruns = 36,

+ columns = "min3", randomize = TRUE, seed = 104)

If the function oa.design does not find an orthogonal array that meets
the specified requirements it will return a full factorial, replicated for enough
residual degrees of freedom.

When the purpose of experimentation is to screen the important factors
in a preliminary experiment, the number of runs required for an orthogonal
array may be more than the experimenter is willing to run. For example, in
the 35×22 experiment, only 13 degrees of freedom are required to estimate all
the main effects. If the experimenter, relying on the effect sparsity principle,
believes that only one or two factors and their interaction will be important
(like the last example presented), then 36 runs may be more than necessary.

In this case, an orthogonal main effects plan (that provides uncorrelated
estimates of all main effects) (Addelman and Kempthorne, 1961) or a near
orthogonal array can be used. Although there are methods of constructing
orthogonal main effect plans manually (Dey, 1985), an alternative is to create
a near orthogonal array by selecting a D-optimal subset of a full factorial
design or orthogonal array. The R code on the next page illustrates how this
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can be done using the oa.design function in the package DoE.base, and the
optFedeov function in the package AlgDesign. The oa.design function is
used to create a 36-run orthogonal array set of candidates, and the optFedeov
function is used to select an 18-run D-optimal subset that is stored in the
object optim. The function oa.design by default labels the factors in the
design, A-G.

> library(DoE.base)

> cand <- oa.design( nlevels = c(3, 3, 3, 3, 3, 2, 2),

+ nruns = 36, columns = "min3", seed = 104)

> library(AlgDesign)

> optim <- optFederov( ~ A + B + C + D + E + F + G, cand,

+ nRepeats = 10, nTrials = 18, criterion = "D")

Creating a design in this way guarantees low correlation between the factors
in the design. If the experimenter wanted to estimate the interactions between
the last three-level factor E and the two two-level factors F and G, in addition
to the main effects, the function call would be changed as follows:

> optim <- optFederov( ~ A + B + C + D + E + F + G + E:F + F:G,

+ cand, nRepeats = 10, nTrials = 18,criterion = "D")

Schoen (2010) compares optimal designs to orthogonal array designs for
estimating main effects and all two-factor interactions.

As an example of the use of a near orthogonal array for estimating main
effects, consider a conjoint analysis described by Wang et al. (2004). These
types of studies are commonly done in market research to determine the rel-
ative importance of different product attributes with respect to a customer’s
preference for the product. The purpose of this particular study was to assess
the market potential for using low-grade hardwood lumber (with knots and
other character marks) to produce fine furniture since the low-grade hardwood
is underutilized. The products studied were hardwood chairs, and the product
attributes (or factors) and levels are shown in Table 6.14.

A questionnaire was developed where potential customers were asked to
rate product alternatives, composed of combinations of the levels shown in
Table 6.14, on a 7-point scale (1 = least preferred to 7 = most preferred).
The surveys were conducted in the Vermont state fair where an exhibit booth
was set up where respondents were able to see the design and character mark
density of the chairs and ask questions about them. A label was attached to
each chair indicating the price and guarantee policy. Potential respondents
were enticed into filling out the survey by giving them a chance to enter a
raffle to win the chair of their choice.

There are 42×3×2 = 96 possible combinations of levels of the factors shown
in Table 6.14, which would be too many to ask a respondent to rate. Twelve
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Table 6.14 Product Attributes and Levels for Conjoint Study
Factor Product Attribute Levels
A Design 1 = Rocking Chair

2 = Arm Chair
3 = Office Chair I
4 = Office Chair II

B Price 1 = $350.00
2 = $425.00
3 = $500.00
4 = $575.00

C Density of Marks 1 = Clear
2 = Medium
3 = Heavy

D Guarantee Policy 1 = 1-Year
2 = Unconditional

profiles or product alternatives were created from these levels using a mixed-
level fractional factorial design.

The following R code could be used to search for an orthogonal array for this
example. The output would show the smallest orthogonal array for examining
a 42×3×2 design was 48, which is still too many alternatives to ask a respondent
to rate.

> show.oas(factors = list(nlevels = c(4, 3, 2), number =

+ c(2, 1, 1)))

The code below shows how a 12-run near orthogonal array could be created
as a subset of an orthogonal array.

> cand <- oa.design(nlevels = c(4, 4, 3, 2),

+ randomize = FALSE, seed = 2013)

> library(AlgDesign)

> optim <- optFederov( ~ A + B + C + D, cand,

+ nRepeats = 10, nTrials = 12, criterion = "D", aug = FALSE)

Table 6.15 shows the 12-run design in actual factor levels that was used in
this study. Respondents were asked to rate all 12 profiles. The average rating
from 122 Vermont respondents is shown in the last column. The raw (sum-
mary) data for the surveys consisted of a count of the number of respondents
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rating each profile with a 1, 2,. . .,7. This is similar to the data for the teaching
experiment described in Section 2.6.3.

Table 6.15 Mixed Level Fractional Factorial for Conjoint Study
Density Guarantee Average

Profile Design Price ($) of Marks Policy Rating
1 Rocking Chair 350 Clear 1-Year 5.32273
2 Rocking Chair 425 Heavy 1-Year 5.27871
3 Rocking Chair 575 Medium Unconditional 5.35539
4 Arm Chair 425 Medium Unconditional 4.73211
5 Arm Chair 500 Clear Unconditional 4.75073
6 Arm Chair 575 Heavy 1-Year 4.24606
7 Office Chair I 350 Heavy Unconditional 4.62892
8 Office Chair I 500 Medium 1-Year 3.94293
9 Office Chair I 575 Clear 1-Year 3.85872

10 Office Chair II 350 Medium 1-Year 4.39812
11 Office Chair II 425 Clear Unconditional 4.71872
12 Office Chair II 500 Heavy Unconditional 4.51137

The authors of the article used SAS proc catmod to model the discrete data,
in the way the polr function in the package MASS was used in Section 2.6.3.
Since the raw summary data was not published in the article, model fitting
will be shown here using the average ratings in Table 6.15. The R code and
results are shown below.

> library(daewr)

> data(hardwood)

> modh <- lm(Rating ~ Price + Density + Guarantee + Design,

+ data = hardwood)

> anova(modh)

Analysis of Variance Table

Response: Rating

Df Sum Sq Mean Sq F value Pr(>F)

Price 1 0.29306 0.29306 91.0850 0.0006732 ***

Density 2 0.00880 0.00440 1.3672 0.3527881

Guarantee 1 0.22687 0.22687 70.5107 0.0011007 **

Design 3 2.19752 0.73251 227.6645 6.344e-05 ***

Residuals 4 0.01287 0.00322

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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These results match the results obtained by the authors with the more
complete set of data. They show that while price, guarantee policy, and chair
design had a significant effect on customer preference, the density of charac-
ter marks did not. This meant that there would be a market for hardwood
furniture made with low-grade wood. The model could be used to predict the
preference (demand) for the different chair designs. If price is treated as a con-
tinuous variable rather than a factor, its regression coefficient would indicate
the price elasticity.

In general, orthogonal array designs and orthogonal main effect plans are
resolution III designs for fractions of mixed level factorials and most of them,
like Plackett-Burman designs and the other model robust screening designs,
have no defining relation. Except for fractions of 4k×2p designs, the alias struc-
ture is complex in that each interaction is partially confounded with many
main effects. They also share the hidden projection property with Plackett-
Burman and model robust screening designs, and even though they are resolu-
tion III, some interactions may be detected by using single degree of freedom
contrasts and subset selection methods described earlier.

6.8 Definitive Screening Designs

Jones and Nachtsheim (2011) and Jones and Nachtsheim (2013) proposed
a new class of screening designs they called Definitive Screening Designs or
DSDs. In the first article they proposed screening designs for three level factors
that would be useful for accessing possible curvilinear relationships with quan-
titative factors. In these designs, linear main effects are unbiased by quadratic
effects and linear by linear interactions, and no quadratic or linear by linear
interaction is completely confounded with any other. The three-level definitive
screening designs are very efficient and only require 2k + 1 runs for k factors.

In the second article, Jones and Nachtsheim (2013) proposed column aug-
mented DSDs that can handle three-level quantitative factors plus a number
of two-level factors. These designs are still definitive in the sense that main
effects are unbiased by second order effects. The DefScreen function in the
daewr package recalls DSDs from a catalog as shown in the example below. In
the call to DefScreen the first argument m is the number of three-level factors
and the second argument c is the number of two-level factors.

> library(daewr)

> des <- DefScreen( m = 8, c = 2, randomize = FALSE )

> head(des)

A B C D E F G H J K

1 0 1 1 1 1 1 1 1 1 1

2 0 -1 -1 -1 -1 -1 -1 -1 -1 -1

3 1 0 -1 -1 -1 -1 1 1 1 1

4 -1 0 1 1 1 1 -1 -1 -1 -1

5 1 -1 0 -1 1 1 -1 -1 1 1

6 -1 1 0 1 -1 -1 1 1 -1 -1



DEFINITIVE SCREENING DESIGNS 249

Definitive screening designs exist for m = 4 to 12 three-level factors and c

= 0 to 4 two-level factors. Figure 6.17 shows a color map of correlations for
the definitive screening design with eight three-level factors.

Figure 6.17 Color Map of 17-Run DSD for 8 Quantitative FactorsColor map of correlations
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Here it can be seen that main effects are completely uncorrelated or con-
founded with second order effects. Since there is complex confounding among
the second order effects in DSDs, Jones and Nachtsheim (2011) proposed
analysis of data from these designs using the forward stepwise regression that
enforces effect heredity. An example of the analysis of data from a DSD will
be shown in Chapter 13, after quadratic models are introduced in Chapter 10.
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6.9 Review of Important Concepts

When more than one factor is under study, factorial designs are preferable to
studying each factor in separate designs. Experimentation is more efficient and
interactions can be detected, which could be the most important information
obtained from the experiments. However, if the list of factors to be studied is
long, factorial designs may require too many experiments to be practical even
when there are only two levels of each factor and no replicates. Fractional
factorial designs (CRFF, PB, or OA) require only a fraction of the runs for
a full factorial, yet preserve many of the benefits such as orthogonality and
ability to detect interactions. Figure 6.18 illustrates when these designs should
be used in relation to the designs presented in earlier chapters.

Figure 6.18 Design Selection Roadmap
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In order to preserve benefits of factorial designs, the runs in a fractional
factorial must be carefully chosen. For half-fractions of 2k designs this is ac-
complished by choosing a full factorial in k−1 factors and assigning the coded
factor levels of the kth factor to the product of the coded factor levels of all
the other factors. The defining relation is used to determine the alias struc-
ture of the design that shows which interaction is confounded or aliased with
each estimable effect. No replicates are included in a fractional factorial design
and the analysis is conducted by making a normal or half-normal plot of the
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effects estimated by regression. The principles of effect sparsity and hierarchi-
cal ordering help in interpreting the results.

The subset of runs for one-quarter and higher fractions of 2k factorials can
also be carefully selected by choosing generators that confound p added factors
to interactions among the k−p factors in the base design. From the generators
the defining relation and alias structure for the design can be determined.
The FrF2 function in the R package FrF2 can generate designs that have the
highest resolution and minimum aberration among all 2k−p designs with the
same number of runs. Designs of resolution R confound main effects with R−1
and higher order interactions. These designs also have a projective property.
When only R − 1 factors or less appear significant after running a resolution
R design, the insignificant factors can be ignored and a full factorial in R − 1
factors will remain. The 2k−p fractional factorial projects to a 2R−1 full factorial
in R − 1 factors.

After analysis of data from a resolution III fractional factorial, the interpre-
tation may be straightforward if only one factor appears to have a significant
effect. When more than one factor appears to have a significant effect, the
interpretation may be more difficult due to aliasing of interactions with main
effects. Augmenting a resolution III fractional factorial with a foldover or mir-
ror image fraction can often eliminate the confounding between apparently
important main effects and interactions, and can allow for a simple interpre-
tation of the effects after only a fraction of the runs needed for a full factorial.

When confounded strings of two-factor interactions appear significant when
analyzing data from a resolution IV design, augmenting the design with cer-
tain foldover fractions or D-optimal subsets of runs can provide the data to
determine which interactions are significant.

Plackett-Burman and model robust screening designs preserve many of the
benefits of factorial and fractional factorial designs such as orthogonality
among main effects and the projective property. In addition, these designs
are available with a wider choice of run sizes than there are for fractional
factorial designs. Regression subset selection procedures can often detect the
important main effects and interactions in a Plackett-Burman or model robust
screening design without requiring additional experiments such as a foldover
or D-optimal fraction.

Finally, when more than two levels are required for some factors, mixed
level fractional factorials can be created using orthogonal array and orthogo-
nal main effect plans that are generated with the oa.design function in the
DoE.base package. These designs are similar to Plackett-Burman designs in
that they are orthogonal in the main effects and have no defining relation.
Many of these designs also have a projective property, and interactions can
be detected without additional experiments using methods of analysis similar
to those employed for Plackett-Burman designs.
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6.10 Exercises

1. Consider a 23−1 factional factorial design.

(a) Modify the FrF2 function call in Section 6.2 to create a list of the runs
in the design.

(b) Determine the defining relation.

(c) Determine the complete alias pattern.

(d) Examine the alias structure using FrF2.

2. Melo et al. (2007) used a 24−1 factional factorial design with generator
D = ABC to study the factors that influence the production of levan by
aerobic fermentation using the yeast Zymomonas mobilis. Levan is a sugar
polymer of the fructan group, which has been shown to have anti-tumor
activity against sarcoma and Ehrlich carcinoma in Swiss albino mice. The
factors varied in the fermentation medium and their levels are shown in the
table below.

Levels
Label Factor − +

A Sucrose initial concentration(g.L−1) 150 250
B Temperature(○C) 20 30
C Yeast extract initial concentration(g.L−1) 2.0 5.0
D Agitation(rpm) 50 100

(a) What is the defining relation and complete alias structure for this design?

(b) What is the resolution of this design?

(c) The fermentations were carried out batchwise in Pyrex flasks. After
72 hours of fermentation, the levan produced was extracted from the
fermented medium and its dry weight was determined. The results
(in g.L−1) for the eight experiments (in standard order) were: 4.70,
14.67, 1.71, 3.73, 9.47, 7.61, 0.15, 4.78. From this data, calculate the
seven effects and make a normal probability plot to determine what is
significant.

(d) Delete the smallest three effects and fit the model again. Are the four
effects left in the model significant?

(e) Based on the effect heredity principle, what do you think the significant
string of aliased two-factor interactions could represent?

(f) Can the design be collapsed to a full factorial by ignoring insignificant
factors?

(g) Based on what you said in (e) write an interpretation of the significant
effects and interaction. Based on your model determine the factor levels
that will produce the maximum dry weight of levan.

3. Use FrF2 to create a quarter fraction 25−2 design.
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(a) Use the design.info function to examine the aliases and determine the
generators used by FrF2 to create the design.

(b) Determine the defining relation.

(c) Verify that the alias structure for this design can be obtained from the
defining relation you found in (b).

(d) Suppose that after analysis of data from this experiment that two main
effects A and D appear to be significant. Because of the confounding
between main effects and two-factor interactions, interpreting the results
to mean that these two main effects are the only significant effects could
be misleading. Using the effect heredity principle, suggest two alternate
plausible models that could explain the data.

(e) List the experiments in a foldover fraction that you could use to augment
the original eight experiments in order to remove the aliasing between
main effects and two-factor interactions.

4. Erhardt (2007) ran a 28−4 fractional factorial experiment to determine the
factors that affect flight time of paper helicopters. The standard design is
shown in Figure 6.19 below with all dimensions in centimeters. The factors

Figure 6.19 Standard Helicopter Design
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and levels (in centimeters) he studied are shown in the table below. The
low level on paper weight was phone book white pages paper, and the high
level was standard copy paper. The fold direction was against (opposite to)
or with the direction of rotation.
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Levels
Label Factor − +

A Rotor length 5.5 11.5
B Rotor width 3.0 5.0
C Body length 1.5 5.5
D Foot length 0.0 2.5
E Fold length 5.0 11.0
F Fold width 1.5 2.5
G Paper weight telephone book page copy paper
H Fold direction against with

(a) What would you recommend for the generators of a 28−4 design?

(b) Create the design you recommend in (a) and randomize the order of the
runs. What is the experimental unit?

(c) List the aliases (up to three-factor interactions) for the 15 effects that
can be estimated.

(d) Actually run the experiments by making the helicopters and timing them
with a stopwatch.

(e) Calculate the effects (or regression coefficients) and make a half-normal
plot of the effects.

(f) Using the principle of effect heredity, try to determine what any strings
of aliased two-factor interactions, that appear significant on your plot,
represent.

(g) Which factors would you include in a follow-up design to determine the
combination of factor levels that produces the optimum flight time?

5. Create a 27−3
IV design using FrF2 with generators E = ABC, F = ABD,

G = ACD.

(a) Determine the defining relation for this design.

(b) Determine the confounded strings of two-factor interactions that can be
estimated from this design.

(c) Suppose that after the analysis of data from this experiment, the signif-
icant effects appear to be B, BC +AE +FG, and BE +AC +DG. What
foldover fraction would you recommend in order to determine which spe-
cific interactions are causing the two strings of confounded interactions
to appear significant?

(d) List the experiments in the foldover fraction you recommend in part (c).

6. Consider the experiment to study factors that affect the percent removal
of arsenic from drinking water using a iron coated sand filter.

(a) Modify the R code in Section 6.5.1 to produce the design shown in Table
6.8.
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(b) Determine the defining relation for the experiments in the first block
and show the confounding of main effects with strings of two-factor in-
teractions.

(c) Calculate the effects and make a half-normal plot of them using only the
data from block 1 in Table 6.8.

(d) Determine the defining relation for the combined experiments.

(e) Calculate the effects, including the block effect, and make a half-normal
plot of them using all the data in Table 6.8. What interactions are con-
founded with the block effect?

7. Olsen et al. (2014) performed a 16-run 210−6
III fractional factorial in 10 factors

labeled A, B, C, D, E, F , G, H, J , and K. The purpose was to identify
factors in the synthesis of an Al-modified anatase catalyst support that
affect the final properties. The generators for the design were E = ABCD,
F = BCD, G = ACD, H = CD, J = ABD, and K = ABC. The response
properties measured on the resulting catalyst supports were Surface Area,
Pore Diameter, and Pore Volume. The end goal was to identify factors that
would allow the researchers to synthesize catalyst supports with different
pore diameters while keeping Surface Area and Pore Volume as large as
possible. The data for the three responses are shown in standard order in
the table below.

Run Surface Area Pore Diameter Pore Volume
1 49.6 6.4 0.11
2 66.8 5.7 0.12
3 103.9 6.1 0.21
4 61.0 7.6 0.16
5 375.4 3.5 0.33
6 332.0 3.5 0.35
7 203.0 3.7 0.20
8 176.7 6.5 0.31
9 123.4 10.1 0.36

10 368.6 3.6 0.31
11 168.7 15.6 0.52
12 150.4 12.3 0.49
13 123.5 12.1 0.41
14 94.9 17.3 0.46
15 308.1 14.9 0.84
16 93.7 15.3 0.41

(a) Calculate a saturated set of effects for each of the three responses and
determine the aliases up to two factor interactions for each calculated
effect.

(b) Use graphical methods to determine the important effects.

(c) Can any conclusions be drawn? What do you recommend be done next?
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8. Prince (2007) performed a 25−2 fractional factorial in the process of op-
timizing a clinical assay to detect Streptococcus pyogenes with real-time
PCR. Optimization of this process would allow hospitals to detect Strep
infections in less than 30 minutes with 99% accuracy. The factors he stud-
ied were A=Number of S. pyogenes colonies (1 or 4), B=Boiling time (1
min. or 3 min.), C=Centrifuge time (0 min. or 2 min.), D=cycling temper-
ature (60○ or 61○), E=Cycling time (5/10 sec. or 8/13 sec.). The generators
for the design were D = AC and E = BC.

(a) The response data (in standard order) from the eight experiments were:
1.31091, 1.43201, 1.29951, 1.37199, 1.33566, 1.46820, 1.39023, 1.41531.
Calculate the effects and make a half-normal plot of the effects. Identify
any effects you believe may be significant.

(b) Determine the confounding pattern or alias structure for the design.

(c) What are the aliases of the largest effect in absolute value?

(d) Prince performed eight more experiments according to a foldover (sim-
ilar to that shown in Table 6.8) and the resulting data were: 1.31702,
1.38881, 1.32222, 1.36248, 1.33826, 1.32654, 1.32654, 1.34635. Combin-
ing this data with the data from the original 8 runs, calculate the 15
effects including a block effect for the differences in the two groups of
experiments.

(e) What is the defining relationship and alias structure for the complete
set of 16 experiments?

(f) Make a half-normal plot of the 15 effects and determine what appears
to be significant from the combined set of data.

(g) Provide an interpretation for all effects and interactions you determine
are significant, and discuss how the conclusions and interpretation after
16 experiments differs from what could have been concluded after the
first 8 experiments.

9. Use the pb function in the package FrF2 to create a Plackett-Burman design
to study 15 factors in 20 runs.

10. Consider the data from the chemical reaction experiment from Box and
Meyer (1993) shown in Table 6.16 on the next page. The first five columns
defined the factor settings for the experiment, and the remaining unassigned
columns represent aliased interactions.

(a) Use the R lm function to calculate the effects for all 11 columns and
make a half-normal plot.

(b) Use the regsubsets function in the leaps package to perform an all
subsets regression using all main effects and two-factor interactions as
candidate variables.

(c) What model do you feel is appropriate for the data?

(d) What factor settings would you recommend to maximize the %Reacted?
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Table 6.16 Design Matrix Response for Reactor Experiment
Run A B C D E 6 7 8 9 10 11 %Reacted

1 + − + − − − + + + − + 56
2 + + − + − − − + + + − 93
3 − + + − + − − − + + + 67
4 + − + + − + − − − + + 60
5 + + − + + − + − − − + 77
6 + + + − + + − + − − − 65
7 − + + + − + + − + − − 95
8 − − + + + − + + − + − 49
9 − − − + + + − + + − + 44

10 + − − − + + + − + + − 63
11 − + − − − + + + − + + 63
12 − − − − − − − − − − − 61

11. Curtis et al. (1982) proposed to conduct an experiment to study the effect
of four factors in the software development process upon the software life
cycle cost and the number of residual errors. The factors and levels are
shown in the table below:

Levels
Label Factor − +

A Design methodology Functionally structured Data structured
B Programming language Ada CMS-2
C Source language debugger No Yes
D Testing strategy Functional Structural

(a) A 24−1 fractional factorial design was proposed to study these factors
since the cost of building and testing a multi-module system can be
quite high. The author proposed to use a design with generator C = AB.
Suggest a better design generator and explain why you think it would
be better.

(b) If the number of levels for factor A=Design methodologies and
B=Programing languages were three rather than two, what is the mini-
mum number of runs required for an orthogonal array design for studying
two factors at three levels and two factors at two levels (i.e., 32 × 22)?

(c) Use the FrF2 and AlgDesign packages to create a near orthogonal 12-run
fractional factorial design for a 32 × 22.

12. Kamohara et al. (2001) used an 18-run orthogonal fractional factorial to
investigate the effect of 8 factors (37×2) upon the Vt variance of MOSFETs
(metaloxidesemiconductor field-effect transistor). The list of factors and
number of levels is shown below. The list of experiments and the response,
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Label Factor Number of Levels
A SD Energy 2
B SDE Energy and Dose 3
C Halo Energy 3
D Halo Dose 3
E Halo Tilt Angle 3
F Vt-Impala. Dose 3
G Vt-Impala. Energy 3
H SD Dose 3

S/N, is shown in the table below. The purpose of the experiments was to
find factor level settings to maximize S/N.

Run A B C D E F G H S/N
1 1 1 1 1 1 1 1 1 −0.66
2 1 1 2 2 2 2 2 2 −0.66
3 1 1 3 3 3 3 3 3 −0.69
4 1 2 1 1 2 2 3 3 −0.67
5 1 2 2 2 3 3 1 1 −0.82
6 1 2 3 3 1 1 2 2 −0.69
7 1 3 1 2 1 3 2 3 −0.75
8 1 3 2 3 2 1 3 1 −0.65
9 1 3 3 1 3 2 1 2 −0.66

10 2 1 1 3 3 2 2 1 −0.80
11 2 1 2 1 1 3 3 2 −0.67
12 2 1 3 2 2 1 1 3 −0.65
13 2 2 1 2 3 1 3 2 −1.04
14 2 2 2 3 1 2 1 3 −0.69
15 2 2 3 1 2 3 2 1 −0.67
16 2 3 1 3 2 3 1 2 −0.67
17 2 3 2 1 3 1 2 3 −0.68
18 2 3 3 2 1 2 3 1 −0.71

(a) Read the data into R and create coded factor levels for the two-level
factor A and create linear and quadratic contrast for the three level
factors using the contr.poly(3) function as shown in Section 2.8.1.

(b) Fit a regression model to the data using the coded factor levels for the
two-level factor and the linear and quadratic contrast variables for each
three-level factor in the design.

(c) Fit the model including only the five independent variables with the
highest absolute t-statistics that you found in (b).

(d) Fit the model that includes the coded factor levels for A, the linear
contrast on C, the quadratic contrast on D, the interaction or product
of the quadratic contrasts for B and D, the interaction or product of the
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linear contrast of F , and the quadratic contrast on H, and experiment
with a few other models of your choice.

(e) Do you think a plausible model can be found for the data after these 18
experiments? Why or why not?
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CHAPTER 7

Incomplete and Confounded Block
Designs

7.1 Introduction

One of the two purposes for randomized block designs, described in Chapter
4, was to group heterogeneous experimental units together in homogeneous
subgroups called blocks. This increases the power or precision for detecting
differences in treatment groups. The overall F -test for comparing treatment
means, in a randomized block design, is a ratio of the variability among treat-
ment means to the variability of experimental units within the homogeneous
blocks.

One restriction on randomized block designs is that the number of experi-
mental units in the block must be greater than or equal to the number of levels
of the treatment factor. For the RCB design the number of experimental units
per block, t, is equal to the number of levels of the treatment factor, and for
the GCB design the number of experimental units per block is equal to the
number of levels of the treatment factor times the number of replicates per
block, tr.

When the number of levels of the treatment factor is large in a randomized
block design, the corresponding number of experimental units per block must
also be large. This could cause a problem. For example, frequently in agri-
cultural field tests of new hybrid crops (called varietal trials) the number of
hybrids could be very large (50–100). Since the experimental units are plots
of land, the larger the number of plots included in a block the more diverse
these plots will likely be since they cover a wider physical area. When experi-
mental units are small animals, it is possible to group them into small blocks
of littermates that are genetically more homogeneous. However, when larger
block sizes are required, animals from different litters will be included within
a block, making the groups less homogeneous. Less homogeneity within the
blocks results in more variability among the experimental units within a block
and defeats one of the purposes for using a randomized block design.

One solution to the problem is to construct block designs where each block
only contains a subset of the possible levels of the treatment factor. In that
way the number of experimental units per block, or block size, can be kept
small. Designs that do this are called incomplete block designs. There are two
common types of incomplete block designs. The first type is called a balanced
incomplete block design or BIB, and the other type is called a partially bal-
anced incomplete block design or PBIB. Incomplete block designs are also
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useful when the physical requirements of experimentation make it impossi-
ble to test all levels of the treatment factor within each block of experimental
units. Incomplete block designs are commonly used in agricultural experimen-
tation, animal science, educational testing, and food science.

As an example of a situation where an incomplete block design would be
useful, consider the following situation. In food science, taste panels are often
used to test palatability of new recipes for new food products. In these panels,
subjects are asked to taste and rate different recipes. The different recipes
represent the levels of the treatment factor. A random sample of subjects (or
the experimental units) is included to represent the potential market. Since
there is wide variability in taste among subjects it is better to use a blocked
design where each subject tastes and rates each recipe. However, if there are
many recipes to be tested, subjects will lose their ability to discriminate and
it will be difficult to detect any differences. A solution is to have each subject
(block) taste only a subset of the recipes.

7.2 Balanced Incomplete Block (BIB) Designs

Care must be taken when choosing the subset of treatment combinations
tested in each block of an incomplete block design. If one treatment factor
level is left out of every block, it cannot be compared to the other treatment
levels. If different treatment levels are unequally represented, some compar-
isons of factor levels will have more precision than others.

The optimal way to create an incomplete block design is to have each treat-
ment level equally replicated and appearing within a block with every other
treatment level an equal number of times. This is called a balanced incomplete
block design or BIB. By doing this, all pairwise differences of least squares
treatment means will have the same standard error, and the power for detect-
ing a difference in any two means will be the same.

The simplest way to construct a BIB for the case where there are t levels
of the treatment factor and k < t experimental units per block is to form
all possible subsets of k treatment levels chosen from t. For example, in the
taste panel described above, if there were t = 6 recipes to be tested, and it
was determined that each subject could taste at most k = 3 recipes without
losing discriminatory power, (6

3
) = 20 subjects would be required. All possible

subsets are listed below.
(1 2 3), (1 2 4), (1 2 5), (1 2 6), (1 3 4)
(1 3 5), (1 3 6), (1 4 5), (1 4 6), (1 5 6)
(2 3 4), (2 3 5), (2 3 6), (2 4 5), (2 4 6)
(2 5 6), (3 4 5), (3 4 6), (3 5 6), (4 5 6)

Thus, subject one would taste recipes 1, 2, and 3 in a random order; subject 2
would taste recipes 1, 2, and 4, and so forth. This plan is completely balanced
in that each treatment level or recipe is replicated r = 10 times (or tasted by
10 subjects) and each pair of treatment levels occurs together in the same
block λ = 4 times. For example, treatment levels 1 and 2 occur together only
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in the first four blocks on the first line above. By inspection, it can be seen
that all pairs of treatment levels occur together in only four blocks.

Although taking all possible subsets of size k chosen from t is the simplest
way to form a balanced incomplete block design, there may be other balanced
incomplete block designs that require fewer blocks. If the precision of the
design does not require as many as (

b
k
) blocks, there would be no need to

use that many. For example, if a practical size difference in recipes could be
detected with less than 20 subjects and 10 replicates of each treatment level,
in the taste test panel, perhaps a BIB design could be found with less than
20 blocks. If r is the number of times a treatment level is replicated in an
incomplete block design, λ is the number of times each treatment level occurs
with every other treatment level in the same block, t is the number of levels of
the treatment factor, k is the number of experimental units in a block, and b
is the number of blocks, then the following requirements must be met in order
for that design to be a BIB design.

b ≥ t (7.1)

tr = bk (7.2)

λ(t − 1) = r(k − 1) (7.3)

These relations can be used to find the minimum number of blocks required
for a BIB design. Since r and λ must be integers, by Equation (7.3) we see
that λ(t − 1) must be divisible by k − 1. If t = 6 and k = 3, as in the taste
test panel, 5λ must be divisible by 2. The smallest integer λ for which this
is satisfied is λ = 2. Therefore, it may be possible to find a BIB with λ = 2,
r = 10/2 = 5, and b = (6 × 5)/3 = 10. The function BIBsize in the R package
daewr provides a quick way of finding values of λ and r to satisfy Equations
(7.1) to (7.3) when given the number of levels of the treatment factor t and
the block size k. For example, in the code below the function is called with
t = 6 and k = 3.

> library(daewr)

> BIBsize(6, 3)

Posible BIB design with b= 10 and r= 5 lambda= 2

Fisher (1940) showed that even though Equations (7.1)–(7.3) are satisfied
for some combination of t, b, r, λ, and k, a corresponding BIB may not exist.
If a BIB does exist, Kiefer (1958) and Kshirsager (1958) have shown that it
is D-optimal, thus it can be found using the R package AlgDesign that was
described in Section 6.5.2. The function optBlock in that package can find
BIB designs. For example, the code below searches for a BIB with b = 10
blocks of k = 3 experimental units per block and t = 6 levels of the treatment
factor. The option blocksizes=rep(3,10) specifies 10 blocks of size 3, and
the option withinData=factor(1:6) specifies six levels of one factor.

> library(AlgDesign)

> BIB <- optBlock( ~ ., withinData = factor(1:6),

+ blocksizes = rep(3, 10))
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The object BIB created by optBlock contains a data frame BIB$design with
one column that contains a list of treatment factor levels for each of the 10
blocks in order. Creating the design again with the optBlock function may
result in a different but equivalent BIB.

> des <- BIB$rows

> dim(des) <- NULL

> des <- matrix(des, nrow = 10, ncol = 3, byrow = TRUE,

+ dimnames = list(c( "Block1", "Block2", "Block3", "Block4",

+ "Block5", "Block6", "Block7", "Block8", "Block9",

+ "Block10"), c("unit1", "unit2", "unit3")))

> des

unit1 unit2 unit3

Block1 4 5 6

Block2 2 3 5

Block3 2 3 6

Block4 1 2 5

Block5 1 2 4

Block6 1 5 6

Block7 2 4 6

Block8 1 3 4

Block9 3 4 5

Block10 1 3 6

According to this plan the three experimental units in the first block would
receive treatment levels 4, 5, and 6, the experimental units in the second block
would receive treatment levels 2, 3, and 5, and so forth. By inspection, it can
be seen that each level of the treatment factor is repeated r = 5 times in this
design, and that every treatment level occurs within the same block with every
other treatment level λ = 2 times. Thus, we are assured that this is a balanced
incomplete block design.

Once a BIB design is found, the levels of the treatment factor within each
block should be randomized to the experimental units within that block, as
illustrated for the RCB design in Section 4.2.

7.3 Analysis of Incomplete Block Designs

The model for an incomplete block design is

yij = µ + bi + τj + εij , (7.4)

which is identical to the model for a randomized complete block design given
in Section 4.3. However, the analysis is slightly different due to the missing
observations.
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7.3.1 An Example

Consider the data from a taste panel experiment reported by Moskowitz
(1988), shown in Table 7.1. This experiment is a BIB with t=4 levels of the
treatment factor or recipe, and block size k=2. Thus each panelist tastes only
two of the four recipes in a random order, and assigns a category scale score.
Category scales are commonly used in assessing food likes or dislikes and con-
sist of numbers 1 to 10 that represent descriptive categories. Only (

4
2
) = 6

blocks or panelists are required for a BIB, but in this experiment that number
was doubled in order to increase the power for detecting differences. Thus the
first six panelists and the last six are a repeat of the same BIB design. Subjects
participating in the taste panel were randomly assigned to panelist numbers
and the order of the two recipes tasted by each panelist was randomized.

Table 7.1 Data from BIB Taste Test
Recipe

Panelist A B C D
1 5 5 - -
2 7 - 6 -
3 5 - - 4
4 - 6 7 -
5 - 6 - 4
6 - - 8 6
7 6 7 - -
8 5 - 8 -
9 4 - - 5
10 - 7 7 -
11 - 6 - 5
12 - - 7 4

When analyzing the data from an incomplete block design, the marginal treat-
ment means are not unbiased estimators of the estimable effects µ + τi. For
example, in Table 7.1 the marginal mean for recipe A could be biased low by
the fact that it was not tasted by panelists 4, 5, 6, 10, 11, and 12 who seem
to rate recipes higher. Likewise, the noncentrality factor for the sequential
sums of squares for treatments (or recipes) may contain block effects as well
as treatment effects. The solution to these problems is the same as shown in
Section 3.5.3 for analyzing data from factorial designs with an unequal number
of replicates per cell. The least squares means are used rather than marginal
means, and the type III or adjusted sums of squares for treatments should
be used. The Anova function in the car package can be used to get the type
III or adjusted sums of squares for recipes as shown in Section 3.5.3, or the
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lm function can be used with the recipe term ordered last in the model as
shown in the code below. lm will not produce the type III or adjusted sums
of squares for blocks or panelists, but since differences in panelists are not of
interest they are not needed.

> library(daewr)

> mod1 <- aov( score ~ panelist + recipe, data = taste)

> summary(mod1)

Df Sum Sq Mean Sq F value Pr(>F)

panelist 11 19.333 1.7576 2.301 0.1106

recipe 3 9.125 3.0417 3.982 0.0465 *

Residuals 9 6.875 0.7639

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The F3,9 value for testing recipes was 3.982, which is significant at the α =

0.05 significance level. The adjusted or least squares means can be calculated
using the predict command and the tapply function as shown in Section
3.5.3, but it can be done with less coding using the lsmeans package. The
code below using lsmeans computes the adjusted means, their standard errors
and confidence intervals, and makes Tukey comparisons of all pairs of means.

> library(lsmeans)

> lsmeans(mod1, pairwise ~ recipe, adjust = ("tukey"))

$‘recipe lsmeans‘

recipe lsmean SE df lower.CL upper.CL

A 5.458333 0.4183992 9 4.511849 6.404818

B 6.208333 0.4183992 9 5.261849 7.154818

C 6.833333 0.4183992 9 5.886849 7.779818

D 4.833333 0.4183992 9 3.886849 5.779818

$‘recipe pairwise differences‘

estimate SE df t.ratio p.value

A - B -0.750 0.6180165 9 -1.21356 0.63420

A - C -1.375 0.6180165 9 -2.22486 0.18817

A - D 0.625 0.6180165 9 1.01130 0.74724

B - C -0.625 0.6180165 9 -1.01130 0.74724

B - D 1.375 0.6180165 9 2.22486 0.18817

C - D 2.000 0.6180165 9 3.23616 0.04210

p values are adjusted using the tukey method for 4 means
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The results show the average score for recipe C is significantly higher than
the score for recipe D at the α = 0.05 level, but that no other differences are sig-
nificant at the α = 0.05 level. Another thing that should be noticed in the out-
put is the fact that the standard error of the differences in means is the same
for all pairs of means. This is a result of the fact that a BIB design was used.

7.3.2 Determining the Number of Replicates

A rough estimate of the number of replicates of each treatment level, r = bk
t

,
or the number of blocks, b = tr

k
, required for adequate power for detecting

a practical difference in treatment means in a BIB design can be determined
using the following strategy. If an estimate of σ2, the variance of heterogeneous
experimental units, and ∆, the size of a practical difference in two treatment
means are available, then use the method of Section 3.5.2 to determine the
number of replicates, rcrd, required for a completely randomized design.

If blocking the heterogeneous experimental units into small blocks of size k
is expected to reduce the variance of experimental units within the blocks by
a percentage equal to 100 × (1 − 1

RE
), then following Section 4.5, the number

of replicates required for the blocked design would be r = rcrd/RE and the
number of blocks of size k in an incomplete block would be b = tr/k.

7.4 BTIB and PBIB Designs

Sometimes a BIB design requires more blocks or experimental units than are
available or needed to obtain adequate power for detecting practical differences
in treatment means. In this situation, the number of blocks and experimental
units can be reduced by relaxing the requirements that: (1) each treatment
level be equally replicated and (2) that it appears within a block with every
other treatment level the same number of times. By relaxing these require-
ments, each treatment level will occur more frequently in a block with some
treatment levels than it will with other treatment levels. Therefore some pair-
wise comparisons of treatment means will have smaller standard errors than
others.

In other situations, a BIB design cannot be used because physical con-
straints of experimentation prevent some treatment levels from being tested
together within the same block. For example, an experiment was conducted
to compare the reading of a portable home use blood pressure monitor to
other automatic blood pressure monitors in supermarket pharmacies in or-
der to determine if readings from the portable monitor were biased high. The
experimental unit was the pressure in a subject’s veins at the time it was
measured, and the treatment factor levels were the monitors used to make the
measurement.

Blood pressure is known to vary widely from person to person and within a
person at different times throughout a day. Blood pressure is most consistent
in one person within a short period of time. Therefore the experimental units
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were blocked into homogeneous groups by subject and time. The portable
blood pressure monitor could be carried into a store and a subject’s blood
pressure could be checked within a short period of time by both the automatic
monitor within the store and the portable monitor. However, the monitors
from two stores could not be compared within a block, or short period of
time, because the stores were physically separate. Driving between stores could
completely change a subject’s blood pressure, so the incomplete block design
shown in Table 7.2 was utilized. The response (diastolic blood pressure) is
shown in the table.

Table 7.2 Incomplete Block Design with Blood Pressure Monitors
Treatment

Portable Store A Store B Store C
Block Monitor Monitor Monitor Monitor
1=(subject 1, time 1) 85 77 - -
2=(subject 2, time 1) 80 75 - -
3=(subject 1, time 2) 89 - 73 -
4=(subject 2, time 2) 80 - 70 -
5=(subject 1, time 3) 78 - - 76
6=(subject 2, time 3) 80 - - 70

Here it can be seen that treatment level 1 (portable monitor) appears in a
block with every other treatment level, but the other treatment levels never
appear together in a block. The code to analyze the data using R aov function
and the lsmeans function is shown below.

> library(daewr)

> modm <- aov( pressure ~ Block + Treatment, data = BPmonitor)

> library(lsmeans)

> lsmeans(modm,pairwise~Treatment,adjust=("tukey"))

In the resulting table of comparisons of means, shown at the top of the next
page, it can be seen that the standard errors of the differences between the
portable monitor (P) mean and the means for the other monitors (A, B, and
C) are smaller than the standard errors of the comparisons between A and B,
A and C, and B and C.
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$‘Treatment pairwise differences‘

estimate SE df t.ratio p.value

A - B 6.5 4.262237 3 1.52502 0.52124

A - C -0.5 4.262237 3 -0.11731 0.99929

A - P -6.5 3.013857 3 -2.15670 0.31098

B - C -7.0 4.262237 3 -1.64233 0.47437

B - P -13.0 3.013857 3 -4.31341 0.06701

C - P -6.0 3.013857 3 -1.99080 0.35640

p values are adjusted using the tukey method for 4 means

The design for the blood pressure monitor experiment is a special case of an
incomplete block design that Bechhofer and Tamhane (1981) have called a
BTIB (balanced with respect to test treatments). In these designs one treat-
ment level is designated as the control level and there is more interest in
comparing each of the other treatment levels with the control than there is in
comparing the other treatment levels. In a BTIB design each treatment must
appear the same number of times (λ0) in a block with the control treatment,
and each test treatment must occur the same number of times (λ1) in a block
with every other test treatment. This results in a design that is more efficient
in comparing each treatment with the control but less efficient in comparisons
among the other treatment levels. One way to form a BTIB design with t
levels of the treatment factor and block size k is to combine a control level to
each block of a BIB design with t − 1 levels of the treatment factor and block
size k − 1.

The BTIB design, described in the last paragraph, is a special case of a par-
tially balanced incomplete block design (or PBIB) with two associate classes.
In these designs each pair of treatments are either first associates or second
associates. First associates occur together in a block λ1 times, and second
associates occur together in a block λ2 times, where λ1 > λ2. The standard er-
ror of the difference in treatment means for first associates is smaller than the
standard error of the difference in means for second associates. There are mul-
tiple ways of creating PBIB designs. Bose et al. (1954) have published tables
of some of the most useful plans. Jarrett and Hall (1978) have described a class
of PBIB designs called generalized cyclic incomplete block designs, which have
good statistical properties and are easy to create. Generalized cyclic incom-
plete block designs with block size k and b = t blocks can be created following
the steps listed below.

1. To form a generalized cyclic design with b = t,

(a) Start with a subset of k treatment factor levels as the initial block.

(b) Add 1 (modulo t) to each treatment level in the initial block to form the
next block.

(c) Continue adding blocks until you have t blocks.

To illustrate this, consider creating an incomplete block design with t = 6
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and k = 3. The BIB design with the smallest number of blocks for this combi-
nation is found (solving Equations (7.1) to (7.3) to be b = 10). A generalized
cyclical incomplete block design for testing t = 6 levels of the treatment factor
can be found with b = t = 6 blocks. To find a design with six blocks, following
the steps above, start with a subset of k = 3 levels of the treatment factor to
be tested in the initial block, that is,

(1 2 4)

Next add one to each treatment level to get the treatment levels in the next
block, that is,

(2 3 5)

Continue this modulo 6 (i.e., 7 modulo 6 = 1, etc.) to form the following.

Block Treatments
1 1 2 4
2 2 3 5
3 3 4 6
4 4 5 1
5 5 6 2
6 6 1 3

The treatment levels in each block would be randomized to the three exper-
imental units in each block. The function design.cyclic in the R package
agricolae can create generalized cyclic designs with t blocks of size k. For
example, the code below shows the commands to create a generalized cyclic
design with t = 6, k = 3. The first argument for design.cyclic is a vector
containing the levels of the treatment factor. The second argument is the
block size, k, and the third argument is the number of replicates, r, of each
treatment level. In this case since there are six blocks of three experimental
units there is a total of 18 experimental units and each treatment level will
be assigned to three, making r = 3.

> library(agricolae)

> treat <- c(1, 2, 3, 4, 5, 6)

> des <- design.cyclic(treat, k = 3, r = 3)

cyclic design

Generator block basic:

1 2 4

Parameters

===================

treatmeans : 6

Block size : 3

Replication: 3
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The function design.cyclic generates and randomizes the plan. In this ex-
ample of a PBIB design, each treatment level has one first associate with λ1 = 2
and four second associates with λ2 = 1. The object created by design.cyclic

has two components. The component des$book contains the design as shown
below.

> des$book

plots group block treat

1 1 1 1 2

2 2 1 1 6

3 3 1 1 5

4 4 1 2 2

5 5 1 2 4

6 6 1 2 1

7 7 1 3 5

8 8 1 3 3

9 9 1 3 2

10 10 1 4 3

11 11 1 4 6

12 12 1 4 1

13 13 1 5 1

14 14 1 5 4

15 15 1 5 5

16 16 1 6 6

17 17 1 6 4

18 18 1 6 3

The analysis of PBIB designs is the same as the examples shown for BIB de-
signs. The type III sums of squares for treatment and the least squares means
should be used. The model and assumptions are the same as for the RCB
design, and the assumptions of normality and homogeneity of experimental
error variance can be checked with the residual plots described in Section 2.4.

7.5 Row Column Designs

Latin-square designs with two independent blocking factors were described in
Chapter 4. These designs could increase the precision in detecting differences
among treatments by adjusting for variability in experimental units in two
ways. However, the restriction on Latin-square designs was that the number
of levels of the row blocking factor, the number of levels of the column blocking
factor, and the number of levels of the treatment factor all had to be equal.
This restriction may be impractical in some situations.

In Chapter 4, an experiment was described where the purpose was to study
the effect of shelf facing on the sales of toothpaste in drugstores. In that ex-
ample, four levels of the treatment factor (shelf facings), four levels of the row
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blocking factor (stores), and four levels of the column blocking factor (week of
sales) were used. If the researchers desired to expand their study to test eight
different shelf facings instead of four, they could easily increase the number of
levels of the row blocking factor and include eight stores. However, increasing
the number of weeks would prolong the study and could be undesirable.

An alternate design called a Row Column design or RCD utilizes a com-
plete block design in the column blocks, but an incomplete block design in the
row blocks. This type design can also be created and randomized by the func-
tion design.cyclic in the R package agricolae. The code below illustrates
how this can be done. The addition of the argument rowcol=TRUE causes
design.cyclic to create a row column design. Since there are eight levels of
the treatment factor and column block size k = 4, there will be r = 4 replicates
of each treatment level in the design. The argument seed=1 fixes the random
seed so the same design can be produced in repeat runs.

> library(agricolae)

> treat <- c(1, 2, 3, 4, 5, 6, 7, 8)

> RCD <- design.cyclic(treat, k = 4, r = 4, rowcol = TRUE,

+ seed = 1)

This code will create a design with eight row blocks for stores, and four
column blocks for weeks. The model and analysis of RCDs is identical to the
model and analysis of Latin-square designs described in Chapter 4, with the
exception that type III treatment sums of squares and least squares treatment
means should be used due to the fact that the row blocks are incomplete and
do not contain all levels of the treatment factor.

7.6 Confounded 2k and 2k−p Designs

When the experimental units are heterogeneous and can be grouped into
blocks, frequently there are too few experimental units per block to accommo-
date all the treatment combinations in 2k factorial or 2k−p fractional factorial
design. Therefore, it is impossible to use complete block designs, like those
described in Section 4.5. One solution is to use an incomplete block design
described in the first part of this chapter with t = 2k. However, this usually
results in many more blocks than are necessary. The effect sparsity principle
and hierarchical ordering principle tell us that it is unlikely that all interac-
tions (especially those above order 3) will be important. If we are willing to
sacrifice the ability to estimate some interactions, 2k factorial designs can be
blocked in a minimum number of blocks as long as the number of experimental
units in each block is a power of 2.

For example, a 23 factorial design has eight treatment combinations. By
confounding the three-factor interaction with blocks, this design can be run
in two blocks of size 4 as shown in Table 7.3 below.

In this design, the ABC interaction effect is completely confounded between
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Table 7.3 23 in Two Blocks of Size 4
A B C Block=ABC
− − − 1 −

+ − + 1 −

− + + 1 −

+ + − 1 −

- - - - - - - - - - - - - - - - - -
− − + 2 +

+ − − 2 +

− + − 2 +

+ + + 2 +

the two blocks and cannot be estimated. However, since interactions between
block and treatment effects are assumed negligible, all the other main effects
and two-factor interactions are not confounded. Detecting the significant ef-
fects from an experiment like this can be done using the graphical methods
illustrated in Section 3.7.5 and Chapter 6.

7.6.1 Confounding 2k Designs

In general a 2k factorial can be run in blocks of size 2q by choosing k − q
interaction contrasts to confound with blocks. These interactions are called
block defining contrasts. When a 2k is run in blocks of size 2q, there will be
2k/2q = 2k−q blocks. Therefore, there will be 2k−q − 1 degrees of freedom for
blocks. These 2k−q−1 degrees of freedom are accounted for by the k−q defining
block contrasts and all their generalized interactions.

As an example consider confounding a 24 factorial in blocks of size 4=22.
Since k = 4 and q = 2, k − q = 2 defining block contrasts must be chosen. If
the three-factor interactions ABD and BCD are chosen as the block defining
contrasts, their generalized interaction ABD(BCD) = AC will also be con-
founded with blocks, accounting for the 3 degrees of freedom for blocks. The
FrF2 function in the R package FrF2 can find this design as shown in the code
below.

> library(FrF2)

> Bdish <- FrF2( 16, 4, blocks = c("ABD", "BCD"),

+ alias.block.2fis = TRUE, randomize = FALSE)

The design shown on the next page is called a completely confounded
blocked factorial or CCBF. In practice the treatment combinations within
each block would be randomized to experimental units in that block by re-
moving the option randomize = FALSE.
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> Bdish

run.no run.no.std.rp Blocks A B C D

1 1 1.1.1 1 -1 -1 -1 -1

2 2 2.1.2 1 -1 1 -1 1

3 3 3.1.3 1 1 -1 1 1

4 4 4.1.4 1 1 1 1 -1

run.no run.no.std.rp Blocks A B C D

5 5 5.2.1 2 -1 -1 1 -1

6 6 6.2.2 2 -1 1 1 1

7 7 7.2.3 2 1 -1 -1 1

8 8 8.2.4 2 1 1 -1 -1

run.no run.no.std.rp Blocks A B C D

9 9 9.3.1 3 -1 -1 1 1

10 10 10.3.2 3 -1 1 1 -1

11 11 11.3.3 3 1 -1 -1 -1

12 12 12.3.4 3 1 1 -1 1

run.no run.no.std.rp Blocks A B C D

13 13 13.4.1 4 -1 -1 -1 1

14 14 14.4.2 4 -1 1 -1 -1

15 15 15.4.3 4 1 -1 1 -1

16 16 16.4.4 4 1 1 1 1

class=design, type= FrF2.blocked

NOTE: columns run.no and run.no.std.rp are annotation, not part

of the data frame

The analysis of a confounded blocked factorial is similar to the analysis of an
unreplicated 2k design as described in Section 3.7.5. As an example consider
the experiment conducted by Apple (2006). He was interested in the effects
of the four factors shown in Table 7.4 upon dishwashing.

Table 7.4 Factors for Dishwashing Experiment
Levels

Factor (−) (+)
A—Water Temperature 60 Deg F 115 Deg F
B—Soap Amount 1 tbs 2 tbs
C—Soaking Time 3 min 5 min
D—Soap Brand WF UP

His experiment consisted of soaking dishes with baked-on (microwaved)
spaghetti sauce in dishwater that consisted of all possible combinations of
the factor levels shown above. He drew a 10×10 grid on a white plate with
a permanent marker, and his response was the number of clean grid squares
after soaking the plate with baked-on spaghetti sauce in the dishwater. The
experimental unit was the baked-on spaghetti sauce, and in order to generalize
his conclusions, he included four blocks which consisted of combinations of
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two different brands of spaghetti sauce and two different baking times in the
microwave, as shown in Table 7.5 below. In this experiment, it would have

Table 7.5 Blocks for Dishwashing Experiment
Block Type Sauce Microwave Time

1 Store Brand 1 min
2 Premium Brand 1 min
3 Store Brand 1:30 min
4 Premium Brand 1:30 min

been possible to run a complete block factorial design where all combinations
of the treatment factor levels from Table 7.4 were included in each block. This
would have taken a total of 4×16=64 experiments. However, considering the
hierarchical ordering principle, some interactions were confounded in order to
reduce the total number of experiments. Using the same design shown earlier,
ABD and BCD and their generalized interaction ABD(BCD) = AC were
confounded with blocks, resulting in 16 experiments or plates grouped into
4 blocks with 4 experimental units in each block. The design and response
(number of clean grid squares) is shown in Table 7.6 on the next page.

To analyze the data, the factorial model was fit that included all main effects
and interactions. The R code to do this using the lm function are shown below.

> y <- c(0, 0, 12, 14, 1, 0, 1, 11, 10, 2, 33, 24, 3, 5, 41, 70)

> Bdish <- add.response(Bdish, response = y)

> dish <- lm( y ~ Blocks + A * B * C * D, data = Bdish)

Since ABD, BCD, and AC were confounded with blocks the lm function
assigns the value of NA for their effects. Because there were no replicates in
the experiment, a half-normal plot of the effects was used to determine the
significant effects and interactions. The code below produces the half-normal
plot. The second and third statements select the non-block effects that do not
have the value of NA, and the last statement adds a reference line to the plot.

> effects <- coef(dish)

> effects <- effects[5:19]

> effects <- effects[ !is.na(effects) ]

> library(daewr)

> halfnorm(effects, names(effects), alpha=.25)

The half-normal plot of effects is shown in Figure 7.1.
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Table 7.6 Design and Data for Dishwashing Experiment
A B C D Block y
− − − − 1 0
+ + + − 1 14
− + − + 1 0
+ − + + 1 12
+ − − − 2 33
− + + − 2 2
+ + − + 2 24
− − + + 2 10
+ + − − 3 11
− − + − 3 1
+ − − + 3 1
− + + + 3 0
− + − − 4 5
+ − + − 4 41
− − − + 4 3
+ + + + 4 70

Figure 7.1 Half-Normal Plot of Absolute Regression Coefficients from Dishwashing
Experiment

Half-Normal Scores

In Figure 7.1 it can be seen that main effect A, the water temperature, and
possibly the BD interaction between soap amount and soap brand appear to
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be significant. The water temperature main effect was easy to interpret. The
means for this factor revealed that 23.125 more grid squares were cleaned with
hot water (115○F) than with cold water (60○F).

To interpret the BD interaction an interaction plot or table of means is
required. Figure 7.2 shows the interaction plot. Here it can be seen that in-
creasing the amount of WF brand soap from 1 tablespoon to 2 tablespoons
actually decreases the number of clean grid squares on the plate being soaked,
while increasing the amount of UP brand soap from 1 tablespoon to 2 table-
spoons has the opposite effect and increases the number of clean grid squares.
According to the effect heredity principle, it would be unusual to have an in-
teraction between two factors that do not have significant main effects. This,
along with the fact that the BD interaction does not appear to be signifi-
cant using the graphical techniques of Box and Meyer (1986a), Lawson et al.
(1998), or Lenth (1989) would justify ignoring this unusual finding. Therefore,
the only thing that seems to have a significant effect on the ease of removing
baked-on spaghetti sauce is the temperature of the dishwater.

Figure 7.2 Interaction Plot for Soap Amount × Soap Brand
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Blocks (not shown in the normal plot) also accounted for a large proportion
of the sums of squares. If the block term were not included in the model, none
of the factor effects would be determined significant. If experimental units had
been restricted to one brand of spaghetti sauce and one microwave time, the
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conclusions regarding the dishwater would only apply to that brand of sauce
and baking time.

7.6.2 Confounding in 2k−p Designs

A 2k−p fractional factorial can also be easily blocked by confounding inter-
actions if the block size is a power of two. For example, consider the 25−2

fractional factorial shown in Section 6.3. In Table 7.7 the eight runs in this
design are split into two blocks by using the BC interaction as the block defin-
ing contrast. When there is only one block defining contrast in a full factorial

Table 7.7 Blocked 25−2 Design
A B C D E Block=BC
− − − + + 2 +

+ − − − − 2 +

− + − − + 1 −

+ + − + − 1 −

− − + + − 1 −

+ − + − + 1 −

− + + − − 2 +

+ + + + + 2 +

design, only that interaction is confounded with the difference in blocks. How-
ever, in a one-fourth fractional factorial, each effect that can be estimated is
aliased with three other effects due to the fractionation. In the example above
the generators for the quarter fraction were D = AB and E = AC, resulting in
the defining relation for the fraction I = ABD = ACE = BCDE. Multiplying
through the defining relation for the fractional factorial by the block defining
contrast, we see that BC = ACD = ABE =DE and that four interactions are
actually confounded with the blocks.

In general, when a 2k−p fractional factorial is blocked into blocks of size 2q,
there will be 2k−p/2q = 2k−p−q blocks. k − p − q interactions must be chosen as
block defining contrasts. The block defining contrasts and all their generalized
interactions will account for the 2k−p−q − 1 degrees of freedom for blocks, and
each interaction that is confounded will also be aliased with 2p − 1 other
interactions due to the fractionization. These designs are called completely
confounded blocked fractional factorial or CCBFF.

To illustrate the design and analysis of a confounded 2k−p design, consider
the experiment described by Porter and Busch (1978). The purpose was to
explore the effects of the eight variables shown in Table 7.8 on survival and
growth of neonatal deer mice. Knowledge of survival and growth of any species
may aid in understanding aspects of animal distribution. They used a 1

16
th

fractional factorial design to identify variables affecting the ability of wild
female deer mice to raise young to weaning. This was a screening experiment
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with the purpose of identifying significant main effects that would be studied
later in further experiments.

The generators for the 28−4 fractional design were E = BCD, F = ACD,
G = ABC, and H = ABD, resulting in the defining relation

I = BCDE = ACDF = ABCG = ABDH = ABEF = ADEG = ACEH

= BDFG = BCFH = CDGH = CEFG =DEFH = BEGH = AFGH

= ABCDEFGH

Table 7.8 Factors and Levels for Mouse Growth Experiment
Levels

Factor Description − +

A Sprouts None Free Access
B Frequency of weighing Once per day Once per 3 days
C Nest box No Yes
D Remove young No Yes
E Male presence Yes No
F Exercise wheel Locked Free
G Available food 80 percent Free access
H Available water 80 percent Free access

This was a resolution IV fraction and the eight main effects were con-
founded with strings of three-factor and higher-order interactions. In addition,
there were seven strings of estimable confounded two-factor interactions listed
below.

AB +CG +DH +EF

AC +BG +DF +EH

BC +AG +DE + FH

AD +BH +CF +EG

BD +AH +CE + FG

CD +AF +BE +GH

CH +AE +BF +DG

The experimenters desired to block the experiments into eight blocks of 21 = 2
runs each. This would allow them to prevent biases from uncontrolled vari-
ables, such as time of year, over the duration of their experiments. Doing this
would require choosing k − p − q = 8 − 4 − 1 = 3 block defining contrasts. These
block defining contrasts, along with their generalized interactions, would ac-
count for the 8–1=7 degrees of freedom for blocks.

The block defining contrasts that were chosen were AB +CG +DH +EF ,
AC +BG +DF +EH, and AD +BH +CF +EG. The two-factor generalized
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interactions are AB(AC) = BC (or BC + AG +DE + FH), AB(AD) = BD
(or BD + AH + CE + FG), and AC(AD) = CD (or CD + AF + BE +GH).
Finally, the three-factor generalized interaction can be identified by substitut-
ing BH for AD, since AD is confounded with BH to get AB(AC)(AD) =

AB(AC)(BH) = CH, or CH + AE + BF +DG. Therefore, using the three
block defining contrasts AB + CG + DH + EF , AC + BG + DF + EH, and
AD +BH +CF +EG actually confounds all of the seven confounded strings
of two-factor interactions (shown above) with blocks.

The researchers were willing to give up information on all two-factor inter-
actions to prevent biases because this was a screening experiment where they
were satisfied to get information about the relative importance of the main
effects. The design and results are shown in Table 7.9.

Table 7.9 Design and Results for Mouse Growth Experiment
Factors

Block A B C D E F G H weight
1 + − − − − + + + 9.0
1 − + + + + − − − 0.0

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2 − − + + − − + + 9.25
2 + + − − + + − − 4.90

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 + − + − + − − + 8.80
3 − + − + − + + − 4.35

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4 − − − + + + − + 0.0
4 + + + − − − + − 7.43

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
5 − + + − − + − + 5.35
5 + − − + + − + − 9.90

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
6 + + − + − − − + 2.60
6 − − + − + + + − 7.43

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
7 − + − − + − + + 6.80
7 + − + + − + − − 3.93

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
8 + + + + + + + + 10.20
8 − − − − − − − − 4.87

The response was the weight at weaning. Each run of the design was started
on the day a female’s young were born and terminated either when they
had all died or otherwise at 21 days. Mice were grouped into blocks of two
sequentially as they gave birth. The two treatment combinations within each
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block were randomized to the mice in that block. The code to create this
blocked fractional factorial using the FrF2 function in the R package FrF2 is
shown below.

> library(FrF2)

> Bff <- FrF2(16, 8, generators = c("BCD", "ACD", "ABC", "ABD"),

+ blocks = c("AB", "AC", "AD"),randomize = FALSE)

> weight <- c(0.0, 9.0, 5.35, 9.90, 4.35, 8.8, 6.8, 3.93,

+ 9.25, 4.9, 7.43, 2.6, 0.0, 7.43, 4.87, 10.2)

> add.response(Bff, response = weight)

The generators= option specifies the generators (interactions confounded
with added factors) for the 1

16
th fractional factorial, and the blocks= option

specifies the block defining contrasts.
To analyze the data a model involving only the main effects A−H and the

block effects can be fit, since they account for all the degrees of freedom. The
R code to fit this model is shown below.

> mouse <- lm(weight ~ Blocks + A + B + C + D + E + F + G + H,

+ data = Bff)

Since this was a saturated model with zero degrees of freedom for the error
term, the significance of effects could be accessed using the graphical tech-
niques described earlier. The code to make the half normal plot of the effects
in Figure 7.3 is shown below. The reference line was again added manually.

> effects <- coef(mouse)

> effects <- effects[ 9:16 ]

> library(daewr)

> halfnorm(effects, names(effects), alpha=.15)

From the half-normal plot it is clear that the only factor having a significant
effect on the weaning weight was G—available food. The calculated effect
showed that the weaning weight was on the average 4.24g higher for pups of
female mice given free access to food compared to pups of mice whose food
intake was restricted to 80% of normal. This was the conclusion that the
authors of the article reached.

7.6.3 Criteria for Choosing Block Defining Contrasts

Care must be exercised when choosing the block defining contrasts for 2k full
factorial or 2k−p fractional factorial designs. To illustrate why, consider the
following two examples.

Example 1 consists of blocking a 25 factorial into 8 blocks of size 22 = 4.
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Figure 7.3 Half-Normal Plot of Absolute Regression Coefficients from Mouse Growth
Experiment

Half-Normal Scores

To do this k − q = 5 − 2 = 3 block defining contrasts must be chosen. Suppose
the interactions ABC, CDE, and ABCDE are chosen as the block defining
contrasts. Their two-factor generalized interactions ABC(CDE) = ABDE,
ABC(ABCDE) = DE, CDE(ABCDE) = AB, and their three-factor gen-
eralized interaction ABC(CDE)(ABCDE) = ABC(AB) = C are also con-
founded, accounting for the seven degrees of freedom for blocks. The block
defining contrasts were all three-factor interactions and above, yet one of their
generalized interactions is main effect C that we would not want to confound
with blocks. A better choice would be to choose ACE, BCE, and ABCD
as block defining contrasts. Their generalized interactions include no main
effects.

Example 2 consists of blocking a 26−2 fractional factorial in four blocks
of size 22 = 4. To do this k − p − q = 6 − 2 − 2 = 2 block defining contrasts
must be chosen. If the generators for the fractional factorial are E = ABC
and F = ABD, the defining relation for the fractional factorial is I = ABCE =

ABDF = CDEF . If the block defining contrasts chosen are BDE and ACDE,
they and their generalized interaction BDE(ACDE) = ABC will account for
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the three degrees of freedom for blocks. However, because of the fractionation
we see that all of the following aliases also become confounded with blocks.

BDE = ACD = AEF = BCF

ACDE = BD = BCEF = AF

ABC = E = CDF = ABDEF

Again we can see that this choice of generators results in confounding main
effect E with blocks. This was an unintended result. A better choice of block
defining contrasts would be ACD and AB, which will not result in any main
effects being confounded with blocks.

There are many choices for block defining contrasts and fractional facto-
rial generators, and each will result in a different set of interactions being
confounded with blocks and a different alias structure for the design. Some
choices will be better than others and will result in fewer low-order interac-
tions being confounded with blocks and main effects. However, to find the
best generators and block defining contrasts for a particular design problem
is not a simple task. Fortunately, statisticians have provided tables that show
choices that are optimal in certain respects.

Box et al. (1978) provide tables for block defining contrasts that will result
in a minimal number of low-order interactions being confounded with blocks
in a blocked 2k design. Wu and Hamada (2000) provide a more extensive table
that was generated by the algorithm described by Chen et al. (1993). In some
cases, such as the 26 blocked into 16 blocks of size 4, Wu and Hamada’s tables
provide a set of block defining contrasts that are better (in the sense that
fewer two-factor interactions are confounded with blocks) than the contrasts
shown in Box, Hunter, and Hunter’s tables.

It is more difficult to find fractional factorial generators and block defining
contrasts for 2k−p fractional factorial designs, because of the combination of
confounding due to the block effects and fractionization. However, Sun et al.
(1997) provide an extensive catalog of block defining contrasts for 2k designs
and generators for 2k−p designs along with the corresponding block defining
contrasts that will result in best designs with regard to one of several quality
criteria such as estimability order . They say that a design with estimability of
order e is one in which all factorial effects of order e or less are estimable; that
is they are not confounded with blocks or factorial effects of order less than
e + 1. They state that there is no single best design, but the choice depends
upon the situation.

When not specified by the user, the function FrF2 in the R package
FrF2 uses the block defining contrasts from Sun et al.’s (1997) catalog to
create blocked 2k designs. For 2k−p FrF2 uses the function blockpick or
blockpick.big, which often finds designs isomorphic to those in Sun et al.’s
(1997) catalog.

For example, the code to create a 26−1 design, blocked into four blocks of
eight experimental units each with using FrF2 is shown on the next page.
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> Blocked.design <- FrF2(32, 6, blocks = 4,

+ alias.block.2fis = TRUE, randomize = FALSE)

> summary(Blocked.design)

The summary report shows that the 26−1 design was created using the gen-
erator F = ABCDE and the block defining contrasts AB and AC. This is a
resolution VI fractional factorial, and if this were run in a completely random-
ized design, all main effects and two-factor interactions would be estimable
assuming four-factor and higher-order interactions were negligible. A design
like this might be used if the experimenter was interested in estimating two-
factor interactions. However, if experimental units are heterogeneous, more
power or precision for detecting factorial effects and interactions could be
achieved by sacrificing some interactions and confounding them with blocks.
The block defining contrasts chosen by FrF2 are both two-factor interactions.
The generalized interaction AB(AC) = BC accounts for the third degree of
freedom for blocks, and due to the fractionization each interaction confounded
with blocks has an alias that is also confounded with blocks. In this case, the
defining relation for the fractional factorial is I = ABCDEF and we see that
AB = CDEF , AC = BDEF , and BC = ADEF . So in reality three two-factor
interactions and three four-factor interactions will be confounded with blocks
and lost using this design.

By removing the option alias.block.2fis=TRUE as shown below, FrF2

creates a resolution IV fractional factorial with defining relation I = ABCF
and block defining contrasts ABD and ACE.

> Blocked.design <- FrF2(32, 6, blocks = 4,

+ randomize = FALSE)

> summary(Blocked.design)

Multiplying each block defining contrast and their generalized interaction by
the defining relation, it can be seen that ABD = DCF , ACE = BEF , and
BCDE = ADEF are confounded with blocks. Thus no two-factor interacton
is confounded with blocks, but two-factor interactions are confounded with
other two-factor interactions due to the fact that the design is resolution IV.

The first 26−1 design in four blocks presented in Wu and Hamada’s ta-
ble gives another alternative. It uses F = ABCDE as the generator of the
half-fraction and ACD, BCD as the block defining contrasts. This plan only
confounds one two-factor interaction with blocks and is therefore slightly bet-
ter than the first design created by FrF2 above. Having the fraction generator
and the block defining contrasts available in Wu and Hamada’s table, this
design can be created in with FrF2 by specifying the generators and blocks

like the mouse growth experiment shown in Section 7.6.2.
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7.7 Confounding 3-Level and p-Level Factorial Designs

If every factor in a factorial has three levels we call the design a symmetric 3k

design. These designs can be run in blocks (CCBF) using the same strategy
as shown in Section 7.6.1 by confounding portions of interactions with blocks.
Confounded 3k designs can only be run in blocks of size 3q where q < k. To
illustrate the method of confounding, consider a 32 design with factors A and
B, each with three levels. Since k = 2, this design can only be blocked in blocks
of size three, resulting in three blocks. In order to prevent main effect A and
B from being completely confounded with blocks, the two-factor interaction
AB should be confounded with blocks. However, there are (3− 1)× (3− 1) = 4
degrees of freedom for the two-factor interaction while there are only 3−1 = 2
degrees of freedom for blocks. Therefore, only part of the interaction need be
confounded with blocks. The four degrees of freedom forAB can be partitioned
into two degrees of freedom contrasts A+B and A+ 2B, and one of these can
be used to define the blocks.

If the levels of the factors A and B are represented symbolically by 0, 1
and 2, the levels of the two contrasts A + B modulo 3 and A + 2B modulo
3, are shown below. The levels of these two contrasts can each be seen to

A B A +B A + 2B
0 0 0 0
0 1 1 2
0 2 2 1
1 0 1 1
1 1 2 0
1 2 0 2
2 0 2 2
2 1 0 1
2 2 1 0

have two degrees of freedom because they divide the treatment combinations
into three groups similar to the way the levels of main effects A and B divide
the treatment combinations into three groups. Both of these contrasts are
orthogonal to main effects A and B since all three levels of each main effect
are represented within each level of both contrasts. Therefore if either of these
contrasts is used to define blocks neither main effect will be confounded with
blocks. The R code below shows how a design created with the gen.factorial
function can be blocked using the mod function in daewr confounding blocks
with the A +B contrast.

> library(AlgDesign)

> Blockdes <- gen.factorial(3, nVars = 2,

+ center = FALSE, varNames = c( "A", "B" ))

> Block <- 1+mod((Blockdes$A -1 )+(Blockdes$B - 1), 3)

> Blockdes <- cbind(Block, Blockdes)
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The model, represented in the R aov notation for this design, would be
Block+A+B. The AB interaction, that is confounded with blocks, is left out
of the model just as it would have been in the confounded 2k and 2k−p de-
signs. Main effect A would have two degrees of freedom, main effect B would
have two degrees of freedom, blocks would have two degrees of freedom, and
the error would have two degrees of freedom. For this design to be useful the
interaction AB would be assumed negligible.

In general when confounding 3k experiments in blocks of size 3q, k − p
block defining contrasts must be chosen. They and all of their generalized
interactions will also be confounded with blocks. It would be difficult to choose
a set of block defining contrasts by trial and error that will result in the
fewest low-order interactions being confounded with blocks. Wu and Hamada
(2000) give tables of block defining contrasts and design generators for 3k and
3k−p designs blocked into blocks of size 3q that will result in the maximum
number of estimable effects. These tables were determined using the algorithm
described by Chen et al. (1993). The designs listed in their tables can be
created using the mod functions as shown in the example above.

Cook and Nachtsheim (1989) developed a different algorithm to block an
existing design, or create a blocked design from a list of candidate by max-
imizing the block D-efficency, Ds. The optBlock function in the R package
AlgDesign uses a different algorithm but the same fundamental idea as Cook
and Nachtsheim (1989) to find blocked designs. For example, the code below
creates a 34 design in nine blocks of nine.

> library(AlgDesign)

> Blockdes <- gen.factorial(3, nVars = 4, factors = "all",

+ varNames = c("A", "B", "C", "D"))

> Blockdes <- optBlock( ~ A + B + C + D + A:B + A:C +

+ A:D + B:C + B:D + C:D, withinData = Blockdes,

+ blocksizes = c(rep(9, 9)), criterion = "D")

The model statement ( A+B+C+D+A:B+A:C+A:D+B:C+B:D+C:D) defines the
terms the experimenter would like to estimate. In this example all main effects
and two-factor interactions should be estimable. With this specification three
and four-factor interactions can be completely or partially confounded with
the 9–1 degrees of freedom for blocks.
pk designs where p is a prime number can also be blocked using the mod

function as shown above, but in practice, 3k or 3k−p designs and pk or pk−s

designs are rarely used because it is unusual for all factors in a factorial design
to have the same number of levels, unless the number of levels is two. 2k and
2k−p designs are commonly used in practice because experimenters reduce the
number of levels of each factor to two (by choosing the two levels they feel
will exhibit the maximum difference) in order to reduce the total number of
experiments. In cases where the number of levels of some factors cannot be
reduced to two, because they represent a discrete set of alternatives such as
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machine settings, a mixed level, or asymmetric factorial results. The principles
shown in this section, to block 3k or pk experiments by confounding portions
of interactions, can be extended to the mixed level factorials as shown in the
next section.

7.8 Blocking Mixed Level Factorials and OAs

A mixed level or asymmetric factorial can be represented as sm1

1 ×sm2

2 ×⋯s
mγ
γ

involving n = ∑
γ
i=1mi factors where mi factors each has si levels. For example,

a 23 × 32 × 41 × 61 is a factorial with three factors with two levels, two factors
with three levels, one factor with four levels, and one factor with six levels.
The number of levels of every factor in a mixed level factorial is either a
prime number or a product of prime numbers. If the number of the ith factor
si = ∏

m
l=1 pl where pl are prime numbers, then the levels of the factor si can

be represented by the combination of levels of m pseudo factors each with a
prime number of levels. For example, in the 23 × 32 × 41 × 61 factorial the first
three factors (A, B, and C) have two levels, where two is a prime number. The
fourth and fifth factors (D and E) have three levels, where three is a prime
number. The sixth factor (F ) has four levels, and 4 = 2×2 is the product of two
prime numbers. Finally, the seventh factor (G) has six levels, and 6 = 2 × 3 is
also a product of prime numbers. The levels of the four- and six-level factors F
and G can be represented as combinations of the levels of two- and three-level
pseudo factors f1, f2, g1, and g2 as shown below.

F f1 f2 G g1 g2

————— —————
0 0 0 0 0 0
1 1 0 1 1 1
2 0 1 2 0 2
3 1 1 3 1 0

4 0 1
5 1 2

7.8.1 Blocking Mixed Level Factorials

Since the levels of each factor in a mixed level factorial can be represented by a
combination of the levels of pseudo factors with a prime number of levels, the
entire factorial can be represented by a pn1

1 ×pn2

2 ×⋯p
ng
g factorial, where all the

factors have a prime number of levels. For example, the 23×32×41×61 factorial
can be represented by a 26 × 33 factorial. The pnii are called sub-experiments,
and the classical method of confounding a mixed level or asymmetric factorial
is to apply the method described in the last section to each sub-experiment
and then combine the blocks from each sub-experiment to form the blocks of
the entire completely confounded blocked factorial (CCBF). This method will
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result in the greatest efficiency for estimating the effects and interactions that
are not confounded with blocks in that they will be completely orthogonal to
blocks.

Asymmetric factorials of the form sm1

1 × sm2

2 × ⋯s
nγ
γ can be blocked into b

blocks of size k. However, to avoid confounding or partially confounding any
main effect, the block size k must be divisible by all the prime numbers p1–pr
that represent the number of levels of the factors or number of levels of the
pseudo factors used to represent a factor.

To illustrate the classical method of blocking a mixed level factorial, consider
blocking the 36 treatment combinations of a 22 × 32 factorial. This factorial
can be represented as a product of two sub-experiments: a 22 comprised of
two factors A and B each at two levels; and a 32 comprised of two factors
C and D each at three levels. Since the levels of all factors are prime, the
block size must be divisible by both two and three. The blocks can be found
by confounding within each sub-experiment. Since there are only two factors
in each sub-experiment, and it would be undesirable to confound main effects
with blocks, there is only one interaction that can be confounded in each
sub-experiment.

Confounding A + B in the 22 sub-experiment results in two blocks of size
2. Confounding the C +D contrast in the 32 sub-experiment results in three
blocks of size 3. The combination of each block from the first sub-experiment
with each block of the second sub-experiment results in blocks of size k = 6,
which is divisible by both 2 and 3. The interactions confounded in the complete
factorial will be AB, two degrees of freedom from CD and two degrees of
freedom from the product ABCD. The main effects A, B, C, D and the AC,
AD, BC, BD two-factor interactions and the ABC, ABD, ACD, and BCD
three-factor interactions are not confounded with blocks and are estimable.

The code below shows how to create this design in R. First, the function
fac.design from the DoE.base package is used to create the 22×32 comprised
of all possible combinations of the two sub-experiments.

> library(DoE.base)

> Mixfac <- fac.design(nlevels = c(2, 2, 3, 3),factor.names =

+ c("A", "B", "C", "D"), randomize = FALSE)

Next, mod function from daewr package is used to create the block indicators.

> library(daewr)

> blk1 <- mod(as.numeric(Mixfac$A) + as.numeric(Mixfac$B), 2) + 1

> blk2 <- mod(as.numeric(Mixfac$C) + as.numeric(Mixfac$D), 3) + 1

> Block <- as.factor((blk1 - 1) * 3 + blk2 )

The columns in the design created by fac.design are factor objects in R, and
they must be converted to numeric objects using the R function as.numeric
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in order to use them as arguments in the mod function to create the block indi-
cators blk1 and blk2 in the two sub-experiments. The block indicator (blk1)
for the 22 sub-experiment takes the values 1 and 2. The block indicator (blk2)
in the 32 sub-experiment takes the values 1, 2, and 3. The statement Block

<- as.factor((blk1 - 1) * 3 + blk2) combines the two block indicators
into one. When blk1=1 and blk2=1, Block=1; when blk1=1 and blk2=1,
Block==2, and so forth.

Finally, the block indicators are combined with the 22 × 32 design and the
runs are sorted by blocks.

> BlMixfac <- cbind(Block,Mixfac)

> BlMixfac <- BlMixfac[order(BlMixfac$Block), ]

The first four blocks of the design are shown horizontally below.

> BlMixfac

Block A B C D Block A B C D Block A B C D Block A B C D

1 2 1 2 1 2 1 2 3 1 3 1 1 1 1 4 1 2 2 1

1 2 2 1 2 2 1 1 2 2 3 2 1 3 2 4 1 1 1 2

1 1 1 3 3 2 1 2 1 3 3 2 2 2 3 4 2 2 2 1

1 1 1 2 1 2 2 1 3 1 3 2 2 1 1 4 2 1 1 2

1 1 2 1 2 2 2 2 2 2 3 1 1 3 2 4 2 1 1 2

1 2 2 3 3 2 2 1 1 3 3 1 2 2 3 4 1 2 3 3

This design will allow estimation of all the terms in the model A+B+C+D+A:B
+A:D+B:C+B:D, but the interactions A:B and C:D are confounded with blocks
and cannot be estimated.

When the levels of one or more factors in a mixed level factorial are a prod-
uct of prime powers, and can be represented by the combination of levels of
pseudo factors, no interactions among pseudo factors that represent the same
factor can be confounded in any sub-experiment. If any interaction among
pseudo factors that represents a factor is confounded, then that main effect
will also be confounded. For example, consider blocking the 72 combinations
of factor levels in a 3 × 4 × 6 factorial. Factor A has three levels, factor B has
four levels, and can be represented by all combinations of two two-level pseudo
factors b1 and b2, and factor C has six levels that can be represented by all
combinations of a two-level pseudo factor c1 and a three-level pseudo factor c2.
Using the pseudo factors, the 3×4×6 factorial can be represented by a 23 ×32

factorial in prime level factors and prime level pseudo factors. The block size
must be divisible by the prime numbers 2 and 3 to avoid confounding a main
effect, therefore blocks of size 6 or 12 may be possible.

The first sub-experiment is a 23 composed of two-level pseudo factors b1,
b2, c1 and the second sub-experiment is a 32 composed of factor A and pseudo
factor c2. The first sub-experiment can only be blocked into 2 blocks of 4 in
order to avoid confounding the b1 + b2 interaction and therefore the B main
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effect. Thus the three-factor interaction b1 + b2 + c1 must be confounded with
blocks in the first sub-experiment. In the second sub-experiment the A + c2
contrast of the AC interaction must be confounded to create three blocks of
three. The combination of each block from the first sub-experiment combined
with each block from the second sub-experiment results in six blocks of 12
treatment combinations, and this is the only block size that is possible without
confounding a main effect.

The interactions confounded with the five degrees of freedom for blocks
in the combined factorial will be BC (with one degree of freedom) from the
first sub-experiment, two degrees of freedom from AC from the second sub-
experiment, and two degrees of freedom from the product ABC (i.e., b1 + b2 +
c1 × (A + c2)). The R code below illustrates how this design can be created
using fac.design. First, the fac.design function is used to create the full
factorial in factors and pseudo factors.

> library(DoE.base)

> Mixfac <- fac.design(nlevels = c(2, 2, 2, 3, 3),

+ factor.names = c("b1", "b2", "c1", "A", "c2"),

+ randomize = FALSE)

Next, the pseudo factor interaction b1×b2×c1 is confounded with the block in-
dicator blk1 in the 23 sub-experiment, and the A×c2 interaction is confounded
with the block indicator blk2 in the 32 sub-experiment.

> library(daewr)

> blk1 <- mod(as.numeric(Mixfac$b1) + as.numeric(Mixfac$b2) +

+ as.numeric(Mixfac$c1) ,2) + 1

> blk2 <- mod(as.numeric(Mixfac$A) + as.numeric(Mixfac$c2),

+ 3) +1

Finally, the block indicators are combined to create the block factor, the
pseudo factors are combined to create the factor levels, and all are combined
and sorted by the block numbers as shown below.

> Block <- as.factor((blk1 - 1) * 3 + blk2)

> B <- (as.numeric(Mixfac$b1) - 1) * 2 + as.numeric(Mixfac$b2)

> C <- (as.numeric(Mixfac$c1) - 1) * 3 + as.numeric(Mixfac$c2)

> BlMixfac<-cbind(Block, A = Mixfac$A, B = as.factor(B), C =

+ as.factor(C))

> BlMixfac <- BlMixfac[order(Block), ]

The first block of the design is shown on the next page.



BLOCKING MIXED-LEVEL FACTORIALS AND OAs 291

> BlMixfac

Block A B C

[1,] 1 2 3 1

[2,] 1 2 2 1

[3,] 1 2 1 4

[4,] 1 2 4 4

[5,] 1 1 3 2

[6,] 1 1 2 2

[7,] 1 1 1 5

[8,] 1 1 4 5

[9,] 1 3 3 3

[10,] 1 3 2 3

[11,] 1 3 1 6

[12,] 1 3 4 6

The model that can be fit to the data resulting from this experiment is
A+B+C+A:B since none of the terms in this model are confounded with blocks.

Even though this design is optimal for estimating the parameters in the
model, it may not be the best in all situations since the two-factor interactions
AC and BC cannot be estimated. Since there are only five degrees of freedom
for blocks, it would appear that there should be a way to confound part of
the 2×3×5 = 30 degrees of freedom for the three-factor interaction ABC with
blocks and leave all the two-factor interactions estimable. In fact, if you are
willing to sacrifice some of the efficiency in estimating the terms in the model,
a better blocked design can be found using a D-optimal search than can be
found using the classical method.

Before the days of modern computers and software packages like R, it was
necessary to completely confound some interactions with blocks, using the
classical method, so that other interactions would be left orthogonal to blocks.
In that way, the analysis of the data could be completed by hand using the
ANOVA sum of squares formulas for balanced data. However, with availability
of programs like the R lm function, sums of squares are computed using matrix
operations as shown in Chapters 2 and 3, and it is no longer necessary for each
term in the model to be completely orthogonal to blocks in order to compute
the ANOVA and F -tests.

The model for a blocked factorial experiment can be written in matrix
notation as

y =Xτ +Zβ + ε, (7.5)

where y is the n×1 vector of responses, τ is the vector of estimable treatment
effects and interactions, and β is the vector of block effects. One optimal-
ity criterion that has been proposed for blocked designs is the Ds criteria
(see Atkinson et al., 2007). A Ds optimal design is one that minimizes the



292 INCOMPLETE AND CONFOUNDED BLOCK DESIGNS

covariance matrix of the least squares estimator for τ or equivalently maxi-
mizes the determinant of

X ′QX (7.6)

where
Q = I −Z(Z′Z)−1Z′. (7.7)

Designs where blocks are orthogonal to treatment effects, or X ′Z = 0, are
100% Ds-efficient.

Applying the classical method separately to symmetric sub-experiments
results in designs that have known confounding patterns and are 100% Ds-
efficient for estimating the effects and interactions, τ , that are not confounded
with the block differences (since they will be orthogonal to blocks). However,
in practical situations, use of the classical approach does not provide much
flexibility in the choice of block size or in the choice of interactions to be
confounded with block differences. Since the sub-experiments are often defined
in terms of pseudo factors, interactions of interest often become confounded
with blocks.

Cook and Nachtsheim’s (1989) more general computer algorithm for creat-
ing blocked designs and the similar algorithm available in the optBlock func-
tion of the AlgDesign package can find better blocked designs for mixed level
factorials. These algorithms begin with a nonsingular starting design, then se-
quentially exchange treatment combinations assigned to one block with those
assigned to other blocks in order to maximize ∣X ′QX ∣. The designs result-
ing from this algorithm may not be 100% Ds-efficient for estimating τ , but
greater choices of block sizes and estimable interactions are possible.

The next example illustrates the use of the optBlock function. First the
gen.factorial function in the AlgDesign package creates a candidate set
composed of a 3×4×6 factorial. The model statement in the optBlock function
call specifies that all two-factor interactions be estimable. The blocksizes=

c(rep(12,6)) option requests six blocks of size 12, and the criterion="D"

requests that optBlock find a design that is optimal in the sense that it
maximizes the determinant.

> library(AlgDesign)

> des <- gen.factorial(levels = c(3, 4, 6), factors = ’all’,

+ varNames = c("A", "B", "C"))

> bdes <- optBlock( ~ A + B + C + A:B + A:C + B:C, withinData =

+ des, blocksizes = c(rep(12, 6)), criterion = "D")

optBlock does not produce a unique design, therefore running this code
again may result in a different design with similar properties. The six blocks
of the design produced here are stored in bdes$Blocks and are shown side by
side on the next page.
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> bdes$Blocks

$B1 $B2 $B3 $B4 $B5 $B6

A B C A B C A B C A B C A B C A B C

2 2 1 1 15 3 1 2 1 1 1 1 5 2 2 1 3 3 1 1 14 2 1 2

9 3 3 1 17 2 2 2 6 3 2 1 7 1 3 1 4 1 2 1 18 3 2 2

10 1 4 1 19 1 3 2 8 2 3 1 12 3 4 1 11 2 4 1 22 1 4 2

13 1 1 2 26 2 1 3 16 1 2 2 30 3 2 3 38 2 1 4 25 1 1 3

20 2 3 2 28 1 2 3 21 3 3 2 32 2 3 3 45 3 3 4 33 3 3 3

24 3 4 2 36 3 4 3 23 2 4 2 34 1 4 3 46 1 4 4 35 2 4 3

41 2 2 4 37 1 1 4 27 3 1 3 39 3 1 4 53 2 2 5 51 3 1 5

43 1 3 4 42 3 2 4 29 2 2 3 40 1 2 4 55 1 3 5 52 1 2 5

48 3 4 4 44 2 3 4 31 1 3 3 47 2 4 4 60 3 4 5 56 2 3 5

63 3 1 6 49 1 1 5 62 2 1 6 50 2 1 5 61 1 1 6 65 2 2 6

64 1 2 6 54 3 2 5 69 3 3 6 57 3 3 5 66 3 2 6 67 1 3 6

71 2 4 6 59 2 4 5 70 1 4 6 58 1 4 5 68 2 3 6 72 3 4 6

The design can be stored in a form convenient for analysis using the following
code.

> Block <- c(rep(1:6, each = 12))

> bdesign <- cbind(Block, bdes$design)

Although not 100% efficient (implying all terms in the model are completely
orthogonal to blocks), like the design found using the classical method, at
least all of the two-factor interactions are estimable. If the code is modified by
changing the option on the blocks statement from blocksizes=c(rep(12,6))

to blocksizes=c(rep(6,12)), the optBlock function finds a 3 × 4 × 6 facto-
rial blocked in 12 blocks of six that still allows estimation of all two-factor
interactions. The D-efficiency for the treatments in this design was low, but
this is far better than could be accomplished with the classical method. The
only way the classical method could block the 3× 4× 6 factorial into blocks of
size 6 would be to confound part of the main effect for factor B. If reducing
the block size to six reduces the variance of the experimental units within a
block, the sacrifice in efficiency will be worthwhile.

When using the Ds-optimal approach to finding a confounded block design
for a mixed level factorial, it is no longer required that the block size be
divisible by all the prime numbers that represent factor levels in the sub-
experiments. If the block size that is most convenient for reducing variability
of experimental units within a block is not divisible by the number of levels of
all factors, it may prevent finding a design where all factors and interactions
of interest are orthogonal to blocks. However, a design found using the Ds-
optimal search will usually not have all effects in the model orthogonal to
blocks anyway. As long as the determinant is not zero, the terms specified in
the model will be estimable. Due to the non-orthogonality of these designs,
the type III sums of squares and least squares means should be used when
analyzing data.
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7.8.2 Blocking Orthogonal Arrays, Orthogonal Main Effect Plans, and
Nearly Orthogonal Main Effect Plans

Orthogonal array designs, orthogonal main effect plans, and nearly orthogonal
plans discussed in Section 6.7 can also be blocked into CCBFF designs in order
to reduce the variation of experimental units within blocks or to allow the list
of experiments to be completed on different days or with different batches
of raw materials, and so forth. One way to accomplish this is to include the
block factor as one of the factors when initially creating a design using the
oa.design function in the DoE.base package. The code below, that is similar
to what was shown in Section 6.7, searches for an appropriate orthogonal array
for creating a fraction of 41 × 61 × 23 × 32 design blocked into three blocks.

> library("DoE.base")

> show.oas(factors = list(nlevels = c(4, 6, 2, 3),

+ number = c(1, 1, 3, 3)))

The results show there are several 72-run orthogonal arrays for this purpose.
Since they are orthogonal, all main effects will be orthogonal to each other and
the block factor. The code below shows how to create the 72-run 41×61×23×32

design in three blocks of 24.

> library("DoE.base")

> fnames =c ("A", "B", "C", "D", "E", "F", "G", "Block")

> BlockOA <- oa.design(nlevels = c(4, 6, 2, 2, 2, 3, 3, 3),

+ factor.names = fnames, seed=104, nruns = 72)

> BlockOA <- BlockOA[order(BlockOA$Block), ]

Since there are only 18 degrees of freedom needed for estimating main effects
and the block factor, this design leaves 56 degrees of freedom for error. If the
experimenter were willing to sacrifice orthogonality, a much smaller blocked
design can be found. For example, the code below creates a 72-run orthogonal
array as a list of candidates and then uses the optBlock function to create a
24-run subset blocked into three blocks of 8.

> library(DoE.base)

> library(AlgDesign)

> fnames <- c("A", "B", "C", "D", "E", "F", "G")

> cand <- oa.design(nlevels = c(4, 6, 2, 2, 2, 3, 3),

+ factor.names = fnames, randomize = TRUE, seed = 104,

+ nruns = 72)

> bdes <- optBlock( ~ A + B + C + D + E + F + G,

+ withinData = cand, blocksizes = c(rep(8, 3)),criterion = "D")
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The first block is shown in part of the output below.

> bdes$Blocks

$B1

A B C D E F G

2 3 5 2 2 1 2 1

7 2 2 1 2 2 1 1

17 4 5 2 1 1 2 1

26 3 6 2 1 2 1 2

46 2 1 2 1 1 3 2

53 4 4 2 1 2 3 1

65 4 2 1 2 1 3 2

68 3 1 1 1 2 2 3

7.9 Partially Confounded Blocked Factorial (PCBF)

One of the main purposes for running a factorial experiment with few factors
is to estimate all interactions. Yet if the design is confounded into blocks,
the experimenter will lose the ability to estimate some interactions. However,
including a few additional blocks in the design will allow estimation of all main
effects and interactions using the method of partial confounding. This method
consists of confounding one or more effects or interactions in one set of blocks,
and confounding different effects or interactions in additional sets of blocks
(or replicates). By combining all the replicates, all effects and interactions will
be estimable, although not orthogonal to blocks.

For example, if an experiment were to be performed to study the effect of
two levels of A=calcium supplements and two levels of B=potassium supple-
ments upon the blood pressure of hypertensive subjects, a 22 factorial exper-
iment would be performed in order to estimate the two main effects and the
interaction. However, if the experiments were blocked into two blocks of two
experimental units (e.g., two pairs of identical twins) by confounding AB, this
interaction would be lost. One way to remedy the problem would be to include
four additional blocks, confounding main effect A with the difference in two
additional blocks, and main effect B with the difference in two more blocks.
Combining the six blocks, both main effects and their interaction would be
estimable. This design is shown in Table 7.10, and this general class of designs
is called partially confounded blocked factorials or PCBF.

The model Block+A+B+A:B could then be fit to data from the combined set
of blocks. The type III sums of squares and least squares means would be used
to analyze the data since the effects are not completely orthogonal to blocks.

If each effect and interaction in the model is confounded an equal number of
times in different sets of blocks, as in the example shown above, Butler (2006)
shows the design will have favorable properties and the maximum treatment
D-efficiency for estimating the factorial effects. Therefore, a design like this
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Table 7.10 Partially Confounded 22 in 6 Blocks of 2
Block A B

1 − −

1 + + Rep 1
- - - - - - - - - - - confounds

2 − + AB
2 + −

3 − −

3 − + Rep 2
- - - - - - - - - - - confounds

4 + − A
4 + +
5 − −

5 + − Rep 3
- - - - - - - - - - - confounds

6 − + B
6 + +

could be created using Cook and Nachtsheim’s algorithm or the similar al-
gorithm available in the optBlock function of the AlgDesign package. The
example below shows how this could be done.

> library(AlgDesign)

> Blockdes <- gen.factorial(2, nVars = 2, factors = "all",

+ varNames = c("A","B"))

> Blockdes <- optBlock( ~ A + B + A:B, withinData = Blockdes,

+ blocksizes = c(rep(2,6)), criterion = "D")

For mixed level factorial plans, Das (1960) has provided a method for con-
structing balanced confounded designs where (1) the information recovered for
each degree of freedom for any partially confounded interaction is the same,
and (2) any contrast of a partially confounded interaction is estimable inde-
pendently of any contrast of another partially confounded interaction. The
information recovered for the ith degree of freedom in the model (7.5) is cal-
culated as cii/c

′
ii. cii is the diagonal of (X ′X)−1 matrix corresponding to a

particular single degree of freedom, and σ2cii is the variance of τ̂i in a de-
sign where the treatment effects are orthogonal to blocks. c′ii is the diagonal
(X ′QX)−1, and σ′2c′ii is the variance of τ̂i in the partially confounded design
where Q is defined in Equation (7.7). In partially confounded designs c′ii > cii,
but σ′2 should be much smaller than σ2 due to the fact that the experimental
units are more homogeneous within the blocks of reduced size.

Constructing a design using Das’s method consists of converting the asym-
metrical factorial into a fraction of a symmetrical factorial. The partial
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confounding is performed in replicates of the symmetrical factorial, and then
each replicate is reduced by fractionation. Lawson et al. (2009) show how
Das’s method can be implemented in SAS with proc plan and data step
programming. They also provide a SAS macro for generating Das’s balanced
confounded designs. Creating designs by this method will allow all interactions
in the model to be estimated and will result in a design with equal precision for
each single degree of freedom of partially confounded effects and interactions.
One disadvantage for using this method is that the total number of treatment
combinations, N = sm1

1 × sm2

2 × ⋯s
nγ
γ , must always be divisible by the block

size. This can require a large number of blocks in some cases.
The optBlock function can also be used to find a partially confounded

mixed level factorial that will allow estimation of all interactions, and there is
no restriction on the block size. Using this method can sometimes produce a
balanced confounded design like Das’s method, and in other cases it will find
an approximately balanced design with more choices for the block size and
total number of runs. Lawson et al. (2009) compare the properties of designs
created by this method to designs created by Das’s method. The example
below shows the use of the AlgDesign functions gen.factorial and optBlock

to construct a partially confounded 3× 22 factorial blocked in 12 blocks of 4.

> desf <- gen.factorial(c(2, 2, 3), factors = "all",

+ varNames = c("A", "B", "C"))

> Blockdes <- optBlock( ~ A*B*C, withinData = desf,

+ blocksizes = c(rep(4, 12)),criterion = "D")

As an example of the design and analysis of a partially confounded factorial,
consider an experiment performed by Dossett et al. (2007). They were inves-
tigating methods of storing apple slices in brown bag lunches. The problem
was that the apple slices in a sack lunch turn brown and look unappetizing
before lunchtime. They wanted to compare the effects of dipping the slices
in different treatment solutions prior to storage and to compare the effects of
storing them in different storage containers to see if they could find conditions
to reduce the amount of browning. Table 7.11 shows the factors and levels.
They thought that different varieties of apples might brown at different rates

Table 7.11 Levels of Factors for Apple Slice Browning Experiment
Factor

—————————————————–
Factor Level A=Pretreatment Solution B=Storage Container

0 none none—open air
1 weak lemon juice Ziploc bag
2 salt water Tupperware
3 baking soda water —
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and therefore wanted to block by apple variety. Their apple slicer cut the ap-
ples into six slices, therefore all 4×3 = 12 treatment combinations could not be
tested within each block or apple. Since they were interested in the possible
interaction of their treatment factors, they ran a partially confounded design.

The R code below can be used to create a 4×3 factorial design in 4 blocks of
size 6 using gen.factorial and optBlock. The blocks represented four dif-
ferent varieties of apples; namely Fuji, Braeburn, Red Delicious, and Granny
Smith. The experimental units would be the six slices from each apple, and
these could be randomly assigned to one of the treatment combinations des-
ignated for each block.

> des23 <- gen.factorial(c(4, 3), factors = "all",

+ varNames = c("A", "B"))

> Blockdes <- optBlock( ~ A*B, withinData = des23,

+ blocksizes = c(rep(6, 4)),criterion = "D")

Dossett et al. (2007) actually used a slightly different procedure to generate
the design, but their design had similar properties. After storing their treated
apple slices for an hour and forty-five minutes, each slice was compared to pho-
tographs of an apple slice at various stages of browning and assigned a rating
between 1 and 11. The lowest rating was for the least amount of browning and
the highest was for the most. All three team members independently rated the
slices and the response was the average rating. Table 7.12 shows the results.

Table 7.12 Blocked 4 × 3 Factorial Design and Results for Apple Slice Browning

Block 1 Block 2 Block 3 Block 4
————– ————– ————– ————–

A B rating A B rating A B rating A B rating

0 0 7.33 2 0 1.00 3 2 10.33 2 2 1.00
2 1 1.67 1 0 3.33 1 0 2.00 3 0 8.33
0 2 6.67 2 2 1.00 2 1 2.33 1 1 4.33
1 1 1.33 0 1 8.67 0 2 7.00 1 2 1.33
2 0 1.67 0 0 8.33 3 1 3.67 0 1 3.33
3 0 8.00 3 2 4.00 1 2 6.00 3 1 9.33

This design and the results are stored in the data frame apple in the daewr

package. The example below shows how to access and analyze this data.

> library(daewr)

> library(car)

> modf <- lm(rating ~ Block + A + B + A:B, data = apple,

+ contrasts = list(A = contr.sum, B = contr.sum,

+ Block = contr.sum))
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The Anova table is shown below.

> Anova(modf,type="III")

Anova Table (Type III tests)

Response: rating

Sum Sq Df F value Pr(>F)

(Intercept) 522.48 1 72.7428 1.323e-05 ***

Block 3.01 3 0.1396 0.9338

A 145.96 3 6.7740 0.0110 *

B 2.21 2 0.1535 0.8599

A:B 7.73 6 0.1795 0.9755

Residuals 64.64 9

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

It can be seen that the only thing significant was factor A, the treatment
solution. The least squares means for the different treatment solutions can be
found as shown below.

> library(lsmeans)

> lsmeans(modf, pairwise ~ A, adjust = ("tukey"))

$‘A lsmeans‘

A lsmean SE df lower.CL upper.CL

0 6.971250 1.11668 9 4.4451449 9.497355

1 2.970417 1.11668 9 0.4443116 5.496522

2 1.527917 1.11668 9 -0.9981884 4.054022

3 7.193750 1.11668 9 4.6676449 9.719855

$‘A pairwise differences‘

estimate SE df t.ratio p.value

0 - 1 4.000833 1.610498 9 2.48422 0.12952

0 - 2 5.443333 1.547317 9 3.51792 0.02760

0 - 3 -0.222500 1.610498 9 -0.13816 0.99899

1 - 2 1.442500 1.610498 9 0.89569 0.80743

1 - 3 -4.223333 1.547317 9 -2.72946 0.09011

2 - 3 -5.665833 1.610498 9 -3.51806 0.02760

p values are adjusted using the tukey method for 4 means

Using the student Tukey’s HSD procedure as described in Section 2.8.2,
it was found that dipping the apple slices in salt water reduces brown-
ing the most, but the amount of browning for slices dipped in lemon juice
was not significantly worse. The results are summarized by the underlines
in Table 7.13. The experimenters recommended further studies varying the
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concentration of lemon juice to see if they could improve the results and elim-
inate the aftertaste left by salt water.

Table 7.13 Least Squares Means for Factor A

(means underlined by the same line are not significantly different)

Salt Lemon Baking
Water Juice None Soda
1.53 2.97 6.97 7.19
——————

—————————

7.10 Review of Important Concepts

When experimental units are heterogeneous and can be grouped into smaller
blocks of more homogeneous experimental units, a blocked design should be
used. When the number of experimental units per block or block size is smaller
than the number of levels of the treatment factor or combinations of levels of
treatment factors in a factorial design, an incomplete block design should be
used.

When there is only one treatment factor, there is a choice between two types
of incomplete block designs. Balanced incomplete block (BIB) designs require
that every treatment level occurs in a block an equal number of times with
every other treatment level. BIB designs can be created with the optBlock

function in the AlgDesign package. The advantage of these designs is that
the precision (or standard error) of the difference in every possible pair of
treatment means will be equal. The disadvantage is that many blocks and
experimental units may be required to achieve the balance. The other alter-
native design for one treatment factor is the partially balanced incomplete
block (PBIB) designs.

The advantage of PBIB designs is that the total number of blocks and
experimental units required can be reduced. The disadvantage is that the
standard error of differences in pairs of treatment means will not be constant.
There are many different methods of creating PBIB designs, and some of
the more useful designs have been tabled. One type of PBIB called a BTIB
(balanced with respect to test treatments) can be easily created from a BIB
design. This design is useful when there is more interest in comparing one
treatment level (such as a control) to all other treatment levels than there
is in comparisons among the other treatment levels. Another class of PBIB
designs that can be easily created using the design.cyclic function in the
agricolae package are called generalized cyclic designs.

Latin-square designs introduced in Chapter 4 have two orthogonal blocking
factors, and contain a complete block design in both the row blocks and column
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blocks. If an incomplete block design is required in either the row or column
blocks, a row column design (RCD) can be utilized.

When experimenting with multiple factors and the block size is not large
enough to accommodate all possible treatment combinations, there are two
alternative methods for creating an incomplete block design. The first method
is to completely confound some interactions with blocks in a completely con-
founded blocked factorial (CCBF) design, or a completely confounded blocked
fractional factorial (CCBFF) design. The advantage of these designs is that
the total number of blocks and experimental units can be minimized. The
disadvantage is that some interactions will be completely confounded with
blocks and will be inestimable. The other method is to use a partially con-
founded blocked factorial (PCBF) design. Figure 7.4 illustrates when these
designs should be used in relation to the designs presented in other chapters.

Figure 7.4 Design Selection Roadmap
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CRSP          RSSP   SPMPV  RBSP
SPFF        EESPRS

One Two

class       cont.     mixture cont.      class
Factors

When each factor has only two or three levels, there is a classical method
for creating completely confounded factorial designs, and tables are available
for block defining contrasts that will minimize the number of low order inter-
actions confounded. For factorials where all factors have p (a prime number)
of levels, or where the experiment can be broken down into sub-experiments
where all factors have the same prime number of levels, the classical method
for creating a completely confounded design can also be used. A D-optimal
search can also be used to create a confounded design to estimate all effects
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and interactions of interest and confound others with blocks. The optBlock

function in the AlgDesign package can be to find these designs. The advan-
tage of this approach is that it has a higher possibility of finding a design
capable of estimating a specified list of effects and interactions, and it is more
flexible in terms of block sizes available. The disadvantage of designs created
with a D-optimal search is that treatment levels are not orthogonal to blocks
and they are estimated less efficiently than they would be in a design created
with the classical method.

Partially confounded blocked factorials are used in factorials where there
are only a few factors, like two or three, and there is a need to estimate all
interactions. These designs require more blocks and experimental units than
completely confounded designs, but do allow estimation of all interactions.
These designs can be created by confounding all estimable effects an equal
number of times in different replicates of blocks or by using a D-optimal
search.

The analysis of incomplete block designs and partially confounded factorial
designs is similar to the analysis of complete block designs, except care must be
taken to always use the type III sums of squares and least squares means. For
completely confounded factorial designs, the interactions that are confounded
with blocks must be left out of the model, and the significant effects can be
identified by graphical techniques such as a half-normal plot of effects.
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7.11 Exercises

1. An experimenter wanted to determine how the gear selected on a 10 speed
bike would affect the time it takes a rider to pedal up a long, gradual hill.
The experimental unit will be the trial or point in time when a rider will
ride up the hill. Treatment will be the gear selected on the bicycle. Since the
experimenter would like his conclusions to apply to all riders, he would like
to run a blocked experiment where several riders (blocks) test each gear.
However, if each rider who participates in his study must test all gears in
separate trials, he or she will become fatigued and variability in time to
climb the hill will increase. Therefore, the experimenter decided to do an
incomplete block design wherein each rider participating in his study will
test only a subset of 4 of the 10 gears.

(a) If the experimenter were to use a balanced incomplete block (BIB) design
by choosing all possible subsets of 4 selected from 10 as his blocks, how
many riders or blocks would he need to recruit to his study?

(b) Using Equations (7.1)–(7.3) or the BIBsize function in daewr, determine
the minimum possible number of blocks that would be required for BIB
design.

(c) Modify the R code in Section 7.2 to create a BIB with the number of
blocks you found in (b) using the optBlock function in the AlgDesign

package.

2. Consider an incomplete block design with t=10 levels of the treatment
factor.

(a) If a balanced incomplete block design (BIB) was constructed using the
simplest method of forming blocks as all possible combinations of (

10
k
),

how many blocks would be required for the cases where k=3, 4, 5, or 6?

(b) Using Equations (7.1) to (7.3), determine the minimum number of blocks
that could possibly be required for a BIB with t=10, and k=3, 4, 5, or
6.

(c) Is it possible to find a BIB with t=10, and k=3, 4, 5, or 6, by modifying
the R code in Section 7.2?

(d) Can one or more generalized cyclic incomplete block design with t=10
and k=3 be found with less blocks than required for a BIB design? What
number of blocks would be required for these designs? Using R package
agricolae as illustrated in Section 7.4, find these designs.

3. Consider blocking a 25 factorial into eight blocks with four experimental
units per block using the block defining contrasts ACE, BCE, and ABCD
(shown in Section 7.6.2). Show that the generalized interactions of these
contrasts, which would be confounded with blocks, contain no main effects.

4. Consider blocking a 26−2 fractional factorial, with generators E = ABC,
and F = ABD, into 4 blocks of size 4. If the block defining contrasts are
ACD and AB (shown in Section 7.6.1), show all interactions and their
aliases that will be confounded with blocks.
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5. Choice based conjoint studies (see Section 6.7 for an example and de-
scription of conjoint analysis) are frequently used in marketing research.
In choice based conjoint studies, potential customers are asked to choose
among several alternatives. The alternatives are combinations of levels of
several product characteristics. The response for each combination of prod-
uct characteristics is a count of the number of potential customers who
choose that alternative. Analysis of the data helps marketing researchers
determine what product characteristics have the most influence on cus-
tomer choices and what mix of alternatives they should offer in order to
satisfy the needs of the market. Consider the following scenario described
by Street and Burgess (2007). Researchers want to study how the attributes
of a take-out pizza outlet affect consumer choice of where they buy their
pizza. The table below lists the product characteristics (i.e., factors in ex-
perimental design terminology) and their levels.

Levels
Attribute − +
Pizza type Traditional Gourmet
Type of crust Thin Thick
Ingredients Some canned All fresh
Size of pizza One size only Three sizes
Price $13 $17
Delivery time 30 minutes 45 minutes

The alternatives that customers must choose from in a survey are all 26

combinations of attribute levels.

(a) Since it would be impractical to ask a potential customer to choose from
a list of 26 = 64 combinations, it would be better to have each customer
surveyed make a choice from four alternatives. Create a blocked 26 design
with block size four, so that each customer surveyed must only choose
from among the four combinations of attribute levels in one block.

(b) Since higher-order interactions are unlikely to be important, construct
a 16-run 26−2 design blocked into four blocks of size four. Are all main
effects estimable from your design?

(c) Block a 16-run 26−2 design blocked into eight blocks of size two, so that
each customer surveyed only has to choose between two alternatives. Are
all main effects estimable from this design?

(d) If the number of alternatives of the type of crust and the size of pizza
were increased from 2 to 3, the factorial combination of all attribute
levels would change from a 26 to a 24 × 32 factorial. Using the optBlock

function in AlgDesign, create a 24-run fraction of a 24 × 32 factorial,
blocked in 8 blocks of 3, for this problem.

(e) What model would you use for the analysis of data arising from the
design you created in (d)?
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6. For a 26−1 experiment with generator F = ABCDE that is blocked into
four blocks with eight experimental units per block using the block defining
contrasts ACD and BCD,

(a) Determine the defining relation for the fractional factorial.

(b) Determine the complete alias structure for the fractional factorial.

(c) Determine the generalized interaction of the block defining contrasts.

(d) Show what interactions are confounded with blocks.

7. Consider blocking a 2 × 32 × 4 factorial into six blocks of 12 treatment
combinations each.

(a) Naming the factors A, B, C, and D, which factors must be represented
by pseudo factors in order to block using the classical method?

(b) What are the two sub-experiments composed of factorials with prime
number of levels?

(c) What interactions of factors and pseudo factors would you confound in
each sub-experiment in order to allow estimation of the main effects?
What effects and interactions will be unconfounded with blocks and
estimable?

(d) Create the design using the mod function as shown in Section 7.8.1.

(e) Can you create a design using the optBlock function in the AlgDesign

package that has six blocks of 12 and allows estimation of all two-factor
interactions?

8. Show why it is impossible to block a 3×4×6 into blocks of size 6 using the
classical method without confounding a main effect.

9. Create a partially confounded 23 design in 14 blocks of size 4. Generate
random data, and use R lm function to illustrate that all main effects and
interactions can be estimated from the design you created.

10. Using the optBlock in the AlgDesign package create a partially confounded
2 × 32 factorial in six blocks of size 6.

11. Consider the apple slice browning experiment shown in Section 7.9.

(a) If the apple slicer made eight slices of each apple instead of six, find a
partially confounded 4× 3 factorial in three blocks of eight (instead of 4
blocks of 6) by modifying the code that used the optBlock function in
that example.

(b) Analyze the data from the experiment shown in the text and verify the
results shown.

(c) Check the equal variance and normality assumptions. Is a transformation
warranted? If so, what transformation would you use and does it change
the conclusions?
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CHAPTER 8

Split-Plot Designs

8.1 Introduction

A factorial design is a powerful tool for aiding a researcher. Use of a factorial
design in experimentation can dramatically increase the power of detecting
factor main effects through hidden replication, while additionally affording a
researcher the ability to detect interactions or joint effects of factors. When
there is an interaction between two factors, the effect of one factor will depend
on the level of the other factor, and determination of optimal factor combi-
nations must take that into account. Interactions occur frequently in the real
world and they can only be quantified through factorial designs.

In the factorial and fractional factorial designs discussed in Chapters 3, 4,
6, and 7, it was assumed that combinations of factor levels in the design could
be randomly assigned to the experimental units within a block for a blocked
factorial design, or to the entire group of experimental units for a completely
randomized factorial design. Randomization of treatment combinations to ex-
perimental units guarantees the validity of the conclusions reached from the
analysis of data. However, sometimes the levels of one or more factors in the
design are more difficult to change or require more experimental material
to evaluate. In this situation, complete randomization of factor-level combi-
nations to experimental units could make the experiment much more time
consuming or perhaps impossible to conduct. This is the case frequently in
process improvement studies where the process consists of several steps, and
some factors in an experiment relate to one process step while others relate
to a later process step.

When treatment combinations cannot be completely randomized to experi-
mental units due to one or more hard-to-vary factors, the experimental unit is
different for the hard-to-vary factors than it is for the easy-to-vary factors. In
order to ensure validity, the design of the experiment and the analysis of the
data must take into account these different experimental units. The designs
that do this are called split-plot experiments. The name split-plot comes from
the original application in agricultural experiments, where the levels of some
factors (called whole-plot factors) could only be varied between plots of land,
while the levels of other factors could be varied within a plot (see Yates, 1937).

A compromise is made in split-plot experiments. The randomization is such
that the hard-to-vary factors are not changed as frequently as easy-to-vary
factors. This makes it more convenient to conduct the list of experiments,
but there is less efficiency or power for detecting effects of the hard-to-vary
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factors than there is for the easy-to-vary factors. The models for analysis of
split-plot experiments involve both fixed factorial factors and random terms
representing the different experimental units.

8.2 Split-Plot Experiments with CRD in Whole Plots CRSP

To understand the concept of a split-plot experiment, consider the following
example problem. Recipes for chocolate and orange cookies include exactly
the same ingredients up to the point where the syrup was added to the batch.
However, after the cookies were baked, the chocolate cookies had an appealing
round and plump appearance, while the orange cookies spread during the
baking process and became thin, flat, and unappealing. A factorial experiment
was devised to determine if there was a way to change the process of making
the orange cookies that would reduce the spreading during baking. The factors
that were chosen to be varied were A: the amount of shortening in the dough
batch (80% of what the recipe called for or 100%), B: the baking temperature
(below, at, or above the temperature called for by the recipe), and C: the
temperature of the cookie sheet upon which the cookies were placed to be
baked (hot out of the oven, or cooled to room temperature). A response that
could quantify the objective of the experiment was the diameter of the baked
cookies.

Table 8.1 shows a completely randomized list for this 3 × 22 factorial ex-
periment. The experimental unit is a batch of cookies and this plan calls for
baking 12 batches. There are no replicate batches, and therefore no estimate
of the variance experimental error from replicates in this plan.

Table 8.1 Completely Randomized Cookie Baking Experiment
Factor A Factor B Factor C

Batch Shortening Bake Temp. Tray Temp.
1 100% low RoomT
2 100% low Hot
3 100% norm RoomT
4 100% high RoomT
5 80% high RoomT
6 80% norm RoomT
7 100% high Hot
8 100% norm Hot
9 80% low RoomT
10 80% high Hot
11 80% norm Hot
12 80% low Hot
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However, the cookie-making process consists of the two steps as shown in
Figure 8.1. Factor A was related to process step 1, while factors B and C were
related to process step 2. The amount of shortening was a hard-to-vary factor
because each time it was changed it required making a new batch of cookie
dough, while the baking temperature and tray temperature were easy to vary.
Once a batch of dough was made, there was enough to make six trays of
cookies, and all six combinations of baking temperature and tray temperature
could be tested within each dough batch, greatly reducing the total number
of batches required.

Figure 8.1 Two-Step Cookie-Making Process

Step 1. Mix cookie dough batch

Step 2. Bake cookies

Therefore, an alternate way of designing the experiment would be to follow a
two-step plan. First, plan to make four batches of cookie dough and randomly
assign two batches to use 80% of the recipe recommended amount of short-
ening and two batches to receive the full amount of shortening recommended
by the recipe. This represents a completely randomized design in one factor
and the experimental unit is a batch of cookie dough. This first step is called
the whole-plot design, and the whole-plot factor is A the amount of shorten-
ing. Next, bake six trays of cookies from each batch of dough and completely
randomize the six combinations of bake temperature and tray temperature to
the six trays of cookies within each batch. This is a randomized block 3 × 2
factorial within each batch of cookie dough and is called the sub-plot design.
The sub-plot block is the batch of cookie dough, the sub-plot experimental
unit is a tray of cookies, and the sub-plot factors are B the bake temperature
and C the tray temperature. The combination of the whole-plot and sub-plot
design is called a split-plot design with CRD in the whole plots or CRSP.

By designing the experiment in this way only four batches of cookies are
required instead of 12, and there are replicate whole-plot and sub-plot exper-
imental units from which to estimate the variance of the two experimental
error terms. There is less power for testing the shortening effect than there
would be with the 12 batch completely randomized design shown in Table 8.1,
but due to the blocking by batch, there is actually more power for detecting
the baking temperature, tray temperature, and interaction effects. For this
reason split-plot experiments are often called super efficient.
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8.2.1 Creating a Split-Plot Design with CRD in Whole Plots with R

The optBlock function in the R package AlgDesign that was described in
Chapter 7 can be used to create a randomized plan for a split-plot experiment.
The commands to do this are shown below.

> library(AlgDesign)

> sp <- expand.grid(trayT = factor( c("RoomT", "Hot")),

+ bakeT = factor( c("low", "mid", "high") ))

> wp <- data.frame(short = factor( c("100%", "80%") ))

> wp <- rbind(wp, wp)

> splitP <- optBlock( ~ short * (trayT + bakeT +

+ trayT:bakeT), withinData = sp, blocksizes = rep(6, 4),

+ wholeBlockData = wp)

In the code above, the R function expand.grid creates a data frame called
sp that contains a 2×3 full factorial in the sub-plot factors trayT and bakeT.
The next two statements create a single column data frame called wp that
contains two replicates of the levels of the whole-plot factor short. Finally,
the optBlock function creates a split-plot design called splitP from the two
data frames with four whole plots that each contain six sub-plots.

The blocks of the resulting design are shown printed side by side below.
The whole plots or batches should be randomly assigned to the blocks, and
the trays within each batch should be randomly assigned to the combination
levels of the sub-plot factors.

> splitP$Blocks

$B1 $B2

short trayT bakeT short trayT bakeT

1 100% RoomT low 2 80% RoomT low

1.1 100% Hot low 2.1 80% Hot low

1.2 100% RoomT mid 2.2 80% RoomT mid

1.3 100% Hot mid 2.3 80% Hot mid

1.4 100% RoomT high 2.4 80% RoomT high

1.5 100% Hot high 2.5 80% Hot high

$B3 $B4

short trayT bakeT short trayT bakeT

3 100% RoomT low 4 80% RoomT low

3.1 100% Hot low 4.1 80% Hot low

3.2 100% RoomT mid 4.2 80% RoomT mid

3.3 100% Hot mid 4.3 80% Hot mid

3.4 100% RoomT high 4.4 80% RoomT high

3.5 100% Hot high 4.5 80% Hot high
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When there are only two levels for each factor in a split-plot design, the
function FrF2 in the FrF2 package can be used to create the design. In the
R code below this is illustrated for the cookie baking experiment, assuming
that the number of levels of the baking time factor is reduced to two. The
arguments 16 and 3 indicate 16 runs with 3 factors. WPs=4 indicates four
whole-plots, and nfac.WP=1 indicates one whole-plot factor.

> library(FrF2)

> Sp <- FrF2(16, 3, WPs = 4, nfac.WP = 1,factor.names =

+ list(short = c("80%", "100%"), bakeT = c("low", "high"),

+ trayT = c("low", "high")))

Warning message:

In FrF2(16, 3, WPs = 4, nfac.WP = 1, factor.names = list(short =

c("80%", :

There are fewer factors than needed for a full factorial whole

plot design. 1 dummy splitting factor(s) have been introduced.

> Sp

run.no run.no.std.rp short WP2 bakeT trayT

1 1 14.4.2 100% 1 low high

2 2 13.4.1 100% 1 low low

3 3 15.4.3 100% 1 high low

4 4 16.4.4 100% 1 high high

run.no run.no.std.rp short WP2 bakeT trayT

5 5 4.1.4 80% -1 high high

6 6 3.1.3 80% -1 high low

7 7 1.1.1 80% -1 low low

8 8 2.1.2 80% -1 low high

run.no run.no.std.rp short WP2 bakeT trayT

9 9 7.2.3 80% 1 high low

10 10 8.2.4 80% 1 high high

11 11 6.2.2 80% 1 low high

12 12 5.2.1 80% 1 low low

run.no run.no.std.rp short WP2 bakeT trayT

13 13 11.3.3 100% -1 high low

14 14 12.3.4 100% -1 high high

15 15 9.3.1 100% -1 low low

16 16 10.3.2 100% -1 low high

class=design, type= FrF2.splitplot

NOTE: columns run.no and run.no.std.rp are annotation,

not part of the data frame

Since there are four whole plots and only one whole plot factor in this exam-
ple, FrF2 creates and additional factor WP2 that represents the batch within
shortening level.
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8.2.2 Model for a Split-Plot Experiment with CRD in Whole Plots

It is easy to write the model for a split-plot design with a completely random-
ized design in the whole plots by following the same two-step procedure used
to create the design. The first step was to create a completely randomized
design in the whole plots by assigning the levels of the whole-plot factor at
random to the whole plots. The model for this step can be represented as

yij = µ + αi +w(i)j , (8.1)

where yij represents the average response for the ith level of the whole-plot
factor and the jth whole-plot, αi represents the fixed effect of the whole-plot
factor A, w(i)j represents the effect of the nested random effect of the jth
whole-plot assigned to the ith level of the whole-plot factor. This is the same
model used for the completely randomized design in Chapter 2.

The second step in creating the design was to split the whole plots and
assign each sub-plot at random to one of the levels of the sub-plot factor
(or combination of levels of the sub-plot factors if there are more than one).
Added to the model at this step is the effect of the sub-plot factor and the
interaction between the whole-plot and sub-plot factor, which are included
after the random block term w(i)j to arrive at the final model shown below

yijk = µ + αi +w(i)j + βk + αβik + εijk, (8.2)

where yijk is the measured response for the ith level of the whole-plot factor
and the kth level of the split-plot factor within the jth whole-plot. βk is the
effect of the fixed split-plot factor, αβik is the fixed interaction effect, and
εijk is the random effect of the kth split-plot within the jth plot. If there are
more than one sub-plot factors, as in the cookie-baking experiment described
above, the model would be:

yijkl = µ + αi +w(i)j + βk + γl + βγkl + αβik + αγil + αβγikl + εijkl (8.3)

and if there are more than one whole-plot factors the model would be written
as:

yijkl = µ + αi + βj + αβij +w(ij)k + γl + αγil + βγjl + αβγijl + εijkl (8.4)

and likewise for other combinations of numbers of whole-plot and sub-plot
factors.

8.2.3 Analysis of a Split-Plot Design

Since there are two different experimental units in a split-plot experiment
(whole plots and split-plots), there are two error terms in the analysis of the
data. One error term is for the whole-plot factors and another error term is
for the sub-plot factors. The nested effect of the whole-plot factor in Equation
(8.3) is random. If the number of levels of the whole-plot factor α is a, the
number of levels of the sub-plot factors β and γ are b and c, respectively,
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and the number of whole plots is n, then the expected mean squares for
the balanced design using Bennett and Franklin’s (1954) tabular method are
shown in Table 8.2.

Table 8.2 Table of EMS for Split-Plot Experiment with Two Sub-plot Factors
Source df EMS
α a − 1 σ2

s + bcσ
2
w + nbcτ

2
A

w a(n − 1) σ2
s + bcσ

2
w

β b − 1 σ2
s + nacτ

2
B

γ c − 1 σ2
s + nabτ

2
C

αβ (a − 1)(b − 1) σ2
s + ncτ

2
AB

αγ (a − 1)(c − 1) σ2
s + nbτ

2
AC

βγ (b − 1)(c − 1) σ2
s + baτ

2
BC

αβγ (a − 1)(b − 1)(c − 1) σ2
s + nτ

2
ABC

Error (a − 1)(b − 1)(c − 1)(n − 1) σ2
s

From this table, it can be seen that the correct error term for testing the
whole-plot factor α is the mean square for whole plots, and the error term for
testing all other terms in the model is Error.

With balanced data, the analysis can be performed using either the analysis
of variance or the REML method described in Chapter 5. However, if the R
aov function is used to perform the analysis of variance, it will not produce the
correct F-test for the whole plot factor. If the terms in the model are specified
as fixed or random, the gad function in the R package GAD (Sandriti-Neto and
Camargo, 2012) can produce an ANOVA table with the correct F -test, given
an object produced by aov. As an example, consider the analysis of the data
from the cookie baking experiment stored in the data frame splitPdes in
package daewr. The R commands and results are shown below.

> library(daewr)

> data(splitPdes)

> library(GAD)

> Short <- as.fixed(splitPdes$short)

> Batch <- as.random(splitPdes$batch)

> BakeT <- as.fixed(splitPdes$bakeT)

> TrayT <- as.fixed(splitPdes$trayT)

> model <- aov(y ~ Short + Short%in%Batch + BakeT +

+ TrayT + Short*BakeT + Short*TrayT + BakeT*TrayT +

+ Short*BakeT*TrayT, data = splitPdes)

> gad(model)
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Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

Short 1 3.4428 3.4428 41.0738 0.023492 *

BakeT 2 0.2053 0.1026 10.4416 0.003559 **

TrayT 1 0.6700 0.6700 68.1533 8.931e-06 ***

Short:Batch 2 0.1676 0.0838 8.5263 0.006902 **

Short:BakeT 2 0.0547 0.0273 2.7821 0.109490

Short:TrayT 1 0.1962 0.1962 19.9580 0.001202 **

BakeT:TrayT 2 0.0510 0.0255 2.5956 0.123608

Short:BakeT:TrayT 2 0.0008 0.0004 0.0424 0.958673

Residual 10 0.0983 0.0098

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

In the ANOVA table, it can be seen that the F-value for Short was created
by dividing the mean square for Short by the mean square for batch within
shortening (Short:Batch) rather than the error mean square.

The lmer function in the lme4 package as described in Section 5.8 can
also be used for REML analysis of split-plot experiments. The R code and
resulting analysis below shows the analysis of the data from the cookie baking
experiment.

> library(lme4)

> rmodel <- lmer(y ~ 1 + short + bakeT + trayT + short:bakeT +

+ short:trayT + bakeT:trayT + short:bakeT:trayT +

+ (1|short:batch), data = splitPdes)

> anova(rmodel)

Analysis of Variance Table

Df Sum Sq Mean Sq F value

short 1 0.40364 0.40364 41.0589

bakeT 2 0.20530 0.10265 10.4416

trayT 1 0.67000 0.67000 68.1533

short:bakeT 2 0.05470 0.02735 2.7821

short:trayT 1 0.19620 0.19620 19.9580

bakeT:trayT 2 0.05103 0.02552 2.5956

short:bakeT:trayT 2 0.00083 0.00042 0.0424

The F-values above are seen to be identical to those produced by the gad

function. Although the P-values (Pr(>F)) are not given, they can be easily
computed. For example, the P-value for the shortening effect can be calculated
in R with the command 1-pf(41.0738,1,2).
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In addition to producing the F -tests on the fixed effect in the model, the
lmer function provides estimates of the variances of the random effects. A
portion of the results produced by the summary(rmodel) is shown below.

Random effects:

Groups Name Variance Std.Dev.

short:batch (Intercept) 0.0123317 0.111048

Residual 0.0098308 0.099151

Number of obs: 24, groups: short:batch, 4

Here we see that the variability of batches of dough σ̂2
w = 0.0123, and that

the variability from tray to tray within a batch σ2
s = 0.00983. The number of

observation (24) less one, less the sum of the degrees of freedom for all the
factors and interactions in the ANOVA table produced by the gad function
(i.e., 24–1–13), gives the degrees of freedom (10) for the sub-plot error term.

Since the expected value of the denominator for the F -test of the whole-
plot factor, σ2

s + 6σ2
w, is larger than σ2

s and the analysis of the data ignoring
the random whole plots would use σ̂2

s as the denominator for all F -tests, the
analysis of data without consideration of the random whole-plot effect could
be completely misleading. Generally, the variability among the whole-plot
experimental units is larger than the variability among the sub-plot units in
a split-plot experiment.

The results of the data analysis show that the shortening effect, the bake
temperature effect, the tray temperature effect, and the shortening by tray
temperature interaction effect are all significant. Since there is a significant
interaction between shortening and tray temperature, the effect of shortening
depends upon the tray temperature. The best way of depicting this is through
the interaction plot shown in Figure 8.2.

There it can be seen that reducing the amount of shortening from 100% to
80% of that called for in the recipe reduces the cookie diameter more when
using room temperature trays than when using trays hot out of the oven. It
also can be seen that the smallest diameter cookies are the result of using
80% of the recommended shortening and placing the cookie dough on a room
temperature tray before baking.

8.3 RCB in Whole Plots RBSP

A second way to run a split-plot experiment is to utilize a randomized complete
block design in the whole plots. To illustrate this design consider another
simple example. A fisherman performed an experiment to determine the effect
of A: line weight, B: pole stiffness, and C: lure weight upon the distance he
could cast. He had three spools of fishing line. One with 6-lb monofilament test
line, one with 10-lb test line, and one with 20-lb test line. He had a medium
light weight pole and a medium weight pole. He had a lightweight lure and a
heavier lure, but he only had one fishing reel.
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Figure 8.2 Interaction of Shortening and Tray Temperature in Cookie Experiment
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A single experiment or run would consist of selecting the line, the pole,
and the lure, then making a cast on a grass field and measuring the distance
from the fisherman’s feet to the spot where the lure landed. The experimental
unit consisted of the conditions such as the wind speed and direction and the
caster’s ability at the time a certain trial or combination of treatment factors
was employed.

This was a 3 × 22 factorial experiment. The experimenter could easily clip
his fishing reel onto one fishing pole or the other between casts, and he could
easily change the lure between casts, but to change the line weight he had
to take all the line off his reel, wind it up on a spindle, and then fill the reel
with a different weight line. Thus, the line weight factor was hard to vary.
This took several minutes, and rather than completely randomizing the order
of the 3 × 22 = 12 treatment combinations to be tested, it was much easier to
perform the experiment in the order shown in Table 8.3.

Here, the 10-lb weight line was randomly chosen to be used for the first four
casts. The order of the four combinations of pole stiffness and lure weight were
randomized in the first four trials. Next, the 20-lb weight line was randomly
selected to be used for the next four trials and again the order of the four
combinations of pole stiffness and lure weight were randomized in these trials.
Finally, the last four casts were made using the 6-lb weight line. By conduct-
ing the experiments in this way the fisherman had inadvertently created a
split-plot experiment. The whole-plot experimental unit is a collection of four
individual trials or casts and the sub-plot experimental unit is an individual
trial or cast.
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Table 8.3 Casting Experiment
Trial Line Wgt Pole Stiffness Lure Wgt

1 10 lb medium light heavy
2 10 lb medium light light
3 10 lb light light
4 10 lb light heavy
5 20 lb light light
6 20 lb medium light light
7 20 lb medium light heavy
8 20 lb light heavy
9 6 lb light light

10 6 lb medium light light
11 6 lb light heavy
12 6 lb medium light heavy

The problem is that there is no replication of the whole-plot units. If the
wind speed or direction changed during the course of the trials, the line weight
effect could be biased, and there is no estimate of whole-plot variability from
replicates. There is no bias of the pole stiffness and lure weight effects, however,
since the four combinations of pole stiffness and lure weight are repeated in
a random order within each of the three blocks. To get unbiased estimates of
the whole-plot factor effect and gain an estimate of whole-plot experimental
error, the fisherman could repeat the whole experiment again as a second
block. This was done and the second set of casting trials were completed by
a second fisherman so that the results could be generalized to more than one
fisherman.

By repeating the experiments with a second fisherman doing the casting, a
randomized complete block experiment design is created in the whole plots.
The fisherman represents the block factor, and each line weight is tested by
each fisherman in a random order. All four combinations of the sub-plot factors
of pole stiffness and lure weight are tested in a random order within each
combination of fisherman and line weight.

The model for this experiment is shown in Equation (8.5).

yijkl = µ + bi + αj + bαij + βk + γl + αβjk + αγjl + βγkl + αβγjkl + εijkl (8.5)

Here bi is the random block or fisherman effect, αj is the fishing line weight ef-
fect, bαij is the random block by treatment interaction term, which represents
the whole-plot error term. The first three terms of the model are the same
as the model for an RCB design shown in Section 4.3. β is the pole stiffness
effect and γl is the lure weight effect. These are sub-plot factors along with
all the interactions. The error term for the sub-plot factors and interactions
is εijkl.
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8.3.1 Creating a Split-Plot Design with RCB in Whole Plots with R

The code below creates the split-plot design with an RCB design in the
whole plots or an RBSP design. This code uses the optBlock function in
the AlgDesign package similar to the example in Section 8.2.1. This design is
not randomized, but a random order of whole plots and sub-plots within each
whole-plot could be constructed.

> library(AlgDesign)

> sp <- expand.grid(PoleStiff = factor(c("light",

+ "medLight")), LureWgt = factor(c("light", "heavy")))

> wp <- data.frame(LineWgt = factor(c("6lb", "10lb",

+ "20lb")))

> wp <- rbind(wp, wp)

> splitP <- optBlock( ~ LineWgt*(PoleStiff + LureWgt +

+ PoleStiff:LureWgt), withinData = sp, blocksizes =

+ rep(4, 6), wholeBlockData = wp)

> fisherman <- factor( c(rep(1:2, each = 12)))

> splitP$design <- cbind(fisherman, splitP$design)

8.3.2 Example of a Split-Plot Experiment with RCB in Whole Plots

As an example of the analysis of a split-plot experiment with an RCB design in
the whole plots, consider an example from industry. Sausage casings are made
from collagen in a two-step process. In the first step, collagen must be broken
down and reconstituted as a gel with consistent and predictable traits. In the
second step, a sophisticated process is used to extrude the gel into a tube that
is strong enough to hold the sausage, but tender enough for the final customer.
Sausages can be cooked in many ways from steaming to deep-fat frying, and
the casing must be able to handle the stress and temperature changes without
bursting. Experiments were run to determine how the combination of levels
of two factors A and B in the gel-making process, and the combination of
levels of two factors C and D in the gel-extrusion step affected the bursting
strength of the final casing. A combination of factor levels that would result in
achieving a bursting strength at or above a threshold value was sought. The
actual factor names, levels, and units of the response are not provided in this
example for proprietary reasons.

Two levels were chosen for each of the four factors. A different gel batch had
to be made for each combination of levels of factors A and B in the gel-making
process. The collagen used to make a gel batch was the experimental unit for
factors A and B. However, several combinations of the levels of the factors
C and D, in the extrusion process, could be tested with the gel from one gel
batch. For this reason, the experiment was run as a split-plot experiment and
the experimental unit for factors C and D was a portion of the gel from each
batch. If the experiments had been run as a completely randomized factorial
design (CRFD), it would have been necessary to produce 16 gel batches, one
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for each of the 24 treatment combinations. By using a split-plot experiment
fewer gel batches were required.

Table 8.4 shows the results of experimentation with four gel batches. The
left side of the table shows a standard 22 factorial plan in factors A and B
that were involved in the gel-making process. One gel batch was made for
each of the four combinations of levels of these two factors. Once a gel batch
was made, there was enough gel to test all four combinations of levels of the
factors C and D that were involved in the extrusion process. In the table,
this is represented by showing the combinations of levels of factors C and
D horizontally across the top of the table. The responses (bursting strength)
shown on the first line of the table were all measured from the same gel
batch with differing conditions in the extrusion process. In performing the
experiments, the four combinations of levels of A and B were randomized to
different samples of collagen, and the order of the four combinations of factors
C and D were randomized during the extrusion of each gel batch.

Table 8.4 First Four Batches for Sausage-Casing Experiment

Gel C − + − +

Batch A B D − − + +

1 − − 2.07 2.07 2.10 2.12
2 + − 2.02 1.98 2.00 1.95
3 − + 2.09 2.05 2.08 2.05
4 + + 1.98 1.96 1.97 1.97

The problem with the design as shown in Table 8.4 is that there is no
replication of the combinations of levels of the whole-plot factors. With only
two factors and four runs, there is no adequate way to separate the effects
of factors A, B, and their interaction from the differences in the whole-plot
experimental units. For this reason the whole experiment was repeated a week
later making four more gel batches from a different shipment of collagen. The
results for these experiments are shown in Table 8.5. Table 8.4 now represents
the first block of whole plots, and Table 8.5 represents the second block. The
blocks correspond to two different shipments of collagen.

Even with the addition of a second block, only eight gel batches were re-
quired in total for the split-plot experiment. Sixteen gel batches would be re-
quired for an unreplicated completely randomized factorial design. The model
for the whole-plot part of the experiment can be represented as:

yijk = µ + bi + αj + βk + αβjk +wijk, (8.6)

where bi is the random block or collagen shipment effect, αj is the fixed effect
of factor A, βk is the fixed effect of factor B, αβjk is the fixed interaction
effect, and wijk is the random whole-plot error term. The model terms bi, αj ,
βk, and αβjk each has one degree of freedom. The whole-plot error term wijk
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Table 8.5 Second Block of Four Batches for Sausage-Casing Experiment

Gel C − + − +

Batch A B D − − + +

1 − − 2.08 2.05 2.07 2.05
2 + − 2.03 1.97 1.99 1.97
3 − + 2.05 2.02 2.02 2.01
4 + + 2.01 2.01 1.99 1.97

is a combination of the random terms b × αij , b × βik, and b × αβijk and thus
has three degrees of freedom. This is the same model that was used for the
randomized complete block factorial (RCBF) shown in Section 4.6.

The model for the complete split-plot experiment is obtained by adding the
split-plot factors C and D and all their interactions with the other factors as
shown in Equation (8.7).

yijklm = µ + bi + αj + βk + αβjk +wijk

+ γl + δm + γδlm + αγjl + αδjm

+ βγkl + βδkm + αβγjkl + αβδjkm

+ αγδjkl + βγδklm + αβγδjklm + εijklm

(8.7)

Since all the factors have only two levels, this design can be created using
the FrF2 function as:

> FrF2(32, 4, WPs = 8, nfac.WP = 2, factor.names = (c("A", "B",

+ "C", "D")))

FrF2 will create an additional two-level factor WP3 that will represent the
blocks.

The R commands to retrieve the data from the daewr package and complete
the analysis with lmer function are:

> library(daewr)

> library(lme4)

> rmod2 <- lmer( ys ~ A + B + A:B +(1|Block) + (1|A:B:Block)+

+ C + D + C:D + A:C + A:D + B:C + B:D + A:B:C + A:B:D +

+ A:C:D + B:C:D + A:B:C:D, data = sausage)

The random effects portion of the summary(rmod2) is:

Random effects:

Groups Name Variance Std.Dev.

A:B:Block (Intercept) 3.3958e-04 1.8428e-02

Block (Intercept) 3.2258e-17 5.6796e-09

Residual 2.3854e-04 1.5445e-02

Number of obs: 32, groups: A:B:Block, 8; Block, 2
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This shows the estimates of the variance components σ2
W , σ2

B , and σ2. The
ANOVA table for the fixed effects is shown below.

> anova(rmod2)

Analysis of Variance Table

Df Sum Sq Mean Sq F value

A 1 0.0068346 0.0068346 28.6517

B 1 0.0003926 0.0003926 1.6458

C 1 0.0038281 0.0038281 16.0480

D 1 0.0005281 0.0005281 2.2140

A:B 1 0.0001685 0.0001685 0.7065

C:D 1 0.0002531 0.0002531 1.0611

A:C 1 0.0001531 0.0001531 0.6419

A:D 1 0.0009031 0.0009031 3.7860

B:C 1 0.0000781 0.0000781 0.3275

B:D 1 0.0002531 0.0002531 1.0611

A:B:C 1 0.0013781 0.0013781 5.7773

A:B:D 1 0.0007031 0.0007031 2.9476

A:C:D 1 0.0000281 0.0000281 0.1179

B:C:D 1 0.0000281 0.0000281 0.1179

A:B:C:D 1 0.0000281 0.0000281 0.1179

The whole-plot error term has three degrees of freedom and the P-values
for the whole-plot effects A, B, and A:B can be calculated using the pf func-
tion (i.e., for the A main effect 1-pf(28.6517,1,3)=0.0128). The degrees
of freedom for the sub-plot error term is 32 − 1 − 1 − 3 − 15 = 12, and the
P-values for the sub-plot effects are calculated similarly (i.e., for the C main
effect 1-pf(16.048,1,12)=0.00174). The three effects in the model that were
significant at the α = 0.05 level were main effectrs A and C and the A:B:C in-
teraction.

Since there is a significant three-factor interaction, the main effects cannot
be interpreted alone. Figure 8.3 is a plot that illustrates how the effect of
whole-plot factor A depends on the combination of levels of factors B and C.
Increasing factor A from low to high results in a larger decrease in bursting
strength when factor B is at its low level and factor C is at its high level. Ex-
amination of these graphs revealed factor combinations that met the threshold
bursting strength requirement and also produced casing tender enough for the
final customer.

For illustrative purpose only the code below the graph on the next page
shows how to obtain the adjusted or lsmeans and standard errors for the
whole-plot factor A and sub-plot factor C. These are produced by the lsmeans

function in the lsmeans package. To get the approximate degrees of freedom,
it is necessary to have the pbkrtest package installed as well. In the resulting
output it can be seen that the standard error (0.00999) for the whole-plot
factor A is larger than the standard error (0.00757) for sub-plot factor C.
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Figure 8.3 Three-Factor Interaction in Sausage-Casing Experiment—Where 1 Rep-
resents the Low Level of A
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> options(digits = 5 )

> library(lsmeans)

> require(pbkrtest)

> require(lme4)

> lsmeans(rmod2, ~ A)

$‘A lsmeans‘

A lsmean SE df lower.CL upper.CL

-1 2.0613 0.0099902 3 2.0295 2.0930

1 1.9856 0.0099902 3 1.9538 2.0174

Warning message:

In lsmeans(rmod2, ~A) :lsmeans of A may be misleading

due to interaction with other predictor(s)

> lsmeans(rmod2, ~ C )

$‘C lsmeans‘

C lsmean SE df lower.CL upper.CL

-1 2.0344 0.0075734 1.3186 1.9789 2.0898

1 2.0125 0.0075734 1.3186 1.9570 2.0680

Warning message:

In lsmeans(rmod2, ~C) :lsmeans of C may be misleading

due to interaction with other predictor(s)



ANALYSIS UNREPLICATED 2K SPLIT-PLOT DESIGNS 323

8.4 Analysis Unreplicated 2k Split-Plot Designs

When there are no replicates in a split-plot experiment, the significant effects
cannot be determined with an analysis of variance because there will be zero
degrees of freedom for the whole plots. For example, if only the first block
of experiments for the sausage-casing experiments (shown in Table 8.4) had
been run, it would represent a full 24 factorial with no replicates. One way
to determine the significant effects in an unreplicated completely randomized
factorial design (CRFD) with two levels for each factor is to make a normal
or half-normal plot of the effects as described in Section 3.7.5. In this way the
standard error of the effects can be estimated graphically as the slope of the
straight line through the small effects in the center of the normal plot, and
the significant effects will appear above to the right or below to the left of the
straight line. However, this approach will not work for a split-plot experiment
because there are two standard errors, one for the whole-plot effects and one
for the split-plot effects. For the sausage-casing experiments, the whole-plot
effects were A, B, and their interaction AB, while the split-plot effects were
C, D, CD, AC, AD, BC, BD, ABC, ABD, ACD, BCD, and ABCD. One
solution is to make separate normal plots of the whole-plot and split-plot
effects.

Bisgaard et al. (1996) describe an unreplicated split-plot experiment to
study the plasma treatment of paper to make it more susceptible to ink. The
data from the experiment, written in the split-plot form, is shown in Table
8.6. When energy is supplied to molecules in a gaseous state, molecules start
breaking up and form a mixture of unstable particles called a plasma. The
highly charged electrons and protons in a plasma can be used to modify the
surface characteristics of materials. At the Engineering Research Center for
Plasma Aided Manufacturing at the University of Wisconsin–Madison, plasma
was created in a low vacuum chamber reactor between electrodes, and paper
samples were placed in the chamber on a grounded electrode. There was room
for two paper samples in the reactor.

The factors under study in the experiment were A: low and high pressure,
B: low and high power, C: low and high gas flow rate, D: type of gas oxygen
or SiCl4, and E: paper type. The response, wettability of the paper, was
measured by placing a droplet of water on the treated paper and measuring
the contact angle between the droplet and the paper surface with a special
microscope. Because the plasma was created in a vacuum, it takes up to a half
an hour of pumping to get the reactor down to the appropriate vacuum level
after the chamber is opened to insert new paper samples. Therefore, rather
than completing a completely randomized 25 factorial, the experiments were
completed in the following way. The experimenter first randomized the order
of the combinations of factors A to D to 16 reactor runs. During each run
two samples of paper were placed in the reactor (one of each type), and a
coin was tossed to determine which paper type was placed on the right or
left side of the reactor. By doing this a split-plot experiment was created
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Table 8.6 Plasma Experiment Factor Levels and Response
E

A B C D − +

− − − − 48.6 57.0
+ − − − 41.2 38.2
− + − − 55.8 62.9
+ + − − 53.5 51.3
− − + − 37.6 43.5
+ − + − 47.2 44.8
− + + − 47.2 54.6
+ + + − 48.7 44.4
− − − + 5.0 18.1
+ − − + 56.8 56.2
− + − + 25.6 33.0
+ + − + 41.8 37.8
− − + + 13.3 23.7
+ − + + 47.5 43.2
− + + + 11.3 23.9
+ + + + 49.5 48.2

where the experimental unit for factors A to D was a reactor run, while the
experimental unit for factor E, the paper type, was the position inside the
reactor for a particular run.

The main effects A, B, C, D, and all their interactions are whole-plot fac-
tors, and their significance should be tested with the whole-plot error term.
Factor E and its interactions with A, B, C, D, and all their interactions, are
split-plot factors, and their significance should be tested with the split-plot
error term. The R code below illustrates how to retrieve the data from the
daewr package, fit the model, and select the whole-plot and split-plot effects.

> library(daewr)

> sol <- lm(y ~ A*B*C*D*E, data = plasma)

> effects <- coef(sol)

> effects <- effects[c(2:32)]

> Wpeffects <- effects[c(1:4, 6:11, 16:19, 26)]

> Speffects <- effects[c(5,12:15,20:25,27:31)]

A summary of the fitted model is shown on the following page. From this
output the position numbers of the whole-plot calculated effects A, B, AB, C,
AC, BC, ABC, D, AD, BD, ABD, CD, ACD, BCD, ABCD can be seen in
the vector of coef(sol). Knowing this, the whole-plot and split-plot effects
were selected in the last two lines of code above.
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> summary(sol)

Call:

lm.default(formula = y ~ A * B * C * D * E, data = plasma)

Residuals:

ALL 32 residuals are 0: no residual degrees of freedom!

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 40.98125 NA NA NA

A1 5.91250 NA NA NA

B1 2.11250 NA NA NA

C1 -1.69375 NA NA NA

D1 -7.55000 NA NA NA

E1 1.56875 NA NA NA

A1:B1 -2.10625 NA NA NA

A1:C1 1.48750 NA NA NA

B1:C1 -0.42500 NA NA NA

A1:D1 8.28125 NA NA NA

B1:D1 -1.65625 NA NA NA

C1:D1 0.83750 NA NA NA

A1:E1 -2.95000 NA NA NA

B1:E1 -0.15000 NA NA NA

C1:E1 -0.06875 NA NA NA

D1:E1 0.51250 NA NA NA

A1:B1:C1 1.43125 NA NA NA

A1:B1:D1 -1.65000 NA NA NA

A1:C1:D1 -1.15625 NA NA NA

B1:C1:D1 0.61875 NA NA NA

A1:B1:E1 0.05625 NA NA NA

A1:C1:E1 -0.08750 NA NA NA

B1:C1:E1 0.45000 NA NA NA

A1:D1:E1 -0.40625 NA NA NA

B1:D1:E1 -0.09375 NA NA NA

C1:D1:E1 0.16250 NA NA NA

A1:B1:C1:D1 3.42500 NA NA NA

A1:B1:C1:E1 -0.21875 NA NA NA

A1:B1:D1:E1 0.13750 NA NA NA

A1:C1:D1:E1 -0.13125 NA NA NA

B1:C1:D1:E1 0.44375 NA NA NA

A1:B1:C1:D1:E1 0.12500 NA NA NA
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The code below generates the separate normal plots of whole-plot and split-
plot effects. Figure 8.4 is the normal plot of whole-plot effects. It can be seen
that main effects A: pressure, D: type of gas, and their interaction appear
significant.

> library(daewr)

> fullnormal(Wpeffects, names(Wpeffects), alpha = .10)

> fullnormal(Speffects, names(Speffects), alpha = .05)

Figure 8.4 Normal Plot of Whole-Plot Effects—Plasma Experiment
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Figure 8.5 is the normal plot of the split-plot effects E, AE, BE, ABE,
CE, ACE, BCE, ABCE, DE, ADE, BDE, ABDE, CDE, ACDE, BCDE,
ABCDE. In this plot it can be seen that main effect E: paper type and its
interaction with A also appear to be significant. Notice the difference between
the vertical scales in Figures 8.4 and 8.5. The standard error of the whole-plot
effects, which is the slope of the added straight line in Figure 8.4, is much
larger than the standard error of the split-plot effects, which is the slope of
the straight line in Figure 8.5.

If an unreplicated split-plot experiment like that shown in Table 8.6 was
mistakenly analyzed as a completely randomized design by making a normal
plot of all the calculated effects on the same graph, the mixture of the two
error distributions causes the line through the insignificant points to follow
a sigmoid curve like that shown in Figure 8.6, rather than a straight line
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Figure 8.5 Normal Plot of Sub-Plot Effects—Plasma Experiment
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as shown in Figures 8.4 and 8.5. In Figure 8.6 it can be seen that whole-plot
main effects A, D, and their interaction appear to be significant. However, the
split-plot main effect E and the interaction AE that were clearly identified to
be significant on the normal plot of split-plot effects now appear to be buried
among the whole-plot error effects. Whenever a normal plot of effects from a
factorial experiment takes this appearance, Daniel and later Bisgaard et al.
(1996) warned that the treatment combinations may not have been completely
randomized, and that the results actually represent a split-plot experiment.

In this example there were enough whole-plot and split-plot effects to make
separate normal plots. In other unreplicated 2k split-plot experiments this
may not be the case. For example, if only the first block of the sausage-casing
experiment (that was described in Section 8.3.2) had been run, there would
be enough split-plot effects (C, D, CD, AC, AD, BC, BD, ABC, ABD,
ACD, BCD, and ABCD) to identify significant ones on a normal plot of
effects, however, there were not enough whole-plot effects (A, B, and AB) to
effectively identify the significant ones on a plot.

One strategy to use in this situation is the following. If any interactions be-
tween whole-plot factors and split-plot factors appear significant in the nor-
mal plot of split-plot effects, the effect heredity principle might imply that
the involved whole-plot main effect may also be significant. If the suspected
whole-plot main effect has a relatively large effect this hypothesis is further
supported, and it may be fruitful to include that main effect in the model
before calculating the least squares interaction cell means and interpreting
the significant interaction. Any other whole-plot effects that are larger in
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Figure 8.6 Normal Plot of All Effects—Plasma Experiment

magnitude than the whole-plot main effect involved in a significant interaction
may also be considered to be significant.

Another strategy can be used in this situation if there is some prior knowl-
edge about variability to be expected in whole-plot units. For example, if the
experiment is performed in a two-step manufacturing process, and there is
history (such as control charts) maintained on the output of the first process
step, then Gilmour and Goos (2006) propose using a Bayesian analysis with
an informative prior on the whole-plot error random effects.

8.5 2k−p Fractional Factorials in Split Plots (SPFFs)

The 2k−p fractional factorial experiments described in Chapter 6 assumed that
treatment combinations could be assigned to experimental units completely at
random. However, sometimes this is impractical for the same reasons cited in
Section 8.1. In this case, a fractional factorial split-plot (SPFF) design can be
utilized. There are many ways to create a fractional factorial split-plot design
with the same number of factors and runs. One method is shown in Table 8.8,
which is similar in format to Tables 8.4 and 8.5. Here the whole-plot factors
are labeled A, B, and C, while the sub-plot factors are labeled P , Q, and
R. A 23−1 fractional factorial is created with the whole-plot factors using the
defining relation I = ABC. The four whole-plot treatment combinations would
then be assigned at random to whole-plot experimental units. Each whole-plot
is divided into four sub-plots, which are assigned at random to receive one of
the four treatment combinations in the 23−1 fractional factorial created with
the sub-plot factors using defining relation I = PQR.
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Since the same four combinations of sub-plot treatment factors are used in
each whole-plot, this design is called a cartesian product design and the “x”s
in Table 8.7 indicate which treatment combinations are used.

Table 8.7 Cartesian Product Fractional Factorial Split-Plot Design

(I = PQR)
P − + − +

(I = ABC) Q − − + +

A B C R + − − −

− − + x x x x
+ − − x x x x
− + − x x x x
+ + + x x x x

With six factors and a total of 16 treatment combinations, this design is a
1
4

fraction. The overall defining relation can be obtained by multiplying the
defining relation for the whole-plot fraction by the defining relation for the
sub-plot fraction, that is (I+ABC)×(I+PQR) = I+ABC+PQR+ABCPQR.
Thus, the design has resolution III and all main effects are confounded with
one two-factor interaction, one four-factor interaction and one five-factor in-
teraction.

A better confounding pattern can be obtained by using whole-plot factors
in the sub-plot generators as shown in Table 8.8. Here a different fraction of
the combinations of sub-plot factors is used in each whole plot.

Table 8.8 Split-Plot Confounding in Fractional Factorial Split-Plot Design

(I = ABC)
A B C

− − + I = −PQR
+ − − I = +PQR
− + − I = −PQR
+ + + I = +PQR

This is similar to the way a fractional factorial was augmented with a mirror
image design in Section 6.5. By using the fraction of sub-plot factors obtained
with the generator P = −QR when whole-plot factorA is at its low level, and by
using the fraction obtained with the generator P = +QR when the whole-plot
factor A is at its high level, it is equivalent to using the generator P = AQR
or the defining relation I +APQR for the fractional factorial in the sub-plots.
This method is called split-plot confounding by Bisgaard (2000). The overall
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defining relation is obtained as (I +ABC)(I +APQR) = I +ABC +APQR +

BCPQR, and the alias pattern up to three-way interactions is:

A +BC + PQR

B +AC

C +AB

P +AQR

Q +APR

R +APQ

AP +QR +BCP

AQ + PR +BCQ

AR + PQ +BCR

BP +ACP +CQR

BQ +ACQ +CPR

BR +ACR +CPQ

CP +ABP +BQR

CQ +ABQ +BPR

CR +ABR +BPQ

The FrF2 function in the R package FrF2 performs split-plot confounding,
and this function can be used to create split-plot designs when all the factors
have only two levels. This design can be created using FrF2 in the code shown
below.

> library(FrF2)

> SPFF1 <- FrF2(16, 6, WPs = 4, nfac.WP = 3,

+ factor.names = c("A","B","C","P","Q","R"), randomize = FALSE)

The arguments 16 and 6 indicate that six factors will be studied in 16 runs or
a one-quarter fraction. The arguments WPs=4, nfac.WP=3 indicates that there
are 4 whole plots with three whole-plot factors. This automatically requires
I = ABC be the defining relation for the half fraction in the whole-plot factors.

This design can be randomized similar to the way the design shown in Table
8.8 can be randomized. This can be accomplished by removing the argument
randomize=FALSE in the call to the FrF2 function as illustrated in the code
on the next page. There the aliases() function prints the alias pattern, and
the print() function shows the actual design.
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> SPFF2 <- FrF2(16, 6, WPs = 4, nfac.WP = 3,

+ factor.names = c("A", "B", "C", "P", "Q", "R"))

> y <- rnorm(16, 0, 1)

> aliases(lm( y ~ (.)^3, data = SPFF2))

A = P:Q:R = B:C

B = A:C

C = A:B

P = A:Q:R

Q = A:P:R

R = A:P:Q

A:P = Q:R = B:C:P

A:Q = P:R = B:C:Q

A:R = P:Q = B:C:R

B:P = A:C:P = C:Q:R

B:Q = A:C:Q = C:P:R

B:R = A:C:R = C:P:Q

C:P = A:B:P = B:Q:R

C:Q = A:B:Q = B:P:R

C:R = A:B:R = B:P:Q

> print(SPFF2)

run.no run.no.std.rp A B C P Q R

1 1 6.2.2 -1 1 -1 -1 1 1

2 2 7.2.3 -1 1 -1 1 -1 1

3 3 5.2.1 -1 1 -1 -1 -1 -1

4 4 8.2.4 -1 1 -1 1 1 -1

run.no run.no.std.rp A B C P Q R

5 5 4.1.4 -1 -1 1 1 1 -1

6 6 1.1.1 -1 -1 1 -1 -1 -1

7 7 2.1.2 -1 -1 1 -1 1 1

8 8 3.1.3 -1 -1 1 1 -1 1

run.no run.no.std.rp A B C P Q R

9 9 11.3.3 1 -1 -1 1 -1 -1

10 10 9.3.1 1 -1 -1 -1 -1 1

11 11 10.3.2 1 -1 -1 -1 1 -1

12 12 12.3.4 1 -1 -1 1 1 1

run.no run.no.std.rp A B C P Q R

13 13 13.4.1 1 1 1 -1 -1 1

14 14 16.4.4 1 1 1 1 1 1

15 15 15.4.3 1 1 1 1 -1 -1

16 16 14.4.2 1 1 1 -1 1 -1

class=design, type= FrF2.splitplot

NOTE: columns run.no and run.no.std.rp are annotation,

not part of the data frame
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The overall defining relation for this design can again be determined by
multiplying the defining relation for the whole-plot fraction by the defin-
ing relation for the sub-plot fraction, that is (I + ABC) × (I + APQR) =

I +ABC +APQR +BCPQR. This design is resolution III, but by using the
split-plot confounding it has less abberation (see Section 6.4) than the design
shown in Table 8.7 since it has only one three-letter word in the defining re-
lation. In this design, whole-plot main effects are confounded with two-factor
interactions but sub-plot factors are clear of two-factor interactions. There-
fore, the subset of whole-plot factors has resolution III, while the subset of
sub-plot factors has resolution IV. In general, using split-plot confounding by
including whole-plot factors in the sub-plot generators will result in higher
resolution among the sub-plot factors similar to the way resolution III frac-
tional factorials augmented by a mirror image result in a resolution IV design.
However, as Bingham and Sitter (2001) state, the converse is not true. The
resolution of the whole-plot factors cannot be increased by including sub-plot
factors in the whole-plot generators; in fact, it would destroy the split-plot
nature of the design.

When there are several whole-plot and split-plot factors, there may be sev-
eral ways of defining the split-plot confounding. For example, consider an
experiment with four whole-plot factors, labeled A, B, C, and D, and four
split-plot factors labeled P , Q, R, and S. One way of creating a 28−3 fraction
by taking a 1

2
fraction of the whole-plot treatment combinations would be

to use the sub-plot generators APQR, BQRS, and their generalized interac-
tion ABPS. This would result in the resolution IV fractional factorial split-
plot design with defining relation I = ABCD = APQR = BQRS = ABPS =

BCDPQR = ACDQRS = CDPS. Another way of creating a 28−3 fraction,
taking a 1

2
fraction of the whole-plot treatment combinations, would be to

use the sub-plot generators ABPR, BCPQS, and their generalized interac-
tion ACQRS. This results in the resolution IV design with defining relation
I = ABCD = ABPR = BCPQS = ACQRS = CDPR = ADPQS = BDQRS.
Although both designs are resolution IV, the second design has less abber-
ation since it has only three four-letter words in the defining relation while
the first design has five four-letter words in the defining relation. Recall from
Section 6.4 that designs with less aberration have less confounding of main
effects with lower order interactions.

8.5.1 Minimum Aberration Fractional Factorial Split Plot Designs

For SPFF designs of the same resolution and level of whole-plot and sub-
plot fractionation, there is always a minimum aberration design. Huang et al.
(1998) and Bingham and Sitter (1999) have given tables of the generators for
minimum abberation split-plot designs for a small to moderate size number of
factors. The FrF2 function automatically generates the minimum aberration
split-plot designs using the generators found in these tables.

Once the number of whole-plot factors and the number of sub-plot factors
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has been decided upon, there are other things to consider when generating a
SPFF design with FrF2. One is the degree of fractionation of the whole-plot
factors which determines the number of whole plots. Another is the degree of
fractionation of the sub-plot factors which determines the number of sub-plots
per whole-plot. For example, if we define four whole-plot factors and four sub-
plot factors, we could choose either a full or half fraction in the whole plot
factors and a quarter to an eighth fraction in the sub-plot factors. If a full fac-
torial in the whole-plot factors and an eighth fraction in the sub-plot factors is
chosen, it would result in 16 whole plots and 2 sub-plots per whole plot. On the
other hand, if a half fraction in the whole plot factors and an eighth fraction in
the sub-plot factors is chosen, it would result in eight whole plots with two sub-
plots per whole plot. The minimum abberation design with four whole-plot fac-
tors, four sub-plot factors, and eight whole plots can be created with FrF2 as:

> library(FrF2)

> SPFF1 <- FrF2(16, 8, WPs = 8, nfac.WP = 4,

+ factor.names=c("A", "B", "C", "D", "P", "Q", "R", "S"),

+ randomize = FALSE)

This turns out to be a resolution IV design where the generators were
obtained from Bingham and Sitter’s (1999) tables. The alias structure (up to
three factor interactions) can be printed with the code:

> y <- rnorm(16, 0, 1)

> aliases(lm( y ~ (.)^3, data = SPFF1))

A = B:C:D = B:P:Q = B:R:S = C:P:R = C:Q:S = D:P:S = D:Q:R

B = A:C:D = A:P:Q = A:R:S = C:P:S = C:Q:R = D:P:R = D:Q:S

C = A:B:D = A:P:R = A:Q:S = B:P:S = B:Q:R = D:P:Q = D:R:S

D = A:B:C = A:P:S = A:Q:R = B:P:R = B:Q:S = C:P:Q = C:R:S

P = A:B:Q = A:C:R = A:D:S = B:C:S = B:D:R = C:D:Q = Q:R:S

Q = A:B:P = A:C:S = A:D:R = B:C:R = B:D:S = C:D:P = P:R:S

R = A:B:S = A:C:P = A:D:Q = B:C:Q = B:D:P = C:D:S = P:Q:S

S = A:B:R = A:C:Q = A:D:P = B:C:P = B:D:Q = C:D:R = P:Q:R

A:B = C:D = P:Q = R:S

A:C = B:D = P:R = Q:S

A:D = B:C = P:S = Q:R

A:P = B:Q = C:R = D:S

A:Q = B:P = C:S = D:R

A:R = B:S = C:P = D:Q

A:S = B:R = C:Q = D:P

With four whole-plot factors and four sub-plot factors, a minimum aber-
ration 32-run split-plot design with a full factorial in the whole plots and an
eighth fraction in the sub-plots can be created with the code on the next page.
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This design was created using the generators from the tables of Huang et al.
(1998). It can be seen that the design is also resolution IV, but 13 of the
28 two-factor interactions are estimable clear of other two-factor interactions.
The defining relation for 1

8
th fraction I = ABPQ = ACPR = BCDPS =

BCQR = ACDQS = ABDRS =DPQRS.

> library(FrF2)

> FFSP2 <- FrF2(32, 8, WPs = 16, nfac.WP = 4,

+ factor.names = c("A", "B", "C", "D", "P", "Q", "R", "S"),

+ randomize = FALSE)

> y <- rnorm(32, 0, 1)

> aliases(lm( y ~ (.)^3, data = FFSP2))

A = B:P:Q = C:P:R

B = C:Q:R = A:P:Q

C = B:Q:R = A:P:R

P = A:B:Q = A:C:R

Q = B:C:R = A:B:P

R = B:C:Q = A:C:P

A:B = D:R:S = P:Q

A:C = D:Q:S = P:R

A:D = B:R:S = C:Q:S

A:P = B:Q = C:R

A:Q = C:D:S = B:P

A:R = B:D:S = C:P

A:S = B:D:R = C:D:Q

B:C = D:P:S = Q:R

B:D = A:R:S = C:P:S

B:R = C:Q = A:D:S

B:S = C:D:P = A:D:R

C:D = A:Q:S = B:P:S

C:S = B:D:P = A:D:Q

D:P = B:C:S = Q:R:S

D:Q = P:R:S = A:C:S

D:R = P:Q:S = A:B:S

D:S = B:C:P = P:Q:R = A:B:R = A:C:Q

P:S = B:C:D = D:Q:R

Q:S = D:P:R = A:C:D

R:S = D:P:Q = A:B:D

A:B:C = A:Q:R = B:P:R = C:P:Q

A:D:P = B:D:Q = C:D:R

A:P:S = B:Q:S = C:R:S

Since the whole-plot design is a full 24, main effects A, B, C, and D and
all their interactions (15 effects in the left column on the next page) would
be whole-plot effects. The remaining estimable effects are sub-plot effects. In
the analysis of data from this design, the effects should be calculated, and
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then two normal plots made, one for the whole-plot effects, and one for the
sub-plot effects.

Effects Tested Effects Tested
with Whole-Plot Error with Sub-Plot Error

A P
B Q
C R
D S

AB + PQ AP +BQ +CR
AC + PR AQ +BP
AD AR +CP

BC +QR AS
BD BR +CQ
CD BS

ABC +CPQ +BPR +AQR CS
ABD +RS DP
ACD +QS DQ
BCD + PS DR
ABCD DS

BDQ +ADP +CDR

With four whole-plot factors and four sub-plot factors, a minimum aber-
ration 32-run split-plot design with a half-fraction in the whole plots and a
quarter fraction in the sub-plots can be created with the code:

> library(FrF2)

> FFSP3 <- FrF2(32, 8, WPs = 8, nfac.WP = 4,factor.names =

+ c("A", "B", "C", "D", "P", "Q", "R", "S"), randomize = FALSE)

This design is also resolution IV, but by utilizing a one-half fraction of the
combinations of whole-plot treatment levels and then splitting each whole-
plot into four sub-plots, only eight whole plots are required. The generators
for this design are ABCD, ABPR, and BCPQS. In this design seven effects,
namely main effects A, B, C, and D and confounded strings of interactions
AB+CD+PR, AC+BD, and AD+BC, are whole-plot effects. The remainder
of the effects are sub-plot effects. This design also allows estimation of 13
of the 28 two-factor interactions clear of main effects and other two-factor
interactions, so it appears to be similar to the last example. However, because
of the reduced number of whole plots and the increased number of sub-plots
all 13 of the clear two-factor interactions can be tested with the more precise
sub-plot error term, whereas the design in the last example, six of the clear
two-factor interactions (namely AD, BD, CD, RS, QS, and PS) must be
tested with the less precise whole-plot error term.

One last example of a design with four whole-plot factors and four sub-plot
factors is a minimum aberration 64-run split-plot design with a full factorial
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in the whole plots and a quarter fraction in the sub-plots. It can be created
with the code:

> library(FrF2)

> FFSP4 <- FrF2(64, 8, WPs = 8, nfac.WP = 4,factor.names =

+ c("A", "B", "C", "D", "P", "Q", "R", "S"), randomize = FALSE)

The defining relation for this design is I = ABCPR = ADPQS = BCDRQS,
and it is resolution V allowing all main effects and two-factor interactions to
be estimated clear of other main effects and two-factor interactions.

The choice between these four alternative designs would depend upon the
relative cost of whole-plot and sub-plot experimental units and the precision
desired for the various estimable two-factor interactions. For more discussion
on this topic, see Kulahci et al. (2006), Bisgaard (2000), and Bingham and
Sitter (2001).

8.5.2 Analysis of a Fractional Factorial Split Plot

Bingham and Sitter (2001) describe an experiment to study effects of five fac-
tors upon the geometric distortion of drive gears. The factors were A: furnace
track, B: tooth size, C: part positioning, P : carbon potential, and Q: operat-
ing mode. It was more efficient to perform the experimental trials by keeping
levels of factors A, B, and C constant in blocks and varying factors P and Q
within the blocks. A schematic of the 23 × 22−1 design is shown in Table 8.9.

Table 8.9 Fractional Factorial Split-Plot Design for Gear Distortion
P − + − +

A B C Q − − + +

− − − x x
+ − − x x
− + − x x
+ + − x x
− − + x x
+ − + x x
− + + x x
+ + + x x

This is a split-plot design due to the fact that factors A, B, and C are
constant in blocks of runs. It is also evident that split-plot confounding has
been utilized by the fact that a different subset of the combinations sub-plot
factor levels is used in each whole-plot. The defining relation for the design
is I = ABCPQ, and the response was the dishing of the gears. This design is
one of the minimum aberration designs in Bingham and Sitter’s (2001) tables
and can be easily generated using the FrF2 function.
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Since there are no replicates of the whole plots, the analysis must be made
by making separate normal plots of the whole and sub-plot effects. Because
the defining relation is I = ABCPQ, the estimable whole-plot and sub-plot
effects are found to be those shown in Table 8.10.

Table 8.10 Estimable Effects for Gear Distortion Experiment
Whole-Plot Sub-Plot

Effects Effects
A +BCPQ P +ABCQ
B +ACPQ Q +ABCP
C +ABPQ AP +BCQ
AB +CPQ AQ +BCP
AC +BPQ BP +ACQ
BC +APQ BQ +ACP
ABC + PQ CP +ABQ

CQ +ABP

The model for the experiment written in the split-plot form is shown in
Equation (8.8).

yijklm = µ + αi + βj + γk + αβij + αγik + βγjk + αβγijk +wijk

+ ρl + φm + αρjl + αφim + βρjl + βφjm + γρkl + γφkm + ρφlm + εijklm
(8.8)

Since there are no replicates of the whole plots, wijk cannot be estimated, and
since each factor has only two levels, the model can be rewritten in the form
shown in Section 3.7.2 as:

y = β0 + βAXA + βBXB + βCXC + βABXAB + βACXAC

+ βBCXBC + βABCXABC + βPXP + βQXQ + βAPXAP

+ βAQXAQ + βBPXBP + βBQXBQ + βCPXCP + βPQXPQ

+ βCQXCQ + ε

(8.9)

where the βs represent the regression coefficients or half of the effects, and
the Xs represent the coded factor levels.

The code on the next page generates the design and merges the response
data from the experiment. The data frame containing the coded factor levels
and response would appear as shown.
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> library(FrF2)

> spexp <- FrF2(16, 5, WPs = 8, nfac.WP = 3, factor.names =

+ c("A","B","C", "P", "Q"),randomize = FALSE)

> y <- c(18.0, 21.5, 27.5, 17.0, 22.5, 15.0, 19.0, 22.0,

+ 13.0, -4.5, 17.5, 14.5, 0.5, 5.5, 24.0, 13.5)

> gear <- add.response(spexp, response = y)

> gear

run.no run.no.std.rp A B C P Q y

1 1 1.1.1 -1 -1 -1 -1 1 18.0

2 2 2.1.2 -1 -1 -1 1 -1 21.5

run.no run.no.std.rp A B C P Q y

3 3 3.2.1 -1 -1 1 -1 -1 27.5

4 4 4.2.2 -1 -1 1 1 1 17.0

run.no run.no.std.rp A B C P Q y

5 5 5.3.1 -1 1 -1 -1 -1 22.5

6 6 6.3.2 -1 1 -1 1 1 15.0

run.no run.no.std.rp A B C P Q y

7 7 7.4.1 -1 1 1 -1 1 19

8 8 8.4.2 -1 1 1 1 -1 22

run.no run.no.std.rp A B C P Q y

9 9 9.5.1 1 -1 -1 -1 -1 13.0

10 10 10.5.2 1 -1 -1 1 1 -4.5

run.no run.no.std.rp A B C P Q y

11 11 11.6.1 1 -1 1 -1 1 17.5

12 12 12.6.2 1 -1 1 1 -1 14.5

run.no run.no.std.rp A B C P Q y

13 13 13.7.1 1 1 -1 -1 1 0.5

14 14 14.7.2 1 1 -1 1 -1 5.5

run.no run.no.std.rp A B C P Q y

15 15 15.8.1 1 1 1 -1 -1 24.0

16 16 16.8.2 1 1 1 1 1 13.5

class=design, type= FrF2.splitplot

NOTE: columns run.no and run.no.std.rp are annotation,

not part of the data frame

To analyze the data, the R function lm function was used to fit the model
to the data. Since there are only 16 observations, the model is saturated with
zero degrees of freedom for error. The code and the 16 estimable effects in the
resulting summary are shown on the next page.
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> sol <- lm( y ~ A*B*C*P*Q, data = gear)

> summary(sol)

Call:

lm.default(formula = y ~ A * B * C * P * Q, data = gear)

Residuals:

ALL 16 residuals are 0: no residual degrees of freedom!

Coefficients: (16 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 15.4062 NA NA NA

A1 -4.9063 NA NA NA

B1 -0.1562 NA NA NA

C1 3.9688 NA NA NA

P1 -2.3438 NA NA NA

Q1 -3.4062 NA NA NA

A1:B1 0.5313 NA NA NA

A1:C1 2.9063 NA NA NA

B1:C1 0.4062 NA NA NA

A1:P1 -0.9063 NA NA NA

B1:P1 1.0938 NA NA NA

C1:P1 -0.2812 NA NA NA

A1:Q1 -0.3438 NA NA NA

B1:Q1 0.1563 NA NA NA

C1:Q1 0.7812 NA NA NA

P1:Q1 0.5938 NA NA NA

The whole-plot effects (A, B, C, AB, AC, BC, and ABC = PQ) and the
remaining sub-plot effects are selected with the code below, and the separate
normal plots of the whole-plot and sub-plot effects are made and shown in
Figures 8.7 and 8.8.

> effects <- coef(sol)

> Wpeffects <- effects[ c(2:4, 7:9, 16) ]

> Speffects <- effects[ c(5:6, 10:15) ]

> fullnormal(Wpeffects, names(Wpeffects), alpha = .10)

> fullnormal(Speffects, names(Speffects), alpha = .20)
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Figure 8.7 Normal Plot of Whole-Plot Effects—Gear Distortion Experiment
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Figure 8.8 Normal Plot of Sub-Plot Effects—Gear Distortion Experiment
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As it can be seen in the plots, the whole-plot effects A and C along with their
interaction appear to be significant, along with sub-plot factors P and Q.

The interpretation of the significant effects can be explained as follows.
Factor P : carbon potential has a negative regression coefficient in the proc

glm output, so increasing the carbon potential decreases the response gear
dishing. Factor Q: operating mode also had a negative coefficient so using
the operating mode represented by the +1 level of this factor also reduces
gear dishing. Since there is an interaction between factors A and C, we must
consider the interaction plot shown in Figure 8.9 to interpret their effects.
In that figure, it can be seen that changing from the low to high levels of
A:furnace track will decrease gear dishing while changing from the low to
high levels of C: part positioning will increase gear dishing. Gear dishing is
least with the high level of A and low level of C. Therefore, to decrease gear
dishing most, the high levels of factors A:furnace track, P : carbon potential,
and Q: operating mode should be selected, and the low level of factor C: part
positioning.

Figure 8.9 Interaction of A: Furnace Track and C: Part Position on Gear Dishing
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8.6 Sample Size and Power Issues for Split-Plot Designs

To determine the power for detecting whole-plot factor effects (or the sample
size required to obtain a specified power level) in a split-plot design with a
CRD in the whole plots (CRSP), the sub-plot factors can be ignored and the
formulas and R examples, presented in Section 2.6 for completely randomized
designs with one factor (CRD), or Section 3.5.2 for completely randomized
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factorial designs (CRFD), can be used by letting σ2 represent the expected
variance of whole-plot experimental units. If each factor in a CRSP factorial
design has only two levels, then the simplified formula in Section 3.7.2 can be
used to determine the required number of whole plots to achieve a power of
approximately 0.95.

For split-plot experiments with an RCB in the whole plots, the formulas and
R code shown in Section 4.5 can be used to determine the power or required
sample size for detecting whole-plot factor effects.

Since the sub-plot treatments in any split-plot design are randomized to sub-
plots within each whole-plot, the sub-plot treatment design is a randomized
block design. Therefore, to determine the power or number of whole plots
required to detect sub-plot effects, the formulas and R code shown in Section
4.5 can again be used, this time letting σ2 represent the expected variance of
sub-plot experimental units within a whole plot.
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8.7 Review of Important Concepts

When the levels of one or more treatment factors are difficult to change or re-
quire more experimental material for evaluation than other treatment factors,
it may be impractical to completely randomize the order of experiments in a
factorial or fractional factorial design. This is frequently the case in process
improvement studies where some treatment factors belong to one process step
and others belong to a later process step. Split-plot designs allow for restricted
randomization where some factor levels are varied more frequently than oth-
ers, and the models for split-plot designs will allow accurate assessment of
the significance of both hard and easy-to-vary factors despite the restricted
randomization.

In split-plot designs the experimental units are larger for the hard-to-vary
factors and are called whole plots (based on the agricultural origins of the de-
signs). The levels of the easy-to-vary factors can be varied over parts of whole
plots (called sub-plots), which are the experimental units for these factors.
Whole plots (like blocks of homogeneous experimental units) are generally
more variable than sub-plots within whole plots, and therefore there is less
power for detecting differences in the hard-to-vary (or whole-plot factors) than
there is for the sub-plot factors in split-plot designs.

If the whole-plot experimental units are homogeneous and can be assigned
at random to the levels or combinations of levels of the whole-plot factors
the design that should be used is split-plot with CRD in the whole plots or
a CRSP design as shown in Figure 8.10. The model for a CRSP design with
one whole-plot factor and one sub-plot factor is written as:

yijk = µ + αi +w(i)j + βk + αβik + εijk, (8.10)

where the first three terms in the model are the same as the model for a
CRD given in Chapter 2. In the analysis of data using this model, the mean
square for the random whole-plot error term w(i)j is the denominator for the
F -test for αi, while the mean square for the sub-plot error term εijk is the
denominator for the F -test of the sub-plot factor βk.

If whole-plot experimental units are not homogeneous and can be grouped
into more uniform blocks, such as groups in time, the whole plots should be
randomized to levels or combinations of levels of whole-plot factors within
each block. This results in a split-plot design with an RCB in the whole plots
or an RBSP design as shown in Figure 8.10. The model for an RBSP design
with one whole-plot factor, α, and one sub-plot factor β, is:

yijk = µ + bi + αj + bαij + βk + αβik + εijk, (8.11)

where the random block effect is bi and the random block by treatment in-
teraction, bαij is the error term for testing the significance of the whole-plot
effect α.

When there are no replicates of the levels or combination of levels of whole-
plot treatments the analysis of split-plot experiments is accomplished by mak-
ing separate normal plots of the whole-plot effects and the sub-plot effects.
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When there are many whole-plot and sub-plot factors, the number of whole
plots and sub-plots required for experimentation can be reduced by utilizing
a split-plot fractional factorial design or SPFF as shown in Figure 8.10. SPFF
designs can be created as a cartesian product of all possible combinations
of treatment levels of a fractional factorial design in the whole-plot factors
with combinations of treatment levels in a fractional factorial in the sub-plot
factors. However, higher resolution in the subset of sub-plot factors can be
achieved by using split-plot confounding where one or more whole-plot factors
are included among the generators for the sub-plot fractional factorial.

Tables of generators for minimum aberration fractional factorial split-plot
designs have been developed and used when creating a SPFF design using
the FrF2 function. Analysis of SPFF designs is similar to the analysis of un-
replicated split-plot designs and involves judging significant effects using two
separate normal plots.

Figure 8.10 Design Selection Roadmap
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8.8 Exercises

1. Why wouldn’t you treat the diameter of each cookie as the response in the
cookie-baking experiment described in Section 8.2? What would you call
the individual measurements on each cookie on each tray?

2. Modify the R code in Section 8.2.1 to create

(a) A randomized list for a split-plot experiment with completely random-
ized whole plots where there is one whole-plot factor A with 3 levels
and two replicate whole plots for each level, and one split-plot fac-
tor B with three levels. Label the levels with c(1,2,3) rather than
c=("low","mid","high") as shown in Section 8.2.1.

(b) Write the model for the design you created in (a).

(c) Create a randomized list for a split-plot experiment with completely ran-
domized whole plots where there are two whole-plot factors A and B each
with two levels and two replicate whole plots per treatment combination
and two split-plot treatments C and D each with three levels.

(d) Write the model for the design you created in (c).

3. Kuehl (2000) reports the results of an experiment conducted at a large
seafood company to investigate the effect of storage temperature and type
of seafood upon bacterial growth on oysters and mussels. Three storage
temperatures were studied (0○C, 5○C, and 10○C). Three cold storage units
were randomly assigned to be operated at each temperature. Within each
storage unit, oysters and mussels were randomly assigned to be stored on
one of the two shelves. The seafood was stored for 2 weeks at the assigned
temperature, and at the end of the time the bacterial count was obtained
from a sample on each shelf. The resulting data (log bacterial count) is
shown below.

Storage Seafood Type
Unit Temp. Oysters Mussels

1 0 3.6882 0.3565
2 0 1.8275 1.7023
3 0 5.2327 4.5780
4 5 7.1950 5.0169
5 5 9.3224 7.9519
6 5 7.4195 6.3861
7 10 9.7842 10.1352
8 10 6.4703 5.0482
9 10 9.4442 11.0329

(a) What is the experimental unit for temperature?

(b) Why was it necessary to include nine storage units instead of three?

(c) What is the experimental unit for seafood type?

(d) Write the model for the data.
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(e) Analyze the data to determine what temperature and type of seafood
have significant effects.

(f) Interpret any significant effects.

(g) Check the assumptions of the model you used for analysis.

4. Modify the R code using the FrF2 function in Section 8.3.2 (for creating
the design for the sausage-casing experiment with two whole-plot factors,
two blocks of whole plots, and two split-plot factors) to create a design
with two whole-plot factors, two blocks of whole plots, and three split-plot
factors. Each factor has only two levels.

5. Ramirez and Tobias (2007) present the data shown below from an experi-
ment to compare performance, based on a quality characteristic, of a new
and old film type and three manufacturing pressures. One film type was

Time Film
Block Type P1 P2 P3

1 Old 15.39 15.49 15.39
1 New 15.40 15.62 15.14
2 Old 15.97 15.79 14.99
2 New 15.25 15.37 15.55
3 Old 15.88 15.91 15.48
3 New 15.92 15.26 15.43
4 Old 15.36 15.51 15.47
4 New 15.30 15.53 15.66
5 Old 15.86 15.19 14.93
5 New 15.42 15.03 15.26
6 Old 15.53 15.61 15.49
6 New 15.32 15.55 15.50
7 Old 15.91 16.06 15.53
7 New 15.75 15.54 15.68
8 Old 16.03 15.55 15.49
8 New 15.75 15.31 15.62

selected at random and it was run through the manufacturing process ran-
domly assigning each pressure to 1

3
rd of the roll. Quality measurements were

made on each third of the roll. Next, the other film type was run through
the process again randomly assigning each pressure to one-third of the roll.
This two-step experimental process was repeated eight different times.

(a) Was this a completely randomized or randomized block design in the
whole plots?

(b) What is the model for the data?

(c) Analyze the data to determine if type or pressure have any effect on the
quality characteristic measured.

(d) Describe any significant differences you find and interpret what these
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differences mean by referring to tables or graphs of means or multiple
comparison tests.

(e) Check the assumptions of equal variance and normality of the whole-plot
and split-plot error terms as described in Section 5.9.

6. Czitrom and Spagon (1997) describe a split-plot experiment conducted
in a semiconductor manufacturing facility. Oxidation of silicon in a well-
controlled environment is a critical step in fabrication of modern integrated
circuits. A 9-nanometer thick oxide layer is grown on 200-mm silicon wafers
in a vertical furnace. A quartz boat that rests on the floor of the furnace
has room for 160 silicon wafers facing up. When the furnace is sealed the
temperature is slowly ramped up to 900○, then oxygen gas is introduced,
which oxidizes the silicon on the surface of the wafer. When the thickness
of the oxide reaches 9 nanometers, the furnace run ends. The purpose of the
experiments was to determine if the oxide thickness was affected by the po-
sition in the furnace or the site on the wafer. Oxide thickness was measured
at four positions chosen in the furnace and nine specific sites or locations on
each wafer in each of the four furnace positions. These were the two factors
considered in the experiments. A schematic of the furnace is shown in Figure
8.11. The experimental unit for the furnace position effect was a wafer, while
the experimental units for the site on a wafer were individual sites within a
wafer. After one furnace run, the effect of furnace location was completely
confounded with differences in wafers. Therefore, eight replicate furnace
runs or blocks were made randomizing the wafers placed in each of the four
positions measured on each run. The data resulting from the eight separate
furnace runs is shown in Table 8.11 in a format similar to Tables 8.4 and 8.5.

Figure 8.11 Diagram of Oxide Growth Furnace
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Table 8.11 Data from Oxide Growth Experiment
Run FP St 1 St 2 St 3 St 4 St 5 St 6 St 7 St 8 St 9

1 1 90.1 90.1 92.8 87.8 88.2 88.2 90.4 92.1 91.8
1 2 91.9 93.3 94.1 89.1 91.4 92.2 87.5 91.2 91.1
1 3 88.1 90.8 91.5 88.2 90.5 92.3 87.4 92.6 92.4
1 4 90.0 93.1 92.7 91.6 89.2 92.6 87.0 93.2 95.2
2 1 90.7 90.8 90.3 92.7 88.4 89.0 89.1 92.6 92.8
2 2 88.6 89.1 91.5 89.5 86.6 93.4 89.9 91.8 92.3
2 3 90.2 90.4 90.9 94.7 91.3 91.3 90.0 91.6 92.0
2 4 90.8 92.6 92.6 88.4 92.4 89.9 89.9 91.9 94.1
3 1 89.4 90.0 93.0 90.4 90.4 89.9 91.6 92.6 93.0
3 2 89.7 90.1 92.1 88.6 90.0 92.6 89.2 92.5 93.0
3 3 86.6 94.9 91.0 89.0 90.9 92.3 90.5 93.6 93.6
3 4 93.2 93.9 91.7 90.3 90.5 93.0 89.7 92.5 94.6
4 1 87.8 93.2 91.7 85.6 90.3 87.9 89.1 93.2 90.9
4 2 86.6 92.4 90.9 90.9 91.4 90.4 89.7 92.6 92.7
4 3 91.9 93.5 97.9 90.1 87.7 92.1 89.0 92.0 93.4
4 4 89.1 92.1 94.6 92.0 89.6 92.4 92.9 96.2 96.1
5 1 91.8 90.4 91.7 91.8 89.0 90.0 88.9 93.8 92.3
5 2 89.3 94.5 94.6 95.8 93.0 91.7 89.2 93.3 95.2
5 3 90.0 92.0 95.0 92.7 88.5 91.3 90.0 92.1 93.9
5 4 90.2 90.4 93.4 92.4 88.8 91.7 89.4 96.7 92.5
6 1 90.3 91.1 93.3 93.5 87.2 88.1 90.1 91.9 94.5
6 2 91.1 89.8 91.5 91.5 90.6 93.1 88.9 92.5 92.4
6 3 92.4 91.7 91.6 91.1 88.0 92.4 88.7 92.9 92.6
6 4 94.1 91.5 95.3 92.8 93.4 92.2 89.4 94.5 95.4
7 1 90.3 91.2 93.0 89.7 88.1 91.0 89.7 95.0 95.4
7 2 92.7 89.3 90.9 90.2 88.8 92.5 89.9 94.2 93.6
7 3 87.0 94.0 95.8 91.7 89.7 88.7 90.7 94.9 91.4
7 4 91.8 91.8 91.6 94.7 92.7 92.5 90.1 94.9 92.8
8 1 89.0 89.8 89.0 90.5 90.1 88.6 90.5 91.3 93.3
8 2 89.9 90.6 90.4 91.8 88.3 93.1 88.4 92.1 93.1

(a) What is the model for the data?

(b) Analyze the data using gad function or lmer.

(c) Describe any significant differences you find and interpret what these
differences mean by referring to tables or graphs of means or multiple
comparison tests.

(d) Check the assumptions of equal variance and normality of the whole-plot
and split-plot error terms as described in Section 5.9.
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7. Using the FrF2 function, create a minimum aberration split-plot fractional
factorial design with four whole-plot factors A, B, C, and D, and four sub-
plot factors P , Q, R, and S utilizing a one-half fraction in the whole plots
and a one-quarter fraction in the sub-plots.

(a) What are the generators for this (24−1 × 24−2)?

(b) Show the alias pattern for this experiment up to three-factor interactions.

(c) List the seven effects and all their aliases that would be tested with the
whole-plot error.

(d) List the remaining 24 effects that would be tested with the sub-plot error.

8. Consider a 16-run fractional factorial split-plot design with three whole-plot
factors A, B, and C, and four sub-plot factors P , Q, R, and S.

(a) What degree of fractionation would you use in the whole plots and why?

(b) Based on your answer to (a) how many whole plots would be required?

(c) How many sub-plots per whole plot, and what degree of fractionation
would be required in the sub-plot design?

(d) Can you create the design using FrF2? If so, show the commands to do it.

(e) Show the alias pattern up to three-factor interactions for the design you
created.

(f) From the design you created, list the effects that must be tested with
whole-plot error and those that must be tested with sub-plot error.

9. Bisgaard and Kulahci (2001) describe an experiment conducted by a man-
ufacturer of boxed cake mixes. The manufacturer wanted to find a way to

Design
Factors T : − + − +

Recipe F S E FSE t: − − + +

1 − − − − - 1.4 1.0 -
2 + − − + 1.8 - - 6.1
3 − + − + 1.7 - - 2.1
4 + + − − - 3.7 4.0 -
5 − − + + 1.9 - - 4.7
6 + − + − - 6.4 6.2 -
7 − + + − - 2.1 2.3 -
8 + + + + 4.9 - - 5.7

make the recipe more robust so that if customers bake at a slightly different
temperature or time from that recommended on the box, the cake would
still taste good. The manufacturer varied F : the amount of flour, S: the
amount of shortening, and E: the amount of egg powder in the recipe. These
factors were varied according to a 23 design illustrated in the left-hand side
of the table above. For each of the eight recipes, a large batch of dough was
made. From each dough batch two cakes were baked, one at each of the T :
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temperature and t: time conditions listed across the top of the table. Since
a different combination of levels of T : temperature and t: time were used
depending on the sign of FSE, it can be seen that split-plot confounding
was utilized. There were 16 cakes baked in total representing a 25−1 frac-
tion. The responses shown in the table below are averages of scores between
1 and 7 obtained from a taste panel. The higher the score the better.

(a) What is the generator and defining relation for this design?

(b) List the estimable effects and their aliases.

(c) Separate the list of estimable effects into two subgroups: first the group
that would be tested with whole-plot error and second the group that
would be tested with sub-plot error.

(d) Use the R lm function to calculate the 15 estimable effects.

(e) Modify the R code in Section 8.5.2 to produce separate normal plots of
the whole-plot effects and sub-plot effects. Does anything appear to be
significant?

(f) Interpret any significant main effects and interactions using an interac-
tion plot if needed.



CHAPTER 9

Crossover and Repeated Measures
Designs

9.1 Introduction

Crossover and repeated measures designs are usually used in situations where
runs are blocked by human subjects or large animals. The purpose of crossover
designs (COD) is to increase the precision of treatment comparisons by com-
paring them within each subject or animal. In a crossover design, each sub-
ject or animal will receive all treatments in a different sequence, but the pri-
mary aim is to compare the effects of the treatments and not the sequences.
Crossover designs are used frequently in pharmaceutical research, sensory eval-
uation of food products, animal feeding trials, and psychological research.

The primary purpose of repeated measures designs, on the other hand, is
to compare trends in the response over time rather than to look at a snapshot
at a particular point in time. Each subject or animal receives the same treat-
ment throughout the experiment, and repeated measures are taken on each
subject over time. Repeated measures experiments are similar to split-plot
experiments in that there are two sources of error, treatments are compared
to the less precise subject to subject error, and the comparison of trends over
time between treatments will be compared to the more precise within subject
experimental error.

9.2 Crossover Designs (CODs)

Crossover designs (CODs) are useful for comparing a limited number of treat-
ments, usually from two to six. Since each subject (that will be referred to
as the block or whole-plot experimental unit) will receive each treatment se-
quentially in time, the number of levels of the treatment factor must remain
small, otherwise drop-outs over time will cause problems in the analysis of the
data. For this reason, CODs are usually not used for factorial treatment plans
other than simple 22 factorials.

Since the treatments are applied sequentially over time to each block or
whole-plot experimental unit, CODs are only useful for comparing temporary
treatments of a chronic condition. For example, if a clinical trial was performed
to compare pain relievers for the treatment of headaches, there would be no
symptom to treat in the second period if the treatment given in the first period
cured the headache.

The aspect of crossover trials that requires special attention is the fact that

351
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the treatment applied to the block experimental unit in one period may affect
the response during that period and during a later period. The latter effect is
called a carryover effect. Special designs and models for estimating and testing
the significance of carryover effects will be described.

9.3 Simple AB, BA Crossover Designs for Two Treatments

The typical layout for a two-period crossover design is illustrated in Figure 9.1.
In this representation two treatments A and B are being compared. n = n1+n2

subjects are randomly assigned to either group 1 or group 2, and the number
of subjects in group 1, n1, is not necessarily equal to the number of subjects
in group 2, n2. Group 1 receives treatment A in the first period followed by
treatment B in the second period. A washout period where no treatment is
given may be included between the two treatment periods. Group 2 receives
the treatments in the opposite order.

Figure 9.1 Layout for Two-Period Crossover

Period 1   Washout   Period 2
Group I           A              __             B

Group II          B              __             A

Defining πi as the period effect, τj as the treatment effect, and µ to be the
grand average, the expected response in each period for the two groups can
be represented as shown below.

Period
1 2

Group 1 (AB) µ + π1 + τ1 µ + π2 + τ2
Group 2 (BA) µ + π1 + τ2 µ + π2 + τ1

The design is a 2×2 Latin square, where groups represent rows and periods
represent columns. As in all Latin-square designs, it is usually assumed that
there is no treatment × period interaction, therefore the model for the data
can be written as:

yijk = µ + si + πj + τk + εijk (9.1)

where si is a random subject effect (the block factor) and εijk is the within
subject experimental error. As in an RCB design, the period and treatment
effects are compared to the within block (subject) error. The comparison of
group 1 to group 2 is just a comparison of two groups of subjects that have
been randomly grouped together, and this is not considered here.

As an example of a simple AB, BA crossover study, consider the data re-
ported by Wallenstein and Fisher (1977) from a clinical trial comparing the
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plasma levels of two formulations of an antifungal agent. Seventeen normal
male volunteers were randomly assigned to two groups. The first group re-
ceived formulation A for 13 days, followed by a 13-day washout period, and
then formulation B for 13 days. Group two received the treatments in the
B,A order. The response shown was the area under the 12-hour plasma curve
taken on the last day of each period.

Table 9.1 Data from Two-Period Crossover Study of Antifungal Agent
Group Subject Period 1 Period 2

1 2 12.8 8.2
1 3 16.5 13.1
1 6 18.7 15.9
1 8 11.6 14.2
1 11 13.6 12.8
1 12 9.8 15.3
1 16 12.8 14.0
1 18 12.1 12.0
2 1 10.9 12.3
2 4 13.5 11.5
2 5 13.7 16.0
2 7 12.2 14.8
2 9 12.6 16.2
2 10 13.0 17.5
2 14 10.7 7.5
2 15 14.2 12.4
2 17 12.2 12.8

The following R code can be used to retrieve the data in Table 9.1, and
perform the ANOVA using the adjusted or type III sums of squares. The type
III sums of squares should be used because there is an unequal number of
subjects in the two groups. The result is shown on the next page.

> library(daewr)

> library(car)

> modl <- lm( pl ~ Subject + Period + Treat, data = antifungal,

+ contrasts = list(Subject = contr.sum, Period = contr.sum,

+ Treat = contr.sum))

> Anova(modl, type = "III" )
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Anova Table (Type III tests)

Response: pl

Sum Sq Df F value Pr(>F)

(Intercept) 5887.3 1 1290.2269 5.78e-16 ***

Subject 114.6 16 1.5703 0.1942

Period 0.7 1 0.1609 0.6939

Treat 3.0 1 0.6560 0.4306

Residuals 68.4 15

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Here it can be seen that there is no significant treatment effect, meaning
there is no difference in the amount of antifungal agent reaching the blood
between the two formulations. In addition, the period effect after adjusting for
treatments is not significant. The lsmeans function in the R package lsmeans

produces the following table of adjusted means standard errors and compari-
son of adjusted means for the two treatments. The t-test is equivalent to the
F -test shown in the ANOVA table.

> library(lsmeans)

> lsmeans(modl, pairwise ~ Treat)

$‘Treat lsmeans‘

Treat lsmean SE df lower.CL upper.CL

A 13.45605 0.5185321 15 12.35082 14.56127

B 12.86160 0.5185321 15 11.75638 13.96683

$‘Treat pairwise differences‘

estimate SE df t.ratio p.value

A - B 0.5944444 0.7339504 15 0.80992 0.43065

p values are adjusted using the tukey method for 2 means

The usual assumptions of equal variance and normality of within subjects
experimental error can be checked using residual plots as shown in Chapter 2.

9.3.1 Sample Size Estimation

Since the test for difference in treatment effects can be reduced to a t-test in the
two-period crossover design, the number of subjects required to attain a given
power for detecting a difference, ∆, in treatment means can be determined
using the noncentral t-distribution. For example, the R code shown on the next
page (patterned after Jones and Kenward’s (2003) SAS code) creates a table of
the power of the test for treatments as a function of n = n1+n2, the significance
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level (α), the expected difference in treatment means ∆ = µ̄⋅⋅1 − µ̄⋅⋅2, and the
within patient variance. In this example, α = 0.05, ∆ = 10, and σ2 = 326.
Only the first three lines of the resulting table is shown. Examination of the
complete table shows that a power of 0.8 for detecting a treatment difference
of 10 can be achieved with a sample size of n = 54, and a power of 0.9 can be
achieved with a sample size of n = 72.

> alpha <- 0.05

> sigma2 <- 326

> delta <- 10

> n <- seq( 40, 80, by = 2)

> stderrdiff <- sqrt( 2 * sigma2 / n)

> df <- n - 2

> t1 <- qt( 1 - alpha / 2, df )

> gamma <- delta / stderrdiff

> power <- 1 - pt(t1, df, gamma)

> data.frame( alpha = alpha, n = n, delta = delta, power = power)

alpha n delta power

1 0.05 40 10 0.6750670

2 0.05 42 10 0.6973427

3 0.05 44 10 0.7183796

.

.

.

9.3.2 Carryover Effects

In cases where the effect of the treatment given in the first period persists
and affects the response in the second period, a simple model for the expected
response for the two groups in the two periods can be written as shown in the
table below,

Period
1 2

Group 1 (AB) µ11 = µ + π1 + τ1 µ22 = µ + π2 + τ2 + λ1

Group 2 (BA) µ12 = µ + π1 + τ2 µ21 = µ + π2 + τ1 + λ2

where µij refers to the expected value for the ith period and the jth treat-
ment, τ1 and τ2 are the direct effects of the treatments on the response in the
current period, π1 and π2 are the period effects, and λ1 and λ2 are defined as
the carryover effects of treatment A and B. In this case, the expected group
difference (µ12 + µ21)/2 − (µ11 + µ22)/2 is an estimate of the difference in the
carryover effects, λ2 − λ1, assuming the expected response for the subjects
in the first and second groups are the same. However, the difference in the
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carryover effects biases the estimate of the treatment difference

(µ12 + µ22)/2 − (µ11 + µ21)/2 = τ2 − τ1 + (λ1 − λ2)/2.

Therefore, no test of treatment difference is possible without assuming the
carryover effects are equal (i.e., λ1 = λ2). Assuming the expected response for
the subjects in the first and second groups is the same, a test of the significance
of the differences in carryover effects can be made by testing the group effect,
ψi, in the model

yijkl = µ + ψi + sij + πk + τl + εijkl, (9.2)

where yijkl is the response for the jth subject in the ith group during period
k receiving treatment l; ψi is the group effect or carryover effect; sij is the
random effect of the jth subject in the ith group; and the πk and τl are the
period and direct treatment effects as defined before. This model resembles
a split-plot model where there are two error terms sij and εijkl. Jones and
Kenward (2003) show that the appropriate error term for testing the difference
in carryover effects, ψi, is the between subjects error sij , while the error term
for the other effects in the model is the more precise within subjects error term
εijkl. The analysis using this model can be made using the lmer function in
the R package lme4. Below is the code for analyzing the data in Table 9.1
using lmer.

> c1 <- c( .5, -.5)

> mod4 <- lmer( pl ~ 1 + Group + (1|Subject:Group) + Period +

+ Treat, contrasts = list(Group = c1, Period = c1, Treat = c1),

+ data = antifungal)

> summary(mod4)

Linear mixed model fit by REML

Formula: pl ~ 1 + Group + (1 | Subject:Group) + Period + Treat

Data: antifungal

AIC BIC logLik deviance REMLdev

160.2 169.4 -74.11 152.5 148.2

Random effects:

Groups Name Variance Std.Dev.

Subject:Group (Intercept) 1.5078 1.2279

Residual 4.5630 2.1361

Number of obs: 34, groups: Subject:Group, 17

Fixed effects:

Estimate Std. Error t value

(Intercept) 13.1688 0.4729 27.846

Group1 0.3375 0.9458 0.357

Period1 -0.2944 0.7340 -0.401

Treat1 0.5944 0.7340 0.810
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The output on the previous page shows that there is no significant group
effect or carryover difference, and no significant direct treatment effect. The
between subjects variance component, σ2

s , is estimated to be 1.5078, while the
within subject variance component, σ2, is estimated to be 4.563. The estimate
statement produces results that are equivalent to the REML F -tests.

Notice the standard error of the carryover difference effect is larger than the
standard error for the direct treatment effects since it includes both variance
components. Therefore, the group or carryover effect is like a whole-plot effect
that is estimated less precisely. The direct effects are estimated more precisely
with the within subject variability.

Grizzle (1965) proposed a preliminary test of the carryover difference at
an inflated significance level, like α = 0.10, followed by a different test of the
direct treatment effects depending on the outcome of the preliminary test of
carryover difference. However, because of the low power for the preliminary
test of carryover differences, Freeman (1989) showed that this two-stage pro-
cedure inflates the type I error and produces biased estimates of the direct
treatment effects, and Senn (2002) recommends against using it. Therefore,
the simple AB, BA crossover trial should only be used when the carryover
effects can safely be assumed to be equal.

9.3.3 Modified Designs When Carryover Is Possible

The disadvantage of the simple two-period crossover design presented in the
last section is that the direct treatment effects are biased by any difference in
carryover effects, and that the test for carryover effects lacks power because
it is tested with the between subjects error term. Jones and Kenward (2003)
show higher order designs which include additional sequence groups or periods.
These designs allow for within-subject estimators of both the carryover and
direct treatment effects. Some designs that are optimal in terms of providing
minimum variance unbiased least squares estimates of the difference in direct
and carryover treatment effects are shown in Tables 9.2–9.4.

Table 9.2 Design 1
Sequence Period

1 2
1 A A
2 B B
3 A B
4 B A

Design 3 allows for an independent estimate of the direct treatment by
period interaction in addition to the direct and carryover treatment effects.
Following Grizzle (1965), the model for higher order two-treatment designs
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Table 9.3 Design 2
Sequence Period

1 2 3
1 A B B
2 B A A

Table 9.4 Design 3
Sequence Period

1 2 3
1 A B B
2 B A A
3 A A B
4 B B A

can be written in the form

yijk = µ + ψi + s(i)k + πj + τd(i,j) + λd(i,j−1) + εijk (9.3)

where yijk is the response of the kth subject in the ith group and jth period.
ψi is the sequence group effect. s(i)k is the subject within group or block effect,
which can be treated as a fixed or random factor. πj is the period effect, d(i, j)
is the treatment assigned to period j for sequence group i, τl is the effect of the
lth treatment, and λl is the first-order carryover effect of the lth treatment.

As an example of the use of this model, consider the data in Table 9.5 that
comes from a bioequivalence study presented by Chi (1994), where half of the
36 subjects were randomly assigned to the ABB sequence and the other half
to the BAA sequence in design 2.

The data in Table 9.5 is available in the data frame bioequiv in the R
package daewr. The variables in this data frame are coded in a way that
model 9.3 can be fit. The treatment, d(i, j), given in the jth period and the
ith treatment group, is the variable Treat in the data frame. The carryover,
d(i, j−1) in the jth period and the ith treatment group, is the variable Carry

in the data frame, and its value is the treatment given in the j − 1st period
(if one was given) or none. The remaining variables in the data frame are the
group indicator Group, the subject indicator Subject, and the period indicator
Period.

The first six lines of the data frame bioequiv is shown on page 360, and
there it can see the carryover indicator is always labeled none in the first
period. In the second period the carryover indicator is the treatment given in
the first period, and in the third period the carryover indicator is the treatment
given in the second period.
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Table 9.5 Data from Bioequivalence Study Where Subjects in Sequence Group 1 Were
Given ABB and Subjects in Sequence Group 2 Were Given BAA

Group Subject Period 1 Period 2 Period 3
1 2 112.25 106.36 88.59
1 3 153.71 150.13 151.31
1 6 278.65 293.27 295.35
1 8 30.25 35.81 34.66
1 10 65.51 52.48 47.48
1 12 35.68 41.79 42.79
1 13 96.03 75.87 82.81
1 14 111.57 115.92 118.14
1 18 72.98 70.69 74.20
1 19 148.98 157.70 178.62
1 21 140.22 119.83 139.48
1 23 60.44 44.09 35.53
1 26 136.10 161.76 163.57
1 28 111.19 101.83 101.70
1 31 85.87 99.60 107.48
1 34 111.25 114.90 135.94
1 36 58.79 96.42 122.60
1 129 299.50 303.45 385.34
2 1 52.66 47.65 13.91
2 4 128.44 173.22 140.44
2 5 233.18 88.18 31.93
2 7 53.87 89.18 70.08
2 9 62.07 54.99 73.39
2 11 183.30 153.88 122.41
2 15 51.91 73.01 23.10
2 16 90.75 89.70 111.94
2 17 59.51 56.26 48.87
2 24 83.01 73.85 71.30
2 25 85.37 86.67 92.06
2 27 84.85 75.41 79.45
2 30 70.33 40.80 46.91
2 32 110.04 102.61 113.18
2 33 93.58 87.31 87.58
2 35 66.54 43.29 84.07
2 120 59.67 56.86 69.49
2 122 49.02 50.29 51.71
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> library(daewr)

> data(bioequiv)

> head(bioequiv)

Group Subject Period Treat Carry y

1 1 2 1 A none 112.25

2 1 2 2 B A 106.36

3 1 2 3 B B 88.59

4 1 3 1 A none 153.71

5 1 3 2 B A 150.13

6 1 3 3 B B 151.31

Once the data frame is available, model 9.3 can be fit using the code below.
Since the subject indicators within each group are unique, the Group term
can be left out of the model and the sum of squares for subjects will represent
both the random group and subject effects.

> library(car)

> modc <- lm( y ~ Subject + Period + Treat + Carry, data =

+ bioequiv, contrasts = list(Subject = contr.sum, Period =

+ contr.sum, Treat = contr.sum, Carry = contr.sum))

> Anova(modc, type = "III", singular.ok = TRUE)

Anova Table (Type III tests)

Response: y

Sum Sq Df F value Pr(>F)

(Intercept) 1110115 1 2110.2233 <2e-16 ***

Subject 403586 35 21.9194 <2e-16 ***

Period 446 2 0.4236 0.6564

Treat 2209 1 4.1993 0.0443 *

Carry 1051 1 1.9970 0.1622

Residuals 35772 68

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The results show that the treatments are not equivalent (since there is a
significant treatment effect at the α = 0.05 significance level), and that the
carryover effects are nonsignificant. The type III ANOVA sums of squares
are used for the test since inclusion of carryover effects makes the design
unbalanced. The lsmeans package can be used to get the adjusted means
for each treatment level as shown on the next page. The results show that
treatment B has a higher average response.
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> library(lsmeans)

> lsmeans(modc, ~ Treat)

$‘Treat lsmeans‘

Treat lsmean SE df lower.CL upper.CL

A 96.58762 3.217269 68 90.16766 103.0076

B 106.18164 3.217269 68 99.76168 112.6016

When comparing two treatments in a crossover design, the simple AB, BA
two-period design should only be used when it can safely be assumed that
there are no carryover effects. When carryover effects are possible, the choice
between designs 1, 2, and 3 shown in Tables 9.2–9.4 will depend upon the cost
of extra periods or extra subjects. If only two periods are possible, the only
choice is design 1. However, this design is much less efficient for estimating
carryover effects than the three period designs. If subjects are expensive to
recruit, it would be wise to obtain three observations from each subject rather
than two. Design 2 is most efficient for estimating direct treatment effects and
carryover effects, but it does not allow estimation of a treatment by period
interaction. If a treatment by period interaction is a possibility, it would be
better to randomize the total number of subjects available to four groups
rather than two and use design 3.

9.4 Crossover Designs for Multiple Treatments

Many designs, with more than two treatments, have been proposed in the
literature for crossover studies. Which design is best depends upon the as-
sumptions made. For the two-treatment crossover design presented in the last
section, only first-order carryover effects were assumed. That is to say, the
treatment in a given period may affect the response in that period or the next
period, but will not persist beyond that. Other more complicated models may
assume second- or- third-order carryover effects, or interactions between the
carryover effect and the treatment given in the current period. These assump-
tions will result in more complicated designs. In this section designs will be
described for the simple first-order carryover effects. For guidance on designs
for more complicated models refer to Jones and Kenward (2003).

One desirable characteristic of a crossover design is variance balance where
the variance of a difference in any pair of direct (or carryover) treatment
effects is the same regardless of the pair. This balance can be achieved if
every treatment is preceded by every treatment an equal number of times.
For example, the simple AB, BA two-period crossover design is not balanced,
because treatment A is only preceded by treatment B, and treatment B is
only preceded by A. By adding the third period as in design 2, treatment A is
preceded by B once and A once in the second sequence group, and treatment
B is preceded by A once and B once in the first sequence group. Therefore
design 2 is balanced.
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9.4.1 Williams’s Latin-Square Crossover Designs

Balanced designs in t treatments and p = t periods can be created from Latin-
square designs. If there are no carryover effects, then a variance balanced
design for direct treatment effects can be achieved by choosing any arbitrary
t×t Latin-square design. If carryover effects are possible, then variance balance
can only be achieved when each treatment is preceded by every other treat-
ment an equal number of times. Williams (1949) showed that this property
could be achieved with only one particular Latin square if t is an even number,
and two particular Latin squares if t is an odd number. An easy algorithm
for constructing these particular squares was described by Sheehe and Bross
(1961) and is described below.

1. Number the treatments from 1 to t.

2. Start with a cyclic Latin-square design where the treatments in the ith row
are i, i + 1, . . . , t,1, . . . , i − 1.

3. Create another Latin square whose rows are the mirror images of the rows
in the first Latin square; e.g., the mirror image of (1,2,3,4) is (4,3,2,1).

4. Interlace each row of the first Latin square with the corresponding row
of the second Latin square to produce a t × 2t rectangle. For example,
interlacing (1, 2, 3, 4) with (4, 3, 2, 1) results in (1, 4, 2, 3, 3, 2, 4, 1).

5. Split the t × 2t rectangle down the middle to form two t × t Latin squares.

6. If t is odd use both Latin squares, if t is even choose either one.

Using this algorithm, the rows of the resulting Latin square(s) are indica-
tors of the sequence groups, and the columns are indicators of the periods.
Randomization is accomplished by randomizing the treatments to the level
indicators 1,2, . . . , t, and then randomizing one or more subjects to each se-
quence group.

The williams function in the R package crossdes can also be used to create
Willams’s crossover Latin-square designs as illustrated in the code below that
creates Williams’s design for three levels of the treatment factor.

> library(crossdes)

> wdes3 <- williams(3)

> rownames(wdes3) <- paste("seqGroup", 1:6, sep = "")

> colnames(wdes3) <- paste("Period", 1:3, sep = "")

> wdes3

Period1 Period2 Period3

seqGroup1 1 2 3

seqGroup2 2 3 1

seqGroup3 3 1 2

seqGroup4 3 2 1

seqGroup5 1 3 2

seqGroup6 2 1 3
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The object created by the function williams is a matrix. The treatment
levels are numbered 1, . . . , t and the entry in the ith row and jth column of
the matrix is the treatment the ith sequence group gets in the jth period.

Table 9.6 contains the design from the previous page in a different format.
Here sequence groups 1, 2, and 3 are shown as groups 1, and 3 in square I,
and sequence groups 4, 5, and 6 are shown as groups 1, 2, and 3 in square
II. In this format it can be seen the design is actually composed of two Latin
squares since the number of levels of the treatment factor is odd. It can also
be seen that the design is balanced for first order carryover effects since each
treatment is preceded by every other treatment twice.

Table 9.6 Williams’s Design for Three Treatments
Square

I II
Period Period

Group 1 2 3 1 2 3
1 1 2 3 3 2 1
2 2 3 1 1 3 2
3 3 1 2 2 1 3

As an example of the use of Williams’s design for three treatments, consider
an experiment conducted by Chipman (2006). The purpose of the experiment
was to determine how the surface (grass, cement, or rubberized running track)
affected the time to sprint 40 yards. Twelve subjects were recruited for the
study, and in order to compare the surface effect within each subject, all
subjects ran on all three surfaces. To adjust for the lingering exhaustion effect
of each run, the crossover design shown in Table 9.6 was used. Two subjects
were randomized to each sequence group in each square. The data resulting
from this experiment is the time in seconds for each subject to sprint 40 yards
and is shown in Table 9.7. In the following table, treatment level 1 represents
cement, treatment level 2 represents the rubberized track, and treatment level
3 represents grass. These surfaces were side by side at the BYU track stadium,
which was a convenient location to conduct the experiments.

The R code to get the data (from the data frame chipman in the daewr

package) and fit model (9.3) using the lm function is shown below.

> library(daewr)

> mod3 <- lm(Time ~ Subject + Period + Treat + Carry, data =

+ chipman, contrasts = list(Subject = contr.sum,

+ Period = contr.sum, Treat = contr.sum, Carry = contr.sum))
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Table 9.7 Williams’s Design and Data for Sprint Time Experiment

Square I Square II
Group Subject Period Treat Time Subject Period Treat Time

1 1 1 1 5.47 7 1 2 5.68
1 2 1 1 6.03 8 1 2 5.90
1 1 2 3 5.00 7 2 3 5.27
1 2 2 3 5.42 8 2 3 5.70
1 1 3 2 5.08 7 3 1 5.23
1 2 3 2 5.38 8 3 1 5.54
2 3 1 2 7.69 9 1 3 5.97
2 4 1 2 6.32 10 1 3 7.87
2 3 2 1 7.03 9 2 1 5.73
2 4 2 1 5.43 10 2 1 6.97
2 3 3 3 7.57 9 3 2 4.97
2 4 3 3 5.77 10 3 2 6.85
3 5 1 3 8.05 11 1 1 6.19
3 6 1 3 7.51 12 1 1 7.39
3 5 2 2 7.12 11 2 2 5.66
3 6 2 2 6.49 12 2 2 6.55
3 5 3 1 7.18 11 3 3 5.57
3 6 3 1 6.35 12 3 3 7.09

The ANOVA table with the type III adjusted sums of squares can be pro-
duced by the Anova function in the car package as shown below.

> library(car)

> Anova(mod3, type = "III", singular.ok = TRUE)

Anova Table (Type III tests)

Response: Time

Sum Sq Df F value Pr(>F)

(Intercept) 948.16 1 36985.1379 < 2.2e-16 ***

Subject 24.25 11 86.0105 3.105e-13 ***

Period 0.52 2 10.1789 0.0011035 **

Treat 0.64 2 12.4661 0.0004003 ***

Carry 0.23 2 4.5484 0.0251881 *

Residuals 0.46 18

Since the level of the carryover effect will always be ‘0’=‘none’ in period 1,
there are missing values (or no responses) in the other levels of the carryover
effect in period 1. Therefore the option singular.ok = TRUE must be used
in the call of the Anova function, and the sums of squares for period is not
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adjusted in the resulting ANOVA table. The treatment and carryover sums of
squares are adjusted for other terms in the model. The resulting ANOVA table
shown on the previous page shows the treatment factor or running surface
caused a significant difference in running times, and that there were significant
carryover effects.

The R code below produces the estimates of the treatment level means µ̂+ τ̂i
and standard deviations of data in each treatment level. The results shown
below the code indicate that the treatment level 2 (rubberized running track)
caused the fastest running times, and that treatment level 3 (grass) produced
the slowest running times.

> with(chipman, tapply(Time, Treat, mean))

1 2 3

6.211667 6.140833 6.399167

> sqrt(with(chipman, tapply(Time, Treat, var)))

1 2 3

0.7646370 0.8398967 1.1248633

The R code below produces the estimates of the carryover level means µ̂+λ̂l
in model 9.3.

> with(chipman, tapply(Time, Carry, mean))

0 1 2 3

6.67250 5.97375 6.20250 5.94250

> sqrt(with(chipman, tapply(Time, Carry, var)))

0 1 2 3

0.9474475 0.9296841 0.8078676 0.8033101

Subtracting the grand mean from these estimates, it can be seen that the
carryover effects (λ̂l of carryover levels 3 and 1 (grass and cement) are negative
which means that the sprinting times will be slightly faster in the period
following a sprint on grass or cement. The “0” level of carryover means no
prior treatment. The carryover effect (λ̂l) for this level is positive indicating
the first sprint time is generally longer for each subject (probably to the lack
of warm up under race conditions).

9.4.2 Designs with p > t or t > p

One problem with Williams’s designs is that the direct treatment effects and
the carryover effects are not orthogonal. The type III ANOVA table makes a
test for significance of treatment effects adjusted for carryover and a test for
carryover adjusted for treatments; however, the lsmeans package is unable
to produce least squares (adjusted) means for treatments and carryover due
to the imbalance in these factors. In addition the direct treatment effects
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are estimated more precisely than the carryover effects since each marginal
mean is the average of 12 observations for the direct effects but only 8 for the
carryover effects.

Lucas (1957) proposed a solution to this problem by simply adding an extra
period where all sequence groups receive the same treatment that they received
in the tth period. This makes the design completely balanced in the sense
that every treatment follows every other treatment an equal number of times,
including itself (like design 2 for two treatments presented in Section 9.3.3).
This makes the direct treatment and carryover treatment effects orthogonal
and increases the efficiency of estimating the carryover effects. However, it
does not come without cost. Adding an extra period may increase the cost or
difficulty in carrying out the experiments, and by adding the extra period the
treatment effects are no longer orthogonal to the subjects since each subject
will receive one treatment twice. Therefore, the efficiency of estimating the
direct treatment effects actually decreases slightly by adding the extra period.
Unless carryover effects are strongly suspected, the extra period design for k
treatments may not be necessary.

In experiments like sensory evaluation of food products, it may be desirable
for the number of periods p to be less than the number of treatments t.
In this way each subject will only have to taste a subset of the food items
being compared. When too many items are tasted by a subject, the taste
buds become overwhelmed. Designs with p < t are similar to incomplete block
design with subjects representing the blocks. The simplest way to create a
design with p < t is to delete one or more periods from an orthogonal set of
Latin squares, as long as at least three periods remain. See Jones and Kenward
(2003) for other methods of constructing designs with p < t.

9.5 Repeated Measures Designs

In a repeated measures design, the objective is to compare the trend over
time in the response between treatment groups when the response is mea-
sured repeatedly on each subject. As an example consider comparing different
weight-loss diets. If subjects were randomized to one of t diets that they would
then follow for 3 months, it would probably be of interest to compare how fast
subjects lost weight on the different diets in addition to comparing the total
weight loss over time between the treatment diets. Repeated measures designs
are like the completely randomized or randomized blocks designs discussed in
Chapters 2 and 4, where subjects are randomized to one of several treat-
ments. The difference is that the response is measured repeatedly throughout
the treatment period instead of once at the end of the treatment period.

As an example of a repeated measures design, consider the data in Table
9.8. This is part of the data from a study presented in Diggle et al. (1994)
for the purpose of determining how the diet of dairy cows affects the protein
in the milk. Seventy-nine Australian cows were randomized to receive one of
three diets: barley alone, a mixture of barley and lupins, or lupins alone. The
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protein was measured in a weekly sample of the milk from each cow. Table
9.8 shows the data for the first four weekly samples from the first 10 cows in
each group as an illustration of the type of data that results from a repeated
measures design. Figure 9.2 shows the trend in average protein over time. It
can be seen that the lupins diet results in lowest protein levels, and that the
mixed diet, while initially similar to the barley diet in protein, appears to
quickly decrease to the level of the lupins diet.

Table 9.8 Data from Repeated Measures Experiment on Dairy Cow Diets
Week

Diet Cow 1 2 3 4
Barley 1 3.63 3.57 3.47 3.65
Barley 2 3.24 3.25 3.29 3.09
Barley 3 3.98 3.6 3.43 3.30
Barley 4 3.66 3.5 3.05 2.90
Barley 5 4.34 3.76 3.68 3.51
Barley 6 4.36 3.71 3.42 3.95
Barley 7 4.17 3.6 3.52 3.10
Barley 8 4.40 3.86 3.56 3.32
Barley 9 3.40 3.42 3.51 3.39
Barley 10 3.75 3.89 3.65 3.42
Mixed 11 3.38 3.38 3.10 3.09
Mixed 12 3.80 3.51 3.19 3.11
Mixed 13 4.17 3.71 3.32 3.10
Mixed 14 4.59 3.86 3.62 3.60
Mixed 15 4.07 3.45 3.56 3.10
Mixed 16 4.32 3.37 3.47 3.46
Mixed 17 3.56 3.14 3.60 3.36
Mixed 18 3.67 3.33 3.20 2.72
Mixed 19 4.15 3.55 3.27 3.27
Mixed 20 3.51 3.9 2.75 3.37
Lupins 21 3.69 3.38 3.00 3.50
Lupins 22 4.20 3.35 3.37 3.07
Lupins 23 3.31 3.04 2.80 3.17
Lupins 24 3.13 3.34 3.34 3.25
Lupins 25 3.73 3.61 3.82 3.61
Lupins 26 4.32 3.7 3.62 3.50
Lupins 27 3.04 2.89 2.78 2.84
Lupins 28 3.84 3.51 3.39 2.88
Lupins 29 3.98 3.3 3.02 2.99
Lupins 30 4.18 4.12 3.84 3.65
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Figure 9.2 Comparison of Trends in Protein over Time
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9.6 Univariate Analysis of Repeated Measures Designs

The repeated measures design is similar to a split-plot design with whole-plots
being subjects (cows in the example) and sub-plots being different observation
times on each subject. In the dairy cow example, cows were randomized to
treatment diets, so the diets are the whole-plot treatments. The repeated
measures over time are measured within each cow, so the difference in weekly
measurements and the interaction between diets and weekly measurements
are the sub-plot treatments. A simple univariate analysis of the data could be
made using the split-plot model with either the gad function in the R package
GAD or the lmer function in the R package lme4. For example, the commands
to make the analysis using the gad function are shown below. The resulting
ANOVA table is shown on the next page.

> library(daewr)

> data(strung)

> library(GAD)

> D <- as.fixed(strung$Diet)

> W <- as.fixed(strung$week)

> C <- as.random(strung$Cow)

> model <- lm(protein ~ D + C%in%D + W + D*W, data = strung)

> gad(model)



UNIVARIATE ANALYSIS OF REPEATED MEASURES DESIGNS 369

Analysis of Variance Table

Response: protein

Df Sum Sq Mean Sq F value Pr(>F)

D 2 0.4850 0.24250 0.9405 0.4029

W 3 5.8795 1.95984 36.5511 4.871e-15 ***

D:C 27 6.9621 0.25786 4.8090 2.045e-08 ***

D:W 6 0.1651 0.02752 0.5132 0.7967

Residual 81 4.3432 0.05362

In this analysis, the diet factor (D) is compared to the cow-to-cow variation
within diet (D:C) and is found to be non-significant. The difference in protein
levels over time (W) is compared to the within cow variation (Residual) and
is found to be significant at the α = 0.01 level, indicating that the protein
level decreases over the first 5 weeks for all three diets. The comparison of the
trends in protein over time (D:W) is also compared to the within cow variation
and is found to be insignificant. This means the apparent difference in trends
over time that is shown in Figure 9.2 is not statistically significant. The same
F-values can be obtained with the lmer function using the code shown below.

> library(lme4)

> rmodel <- lmer(protein ~ 1 + Diet*week + (1|Cow:Diet),

+ data = strung)

> anova(rmodel)

The usual assumptions for analysis of variance are that the experimental
error terms should have equal variance and be independent and normally dis-
tributed. For split-plot models, the assumptions of normality and equal vari-
ance can be checked by making residual plots and plots EBLUPs (as described
in Section 5.9.3). However, in past chapters the independence assumption was
never checked. For completely randomized designs, the randomization guar-
anteed independence of experimental error. In split-plot designs, sub-plot ex-
perimental units are usually not independent because observations on pairs
of sub-plots within the same whole plot will be correlated. However, ran-
domization of sub-plot treatments to sub-plots in a split-plot design equalizes
the correlation between all possible pairs of sub-plots. This, along with equal
variances of sub-plot responses, creates a condition that is called compound
symmetry of the covariance matrix of sub-plot observations. This condition,
although not as strict as independence of experimental errors, still justifies
the normal analysis by ANOVA or REML as shown in Chapter 8.

With repeated measures designs, however, the sub-plot treatments are re-
peated measures over time, and they cannot be randomized to sub-plot units.
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They must be observed in temporal order. Therefore, the compound symme-
try condition that justified the normal split-plot analysis may not be satisfied
for repeated measures designs.

9.6.1 Test of Huynh-Feldt Condition

Huynh and Feldt (1970) showed the conditions justifying the usual analysis of
variance of repeated measures designs are even less stringent than compound
symmetry. They showed that if repeated measures at different times, yi and
yj , satisfy the condition

σ2
(yi−yj) = 2λ for i ≠ j (9.4)

for some λ > 0, then the covariance matrix of the repeated measures is said
to obey the Huynh-Feldt condition. The usual split-plot analysis of repeated
measures data is justified if the Huynh-Feldt condition is satisfied.

The Mauchly (1940) sphericity test can be used to test whether the covari-
ance matrix of the repeated measures obeys the Huynh-Feldt condition. The
Anova function in the R package car has an option to perform the sphericity
test. To do this, the lm function is first used to fit a multivariate model to the
vector of repeated measures. The code below illustrates rearranging the data
in the data frame strung to the format of Table 9.8.

> pr1 <- strung$protein[1:30]

> pr2 <- strung$protein[31:60]

> pr3 <- strung$protein[61:90]

> pr4 <- strung$protein[91:120]

> dairy <- data.frame(Diet = as.factor(strung$Diet[1:30]),

+ pr1, pr2, pr3, pr4)

After the data is arranged in the format of Table 9.8, the (p1, p2, p3, p4)
represents the vector of repeated measures for each cow over the 4 weeks.
The lm function is used to fit a multivariate model to the vector responses as
shown below.

> mod.w <- lm(cbind(pr1 ,pr2, pr3, pr4) ~ Diet, data = dairy)

In the code shown on the next page, the car package is loaded, and a data
frame idata is created in which time represents the levels of the repeated
measures. The Anova function is called to create the object mod.i, which
contains among other things the multivariate test comparing the vector of
repeated measures over time between the three treatment groups.
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> library(car)

> time <- factor(c(1:4))

> idata <- data.frame(time)

> (mod.i <- Anova(mod.w, idata = idata, idesign = ~ time))

> summary(mod.i,multivariate=FALSE)

The summary command prints (among other things) the result of the sphericity
test for the two terms in the model that are tested with the within cow error
term. This portion of the output is shown below. In this example, the values
of both statistics (0.7913) are insignificant with a P-value of 0.19098. The
summary also prints the approximate F-values from a multivariate analysis of
variance, but that will not be discussed here.

Mauchly Tests for Sphericity

Test statistic p-value

time 0.74913 0.19089

Diet:time 0.74913 0.19089

These results indicate that there is no significant departure from the Huynh-
Feldt condition and that it would be justified to use the standard univariate
split-plot analysis shown earlier.

9.6.2 Adjusted P-Values

When the Huynh-Feldt condition does not hold, there is less information in
the estimate of the variance of the within plot experimental error due to the
correlation in responses. Greenhouse and Geisser (1959) and Huynh and Feldt
(1976) proposed adjustments to the degrees of freedom for the standard sub-
plot F -tests in repeated measures designs. These adjustments were developed
for designs where there is only one within subjects treatment factor. Both of
these adjustments consist of calculating an ε value that is a function of the
elements in the covariance matrix of the repeated measurements. Once the ε
value is computed, the degrees of freedom for the within sub-plot F -tests are
modified by multiplying by ε.

Huynh and Feldt’s adjustment is slightly less conservative than Greenhouse
and Geisser’s. The summary command that printed the sphericity test shown
above also prints the P-values for the Greenhouse and Geisser and Huynh
and Feldt adjusted tests for the within subject factors. The remaining part
of the output from the analysis of the dairy cow experiment is shown on the
next page. In this case, the adjusted P-values are not much different than the
unadjusted P-values from the standard univariate split plot analysis shown on
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page 369, because the sphericity test was insignificant and the Greenhouse-
Geisser ε and the Huynh-Feldt ε values are close to one.

Greenhouse-Geisser and Huynh-Feldt Corrections

for Departure from Sphericity

GG eps Pr(>F[GG])

time 0.82994 7.339e-13 ***

Diet:time 0.82994 0.7646

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

HF eps Pr(>F[HF])

time 0.92091 5.011e-14 ***

Diet:time 0.92091 0.7826

In cases where the spericity test is significant, the use of the F -tests from the
standard univariate split plot analysis are inappropriate, and using them will
inflate the type I error of the tests. Using either the Greenhouse and Geisser
or Huynh and Feldt adjusted tests is one way to reduce the probability of a
type I error. Another way to reduce the probability of a type I error, when
the Huynh-Feldt condition does not hold, is to make a conservative analysis
of summary statistics described in the next section.

9.6.3 Conservative Analysis of Summary Statistics

One simple way to overcome the problem of correlated observations over time
within each subject is to summarize the observations over time. This is similar
to averaging correlated observational units as discussed in Section 5.8. Con-
sider a simple case. When testing the effectiveness of a treatment, the response
may be measured before and after treatment on each subject as illustrated in
Table 9.9, the normal two-sample t-statistic

t2(n−1) =
ȳ⋅1 − ȳ⋅2
sp

√
2/n

where

s2
p = [

n

∑
i=1

(yi1 − ȳ⋅1)2
+

n

∑
i=1

(yi2 − ȳ⋅2)2
]/2(n − 1)

would not be appropriate because the before and after observations on each
subject are correlated and the two samples of data are not independent.

The normal solution to this problem is to use the paired t-test statistic

tn−1 = d̄/sd,

where di = (yi1−yi2), d̄ = ∑
n
i=1 di/n, sd = [∑

n
i=1(di−d̄)

2]/(n−1). This eliminates
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Table 9.9 Before and After Treatment Observations
Subject Before After

1 y11 y12

2 y21 y22

⋮ ⋮ ⋮

n yn1 yn2

the problem of correlated responses, since there is now only one response (di)
per subject. The paired t-test is more conservative than adjusted F -tests since
it reduces the degrees of freedom from 2(n − 1) to n − 1.

A similar conservative analysis can be made of data from a repeated mea-
sures design. Consider an experiment conducted at the FMC Agricultural
Chemical R&D Center in 1985. The purpose was to determine what factors
influenced the rate of degradation of a chemical herbicide in soil stored in
pots. The factors varied on the pots were storage temperature (10 or 30○C),
moisture content (low or high), and soil type (two different types of soil). A
23 factorial design with replicates was employed and each of the eight com-
binations of factor levels was randomly assigned to two pots. Next, the same
concentration of herbicide was applied to the soil in all the pots. The pots
were stored at the two specified temperatures in separate chambers. Samples
of the soil from each pot were taken on days 0, 7, 14, 30, and 60, and the
concentration of the herbicide was determined for each sample. The repeated
measures data are shown in Table 9.10.

The repeated concentration measurements within the same pot on differ-
ent days are correlated and the Huynh-Feld condition does not hold for the
covariance matrix; however, the objective is to determine whether the factors
influence the rate of degradation and not the average concentration in the pot.
From first-order kinetics the concentration on day t is given by the equation

C = C0e
−kt

where C0 is the initial concentration, t is the day, and k is the degradation
rate constant. Therefore, the data for each pot can be summarized with the
estimate of the rate constant, k̂, obtained by regressing ln(C) on t, or with
the estimated half-life of the herbicide in the soil, which is calculated as

ln(
C0

2
) = −ln(2)/ − k̂.

For example, a representative plot is shown in Figure 9.3 where k̂ is estimated
to be 0.010462 and the half-life in the soil is estimated to be

−ln(2)/(−0.010462) = 66.2.

Therefore, as can be seen in the graph, the concentration of herbicide for
this combination of factor levels has degraded to just over half the original
concentration by day 60 (the last measurement).
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Table 9.10 Concentration of Herbicide from Degradation Study
Day

Temp. Moisture Soil 0 7 14 30 60
10 L C 0.77 0.77 0.76 0.74 0.72
10 L P 0.78 0.76 0.75 0.72 0.66
10 H C 0.76 0.74 0.71 0.66 0.57
10 H P 0.78 0.76 0.74 0.70 0.63
30 L C 0.77 0.74 0.71 0.65 0.54
30 L P 0.79 0.73 0.68 0.58 0.42
30 H C 0.78 0.73 0.69 0.60 0.46
30 H P 0.78 0.71 0.65 0.53 0.36
10 L C 0.77 0.76 0.75 0.72 0.66
10 L P 0.77 0.76 0.74 0.71 0.65
10 H C 0.78 0.77 0.75 0.72 0.67
10 H P 0.77 0.75 0.73 0.68 0.60
30 L C 0.79 0.75 0.72 0.65 0.54
30 L P 0.78 0.74 0.69 0.60 0.45
30 H C 0.79 0.72 0.65 0.53 0.35
30 H P 0.78 0.70 0.63 0.49 0.31

Figure 9.3 Log Concentration by Day for Temp.=30 Deg. Moisture=L Soil=P
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The R code to retrieve the data from Table 9.10 and calculate the degra-
dation rate constant and estimated half-life for each pot is shown below. In
this code, sp is the sum of products of the days and the repeated measures
of log concentration for each pot. sm is the sum of the repeated measures of
log concentration for each pot. k is the least squares estimator of the slope of
the line relating log concentration and days. Finally, the summary statistics
for each pot are added to the original data frame and the factor settings plus
summary statistics are printed.

> library(daewr)

> data(residue)

> sp <- 7 * log(residue$X2) + 14 * log(residue$X3) +

+ 30 * log(residue$X4) + 60 * log(residue$X5)

> sm <- log(residue$X1) + log(residue$X2) + log(residue$X3) +

+ log(residue$X4) + log(residue$X5)

> num <- 5 * sp - 111 * sm

> den <- 5 * 4745 - (111)**2

> k <- num / den

> half_life <- -log(2)/k

> logHL <- log(half_life)

> residue <- cbind(residue, k, half_life, logHL)

> options(digits=3)

> residue[ , c(1:3,9:11)]

soil moisture temp k half_life logHL

1 C L 10 -0.00120 576.8 6.36

2 P L 10 -0.00273 254.1 5.54

3 C H 10 -0.00483 143.6 4.97

4 P H 10 -0.00355 195.4 5.28

5 C L 30 -0.00590 117.4 4.77

6 P L 30 -0.01046 66.3 4.19

7 C H 30 -0.00877 79.1 4.37

8 P H 30 -0.01285 53.9 3.99

9 C L 10 -0.00260 266.3 5.58

10 P L 10 -0.00286 242.8 5.49

11 C H 10 -0.00257 270.1 5.60

12 P H 10 -0.00419 165.3 5.11

13 C L 30 -0.00629 110.2 4.70

14 P L 30 -0.00922 75.2 4.32

15 C H 30 -0.01354 51.2 3.94

16 P H 30 -0.01539 45.0 3.81

Either the rate constant k̂ or the log half-life can be analyzed to determine
if the rate constant is influenced by the factors. The code on the next page
can be used to fit the model to the log half-life with the aov function.
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> growthc <- aov(logHL ~ temp*moisture*soil, data = residue)

> summary(growthc)

Df Sum Sq Mean Sq F value Pr(>F)

temp 1 6.05 6.05 76.34 2.3e-05 ***

moisture 1 0.95 0.95 12.01 0.0085 **

soil 1 0.41 0.41 5.17 0.0526 .

temp:moisture 1 0.00 0.00 0.02 0.9018

temp:soil 1 0.01 0.01 0.11 0.7508

moisture:soil 1 0.09 0.09 1.09 0.3279

temp:moisture:soil 1 0.01 0.01 0.06 0.8054

Residuals 8 0.63 0.08

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

This analysis shows that temperature and soil moisture both had significant
effects on the log half-life. At the α = 0.05 level of significance, neither the soil
type nor any of the interactions had significant effects on log half-life. Thus
the additive model can be used to predict the log half-life for any combina-
tion of temperature and moisture. A portion of the means, printed by the R
model.tables statement below, show that increasing the temperature from 10
to 20 degrees C causes a decrease in the log half-life of (0.615−(−.615)) = 1.23,
and increasing moisture from L to H causes a decrease of 0.488 in log half-life.

> model.tables(growthc)

Tables of effects

temp

temp

10 30

0.615 -0.615

moisture

moisture

H L

-0.244 0.244

The analysis approach consisting of fitting a curve or model to repeated
measures over time at each treatment combination, and then determining the
effects of treatments upon the coefficients from the fitted models, is often
called the growth curve approach. It is used frequently in practice for the
analysis of repeated measures data.
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9.7 Review of Important Concepts

The crossover and repeated measures designs presented in this chapter are
special cases of the randomized complete block (RCB), Latin-square design
(LSD), and split-plot (CRSP, RBSP) designs presented in Chapters 4 and 8
and highlighted in Figure 9.4. These designs are used in situations where the
blocking factor is a human subject or large animal, and the sub-plot experi-
mental units are successive periods of time.

Figure 9.4 Design Selection Roadmap

Design Purpose
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Block Factors

One Factor
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with some hard
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CRFF                        SCD

PB, OA                      EVD                                         CCBF
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class cont.     mixture cont.      class
Factors

Crossover designs are most useful when a more precise test of the treat-
ment effects is desired and each subject can be assigned each treatment in
successive periods. Crossover experiments should not be used in cases where
the experimental subjects are permanently changed by the initial treatment.
Otherwise, the result of applying following treatments will not be the same as
it would be if they had been applied first. Except for the simple two-period
AB, BA case, the levels of the whole-plot factor in crossover experiments are
just random groupings of subjects and can usually be ignored in the analysis.
Therefore, the model for the analysis of crossover experiments, except for the
simple case, is the same as it is for Latin-square designs. For the simple two-
period AB, BA case, the model is the same as a split-plot model, where the
whole-plot treatment factor is the carryover effect.

Repeated measures designs are useful when the objective is to compare
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the trend in the response across repeated measures over time between lev-
els or combinations of levels of treatment factors. The model is the same as
a split-plot experiment, where treatment factors are the whole-plot factors
and repeated measures over time are the sub-plot factors. When the covari-
ance matrix of the repeated measures satisfies the Huynh-Feldt condition, the
same ANOVA or REML analysis used for split-plot experiments is appropri-
ate. When the Huynh-Feldt condition does not hold, there are two alternative
univariate methods of analysis that can be used. The first method is a cor-
rection to the usual ANOVA F -tests based on degree of freedom adjustments
proposed by Greenhouse and Geisser or Huynh and Feldt. The second uni-
variate analysis method that can be used is the conservative growth curve
approach. In this approach a curve is fit to each set of repeated observations
over time, and summary statistics from the curve fits, which are independent
from one combination of whole-plot factor levels to another, are analyzed as
separate responses.
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9.8 Exercises

1. Consider the data from a study reported by Varma and Chilton (1974),
that was later reanalyzed by Jones (1980).

Group 1 Group 2
Subject Period 1 Period 2 Period 1 Period 2

Placebo Test Test Placebo
1 0.83 1.83 1.67 0.33
2 1.00 2.17 2.50 0.50
3 0.67 1.67 1.00 -0.17
4 0.50 1.50 1.67 0.50
5 0.50 2.33 1.83 0.50
6 0.83 1.83 0.50 0.33
7 1.00 0.50 1.33 0.67
8 0.67 0.33 1.33 0.00
9 0.67 0.50 0.50 0.17
10 0.33 0.67 2.17 0.83
11 0.00 0.83 1.67 0.33
12 1.17 1.33 1.50 0.00
13 0.00 0.67 1.33 0.50
14 0.50 1.83 1.50 0.50
15 0.33 1.50 1.33 0.00
16 0.33 1.50 0.67 -0.17
17 0.50 1.17 1.67 0.50
18 1.00 1.67 2.50 0.67
19 0.00 1.33 1.83 0.00
20 0.50 1.50 0.83 0.67
21 -0.50 2.83 2.33 0.17
22 0.17 2.33 1.17 0.50
23 1.00 1.33 1.33 0.00
24 1.00 1.67 1.33 0.83
25 1.33 0.67 0.33 1.33
26 0.33 0.83 2.17 1.17
27 2.00 1.00 1.00 0.33
28 4.00 0.17 0.33 1.00
29 0.83 1.67 1.17 0.17
30 0.50 1.33 0.50 0.50
31 0.50 1.50
32 0.50 1.67
33 2.17 1.33
34 0.67 1.17

This was a simple crossover dental study comparing a test compound to a
placebo with regard to their effect on dental hygiene as measured by the



380 CROSSOVER AND REPEATED MEASURES DESIGNS

change in a dental hygiene index. There were 34 patients randomized to
the first group and 30 patients randomized to the second group.

(a) Use the Anova function in the car package to analyze the data from this
experiment.

(b) Is there a difference of the test compound and placebo with respect to
their effect on dental hygiene? If so, which produces the larger change
in the index?

(c) Is there any evidence of a carryover effect of the test compound?

2. Lucas (1957) presented data from an extra-period crossover study on dairy
cows. Three diet treatments were being compared and the response was the
average daily production of FCM. The data is shown in Table 9.11.

Table 9.11 Dairy Cow Experiment—Response Is Average Daily FCM Production in
Pounds, the Treatment Indicator Is in Parentheses

Period
Group Cow 1 2 3 4

1 1 (1) 38.66 (2) 37.43 (3) 34.39 (3) 31.30
1 2 (1) 25.72 (2) 26.13 (3) 23.35 (3) 18.69
2 3 (2) 48.85 (3) 46.88 (1) 41.99 (1) 39.61
2 4 (2) 30.80 (3) 29.29 (1) 26.41 (1) 23.16
3 5 (3) 34.64 (1) 32.27 (2) 28.50 (2) 27.13
3 6 (3) 25.35 (1) 26.00 (2) 23.86 (2) 19.92
4 7 (1) 35.19 (3) 33.50 (2) 28.41 (2) 25.12
4 8 (1) 21.80 (3) 23.91 (2) 21.69 (2) 17.55
5 9 (2) 32.90 (1) 33.12 (3) 27.52 (3) 25.10
5 10 (2) 21.37 (1) 21.97 (3) 19.38 (3) 16.57
6 11 (3) 30.40 (2) 29.50 (1) 26.70 (1) 23.09
6 12 (3) 22.84 (2) 20.97 (1) 18.59 (1) 16.10

(a) Does every treatment follow every other treatment, including itself?

(b) Analyze the data using the Anova function in the car package. Are the
treatment and carryover effects orthogonal? Check by comparing their
type I and type III sums of squares.

(c) Use the lsmeans package to get least squares adjusted means for treat-
ments. Why is this possible when it was not possible for the example in
Section 9.4.1 ?

3. Consider planning an experiment to compare the taste of chocolate brownie
recipes. The treatments will consist of three brands of boxed brownie mixes
and one from-scratch home recipe. A panel of tasters will be used to eval-
uate the brownies. Each taster will taste each brownie and give it a rating
from 1 to 10 (10 being the best possible).



EXERCISES 381

(a) Why do you think it might be appropriate to use a crossover design for
this study? What is the alternative?

(b) Use the williams function in the R package crossdes (shown in Section
9.4.1) to create Williams’s crossover design for four treatments to use
for this experiment.

(c) Decide how many subjects to include in your study and create a ran-
domized list assigning each subject to one of the four sequence groups.

(d) Write the model you would use to analyze this data.

(e) Make a data input form and show how you would code the indicators
for the subject, period, treatment, and carryover effects.

4. Consider the data from the repeated measures design shown in Table 9.10.

(a) Fit a multivariate model using the lm function and then use the Anova

function in the car package to compute the sphericity test (as shown in
Section 9.6.1) and determine if the Huynh-Feldt condition holds.

(b) From the output of the Anova function used in (a) examine the
Greenhouse-Geisser and Huynh-Feldt adjusted F -tests of the sub-plot
effects (are they significant?).

(c) Do you find more terms significant using the adjusted F -tests than were
found using the growth curve analysis shown in the text? If so, explain
why.

5. Consider the results of the repeated measurements experiment from Us-
age note: Stat-40 (1997) from the University of Texas at Austin. In this
experiment the purpose was to determine how diet and exercise affect the
pulse of subjects. Eighteen subjects were randomly assigned to one of three
exercises (1=aerobic stair climbing, 2=racquetball, 3=weight training) and
one of two diets (1=include meat, 2=vegetarian). After a training period
where all subjects followed their assigned exercise and diet routine, their
pulse was measured three successive times (once after a warm-up, again
after jogging, and finally after running). The results are shown in the table
on the next page.

(a) Make a plot of the average trend in pulse over the three repeat measures
for each of the six combinations of diet and exercise.

(b) Do a normal split-plot analysis of the data treating diet and exercise as
whole-plot factors and the repeated measurements as a sub-plot factor.

(c) Use the sphericity test to determine if the normal analysis is justified.

(d) Make the Huynh-Feldt and Greenhouse-Geisser adjusted F -tests for the
sub-plot effects. Are the results different than the unadjusted tests?

(e) Do a conservative growth-curve analysis of the linear contrast in pulse
measurements over time. Do the results of this analysis confirm what
you found in (b) and (d)? If not, why?
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Exercise Diet Pulse 1 Pulse 2 Pulse 3
1 1 112 166 215
1 1 111 166 225
1 1 89 132 189
1 2 95 134 186
1 2 66 109 150
1 2 69 119 177
2 1 125 177 241
2 1 85 117 186
2 1 97 137 185
2 2 93 151 217
2 2 77 122 178
2 2 78 119 173
3 1 81 134 205
3 1 88 133 180
3 1 88 157 224
3 2 58 99 131
3 2 85 132 186
3 2 78 110 164



CHAPTER 10

Response Surface Designs

10.1 Introduction

In a response surface experiment, the independent variables or factors can be
varied over a continuous range. The goal is to determine the factor settings
that produce a maximum or minimum response or to map the relationship
between the response and the factor settings over this contiguous factor space.
As a practical matter, if we want to know a lot about the relationship between
the factors and the response, it will require many experiments. For that reason,
response surface designs are rarely conducted with more than six factors.

Response surface experiments are normally used at the last stage of exper-
imentation. The important factors have already been determined in earlier
experiments, and at this stage of experimentation the purpose is to describe
in detail the relationship between the factors and the response. It is usually
known or assumed that a simple linear model, even with interactions, is not
good enough to represent that relationship. In order to locate maximums or
minimums in the response as a function of the factor settings, at least three
levels of each factor should be utilized.

Response surface methods generally refer to a complete package of statistical
design and analysis tools that are used for the following three steps.

1. Design and collection of data to fit an equation to approximate the rela-
tionship between the factors and response.

2. Regression analysis to fit a model to describe the data.

3. Examination of the fitted relationship through graphical and numerical
techniques.

Response surface methods have found considerable use in industry especially
in chemical processes where the reaction yield or cost of production can be
optimized as a function of the settings of controllable process factors. Since
their origin these designs have also found successful applications in food sci-
ence, engineering, biology, psychology, textiles, education, and many other
areas.

10.2 Fundamentals of Response Surface Methodology

10.2.1 Empirical Quadratic Model

In response surface methods, the relationship between the response (y) and the
factor settings (x’s) is assumed to be a nonlinear equation given by y = f(x)+ε.

383
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For two factors or independent variables we could write this equation as

y = f(x1, x2) + ε (10.1)

where f is a nonlinear function and ε is the random effect of experimental
error. When f is unknown it can be approximated near the point (x10, x20)

using the two-term Taylor series approximation, that is,

f(x1, x2) ≈ f(x10, x20) + (x1 − x10)
∂f(x1, x2)

∂x1
∣
x1=x10,x2=x20

+ (x2 − x20)
∂f(x1, x2)

∂x2
∣
x1=x10,x2=x20

+
(x1 − x10)

2

2

∂2f(x1, x2)

∂x2
1

∣
x1=x10,x2=x20

+
(x2 − x20)

2

2

∂2f(x1, x2)

∂x2
2

∣
x1=x10,x2=x20

+
(x1 − x10)(x2 − x20)

2

∂2f(x1, x2)

∂x1∂x2
∣
x1=x10,x2=x20

,

(10.2)

which leads to a general quadratic equation of the form

y = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2 + ε

(10.3)

where β1 =
∂f(x1,x2)

∂x1
∣
x1=x10,x2=x20

, and so forth. If the region of interest is of

moderate

size, this general quadratic equation will provide a good approximation to f
and can be used for interpolation within this region. The general quadratic
equation is quite flexible and with appropriate coefficients it can describe a
wide variety of surfaces such as hilltops, valleys, rising or falling ridges, or
saddle points as shown with contour plots in Figure 10.1.

With k factors or independent variables the general quadratic equation can
be written in the form

y = β0 +
k

∑
i=1

βixi +
k

∑
i=1

βiix
2
i +

k

∑

k

∑
i<j

βijxixj + ε, (10.4)

and unless the function f is known, this equation forms the basis of response
surface methods. Response surface designs were created to provide data to
approximate this equation, and mathematical tools were created to explore
the fitted surface represented by this equation.
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Figure 10.1 Surfaces That Can Be Described by General Quadratic Equation
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10.2.2 Design Considerations

The first requirement of a response surface design is that it should provide
data that will allow estimation of the coefficients in model (10.4). This model
has 1+2k+k(k−1)/2 coefficients, thus any response surface design must have
at least three levels for each factor (to allow estimation of quadratic terms)
and at least 1+2k+k(k−1)/2 total runs. 3k factorial designs have three levels
for every factor. However, Box and Wilson (1951) showed that they were less
satisfactory as a response surface design than an alternative design they called
the central composite design. The central composite will be the first standard
response surface design we will discuss in the next section.

Normally the factors or independent variables (xi) in the general quadratic
Equation (10.4) are coded and scaled as shown in Sections 3.7.2 and 3.7.3 so
that the experimental region is a hyper-cube or hyper-sphere with radius R
in the coded space. This general quadratic model can be written in matrix
terms as

y = xb + x′Bx + ε (10.5)

where x′ = (1, x1, x2, . . . , xk), b′ = (β0, β1, . . . , βk), and the symmetric matrix
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B =

⎛
⎜
⎜
⎜
⎝

β11 β12/2 ⋯ β1k/2
β22 ⋯ β2k/2

⋱

βkk

⎞
⎟
⎟
⎟
⎠

.

When fitting a linear regression model of the form y = xb, the design points
are chosen to minimize the variance of the fitted coefficients b̂ = (X′X)−1X′y.
Since the variance covariance matrix of estimated regression coefficients is
σ2(X′X)−1, this means the design points should be chosen such that the
(X′X) matrix is diagonal, or that the design is orthogonal like the 2k de-
signs discussed in Chapter 3 and the 2k−p designs discussed in Chapter 6.
When the (X′X) matrix is diagonal, the diagonal elements of (X′X)−1 will
be minimized.

On the other hand, when fitting the general quadratic model, the primary
purpose is not to understand the mechanism of the underlying relationship
between the response and the factors. Therefore, the specific coefficients in the
general quadratic model are of less importance. What is more important in a
response surface study is to develop a prediction equation with the eventual
goal of determining the optimum operating conditions. Thus, the variance of a
predicted value at x, that is given by the equation V ar[ŷ(x)] = σ2x′(X′X)−1x
is of more importance than the variance of the fitted coefficients.

Since it is not known before the experiment is conducted where the optimum
will lie in the design region, one desirable property of a response surface design
is to have the variance of a predicted value nearly the same everywhere in the
design region. In this way, the precision in predicting the optimum will not
depend upon its unknown position in the design region. The first step in
equalizing the variance of prediction over the design region is to find a design
that is rotatable (Myers and Montgomery, 2002). A rotatable design is one in
which the variance of the predicted value at the point x is only a function of
the distance from the design origin to x. Box and Wilson’s central composite
design and other standard response surface designs have this property.

Box and Hunter (1957) showed that certain rotatable designs could be mod-
ified to have uniform precision, which means the variance of a predicted value
is the same at the origin and at the radius of one in the coded design region.
A design with uniform precision is close to having the variance of a predicted
value equal throughout the design region. Many standard response surface de-
signs have this property or are close to having this property. When a standard
response surface design can not meet the needs of an experimenter, a com-
puter algorithm can be used to construct a special purpose design. It would
be reasonable to use a design that is D-optimal (first described in Section
6.5.2) for model (10.4) as a response surface design. However, the D-optimality
criterion minimizes the variance of model coefficients. The I-optimality crite-
rion minimizes the average variance of a predicted value, and therefore it is
more appropriate for finding a response surface design. Programs, such as
optFederov function in the R package AlgDesign, can be used for creating
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I-optimal and D-optimal designs. Giovannitti-Jensen and Myers (1989) and
Myers et al. (1992) describe a variance dispersion plot which can be used to
visually evaluate whether any response surface design is close to having the
properties of rotatability and uniform precision.

In addition to providing a good distribution of the variance of a predicted
value, two other desirable properties of response surface designs are (1) to
provide an estimate of the “pure” experimental error so the adequacy of the
general quadratic model can be checked, and (2) to allow for blocking so that
an experimenter can begin with a linear design and add a second block to
estimate curvature if necessary. To estimate pure error, at least one design
point must be replicated. When blocking, the first block would consist of
a design such as a 2k or 2k−p augmented with center points that allow for
checking the adequacy of the linear model. If the linear model is adequate,
no further experimentation is required. If the linear model is not adequate, a
second block of experiments can be added which will allow estimation of the
quadratic coefficients in the general quadratic model.

10.3 Standard Designs for Second Order Models

This section presents some of the more popular completely randomized re-
sponse surface (CRRS) designs.

10.3.1 Central Composite Design (CCD)

Box and Wilson’s (1951) central composite design (CCD) consists of a 2k

factorial or 2k−p fractional factorial design augmented with center points and
axial points as shown in Figure 10.2. The 2k or resolution V 2k−p design allows
estimation of the linear and linear-by-linear terms in the general quadratic
model. The addition of the center points and axial points allow estimation
of the quadratic terms. By choosing the distance from the origin to the axial
points (α in coded units) equal to

4
√
F where F is the number of points in

the factorial portion of the design, a CCD will be rotatable. By choosing the
correct number of center points, the CCD will have the uniform precision
property.

As an example of a CCD, consider the results of the experiment described
by Kamon et al. (1999) in Table 10.1. The experiment was conducted to
find the optimal formulation of a two-component admixture to improve the
workabilty of cement grouts. The factors were the water-to-cement ratio, the
percent of black liquor added, and the percent of SNF added. The left side
of the table shows the coded factors x1–x3. The axial points were chosen at
±1.68 =

4
√

8 in coded units to make the design rotatable. The coded levels
are found as (actual level − center value)/(half-range). For example, x2 =

(BlackLiq. − 0.150)/0.03. The actual factor levels on the right side of the
table can be obtained from the coded values on the left side of the table by
solving actual level =(half-range) × xi + center value.
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Figure 10.2 CCD in Two and Three Dimensions

Factorial                      Center Points                    Axial Points

Table 10.1 CCD in Coded and Actual Units for Cement Workability Experiment
Run x1 x2 x3 Water/Cement Black Liq. SNF y

1 −1 −1 −1 0.330 0.120 0.080 109.5
2 1 −1 −1 0.350 0.120 0.080 120.0
3 −1 1 −1 0.330 0.180 0.080 110.5
4 1 1 −1 0.350 0.180 0.080 124.5
5 −1 −1 1 0.330 0.120 0.120 117.0
6 1 −1 1 0.350 0.120 0.120 130.0
7 −1 1 1 0.330 0.180 0.120 121.0
8 1 1 1 0.350 0.180 0.120 132.0
9 0 0 0 0.340 0.150 0.100 117.0
10 0 0 0 0.340 0.150 0.100 117.0
11 0 0 0 0.340 0.150 0.100 115.0
12 −1.68 0 0 0.323 0.150 0.100 109.5
13 1.68 0 0 0.357 0.150 0.100 132.0
14 0 −1.68 0 0.340 0.100 0.100 120.0
15 0 1.68 0 0.340 0.200 0.100 121.0
16 0 0 −1.68 0.340 0.150 0.066 115.0
17 0 0 1.68 0.340 0.150 0.134 127.0
18 0 0 0 0.340 0.150 0.100 116.0
19 0 0 0 0.340 0.150 0.100 117.0
20 0 0 0 0.340 0.150 0.100 117.0

By including six center points, the design has uniform precision and the
variance of a predicted value will be the same at the origin (0,0,0), in coded
factor levels, and at any point at radius 1 in coded units. Box and Hunter
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(1957) have tabulated the number of center points required to make a central
composite design uniform precision for various values of k =number of factors.

The R code below calls the ccd function from the R package rsm (Lenth
(2013), Lenth (2009)) to create a uniform precision central composite design
in three factors. The factor columns from the resulting design object rotd

are copied into the data frame rotdm and the Vdgraph function from the R
package Vdgraph (Lawson (2013b), Lawson (2012)) is then called to create
Myers et al.’s (1992) variance dispersion graph for this design that is shown in
Figure 10.3. The variance dispersion graph plots the maximum, minimum, and
average scaled variance of a predicted value (NV ar(ŷ(x))/σ2) as a function
of the distance from the origin of the design. When the design is not rotatable,
there will be three distinct lines on the graph. The closer together the lines,
the closer the design is to being rotatable. In Figure 10.3 the lines overlap
showing that the design is rotatable. It can also be seen that the value of
the scaled variance of a predicted value at the origin is nearly equal to the
variance at radius 1.0, indicating the design has uniform precision.

> library(rsm)

> rotd <- ccd(3, n0 = c(4,2), alpha = "rotatable",

+ randomize = FALSE)

> rotdm <- rotd[ , 3:5]

> library(Vdgraph)

> Vdgraph(rotdm)

Figure 10.3 Variance Dispersion Graph for Uniform Precision CCD in Three Factors
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The experiments in Table 10.1 should be run in a random order, but they
are listed in a non-random order to illustrate another useful aspect of central
composite designs. This design can be run as a sequence of two blocks. In
some applications this is a desirable approach. The first eight runs in the
table represent a full 23 factorial. Runs 9–11 are center points at the mid-level
of each factor. If these 11 experiments were completed in the first block, the
data could be analyzed to see if a linear model

y = β0 + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3 (10.6)

is adequate to represent the data. If so, runs number 12–20 need not be com-
pleted. If the linear model is not adequate to represent the data, the second
set of experiments can be completed and a block variable added to the model
to account for any changes in background variables that occurs between the
first and second set of experiments.

10.3.2 Box-Behnken Design

Whereas the CCD requires five levels (−α, −1, 0, +1, +α) for each factor, Box
and Behnken (1960) developed some three level designs that will allow estima-
tion of the general quadratic model. These designs consist of 22 factorials in
each pair of factors with all other factors held constant at their mid-level plus
a few center points. No Box-Behnken design exists for only two factors. An
example of a Box-Behnken design in three coded factors is shown in Table 10.2.

Table 10.2 Box-Behnken Design in Three Factors
run x1 x2 x3

1 −1 −1 0
2 1 −1 0
3 −1 1 0
4 1 1 0
5 −1 0 −1
6 1 0 −1
7 −1 0 1
8 1 0 1
9 0 −1 −1

10 0 1 −1
11 0 −1 1
12 0 1 1
13 0 0 0
14 0 0 0
15 0 0 0

Box-Behnken designs have two advantages over CCDs. The first advantage
is that they only require that factors be varied over three levels. This may
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make experimentation less costly if actual prototypes are being constructed
in the experimentation. The second advantage is that they usually (except for
the five-factor case) require less total runs than the central composite design.
For example, the three-factor CCD required 20 runs whereas the three-factor
Box-Behnken design only required 15 runs.

A disadvantage of a Box-Behnken design compared to a central composite
design is that it cannot be built up in two steps beginning with a 2k design.
This can be visualized in Figure 10.4, which diagrams a three-factor Box-
Behnken design. A 23 design consists of runs at all corners of the cube as
shown in Section 3.7.1, but as can be seen in Figure 10.4 the Box-Behnken
design does not include those points. Therefore a Box-Behnken design should
be used if the experimenter is reasonably sure that a linear model will not
adequately represent the relationship between the factors and the response,
and he or she wants to save a few runs. Another possible disadvantage is that
the factors have only three levels. While this may be less costly when building
prototypes, having three levels leaves nothing to check the adequacy of the
quadratic model.

Figure 10.4 Graphical Representation of Three-Factor Box-Behnken Design

x1

x3

x2

Figure 10.5 shows the variance dispersion graph for the three-factor Box-
Behnken design. Since the lines for the minimum, maximum, and average
scaled variance of a predicted value do not overlap as in Figure 10.3, the Box-
Behnken design is not rotatable. But, since the lines are very close together
within the coded experimental region to a radius of 1.0, the Box-Behnken
design is close enough to being rotatable and having uniform precision for
practical use. This is true for Box-Behnken designs with k = 3 to 6.

Another graph that is useful evaluating the variance of predicted values
from a response surface design is the fraction of design space plot(Zahran
et al., 2003). This plot shows the relative variance of a predicted value,
V ar(ŷ(x))/σ2, on the vertical axis versus the fraction of points in the de-
sign region on the horizontal axis. Figure 10.6 shows the fraction of design
space plot for the Box-Behnken design. From this plot we can see that the
relative variance of a predicted value is less than 0.35 in 50% of the design
region. This plot can be made with the FDSPlot function that is also in the
Vdgraph package. Variance dispersion graphs are better for evaluating how
close a design is to being rotatable and having uniform precision. Fraction of
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Figure 10.5 Variance Dispersion Graph for Box-Behnken Design in Three Factors
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Figure 10.6 Fraction of Design Space Plot for Box-Behnken Design in Three Factors
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design space plots are generally better for comparing contending designs for
a research problem.

As an example of a Box-Behnken design, consider the experiment performed
by Anderson (2003). He experimented with a scale model trebuchet (medieval
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missile launcher) that was issued to all engineering students at the South
Dakota School of Mines and Technology for hands-on experimentation. He
wanted to determine the settings that would allow him to toss an object a
given distance to fend off attackers or door-to-door salespeople. He varied
three factors on the trebuchet. A, the arm length 4 to 8 inches from the
counterweight end to the point where the weights were hung; B, counterweight
10 to 20 pounds; and C, missile weight 2 to 3 ounces. The Box-Behnken design
in actual factor levels is shown in Table 10.3 along with the response (the
distance the missile flew).

Table 10.3 Box-Behnken Design Results for Trebuchet Experiments
run A B C y

1 4 10 2.5 33
2 8 10 2.5 85
3 4 20 2.5 86
4 8 20 2.5 113
5 4 15 2 75
6 8 15 2 105
7 4 15 3 40
8 8 15 3 89
9 6 10 2 83

10 6 20 2 108
11 6 10 3 49
12 6 20 3 101
13 6 15 2.5 88
14 6 15 2.5 91
15 6 15 2.5 91

10.3.3 Small Composite Design

When the cost of each experiment is high, and an experimenter is willing to
compromise some of the desirable properties of a response surface design in or-
der to reduce the run size, a small composite design can be utilized. In a small
composite design the 2k or resolution V 2k−p part of the central composite
design is replaced with a resolution III 2k−p. In the central composite design,
the 2k or resolution V 2k−p was included to allow estimation of all linear main
effect terms and linear by linear two-factor interactions. Hartley (1959) has
shown that when center points and axial points are included, two-factor in-
teractions can be estimated with a resolution III fractional factorial. Westlake
(1965) obtained additional small composite designs by substituting irregular
fractions for the factorial portion of the design, and Draper (1985) and Draper
and Lin (1990) substituted Plackett-Burman designs for the factorial portion
to come up with even more small composite designs.
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Figure 10.7 Graphical Comparison of CCD and Small Composite (with I = AB) for
k=2

-1              0               1 -1              0               1

central composite k=2                  small composite k=2

Figure 10.7 is a graphical comparison of the central composite and small
composite design for k = 2 factors. The central composite design has five center
points for a total of 13 runs, while the small composite design has one center
point with a total of 7 runs.

Figure 10.8 is the variance dispersion graph for the small composite design
with k = 2. This shows the design is near rotatable within a coded radius of
0.8, but not uniform precision since the scaled prediction variance is larger in
the center of the design than at a coded radius of 0.8. The variance dispersion
graph for the uniform precision cental composite design with k = 2 would look
very similar to Figure 10.3.

Figure 10.8 Variance Dispersion Graph of Small Composite Design with 2 Factors
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Figure 10.9 is a comparison of the fraction of design space plots for the
central composite and small composite designs for k = 2 factors. This graph is
better for comparing the two designs. It can be seen, by reference to the upper
horizontal dotted line in the graph, that the relative prediction variance would
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be less than 0.64 in 50% of the design space if the small composite design were
used. On the other hand, the relative prediction variance would be less than
.64 over more than 80% of the design region if the central composite design
were used. The relative variance of prediction is uniformly smaller for the
central composite design. The choice between the two designs would be made
by weighing the extra precision the central composite design affords to the
cost of the six additional experiments it requires.

Figure 10.9 Comparison of Fraction of Design Space Plots for Small Composite
Design and Central Composite Design for Two Factors
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10.3.4 Hybrid Design

Roquemore (1976) developed hybrid designs that require even fewer runs than
the small composite designs. These designs were constructed by making a
central composite design in k − 1 factors and adding a kth factor so that the
X′X has certain properties and the design is near rotatable. Table 10.4 shows
an example of the Roquemore 310 design.

The design is labeled 310 because it has 3 factors and 10 runs. It can be seen
that there is a central composite design in columns 1 and 2. This design is close
to rotatable only within a coded radius of 0.5 as shown in Figure 10.10, but
since it only has 10 runs, there are zero degrees of freedom for estimating the
experimental error. Some of the Roquemore hybrid designs leave one degree
of freedom for estimating experimental error, but none of them have pure
replicates that are required for testing the adequacy of the general quadratic
model. Therefore these designs should only be used when the experimenter is
confident that the general quadratic model will represent the data well, and
there is an independent estimate of experimental error from previous data.
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Table 10.4 Roquemore 310 Design
Run x1 x2 x3

1 0 0 1.2906
2 0 0 −0.1360
3 −1 −1 0.6386
4 1 −1 0.6386
5 −1 1 0.6386
6 1 1 0.6386
7 1.736 0 −0.9273
8 −1.736 0 −0.9273
9 0 1.736 −0.9273

10 0 −1.736 −0.9273

Figure 10.10 Variance Dispersion Graph for Roquemore 310 Design
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10.4 Creating Standard Response Surface Designs in R

Standard response surface designs can be created using R packages. The rsm

package has functions for creating both central composite designs and Box-
Behnken designs. This package also has a function for listing various central
composite designs available for a specified number of factors. The Vdgraph

package contains stored data frames that contain small composite and hybrid
designs for 2–6 factors.

If a standard response surface design for three factors is desired, the R code
below illustrates the call to the function ccd.pick in the rsm package to show
the possible central composite designs available.

> library(rsm)

> ccd.pick(k=3)
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In the output below, 10 possible designs are shown. In this output, n.c

represents the number of points in the factorial portion of the design (in this
case a full factorial 23), n0.c represents the number of center points in the
factorial portion of the design, blks.c represents the number of blocks in the
factorial portion of the design, n.s represents the number of points in the
axial portion of the design, n0.s represents the number of center points in the
axial portion of the design, bbr.c, wbr.s, and bbr.s represent the number of
copies of the factorial portion, the number of replicates of each axial point,
and the number of copies of the axial portion of the design, respectively.
Finally, N represents the total number of runs in the design, and alpha.rot

and alpha.orth represent the value of α in coded units for a rotatable or
orthogonal design. Normally α for rotatability should be chosen if a central
composite is to be used, and the number of center points can be adjusted to
give near uniform precision. When central composite designs are blocked, α
for orthogonality should be chosen to make block effects orthogonal to the
model.

n.c n0.c blks.c n.s n0.s bbr.c wbr.s bbr.s N alpha.rot

1 8 9 1 6 6 1 1 1 29 1.681793

2 8 2 1 6 1 1 1 1 17 1.681793

3 8 6 1 6 4 1 1 1 24 1.681793

4 8 5 1 6 3 1 1 1 22 1.681793

5 8 10 1 6 7 1 1 1 31 1.681793

6 8 8 1 6 5 1 1 1 27 1.681793

7 8 3 1 6 2 1 1 1 19 1.681793

8 8 7 1 6 5 1 1 1 26 1.681793

9 8 4 1 6 2 1 1 1 20 1.681793

10 8 4 1 6 3 1 1 1 21 1.681793

alpha.orth

1 1.680336

2 1.673320

3 1.690309

4 1.664101

5 1.699673

6 1.658312

7 1.705606

8 1.712698

9 1.632993

10 1.732051

To create one of the designs listed in the output of the ccd.pick function,
the ccd function in the rsm package can be used as shown below.

> library(rsm)

> ccd.up<-ccd(y~x1+x2+x3,n0=c(4,2),alpha="rotatable",

+ randomize=FALSE)
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This code produces the 9th design that has n0.c=4, and n0.s=2. This design
has uniform precision as can be visualized by its variance dispersion graph
that can be produced with the command Vdgraph(ccd.up[ , 3:5]).

The design ccd.up produced in the above code has coded factor levels that
vary between −1.68 and +1.68. If the coding option is used, as shown in the
code below, the resulting listing of the design shows the actual factor levels.

> ccd.up<-ccd(y~x1+x2+x3,n0=c(4,2),alpha="rotatable",

+ coding=list(x1~(Temp-150)/10,x2~(Press-50)/5, x3~(Rate-4/1)),

+ randomize=FALSE)

> head(ccd.up)

run.order std.order Temp Press Rate y Block

1 1 1 140 45 3 NA 1

2 2 2 160 45 3 NA 1

3 3 3 140 55 3 NA 1

4 4 4 160 55 3 NA 1

5 5 5 140 45 5 NA 1

6 6 6 160 45 5 NA 1

Data are stored in coded form using these coding formulas ...

x1 ~ (Temp - 150)/10

x2 ~ (Press - 50)/5

x3 ~ (Rate - 4/1)

However, they are still stored in coded levels for computational purposes
when fitting a model to the design and examining the fitted surface. Other
options for alpha are "spherical" to place axial points the same distance
from the origin as corners of the design, and "faces" to place axial points at
high and low factorial levels, sometimes called a face-centered cube design.

The function bbd in the rsm package generates Box-Behnken designs in three
to seven factors. For example, the code below produces the design shown in
Table 10.3.

> library(rsm)

> Treb<-bbd(y~x1+x2+x3, randomize=FALSE, n0=3,

+ coding=list(x1~(A-6)/2, x2~(B-15)/5, x3~(C-2.5)/.5))

The rsm package does not have functions to create hybrid designs or small
composite designs directly but the Vdgraph package has the most common
designs stored as data frames that can be recalled. Table 10.5 lists the designs
available as data frames in this package. The Hex2 is a rotatable near uniform
precision design in two factors that contains only nine runs. These runs are
situated on the vertices of a hexagon in a two-dimensional space.
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Table 10.5 Reduced Run Response Surface Designs in Package Vdgraph

Small Composite Designs:
Data Frame Name Description
SCDDL5 Draper and Lin’s Design for 5-factors
SCDH2 Hartley’s Design for 2-factors
SCDH3 Hartley’s Design for 3-factors
SCDH4 Hartley’s Design for 4-factors
SCDH5 Hartley’s Design for 5-factors
SCDH6 Hartley’s Design for 6-factors

Hybrid Designs:
Data Frame Name Description
D310 Roquemore’s hybrid design D310
D311A Roquemore’s hybrid design D311A
D311B Roquemore’s hybrid design D311B
D416A Roquemore’s hybrid design D416A
D416B Roquemore’s hybrid design D416B
D416C Roquemore’s hybrid design D416C
D628A Roquemore’s hybrid design D628A

Hexagonal Design:
Data Frame Name Description

Hex2 Hexagonal Design in 2-factors

A design can be recalled as shown in the example below.

> library(Vdgraph)

> data(D310)

> D310

x1 x2 x3

1 0.0000 0.000 1.2906

2 0.0000 0.000 -0.1360

3 -1.0000 -1.000 0.6386

4 1.0000 -1.000 0.6386

5 -1.0000 1.000 0.6386

6 1.0000 1.000 0.6386

7 1.7636 0.000 -0.9273

8 -1.7636 0.000 -0.9273

9 0.0000 1.736 -0.9273

10 0.0000 -1.736 -0.9273

The data frames in Vdgraph have the factors named x1-xk, and coded factor
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levels. To make a listing of the design in random order and actual factor levels
use the commands similar to those shown below.

> des <- transform(D310, Temp=10*x1+150, Press=5*x2+50,

+ Rate=x3+4)

> des[sample(1:10) ,4:6]

Temp Press Rate

9 150.000 58.68 3.0727

2 150.000 50.00 3.8640

10 150.000 41.32 3.0727

3 140.000 45.00 4.6386

5 140.000 55.00 4.6386

8 132.364 50.00 3.0727

1 150.000 50.00 5.2906

7 167.636 50.00 3.0727

4 160.000 45.00 4.6386

6 160.000 55.00 4.6386

10.5 Non-Standard Response Surface Designs

Some design situations do not lend themselves to the use of standard response
surface designs for reasons such as (1) the region of experimentation is irreg-
ularly shaped, (2) not all combinations of the factor levels are feasible, (3)
there is a non-standard linear or a nonlinear model. In these situations, stan-
dard response surface designs will not be appropriate. One way to construct
a response surface design in these cases is to use a computer algorithm to
construct a I-optimal design.

For an example of the first situation where the region of experimentation
is irregularly shaped, Atkinson et al. (2007) describe an experiment to inves-
tigate the performance of an internal combustion engine. Two factors under
study were the spark advance and the torque. Both are independently vari-
able so the coded design region is a square. However, for factor combinations
outside the pentagonal region shown in Figure 10.11, it is likely the engine
would not run or would be seriously damaged.

Therefore the experimental region is irregular and the standard two-factor
response surface designs would not fit in this region. A response surface design
can be constructed for this problem by defining candidate points that fall
within a grid over the experimental region (shown in Figure 10.11). This can
be done in R, and the optFederov function in the AlgDesign package can be
used to select an I-optimal subset for fitting the general quadratic model.

As an example of the second situation where not all possible combinations
of the factor are feasible, consider a typical study in QSAR (Quantitative
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Figure 10.11 Experimental Region for Engine Experiment
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Structure Activity Relation) used in drug design. In this type of study, when
a lead compound is discovered with desirable bioactivity, many derivatives of
this compound are considered in an attempt to find one that will increase
the desired effect. For example, Figure 10.12 shows the general structure of
hydroxyphenylureas, which have been shown to be active as antioxidants.

Figure 10.12 General Structure of Hydroxyphenylureas
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The compound has four receptor sites (R, R′, R′′, and R′′′) (shown in the
figure) where different substituent atoms or molecules can be attached to
modify the basic structure. With many possible substituent molecules that can
be added at each receptor site, there is a large library of candidates that could
be synthesized and tested for activity. Table 10.6 is an illustrative list that
shows 36 different possible hydroxyphenylureas from a longer list considered
by Deeb et al. (2008).

This list of candidates is stored in a data frame in the R package daewr,
and can be recalled with the command below.

> library(daewr)

> data(qsar)

For each possible variant compound in the library there are several physical
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Table 10.6 Library of Substituted Hydroxyphenylurea Compounds
Comp-

ound R R′ R′′ R′′′ HE DMz S0K
1 H H H CH3 −12.221 −0.162 64.138
2 H H H CH2Ph −14.015 −0.068 88.547
3 H H H Ph −14.502 0.372 85.567
4 H H H 2CH3OC6H4 −14.893 1.035 96.053
5 H OCH3 H CH3 −12.855 1.091 74.124
6 H OCH3 H CH2Ph −14.628 1.115 99.002
7 H OCH3 H Ph −15.123 1.554 96.053
8 H OCH3 H 2CH3OC6H4 −15.492 2.221 106.607
9 H OC2H5 H CH3 −11.813 1.219 77.02

10 H OC2H5 H CH2Ph −13.593 1.188 101.978
11 H OC2H5 H Ph −14.088 1.621 99.002
12 CH3 OC2H5 H 2CH3OC6H4 −14.46 2.266 109.535
13 CH3 H CH3 CH3 −8.519 −0.56 71.949
14 CH3 H CH3 CH2Ph −10.287 −0.675 96.6
15 CH3 H CH3 Ph −10.798 −0.134 96.62
16 CH3 H CH3 2CH3OC6H4 −11.167 0.418 104.047
17 H H H CH3 −12.245 −0.609 67.054
18 H H H CH2Ph −13.98 −0.518 91.546
19 H H H Ph −14.491 −0.561 88.547
20 H H H 2CH3OC6H4 −14.888 −1.478 99.002
21 H OCH3 H CH3 −11.414 −1.888 77.02
22 H OCH3 H CH2Ph −13.121 −1.692 101.978
23 H OCH3 H Ph −13.66 −1.893 99.002
24 H OCH3 H 2CH3OC6H4 −14.012 −2.714 109.535
25 H OC2H5 H CH3 −10.029 −1.891 79.942
26 H OC2H5 H CH2Ph −11.74 −1.652 104.977
27 H OC2H5 H Ph −12.329 −1.902 101.978
28 OCH3 OC2H5 H 2CH3OC6H4 −12.637 −2.762 112.492
29 OCH3 OCH3 H CH3 −12.118 −2.994 81.106
30 OCH3 OCH3 H CH2Ph −13.892 −2.845 106.299
31 OCH3 OCH3 H Ph −14.456 −2.926 103.23
32 OCH3 OCH3 H 2CH3OC6H4 −14.804 −3.78 113.856
33 CH3 H CH3 CH3 −9.209 −0.423 74.871
34 CH3 H CH3 CH2Ph −10.97 −0.302 99.603
35 CH3 H CH3 Ph −11.488 −0.453 96.6
36 CH3 H CH3 2CH3OC6H4 −11.868 −1.322 107.01

chemistry descriptors that can be calculated. In Table 10.6 three descrip-
tors are shown: Hydration Energy (HE), Molecular Dipole Moment at the z-
direction (DMz), and Symmetry Index (S0K). The objective of a QSAR study
would be to (1) synthesize a subset of the molecules from the large library
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and test them to determine their ability to scavenge oxygen FRs as measured
by the binding constant logKapp, and (2) fit a model relating the response
logKapp to several physical chemistry descriptors (in this case, the variables
HE, DMz, and S0K). Once a model relating the response as a function of the
independent variables has been found, the combination of the independent
variables that is predicted to give the maximum response can be determined.
Compounds in the large library that have values of the physical chemistry
descriptors (independent variables) closest to those predicted to result in a
maximum response can then be synthesized and tested for activity. In this
way variant compounds that have increased activity are discovered.

In QSAR studies, standard response surface designs cannot be used because
not all potential combinations of the independent variables are possible. Only
a subset of the combinations of independent variables that exist in the large
library can be chosen in a subset or experimental design to be tested. Again
the optFederov function in the AlgDesign package can be utilized to create
an I-optimal or D-optimal subset of the larger library. In this case, the list of
candidates will be all the compounds in the library. The design must consist
of a subset of the compounds in the library.

If the general quadratic model will be used to fit the data with three fac-
tors, there are 10 coefficients in the general quadratic model so the number
of runs in the design must be at least n = 10. In the R code below the op-
tion nRepeats=40 instructs the optFederov function to make 40 different
searches for the D-optimal design with a random starting design and to keep
the best results. The option nTrials=16 instructs the optFederov function
to make a design with 16 runs. The design will be stored in the data frame
desgn1$design, the fourth item in the list desgn1. The optFederov function
call is repeated changing criterion option from D to I to create an I-optimal
design that is stored in the data frame desgn2$design. The last statement
calls the Compare2FDS function to compare the fraction of design space plots
for the two designs.

> library(daewr)

> data(qsar)

> library(AlgDesign)

> desgn1<-optFederov(~quad(.),data=qsar,nTrials=15,center=TRUE,

+ criterion="D",nRepeats=40)

> desgn2<-optFederov(~quad(.),data=qsar,nTrials=15,center=TRUE,

+ criterion="I",nRepeats=40)

> Compare2FDS(desgn1$design,desgn2$design,"D-optimal",

+ "I-optimal",mod=2)

The I-optimal design can be listed as shown on the next page. Once the
designs are created with the optFederov function, they can be compared
with respect to the variance of a predicted value. Although neither design is
rotatable, the I-optimal design is slightly better since its relative prediction
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variance appears uniformly less than the relative prediction variance of the
D-optimal design as shown in Figure 10.13.

> desgn2$design

Compound HE DMz S0K

1 1 -12.221 -0.162 64.138

2 2 -14.015 -0.068 88.547

7 7 -15.123 1.554 96.053

9 9 -11.813 1.219 77.020

12 12 -14.460 2.266 109.535

13 13 -8.519 -0.560 71.949

14 14 -10.287 -0.675 96.600

16 16 -11.167 0.418 104.047

19 19 -14.491 -0.561 88.547

22 22 -13.121 -1.692 101.978

28 28 -12.637 -2.762 112.492

29 29 -12.118 -2.994 81.106

32 32 -14.804 -3.780 113.856

33 33 -9.209 -0.423 74.871

34 34 -10.970 -0.302 99.603

36 36 -11.868 -1.322 107.010

Figure 10.13 Comparison of Fraction of Design Space Plots for D-Optimal and I-
Optimal Designs
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The third situation where a non-standard response surface design should
be used is when the model is non-standard or nonlinear. Consider modeling
the metabolism of tetracycline (a common antibiotic). Figure 10.14 shows a
diagram of the two-compartment model useful in pharmacokinetics for repre-
senting the metabolism of drugs. When the drug is taken orally, γ0 represents
the initial concentration in the gastrointestinal (GI) tract. γ1(x) represents the
concentration in the blood at time x. k1 represents the rate constant at which
the drug moves from the GI tract to the blood and k2 is the rate constant at
which the drug is eliminated from the blood.

Figure 10.14 Diagram of Two-Compartment Model for Tetracycline Metabolism

γ0 γ1(x)
k1

k2

Based on chemical kinetics, an equation relating the concentration in the
blood at time x can be derived and is shown in Equation (10.7)

y = γ1(x) = γ0[e
−k1(x−t0) − e−k2(x−t0)] (10.7)

where t0 is the dead time. This is an example of a mechanistic model that is
derived from physical principles. To determine the parameters in the model
(γ0, k1, k2, and t0) a subject takes an oral dose of the drug, and small blood
samples are taken at times xi, i = 1, . . . n. The response, or concentration
of drug in the blood γ1(xi), is determined at each sampling time or factor
level and the model 10.7 is fit to the data. Once fit, the mechanistic model
can be used to predict response values outside the experimental range of xi,
i = 1, . . . n since it is based on physical principles. This is not true for the
general quadratic model (10.4) since it is just a Taylor’s series approximation
of the true equation about some point (x).

In this problem there is only one independent variable and one response,
and there are four parameters in the model. Since the model is nonlinear in the
parameters, a simple design of four equally spaced times (to sample blood)
would not be efficient for estimating the parameters. Instead, an I-optimal
search can be made to determine the design points.

The first step in creating a I-optimal design for a nonlinear model is to
linearize the model about some point as described by Bates and Watts (2007).
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For example, linearizing f(x, γ0, k1, k2, t0) about the point (γ∗0 , k
∗
1 , k

∗
2 , t

∗
0)

f(x, γ0, k1, k2, t0) ≈ f(x, γ
∗
0 , k

∗
1 , k

∗
2 , t

∗
0) + (γ0 − γ

∗
0 ) (

∂f

∂γ0
) ∣
γ0=γ∗0

+ (k1 − k
∗
1) (

∂f

∂k1
) ∣
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+ (k2 − k
∗
2) (

∂f

∂k2
) ∣
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+ (t0 − t
∗
0) (

∂f
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) ∣
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(10.8)

which is linear in the variables ∂f
∂γ0

, ∂f
∂k1

, ∂f
∂k2

, and ∂f
∂t0

that are all functions of

x. For the compartment model in Equation (10.7)

∂f

∂γ0
= e−k1(x−t0) − e−k2(x−t0)

∂f

∂k1
= −γ0(x − t0)e

−k1(x−t0)

∂f

∂k2
= −γ0(x − t0)e

−k2(x−t0)

∂f

∂t0
= γ0k1e

−k1(x−t0) − γ0k2e
−k2(x−t0)

The strategy is to create a grid of candidates in the independent variable
x, calculate the values of the four partial derivatives using initial guesses of
the parameter values at each candidate point, and then use the optFederov

function to select a I-optimal subset of the grid. The R code below creates the
grid and evaluates the partial derivatives using the initial parameter estimates
γ0

0 = 2.65, k0
1 = .15, k0

2 = .72, and t00 = 0.41.

> k1 <- .15; k2 <- .72; gamma0 <- 2.65; t0 <- 0.41

> x <- c(seq(1:25))

> dfdk1 <- c(rep(0, 25))

> dfdk2 <- c(rep(0, 25))

> dfdgamma0 <- c(rep(0, 25))

> dfdt0 <- c(rep(0, 25))

> for (i in 1:25) {

+ dfdk1[i] <- -1 * gamma0 * exp(-k1 * (x[i] - t0)) *(x[i] - t0)

+ dfdk2[i] <-gamma0 * exp(-k2 * (x[i] - t0)) * (x[i] - t0)

+ dfdgamma0[i] <- exp(-k1 * (x[i] - t0)) - exp( -k2 *

+ ( x[i] - t0))

+ dfdt0[i] <- gamma0 * exp(-k1 * (x[i] - t0)) * k1 - gamma0 *

+ exp(-k2 * (x[i] - t0)) * k2; }

> grid <- data.frame(x, dfdk1, dfdk2, dfdgamma0, dfdt0)

In the code on the next page the optFederov function is used to create a
design consisting of a subset of the grid.
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> library(AlgDesign)

> desgn2<-optFederov( ~ -1 + dfdk1 + dfdk2 + dfdgamma0 + dfdt0,

+ data = grid, nTrials = 4, center = TRUE, criterion = "I",

+ nRepeats = 20)

Since there are p = 4 parameters in the model, only four design points will be
needed to estimate the parameters, therefore the option nTrials = 4 is used
in the call to the optFederov function. An experimenter can then replicate
each design point as many times as necessary to get an estimate of exper-
imental error. The code above results in the four distinct times for taking
blood samples (1, 2, 5, and 25), and due to the form of the model and initial
guesses of the parameters these points are far from equally spaced. Since the
optFederov function may not always find the I-optimal design, and the fact
that I-optimal designs may not be unique, running this code again may result
in a slightly different design.

As stated by Bates and Watts (2007), the efficiency of the design for the
nonlinear model will depend on the stage at which a researcher is in the
investigation. If the form of the equation is known but not the parameter
values, the design created by the optFederov function will be called an initial
design. After the data is collected from an initial design and the model is
fit, the parameter estimates will be an improvement on the initial estimates.
Therefore, the initial guesses of the parameter values can be replaced by the
estimates and the initial design can be augmented with p = 4 additional design
points using the augment = TRUE option in the function call similar to the
example shown in Section 6.5.2.

10.6 Fitting the Response Surface Model with R

This section will describe how to fit a response surface model using R package
rsm and a nonlinear mechanistic model using the R function nls.

10.6.1 Fitting a Linear Model and Checking for Curvature

If the factorial portion of a central composite design along with center points
is completed in an initial block of experiments as described in Section 10.3.1,
the linear model (10.6) should be fit to the data and checked for adequacy. If
the linear model is adequate, the axial points and additional center points in
the central composite design will not be necessary. To check for adequacy the
residual sums of squares from model 10.6 should be partitioned into the por-
tion due to pure replication and the portion due to quadratic departure from
the model. This can be easily done using the rsm function in the R package
rsm. For example, the data frame cement in the daewr package contains the
data in Table 10.1. This data frame contains an additional variable Block not
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shown in Table 10.1. Block=1 for the first 11 runs (factorial + center points)
in Table 10.1 and Block=2 for the last nine runs (axial + center points).

In the R code below, the data is retrieved from the daewr package. This
data frame was created with the ccd function in the package rsm therefore
the factors are stored internally as the coded factors x1, x2, and x3.

> library(daewr)

> data(cement)

> head(cement)

Block WatCem BlackL SNF y

C1.1 1 0.33 0.12 0.08 109.5

C1.2 1 0.35 0.12 0.08 117.0

C1.3 1 0.33 0.18 0.08 110.5

C1.4 1 0.35 0.18 0.08 121.0

C1.5 1 0.33 0.12 0.12 120.0

C1.6 1 0.35 0.12 0.12 130.0

Data are stored in coded form using these coding formulas ...

x1 ~ (WatCem - 0.34)/0.01

x2 ~ (BlackL - 0.15)/0.03

x3 ~ (SNF - 0.1)/0.02

An analysis is performed on the data in block 1 using R. The formula
SO(x1,x2,x3) in the call to the rsm function creates the full quadratic model
(10.4). However, when the axial points are left out of the central composite
design (as they are in block 1), all the quadratic terms become confounded.
The test on the PQ(x1, x2, x3) term in the resulting ANOVA table is a test
of the confounded quadratic terms.

> library(rsm)

> grout.lin <- rsm(y ~ SO(x1, x2, x3),data = cement,

+ subset = (Block == 1))

Warning message:

In rsm(y ~ SO(x1, x2, x3), data = cement, subset = (Block == 1)) :

Some coefficients are aliased - cannot use ’rsm’ methods.

Returning an ’lm’ object.

> anova(grout.lin)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

FO(x1, x2, x3) 3 465.13 155.042 80.3094 0.002307 **

TWI(x1, x2, x3) 3 0.25 0.083 0.0432 0.985889

PQ(x1, x2, x3) 1 37.88 37.879 19.6207 0.021377 *

Residuals 3 5.79 1.931



FITTING THE RESPONSE SURFACE MODEL WITH R 409

The sums of squares for Linear (labeled FO(x1, x2, x3) in the output)
account simultaneously for the three linear terms in the model. The sums of
squares for cross product (labeled TWI(x1, x2, x3) in the output account
simultaneously for the three interaction terms in the model. The sums of
squares for Quadratic (labeled PQ(x1, x2, x3) in the output) accounts for
the confounded quadratic terms or departure from linearity. Finally, the sums
of squares for Residual represents the pure error sums of squares due to repli-
cated center points. When fitting the linear model with interactions (10.6)
with the R function lm the sums of squares for Quadratic would be combined
with the error sums of squares resulting in four degrees of freedom for error.
The F -test on the quadratic term is a test of the adequacy of the linear model.
Since it is significant at the α = 0.05 level in the above table, it indicates that
the quadratic departure from the linear model is significant, and thus the lin-
ear model (10.6) is not adequate for representing the first 11 data points in
Table 10.1. Therefore, if the experiments shown in Table 10.1 were to be run
in two blocks, it would be necessary to run the second block that includes the
axial points.

10.6.2 Fitting the General Quadratic Model

The rsm function is most useful for fitting the general quadratic model and
analyzing the fitted surface. For example, consider fitting the general quadratic
model to the trebuchet data in Table 10.3. The commands to retrieve the data
frame from the daewr package are shown below.

> library(daewr)

> data(Treb)

> head(Treb)

A B C y

1 4 10 2.5 33

2 8 10 2.5 85

3 4 20 2.5 86

4 8 20 2.5 113

5 4 15 2.0 75

6 8 15 2.0 105

Data are stored in coded form using these coding formulas ...

x1 ~ (A - 6)/2

x2 ~ (B - 15)/5

x3 ~ (C - 2.5)/0.5
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The code to fit the quadratic model and a portion of the output are shown
below.

> library(rsm)

> treb.quad <- rsm(y ~ SO(x1, x2, x3), data = Treb)

> summary(treb.quad)

Call:

rsm(formula = y ~ SO(x1, x2, x3), data = Treb)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 90.00000 1.16905 76.9859 7.006e-09 ***

x1 19.75000 0.71589 27.5880 1.171e-06 ***

x2 19.75000 0.71589 27.5880 1.171e-06 ***

x3 -11.50000 0.71589 -16.0639 1.703e-05 ***

x1:x2 -6.25000 1.01242 -6.1733 0.0016247 **

x1:x3 4.75000 1.01242 4.6917 0.0053768 **

x2:x3 6.75000 1.01242 6.6672 0.0011461 **

x1^2 -9.37500 1.05376 -8.8967 0.0002986 ***

x2^2 -1.37500 1.05376 -1.3048 0.2487686

x3^2 -3.37500 1.05376 -3.2028 0.0239200 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

FO(x1, x2, x3) 3 7299.0 2433.00 593.4146 8.448e-07

TWI(x1, x2, x3) 3 428.8 142.92 34.8577 0.0008912

PQ(x1, x2, x3) 3 351.5 117.16 28.5759 0.0014236

Residuals 5 20.5 4.10

Lack of fit 3 14.5 4.83 1.6111 0.4051312

Pure error 2 6.0 3.00

The first table in the output shows the least squares estimates of the coeffi-
cients of the coded factors in Equation (10.4) along with their standard errors,
t-values, and P-values. Some statisticians advocate dropping the insignificant
terms from the model and refitting, but this is not possible with the rsm func-
tion. Other statisticians advocate retaining all terms in the general quadratic
model, whether significant or not, since the individual model terms have no
physical meaning. A compromise is to eliminate a model factor if all linear,
quadratic, and interaction terms involving that factor are insignificant. By
eliminating a factor the response surface model is reduced from p dimensions
to p − 1 dimensions. In this example all linear and interaction terms are sig-
nificant, so no factors can be eliminated. If a factor had been found to be
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insignificant, it could be eliminated from the SO(x1, x2, x3) formula for the
quadratic model statement and the response surface equation would simplify
from three dimensions to two.

The second table shows the ANOVA table from the fit. In this example, it
can be seen that the linear quadratic and cross product terms in the model are
all significant. The error sums of squares are partitioned into the pure error
sums of squares and the lack of fit sums of squares. By doing this, a simple
F -test can be made for the adequacy of the quadratic model. For example,
the responses at the three center points in Table 10.3 are 88, 91, and 91.
Therefore, the pure sums of squares due to replication are:

3

∑
i=1

y2
i −

(∑
3
i=1 yi)

2

3
= 882

+ 912
+ 912

−
(88 + 91 + 91)2

3
= 6.0

The difference in the total error sums of squares (20.5) and the pure error
sums of squares is called the lack of fit sums of squares. An F -test of the
lack of fit sums of squares is a test of the adequacy of the quadratic model.
In this case it is clearly insignificant, indicating that predictions made from
the general quadratic model for this experiment can be considered just as
accurate as running additional experiments, as long as no lurking variables
change before additional experiments can be run.

When the lack of fit test is significant, it indicates that the general quadratic
model is not adequate for prediction. This could be due to the fact that the
experimental region is so large that the quadratic model does not provide a
good approximation to the true response function over the entire region, or
due to outliers, or extreme nonlinearity in certain corners of the experimental
region where the approximate function does not fit. These conditions can be
detected by making residual plots to check the least squares assumptions or by
fitting the model using a “robust” technique such as M-estimators, for details
and discussion see Lawson (1982).

Block terms can also be included when fitting the quadratic model with the
rsm function. For example, the experiments on cement grout shown in Table
10.1 could be completed in two blocks. The first block would consist of the
factorial plus center points shown in runs 1–11 and the second block would
consist of the axial and center points shown in runs 12–20. The R code to
retrieve the data and fit the model are shown below.

> library(daewr)

> data(cement)

> grout.quad<-rsm(y ~ Block + SO(x1,x2,x3), data=cement)

> summary(grout.quad)

The output will be similar to the last example except a block term with
one degree of freedom will be included in both tables. The block factor will
then account for any average differences between the first and second group
of experiments.
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10.6.3 Fitting a Nonlinear Mechanistic Model

The general quadratic model is linear in the coefficients (β’s), and the X′X
is full rank so the least square estimates are obtained by solving the normal
equations through straightforward matrix inversion. When the model is non-
linear like the two-compartment model shown in Equation (10.7), the least
squares estimates are more difficult to obtain and must be found by iterative
numerical techniques. However, the R function nls makes this all transparent
to the user.

Table 10.7 Tetracycline Concentration in Plasma over Time
Tetracycline

Time Conc.
(hr) (µg/ml)

1 0.7
2 1.2
3 1.4
4 1.4
6 1.1
8 0.8
10 0.6
12 0.5
16 0.3

For example, to fit the two-compartment model (Equation 10.7) to the data
from Wagner (1967) shown in Table 10.7, use the following code.

> library(daewr)

> data(Tet)

> mod.nln1 <- nls( Conc ~ gamma0 * (exp( -k1 * (Time - t0)) -

+ exp( -k2 * (Time - t0))), data = Tet, start = list( gamma0=10,

+ k1 = .12, k2 = .5, t0 = .5))

> summary(mod.nln1)

In this code the data in Table 10.7 is recalled from the data frame in the
daewr package. The formula given in the call to the nls function is Equation
(10.7), where Time in the data frame Tet is x in Equation (10.7). The op-
tion start = list( gamma0=10, k1 = .12, k2 = .5, t0 = .5) supplies
initial estimates of the parameters from which the iterative numerical pro-
cedure will begin. The convergence of the numerical procedure can be sensi-
tive to the initial estimates, and Bates and Watts (2007, section 3.3) give five
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strategies for obtaining good initial estimates. The nls function by default
(other options are available) uses the Gauss-Newton method with numerical
derivatives to find the least squares estimates.

The resulting output is shown below. The table gives the least squares
parameter estimates, their standard errors, t-statistics, and P-values.

Formula: Conc ~ gamma0 * (exp(-k1 * (Time - t0)) - exp(-k2 *

(Time - t0)))

Parameters:

Estimate Std. Error t value Pr(>|t|)

gamma0 2.64964 0.36446 7.270 0.000770 ***

k1 0.14880 0.01441 10.327 0.000146 ***

k2 0.71575 0.12605 5.678 0.002359 **

t0 0.41224 0.09495 4.342 0.007416 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.04482 on 5 degrees of freedom

Number of iterations to convergence: 11

Achieved convergence tolerance: 3.632e-06

10.7 Determining Optimum Operating Conditions

10.7.1 Contour Plots

Once a response surface model has been fit to the data from an experiment,
there are several ways to identify the optimum conditions. If there are only two
factors, the simplest method is to make a contour plot or a three-dimensional
plot of the response surface. If there are more than two factors in the model,
several two-dimensional slices through the experimental region can be made
by holding some factors constant and making a contour or 3D plots with
respect to the remaining two factors at each slice.

The rsm automatically generates a panel of contour plots. The commands
below show that by simply adding the contour(treb.quad, ~ x1+x2+x3)

statement, the panel of contour plots shown in Figure 10.15 is created.

> library(daewr)

> data(Treb)

> library(rsm)

> treb.quad <- rsm(y ~ SO(x1, x2, x3), data = Treb)

> par (mfrow=c(2,2))

> contour(treb.quad, ~ x1+x2+x3 )
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Figure 10.15 Contour Plots of Predicted Trebuchet Distance
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In this panel of plots, the first plot (upper left) is made at a slice with C:
missile weight held constant at its mid-value of 2.5, and factors A: arm length
and B: counter weight on the axis. The lines represent contours of predicted
values from the quadratic model. The remaining two plots show factors A and
C on the axis with factor B held constant at its mid-value of 15, and factors
B and C on the axis with A held constant at its mid-value of 6.

By calling the persp graphic function rather than the contour, as shown
below, the panel of three-dimensional surface plots shown in Figure 10.16 is
created. The option contours=list(z="bottom") includes the same contour
lines as shown in Figure 10.15, below the 3D surface.

> par (mfrow=c(2,2))

> persp(treb.quad, ~ x1+x2+x3, zlab="Distance",

+ contours=list(z="bottom") )

Individual contour or 3D plots can also be created and the constant values
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Figure 10.16 Three-Dimensional Surface Plots of Predicted Trebuchet Distance
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of the factors not shown on the axis can also be specified as shown in the code
below.

> par (mfrow=c(1,2))

> contour(treb.quad, x1~x3, at=list(x2=1))

> persp(treb.quad, x1~x3, at=list(x2=1),zlab="Distance",

+ contours=list(z="bottom"))

The resulting contour plot and 3D plot at a slice with B: counterweight
= 20 lb is shown in Figure 10.17. In this plot it can be seen that with a
counterweight of 20 lb, the predicted maximum distance will be achieved using
a missile weight of about 2.375 ounces and an arm length of about 7.5 inches.
The predicted distance at these conditions is about 115 feet, with a standard
error of about 1.5 feet.
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Figure 10.17 Contour and 3D Plot of Predicted Trebuchet Distance with Counter-
weight=20 lb
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10.7.2 Canonical Analysis

When the response surface is a hilltop or a valley with a distinct maximum
or minimum within the experimental region, the exact factor coordinates of
the maximum or minimum can be determined by simultaneously setting the
derivatives of the fitted equation with respect to each factor equal to zero and
solving the simultaneous set of equations. This is useful when there are more
than two factors and the maximum or minimum would be difficult to identify
with multiple contour plots. The vector solution (of factor settings) to the
simultaneous set of homogeneous equations can be expressed in matrix terms
as

x0 = −B̂−1b̂/2 (10.9)

where B̂ and b̂ are the least squares estimates of the matrix and vector of
regression coefficients defined in Equation (10.5). This solution is actually
called the stationary point because it could be a maximum, a minimum, or a
saddle point as shown in Figure 10.1. To determine what the solution is, it is
useful to express the response surface Equation (10.5) in a canonical form with
the origin translated to x0 and the axis rotated (as shown in Figure 10.18).

Letting z = x − x0, Equation (10.5) can be written as

y = y0 + z′Bz, (10.10)

where y0 = x0b + x′0Bx0. This translates the origin to x0. Through the or-
thogonal rotation z = Mw, the second order part of Equation (10.10) can be
reduced to a linear combination of squares of the rotated variables wi given
by

z′Bz = w′M′BMw = λ1w
2
1 + λ2w

2
2 +⋯ + λkw

2
k (10.11)

If all the coefficients λi are negative, it indicates the stationary point is a
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Figure 10.18 Representation of Canonical System with Translated Origin and Ro-
tated Axis
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maximum. If all the coefficients are positive, it indicates the stationary point
is a minimum, and if there are mixed signs of the coefficients it indicates the
stationary point is a saddle point. The matrix M is the matrix containing the
eigenvectors of B as the columns, and the coefficients λi are the eigenvalues
of B.

The rsm function automatically calculates the eigenvalues and eigenvectors
of the least squares estimates of B̂. For example, for the cement grout experi-
ment shown in Table 10.1, the code on page 411 produces the following table
of results after the output summarizing the fitted model.

Stationary point of response surface:

x1 x2 x3

-1.9045158 -0.1825251 -1.6544845

Stationary point in original units:

WatCem BlackL SNF

0.32095484 0.14452425 0.06691031

Eigenanalysis:

$values

[1] 1.525478 1.436349 1.278634

$vectors

[,1] [,2] [,3]

x1 0.1934409 0.8924556 0.4075580

x2 0.3466186 0.3264506 -0.8793666

x3 0.9178432 -0.3113726 0.2461928

The coordinates of the stationary point are given in both coded and uncoded
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units. Next the eigenvalues and eigenvectors of B̂ are listed. Since all the
eigenvalues are positive, the stationary point is a minimum. Contour plots and
3D surface plots can be made holding factors not on the axis constant at their
stationary point values, rather than their center values, by changing the code
on page 414 to contour(treb.quad, ~ x1+x2+x3, at = xs(treb.quad) ).

For this particular problem, knowing the factor settings to achieve a mini-
mum response is not useful. The goal of experimentation was to find the factor
combinations that would maximize the workability of the cement grout. In gen-
eral, when seeking a maximum or minimum response within the experimental
region, the stationary point will only be useful if (1) the stationary point is
within the experimental region, and (2) the stationary point is of the type
sought (i.e., maximum or minimum). If the stationary response is outside the
experimental region, or if it is a saddle point or minimum when seeking the
maximum, another method must be used to identify the optimum.

10.7.3 Ridge Analysis

Another method of finding the optimum within the experimental region is
to use ridge analysis (Hoerl, 1959; Draper, 1963). This method seeks to find
the maximum or minimum of y = xb + x′Bx subject to the constraint that
x′x = R2, or that the coordinates of the optimum are on a radius R from
the origin in coded units. The solution is obtained in a reverse order using
Lagrange multipliers. The resulting optimal coordinates are found to be the
solution to the equation

(B − µIk)x = −b/2. (10.12)

To solve this system, choose a value for µ, insert it into Equation (10.12),
and solve for the vector of coded factor settings x. Once the coded factor
settings have been found, the radius of the solution is R =

√
∑x2

i . Inserting
values of µ larger than the largest eigenvalue of the matrix B will result in a
solution for the maximum response on the radius R, and inserting values of µ
smaller than the smallest eigenvalue of the matrix B will result in a solution
for the minimum response on the radius R. Trial and error are required to
find the solution on a specific radius. However, the steepest function in the
rsm package does all the work.

As an example, consider again finding the maximum distance the trebuchet
can toss an object within the experimental ranges defined in Table 10.3. This
was done approximately using a contour plot in Section 10.7.1. The station-
ary point analysis, printed by the rsm function for this data, showed the
stationary point was a saddle point that was outside the experimental region.
Therefore, the maximum within the experimental region has to be on the ex-
treme boundary of the experimental region. Since the experimental region for
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a Box-Behnken design (that was used for this experiment) is a sphere with
radius

√
2 = 1.412 in coded units, the call to the steepest function in the

code shown below gives rise to the output list shown below the code.

> ridge<-steepest(treb.quad, dist=seq(0, 1.412, by=.1),

+ descent=FALSE)

Path of steepest ascent from ridge analysis:

> ridge

dist x1 x2 x3 | A B C | yhat

1 0.0 0.000 0.000 0.000 | 6.000 15.000 2.5000 | 90.000

2 0.1 0.064 0.067 -0.037 | 6.128 15.335 2.4815 | 92.909

3 0.2 0.124 0.139 -0.073 | 6.248 15.695 2.4635 | 95.626

4 0.3 0.180 0.215 -0.105 | 6.360 16.075 2.4475 | 98.120

5 0.4 0.232 0.297 -0.134 | 6.464 16.485 2.4330 | 100.455

6 0.5 0.277 0.385 -0.158 | 6.554 16.925 2.4210 | 102.599

7 0.6 0.315 0.480 -0.175 | 6.630 17.400 2.4125 | 104.590

8 0.7 0.345 0.580 -0.185 | 6.690 17.900 2.4075 | 106.424

9 0.8 0.368 0.686 -0.185 | 6.736 18.430 2.4075 | 108.154

10 0.9 0.384 0.795 -0.177 | 6.768 18.975 2.4115 | 109.783

11 1.0 0.393 0.905 -0.161 | 6.786 19.525 2.4195 | 111.318

12 1.1 0.397 1.017 -0.137 | 6.794 20.085 2.4315 | 112.817

13 1.2 0.398 1.127 -0.107 | 6.796 20.635 2.4465 | 114.259

14 1.3 0.395 1.236 -0.073 | 6.790 21.180 2.4635 | 115.673

15 1.4 0.390 1.344 -0.034 | 6.780 21.720 2.4830 | 117.077

It can be seen that the predicted maximum on a radius R increases as R
increases along the path shown in Figure 10.19, and that it finally reaches a
maximum of 117.077 feet at the boundary of the experimental region (1.412
in coded units). At that point the factor levels in uncoded units are shown
to be approximately A: arm length = 6.8 inches; B: counterweight = 21.8 lb;
and C: missile weight = 2.5 oz.

Figure 10.19 Path of Maximum Ridge Response through Experimental Region
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A graph of the predicted response and factor coordinates as a function of
the distance from the origin (in coded units) as shown in Figure 10.20. This
is a common way to present and summarize the results of a ridge analysis.

Figure 10.20 Factor Levels to Achieve Maximum Predicted Value
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10.7.4 Nonlinear Optimization

Canonical analysis and ridge analysis work well for finding the optimum of a
response surface if the model is the general quadratic model and the experi-
mental region is spherical in coded units. If the response surface equation is
not a general quadratic model or the experimental region is irregular, the ex-
act optimum can always be found using more general numerical methods. The
R function constrOptim can minimize a function subject to linear inequality
constraints using an adaptive barrier algorithm, and it can be used to quickly
find a numerical optimum.

As an example of using constrOptim to find a response surface optimum,
consider finding the maximum of a nonlinear mechanistic response surface. In
a chemical reaction the reactant is transformed to the product at rate constant
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k1 and the product degrades to decomposition byproducts at rate constant
k2. From first-order kinetics, the concentration of the product, p, at time t is
given by the equation

p = −R0[e
−k2t − e−k2t]k1/(k1 + k2) (10.13)

where the rate constants are found by the Arrhenius equations in terms of the
temperature in Kelvin, T .

k1 = a × exp[−b(1/T − 1/400]

k2 = c × exp[−d(1/T − 1/400]

If experiments had been conducted in the region where t = 0 to 25 hours
and T = 375 to 425 degrees Kelvin and the coefficients in the model were
estimated to be R̂0 = 132.0, â = 0.523, b̂ = 9847, ĉ = 0.20, and d̂ = 12327,
then the constrOptim code below can be used to find the maximum product
concentration.

> start<-c(12.5,400)

> prod<-function(x) {

+ time<-x[1]

+ Temp<-x[2]

+ k1<-.523*exp(-9847*((1/Temp-1/400)))

+ k2<-.2*exp(-12327*((1/Temp-1/400)))

+ f<-132*(exp(-k1*time)-exp(-k2*time))*k1/(k1-k2)

+ }

> ui<-matrix(c(1,-1,0,0,0,0,1,-1),4,2)

> ci<-c(0,-25,375,-425)

> constrOptim(start,prod,NULL,ui,ci)

start represents the inital point in the center of the experimental region.
To find the maximum using a minimization algorithm the negative of the
function was coded as prod in the code above. The function constrOptim

finds the minimum subject to the constraints given in the matrix equation
u′
i
x−ci ≥ 0. In this example the constraints are 0 ≤ t ≤ 25, and 375 ≤ T ≤ 425.

Therefore

ui =

⎛
⎜
⎜
⎜
⎝

1 0
−1 0

0 1
0 −1

⎞
⎟
⎟
⎟
⎠

, x =

⎛
⎜
⎜
⎜
⎝

t
t
T
T

⎞
⎟
⎟
⎟
⎠

, ci =

⎛
⎜
⎜
⎜
⎝

0
−25
375
−425

⎞
⎟
⎟
⎟
⎠

, (10.14)

where ui and ci are defined in the R code above. A portion of the output is
shown on the next page.
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$par

[1] 18.15747 375.00000

$value

[1] -82.8794

The results show the minimum of the negative of product concentration,
p, within the experimental region is −82.88 at t = 18.16 hours and T = 375
degrees Kelvin, which means the maximum p within the experimental region
is 82.88.

Since this problem only has two factors (time and temperature) the results
can be visualized in the contour plot shown in Figure 10.21, which displays
the maximum at the boundary of the experimental region.

Figure 10.21 Maximum Product Concentration

A rough approximation to numerical optimization can be made by doing a
grid search. Create a fine grid of the experimental region in an R data frame
and then evaluate the response surface function at each grid point to get
predicted values. Finally, sort the resulting data frame by the predicted values
to locate the optimum predicted response within the experimental region.
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10.7.5 Multi-Response Optimization

Often the optimum factor settings will depend on more than one response. For
example, optimum drug regimens depend on efficacy and side effects, optimum
formulation of food products depends on consumer taste and health issues,
and optimum manufacturing processes depend on product quality and cost
of production. One way to determine optimal factor settings when there is
more than one response is to use constrained numerical optimization. As an
example, consider a simple problem with only two responses.

Dry bleach products that are safe for colored fabrics consist of sodium
perborate in combination with an activator that enhances the bleaching ability
of perborate in low-temperature wash water. Response surface experiments
were run to determine the optimal ratio of a new activator-to-perborate and
the amount of perborate in a dry bleach product. The three factors in the study
were the wash temperature, the ratio of activator to perborate, and the amount
of perborate (measured in PPM of active oxygen). The range of the three
factors studied were 70 ≤Temp≤ 140, 0.5 ≤Ratio≤ 1.5, and 5.0 ≤AOPPM≤ 65.0.
The response was the percent tea stain removal.

From the results of the experiment, the general quadratic model (in actual
factor levels) relating the response to the factors was estimated to be

tsr = −226.38 + 3.375(Temp) + 86.5(Ratio) + 2.646(AOPPM)

− .0128(Temp2
) − 17.5(Ratio2

) − .0121(AOPPM2
)

− .3857(Ratio)(Temp) − .0126(AOPPM)(Temp) − .0333(AOPPM)(Ratio)

The cost per wash (in cents) was a known function of the amount of activator
and perborate in the product and is given by the equation

cost = .8313 + 1.27(Ratio) + .37(Ratio)(AOPPM)

The goal was to maximize the tea stain removal for a cost of 10 cents per wash
or less. This optimum can also be found using the constrOptim function in
R. The boundary constraints can be translated to the format u′

i
x−ci ≥ 0, by

defining

ui =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0
−1 0 0

0 1 0
0 −1 0
0 0 1
0 0 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, x =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Temp
Temp
Ratio
Ratio

AOPPM
AOPPM

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ci =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

70
−140

0.5
−1.5

5
65

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (10.15)

The cost constraint is nonlinear and cannot be included in the u′
i
x − ci ≥ 0

linear constraint equations. Instead an objective function of the form:
−1×[tsr+100×(max (cost,0)−10)] is used. The R code is shown on the next
page.
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> start <- c(100,.6,40)

> tsrcost <- function(x) {

+ Temp <- x[1]

+ Ratio <- x[2]

+ AOPPM <- x[3]

+ tsrcost<- -( -226 + 3.375 * Temp + 86.5 * Ratio +

+ 2.646 * AOPPM - .0128 * Temp * Temp - 17.5 *Ratio *Ratio-

+ .0121 * AOPPM * AOPPM -.3857 * Ratio * Temp -

+ .0126 * AOPPM * Temp - .0333 * AOPPM * Ratio) +

+ 100 * max((.8313 + 1.27 * Ratio + .37 * Ratio * AOPPM - 10),

+ 0) }

> ui < -matrix(c(1, -1, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0,

+ 0, 1, -1) ,6 ,3 )

> ci <- c(70, -140, .5, -1.5, 5, -65 )

> constrOptim(start, tsrcost, NULL, ui, ci)

$par

[1] 102.9643645 0.5460873 41.9454227

$value

[1] -40.6523

Running this code drives (max (cost,0)−10) to zero and shows that the max-
imum percent tea stain removal that can be expected for the activator being
tested is 40.65% at Temp=103 degrees, Ratio=0.55, and AOPPM=41.9.

When there are multiple (k) responses, another method of optimization that
is sometimes useful is to combine the responses into one desirability function
proposed by Derringer and Suich (1980). The idea is to convert each response
into an individual desirability function 0 ≤ di(yi) ≤ 1, where this function is 1
if the response yi obtains its most desirable value, and zero when the response
is in an unacceptable range. Next, the overall desirability function is defined
as

(d1 × d2 ×⋯ × dk)
(1/k) (10.16)

and this function can be maximized using numerical optimization or grid
search. If it is desirable to obtain a target value for a response ŷi, for example,
the individual desirability function can be defined as

di =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

0 if ŷi < L

(
ŷi−L
T−L )

r
ifL ≤ ŷi ≤ T

(
ŷi−U
T−U )

s
if T ≤ ŷi ≤ U

0 if ŷi > U

(10.17)

where L ≤ T ≤ U , T is the target value for the response, and the regions where
ŷi < L or ŷi > U are undesirable. The powers r and s control how critical the
researcher feels it is to be close to the target. If it is desirable for one of the
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responses to be maximized, modify Equation (10.15) by setting T = U and
defining di = 1 for ŷi ≥ U , and di = (ŷi −L)/(U −L)

s
if L ≤ yi ≤ U . If it is

desirable to minimize a response, modify Equation (10.15) by setting T = L
and defining di = 1 for ŷi ≤ L, and di = (U − ŷi)/(U −L)

s
if L ≤ yi ≤ U .

The R package desirability (Kuhn (2013)) has the functions dTarget,
dMax, and dMin for the target, maximum, and minimum desirability functions
defined in Equation (10.17) and the function dOverall for the overall desir-
ability function given in Equation (10.16). These can be used to maximize
Equation (10.16).

For example, in the process to make a catalyst support, a three-level re-
sponse surface experiment was conducted and general quadratic equations
were fit to three of the resulting product characteristics. These equations are
given below, where x1, x2, and x3 are coded values of the factors: mixing time,
filtration time, and packing density before calcination.

Surface Area = 125.4106 − 8.1233x1 + 17.0266x2 + 0.4277x3 + 33.88054x2
1

+ 14.81976x2
2 + 13.070x2

3 + 2.4184x1x2

− 8.4376x1x3 + 9.0134x2x3

Pore Volume = .661354 − 0.1963x1 − .02016x2 − 0.00291x3 + 0.15126x2
1

+ .118423x2
2 + 0.0679x2

3 + 0.02399x1x2

+ 0.010327x1x3 − 0.0374x2x3

Pore Diameter = 39.35608 + 3.19547x1 + 0.2173x2 − 1.4698x3 + 0.4141x2
1

− 2.39408x2
2 − 2.36399x2

3 + 0.5887x1x2

− 0.62136x1x3 − 1.53234x2x3

Once these equations were developed, they were used to identify the pro-
cessing conditions that will produce a catalyst support with characteristics
suited for specific applications. For example, to produce a catalyst support
with Pore Diameter ≈ 40, Surface Area > 100, and Pore Volume > .6, the de-
sirability functions were defined as shown in the R code on the next page.
The maximum desirability function was used for surface area with L = 100
and U = 217. The maximum desirability function was used for pore volume
with L = 0.6 and U = 1.3, and the target is best desirability function was used
for pore diameter with L = 38, T = 40, and U = 42.
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> x <- c(0, 0, 0)

> saPred <-function(x) 125.4106 -8.1233 * x[1] +17.0266 * x[2]

+ +.4277 * x[3] +2.4184 * x[1] * x[2] -8.4376 * x[1] * x[3]

+ +9.0134 * x[2] * x[3] + 33.88054 * x[1]^2 +14.81976 * x[2]^2

+ +13.07001 * x[3]^2

>

> pvPred <- function(x) .661354 -.1963 * x[1] -.02016 * x[2]

+ -.00291 * x[3] +.02399 * x[1] * x[2] +.010327 * x[1] * x[3]

+ -.0374 * x[2] * x[3] +.15126 *x[1]^2 + .118423 * x[2]^2

+ +.0679*x[3]^2

>

> dpPred <- function(x) 39.35608 + 3.19547 * x[1] + .21729 * x[2]

+ -1.46979 * x[3] +.58873 * x[1] * x[2] -.62136 * x[1] * x[3]

+ -1.53234 * x[2] * x[3] +.41413 * x[1]^2 -2.39408 * x[2]^2

+ -2.36399 * x[3]^2

>

> library(desirability)

> saD <- dMax(100, 217)

> pvD <- dMax(0.6, 1.3)

> dpD <- dTarget(38, 40, 42)

> overallD <- dOverall(saD, pvD, dpD)

After maximizing the overallD (using the code shown on the web page) the
results indicate that surface area = 111.04, pore volume = 0.75, and pore
diameter = 39.85 can be achieved when the mixing time is near mid range
(i.e., x1 = −0.2925), filtration time is at the high end of the range tested (i.e.,
x2 = 1.0), and packing density is at the low end of the range tested (i.e.,
x3 = −1.0).

10.8 Blocked Response Surface (BRS) Designs

When experimental units are not homogeneous, it is always advantageous to
group them into more homogeneous blocks and use a blocked experimental
design. Earlier it was mentioned that the three-factor central composite de-
signs could be run in two blocks; the factorial portion plus three center points
in one block, and the axial portion and remaining center points in the other
block. This is actually an example of an incomplete block design, like those
described in Chapter 7, since not all the treatment combinations are repre-
sented in each block. It is possible to create an incomplete block design out
of any response surface design so that the coefficients can be estimated more
precisely.

Standard response surface designs such as the central composite designs
(CCDs) and Box-Behnken designs (BBDs) have been blocked in a way that
the blocks are orthogonal to the coded factor levels, squares of coded factor
levels, and interactions among coded factor levels. In this way the least squares
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estimates of the parameters of the general quadratic model are not correlated
with the block effects and these standard designs are 100% Ds efficient as
described in Section 7.8.1. The example described earlier, where the three-
factor central composite design was blocked into two blocks with block sizes
11 and 9, is not 100% Ds efficient. In order to achieve 100% efficiency, some
additional restrictions must be made in terms of the number of blocks, the
block sizes, and the axial radius. This will affect the distribution of the variance
of a predicted value over the design region, and a compromise must be made.
Table 10.8 shows the number of blocks and block sizes for orthogonally blocked
CCDs and BBDs with k = 2 to 5 factors.

Table 10.8 Number of Blocks and Block Sizes for Orthogonally Blocked CCD and
BBD Designs

Number CCD BBD
Factors No. Blocks Block Sizes No. Blocks Block Sizes

2 2 7,7
3 3 6, 6, 8
4 3 10, 10, 10 3 9, 9, 9
5 2 22, 11 2 23, 23

These designs can be created easily with the bbd and ccd functions in the R
package rsm. For example, the code to create the four and five factor orthogo-
nally blocked Box-Behnken designs listed in Table 10.8 are shown below. The
number of center points n0 must be chosen so that the block sizes will match
those listed in Table 10.8.

> library(rsm)

> bbd(4,n0=1,randomize=FALSE)

> bbd(5,n0=3,randomize=FALSE)

To create the 2–5 factor orthogonally blocked central composite designs, the
following code is used.

> library(rsm)

> ccd(2, n0 = c(3, 3), alpha = "orthogonal", randomize = FALSE)

> ccd(3, n0 = 2, alpha = "orthogonal", randomize = FALSE,

+ blocks = Block ~ (x1*x2*x3))

> ccd(4, n0 = 2, alpha = "orthogonal", randomize = FALSE,

+ blocks = Block ~ (x1*x2*x3*x4))

> ccd(4, generators = (x5 ~ x1*x2*x3*x4), n0 = c(6,1),

+ alpha = "orthogonal", randomize = FALSE)
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For central composite designs, not only must the block sizes match Table
10.8 to block orthogonally, but also the alpha="orthogonal" option must
be used. For the three- and four-factor designs, the factorial portion must be
split into two blocks using the option blocks = Block (x1*x2*x3) and
blocks = Block (x1*x2*x3*x4). For the five-factor design the factorial
portion is actually a one-half fraction with the generator generators = (x5

x1*x2*x3*x4).
The number of blocks and block sizes available for orthogonally blocked

CCD and BBD designs may be too restrictive for some applications. For ex-
ample, Gilmour and Trinca (2000) presented the data from an experiment to
determine how the characteristics of pastry dough depended upon parameters
of the mixing process. In the experiment three factors were varied, the feed
flow rate (FR), the initial moisture content (MC), and the screw speed (SS).
One of the responses (y) measured light reflectance of the resulting dough in
particular bands of the spectrum in order to see how the color of the dough
was affected by the mixing parameters. Only four runs or experiments could
be conducted on one day and the experimenters anticipated day to day vari-
ation. None of the designs in Table 10.8 have blocks of size four. Thus the
experimenters ran the modified design shown in Table 10.9, with the coded
factor values x1 = (FR−37.5)/7.5, x2 = (MC −21)/3, and x3 = (SS −350)/50.

This is an example of a face-centered cube design that is a special case
of a central composite design with the axial points (in coded units) pulled
in to the face of the cube at ±1. The 23 factorial portion of this design was
replicated and there were six center points. The 28 runs of this design were
blocked into seven blocks (days) of four runs in a way that the main effects are
orthogonal to the blocks. However, as Goos (2002) pointed out, the quadratic
and interaction terms of the general quadratic model are not orthogonal to
blocks and a better way of blocking the 28 experiments design can be achieved
using a Ds-optimal design. This can be done using the AlgDesign package.

First create the face-centered cube design using the gen.factorial function
and the R code shown below. This creates all 28 design points shown in Table
10.9 and stores them in the data frame cand with the factors labeled X1, X2,
and X3.

> library(AlgDesign)

> fact <- gen.factorial(levels = 2,nVars = 3)

> fact <- rbind(fact, fact)

> center <- data.frame( matrix( rep (c(0, 0, 0), 6),ncol = 3))

> star <- data.frame( rbind( diag(3), -diag(3) ))

> cand <- rbind(fact, center, star)

> bdesign <- optBlock (~ quad(.), cand, blocksizes =

+ c(4, 4, 4, 4, 4, 4, 4), criterion = "Dpc", nRepeats = 1000)

Next the optBlock function is used to group the runs into seven blocks of four
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Table 10.9 Design and Response for Pastry Dough Experiment
Block x1 x2 x3 y

1 −1 −1 −1 12.92
1 −1 1 1 13.91
1 1 −1 1 11.66
1 1 1 −1 14.48
2 −1 −1 1 10.76
2 −1 1 −1 14.41
2 1 −1 −1 12.27
2 1 1 1 12.13
3 −1 1 −1 14.22
3 0 −1 0 12.35
3 1 0 0 13.5
3 0 0 1 12.54
4 1 −1 1 10.55
4 −1 0 0 13.33
4 0 1 0 13.84
4 0 0 −1 14.19
5 −1 −1 −1 11.46
5 1 1 1 11.32
5 0 0 0 11.93
5 0 0 0 11.63
6 −1 −1 1 12.2
6 1 1 −1 14.78
6 0 0 0 14.94
6 0 0 0 14.61
7 −1 1 1 12.17
7 1 −1 −1 11.28
7 0 0 0 11.85
7 0 0 0 11.64

runs. This keeps all 28 runs in the data frame and arranges them into seven
blocks of four in a way to maximize the Ds-efficiency.

A blocked response surface design can also be created that is a subset of
the possible runs in a file of candidates. For example, to block 20 of the
experiments in the QSAR candidate file discussed in Section 10.5 so that they
could be run in five different labs (that may have differing measurements of
bioactivity) modify the code from Section 10.5 to that shown below.

> library(daewr)

> data(qsar)

> library(AlgDesign)

> desgn1 <- optBlock( ~ quad(.), qsar, blocksizes = c(4, 4, 4, 4,

+ 4), criterion = "Dpc", nRepeats = 1000)
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To analyze a blocked design with more than two blocks using the rsm func-
tion, make sure the Block indicator is of the class factor as shown in the code
below.

> library(daewr)

> data(pastry)

> class(pastry$Block)

> library{rsm}

> blkrsm <- rsm(y ~ Block + SO(x1, x2, x3), data = pastry)

> summary(blkrsm)

10.9 Response Surface Split-Plot (RSSP) Designs

When response surface designs contain factors from different process steps
or some factors are hard to vary, it may be costly or inconvenient to com-
pletely randomize the runs in a standard response surface design. For ex-
ample, consider a simple response surface design to identify the baking tem-
perature and baking time that would result in the optimal moist cake. The
design and data are shown in Table 10.10 where x1 = (bake temp. − 350)/25,
x2 = (bake time − 31.5)/4, and y is the reading from a moisture tester.

Table 10.10 Data for Cake Baking Experiment
Oven Run x1 x2 y

1 −1 −1 2.7
1 −1 1 2.5
1 −1 0 2.7
2 1 −1 2.9
2 1 1 1.3
2 1 0 2.2
3 0 −1 3.7
3 0 1 2.9
4 0 0 2.9
4 0 0 2.8
4 0 0 2.9

The design is a face-centered cube design with three levels for each factor
and three center points. The experiments were not performed in a random
order. Once the oven temperature was set and the oven was preheated, as
many as four cakes could be baked at once. Performing the experiments in a
completely random order would have required 11 oven runs, but by baking as
many as three cakes at the same time (as shown in the table) only four oven
runs were required. The oven runs were performed in a random order with
the two or three cakes for each run placed in random positions in the oven.
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The cakes in each run were withdrawn from the oven at different baking times
except for oven run 4 when all cakes were baked for 31.5 minutes.

By running the experiments in this way, a response surface split-plot (RSSP)
type design results , where x1, the baking temperature, is the whole-plot factor
and x2, baking time, is the sub-plot factor. Since the same sub-plot treatment
combinations are not run in each whole plot, Letsinger et al. (1996) show that
the least squares estimates of the model parameters, which would be obtained
by the rsm function, will be unsatisfactory if the ratio of the whole-plot to
sub-plot error variances is greater than one. They recommend using REML
estimators, which can be computed in lmer function in the lme4 package.

Combining the coefficients for the linear, quadratic, and interaction terms
in the same vector, the general quadratic model for a completely randomized
response surface design can be written in matrix form as

y = Xβ + ε (10.18)

When the response surface design is run as a split plot, like the example in
Table 10.10, the general quadratic model can be written in the form

y = Xβ + ω + ε (10.19)

where β is the vector of regression coefficients for the whole-plot and sub-
plot effects, ω is a vector of random whole-plot errors, and ε is a vector of
random sub-plot errors. It is assumed that ω + ε has zero mean and variance
covariance matrix given by Σ = σ2I+σ2

ωJ, where σ2
ω and σ2 are the variances

of the whole-plot and sub-plot experimental units and

J =

⎛
⎜
⎜
⎜
⎝

111
′
1 0 . . . 0

0 121
′
2 . . . 0

⋱

0 0 . . . 1m1′m

⎞
⎟
⎟
⎟
⎠

(10.20)

The length of 1i is ni the number of sub-plot runs within the ith whole
plot. The least squares estimates of β is (X′X)−1X′y, while the best linear
unbiased estimate of β is

β̂ = (X′Σ−1X)
−1X′Σ−1y (10.21)

and its variance covariance matrix is given by

V ar(β̂) = (X′Σ−1X)
−1 (10.22)

σ2, σ2
ω must be known in order to compute the best linear unbiased estimate

of β. However, estimates of σ2, σ2
ω, and the large sample best linear unbiased

estimates that are found by substituting σ̂2 and σ̂2
ω into Equation (10.21) can

be obtained using the REML method that was described in Chapter 5 and
is available in the lme4 package. The commands to fit the general quadratic
model to the data in Table 10.10 using the lmer function are shown on the
next page.
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> library(daewr)

> data(cake)

> library(lme4)

> mmod <- lmer(y ~ x1 + x2 + x1:x2 + x1sq + x2sq + (1|Ovenrun),

+ data = cake)

A comparison of the parameter estimates obtained by the least squares
method and REML is shown in Table 10.11. Here it can be seen that the
estimated linear main effects are the same for both methods, but the standard
errors are much smaller for the sub-plot effect and larger for the whole-plot
effect using the more correct REML method. The other estimates differ and
again the tests for the sub-plot effects are more sensitive using REML and the
tests for whole-plot effects are less sensitive. The REML estimated whole-plot
and sub-plot error variances are shown at the bottom on the right side of the
table. Letsinger et al. (1996) showed that when σ2

ω/σ
2 < 0.25 the least squares

estimates will be reasonably close to the REML estimates and can be used
in practice. However, since σ2

ω/σ
2 is usually not known, the REML method

should be used first.

Table 10.11 Comparison of Least Squares and REML Estimates for Split-Plot Re-
sponse Surface Experiment

Least Squares (rsm) Func. REML (lmer) Func.

Factor β̂ sβ̂ P-Value β̂ sβ̂ P-Value

intercept 2.979 0.1000 <.001 3.1312 0.2667 0.054
x1 −0.2500 0.0795 0.026 −0.2500 0.2656 0.399
x2 −0.4333 0.0795 0.003 −0.4333 0.0204 <.001
x2

1 −0.6974 0.1223 0.002 −0.6835 0.3758 0.143
x2

2 0.1526 0.1223 0.016 −0.0965 0.0432 0.089
x1x2 −0.3500 0.0973 0.268 −0.3500 0.0250 < .001

σ̂2
ω = 0.1402, σ̂2 = 0.0025

In some split-plot designs, the least squares estimators are identical to the
estimators produced by REML. These designs have an advantage in that the
parameters estimates do not depend on the variance components in the split
plot design. From a practical point of view, it would be advantageous to be able
to use the least squares estimates in R, since the rsm function, that uses the
least squares method, can also automatically compute the canonical analysis,
the ridge analysis, or produce predicted values over a grid for use in contour
plotting. The lmer function, that produces the REML estimators, does not
produce these analysis that are useful for response surface exploration.

Vining et al. (2005) proved an equivalence theorem that shows the least
squares estimates of all of the regression coefficients in a split-plot central
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composite design will be the same as the REML estimates if (1) the design
is balanced (in that each whole plot contains the same number of sub-plots),
(2) the sub-plot designs are orthogonal (although not necessarily the same),
and (3) the axial runs for the sub-plots are run in a single whole plot. In
addition, to get separate estimates of the variances of whole-plot and sub-
plot experimental units at least two whole plots of center points on all factors
should be included. Designs that have these properties will be referred to here
as estimation equivalent split-plot response surface designs or EESPRS. No
EESPRS central composite design is possible when there is only one sub-plot
factor because property (2) cannot be satisfied.

When there are two or more sub-plot factors, EESPRS central composite de-
signs can be easily obtained by modifying standard central composite designs.
For example, consider the two central composite designs run in a split-plot
arrangement shown in Figure 10.22. If there is one whole-plot factor, A, and
two sub-plot factors, P and Q, the standard central composite design with
three center points shown on the left can be grouped into five whole plots
by sorting on the whole-plot factor A as exhibited in the figure. Since the
number of runs in each whole-plot are not equal for the design on the left,
it is not balanced, and it is not an EESPRS design. By removing the center
point from the whole plot that has the axial points for the sub-plot factors P
and Q, adding replicates to the whole plots that contain the axial points for
the whole-plot factor A, and adding replicates in the whole plots that contain
center points, the design on the right becomes balanced. Since the columns
for the two sub-plot factors P and Q are orthogonal (i.e., ∑i piqi = 0) within
each whole plot, and all the axial points for the sub-plot factors are in the
same whole plot, this is an EESPRS design. Duplicate whole plots ( 3 & 5)
containing all center points make it possible to estimate σ2

ω and σ2 using the
REML method with the lmer function.

While the least squares and REML estimates of the regression coefficients
are the same when an EESPRS design is used, the standard errors of the
coefficients will not be the same, because the covariance matrix of the least
squares estimates, σ2(X′X)−1, is not the same as the covariance of the REML
estimates (X′Σ̂−1X)−1. Therefore, if an EESPRS design is used, the lmer

function should be used to make hypothesis tests about the parameters (in
order to determine if the model can be simplified), but the rsm function can
be used for doing a canonical analysis, ridge analysis, or contour plots.

In a balanced EESPRS design, the number of whole plots is m and the
number of sub-plots within each whole plot is n, making the total number of
runs N = nm. The number of factors is k = k1 + k2, where k1 is the number of
whole-plot factors and k2 is the number of sub-plot factors. In an estimation
equivalence central composite design, the number of runs in each whole plot
will be 2 × k2, since one whole plot must contain all the axial runs for the
sub-plot factors.
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Figure 10.22 Comparison of Split-Plot CCDs
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Table 10.12 shows some EESPRS designs that can be constructed by mod-
ifying standard central composite designs. The designation k1(k2) in the first
column refers to the number of whole and sub-plot factors. The design in the
first row of Table 10.11 is the design in the right side of Figure 10.22 that has
one whole-plot factor and two sub-plot factors. In this design, the factorial
portion (whole plots 2 and 6) has the four treatment combinations of a full
22 factorial in the sub-plot factors, randomized to the four sub-plots. In other
designs shown in Table 10.11, the sub-plots in the factorial portion of the de-
sign may contain a fractional factorial in the sub-plot factors, or a fractional
factorial in the sub-plot factors augmented by two center points as indicated
in the last column in the table.

Table 10.12 EESPRS CCD Designs

Factorial
k1(k2) k m n N Sub-plot Design
1(2) 3 7 4 28 22

1(3) 4 7 6 42 23−1(I = ±PQR) + 2 cp
1(4) 5 7 8 56 24−1(I = ±PQRS)
2(2) 4 11 4 44 22

2(3) 5 11 6 66 23−1(I = ±PQR) +2 cp
2(4) 6 11 8 88 24−1(I = ±PQRS)
3(2) 5 18 4 72 22

3(3) 6 18 6 108 23−1(I = ±PQR) +2 cp

Using Table 10.12 as a guide, these designs can be created easily in the
R programming steps. For example, the commented code on the web page
creates the design in row four of the table, which has two whole-plot factors
and two sub-plot factors in a non-random order.

Vining et al. (2005) presented an example of the central composite EESPRS
design with two whole-plot factors and two sub-plot factors. In this example,
an engineer was studying the effects of two hard-to-change factors (A, zone 1
furnace temperature, and B, zone 2 furnace temperature), and two easy-to-
change factors (P , amount of binder in formulation, and Q, grinding speed
of the batch) upon the strength of ceramic pipe. In this example, the axial
points are at ±1 (i.e., face-centered cube design). The design in coded levels
and resulting strength measurements are shown in Table 10.13. This design
used three whole plots that consisted of nothing but center points.

Analysis of this data (left for an exercise) will show the regression coefficients
for the general quadratic model obtained by the method of least squares and
REML are the same, although the standard errors will differ.

Box-Behnken designs can also be easily modified to create EESPRS designs.
Simply sort the Box-Behnken design by the whole-plot factors and determine
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Table 10.13 Design and Strength Measures for Ceramic Pipe Experiment

WP A B P Q y WP A B P Q y
1 −1 −1 −1 −1 80.40 7 0 −1 0 0 80.07
1 −1 −1 1 −1 71.88 7 0 −1 0 0 80.79
1 −1 −1 −1 1 89.91 7 0 −1 0 0 80.20
1 −1 −1 1 1 76.87 7 0 −1 0 0 79.95
2 1 −1 −1 −1 87.48 8 0 1 0 0 68.98
2 1 −1 1 −1 84.49 8 0 1 0 0 68.64
2 1 −1 −1 1 90.84 8 0 1 0 0 69.24
2 1 −1 1 1 83.61 8 0 1 0 0 69.2
3 −1 1 −1 −1 62.99 9 0 0 −1 0 78.56
3 −1 1 1 −1 49.95 9 0 0 1 0 68.63
3 −1 1 −1 1 79.91 9 0 0 0 −1 74.59
3 −1 1 1 1 63.23 9 0 0 0 1 82.52
4 1 1 −1 −1 73.06 10 0 0 0 0 74.86
4 1 1 1 −1 66.13 10 0 0 0 0 74.22
4 1 1 −1 1 84.45 10 0 0 0 0 74.06
4 1 1 1 1 73.29 10 0 0 0 0 74.82
5 −1 0 0 0 71.87 11 0 0 0 0 73.6
5 −1 0 0 0 71.53 11 0 0 0 0 73.59
5 −1 0 0 0 72.08 11 0 0 0 0 73.34
5 −1 0 0 0 71.58 11 0 0 0 0 73.76
6 1 0 0 0 82.34 12 0 0 0 0 75.52
6 1 0 0 0 82.20 12 0 0 0 0 74.74
6 1 0 0 0 81.85 12 0 0 0 0 75.00
6 1 0 0 0 81.85 12 0 0 0 0 74.90

the number of sub-plots in each whole plot to match the block with the maxi-
mum number. Add center points with respect to the sub-plot factors in whole
plots where the whole-plot factor levels are not at the center value, and add
at least two whole plots consisting of entirely center points. Table 10.14 shows
some EESPRS designs that can be constructed by modifying standard Box-
Behnken designs. Using Table 10.14 as a guide, these designs can also be
created easily with R programming steps.

Goos (2006) pointed out that many of the EESPRS central composite and
Box-Behnken designs are quite inefficient due to the fact that so many ex-
perimental runs are used for center points. Since the condition for estimation
equivalence in split-plot designs can be written in an equation of the form:

(In −X(X′X)
−1X′

)JX) = 0n×p (10.23)

(where J is given in equation 10.20) Marcharia and Goos (2010) used an
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Table 10.14 EESPRS BBD Designs
k1(k2) k m n N
1(2) 3 5 4 20
1(3) 4 7 6 42
1(4) 5 7 8 56
2(2) 4 11 4 44
2(3) 5 13 6 78

exchange algorithm to search for designs that were both estimation equivalent
andD-efficient. Jones and Goos (2012) improved the algorithm, by implement-
ing a dual objective function, and found more efficient estimation-equivalent
designs for many of the cases Marcharia and Goos studied. Jones and Goos
compiled a catalog of 111 D-efficient estimation-equivalent response surface
designs produced by their algorithm. Most of these designs have three levels
for all factors coded as −1, 0, and 1, and all of the designs have all factor levels
bounded between −1 and 1. This catalog can be recalled by functions in the
daewr package. Table 10.15 lists the functions to do this.

Table 10.15 daewr Functions for Recalling Jones and Goos’s D-Efficient EESPRS
Designs

Number of Number of
Whole-Plot Split-Plot

Function Name Factors Factors
EEw1s1 1 1
EEw1s2 1 2
EEw1s3 1 3
EEw2s1 2 1
EEw2s2 2 2
EEw2s3 2 2
EEw3 3 2 or 3

Calling one of the functions without any arguments produces a table listing the
names of the designs that can be recalled with that function, and calling the
function with a design name as the argument recalls a data frame containing
the design (as shown in the example on the next page).



438 RESPONSE SURFACE DESIGNS

> library(daewr)

> EEw2s3( )

Catalog of D-efficient Estimation Equivalent RS

Designs for (2 wp factors and 3 sp factors)

Jones and Goos, JQT(2012) pp. 363-374

Design Name whole plots sub-plots/whole plot

----------------------------------------

EE21R7WP 7 3

EE24R8WP 8 3

EE28R7WP 7 4

EE32R8WP 8 4

EE35R7WP 7 5

EE40R8WP 8 5

EE42R7WP 7 6

EE48R8WP 8 6

==> to retrieve a design type EEw2s3(’EE21R7WP’) etc.

> EEw2s3(’EE21R7WP’)

WP w1 w2 s1 s2 s3

1 1 1 1 -1 -1 1

2 1 1 1 1 -1 -1

3 1 1 1 -1 1 -1

4 2 0 1 0 1 -1

5 2 0 1 1 -1 1

6 2 0 1 -1 0 0

7 3 -1 0 -1 1 0

8 3 -1 0 1 -1 -1

9 3 -1 0 -1 -1 1

10 4 1 -1 1 -1 1

11 4 1 -1 -1 1 1

12 4 1 -1 1 1 -1

13 5 -1 1 -1 -1 -1

14 5 -1 1 1 1 0

15 5 -1 1 -1 1 1

16 6 1 0 0 0 1

17 6 1 0 1 1 1

18 6 1 0 -1 -1 -1

19 7 -1 -1 0 -1 0

20 7 -1 -1 -1 0 -1

21 7 -1 -1 1 1 1
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10.10 Review of Important Concepts

In response surface methods the factors can be varied over a continuous range,
and the primary goal is not to determine the factor effects, but to rather map
the relationship between the response and the factor levels so that optimal
factor settings can be determined. If the model for the relationship between
the factors and response is unknown, a general quadratic model is used as an
approximation. Experimental designs are constructed to equalize the variance
of a predicted value over the design region, rather than to give maximum power
for detecting factor effects. A graphical tool called the variance dispersion
graph can be used to determine how well a design meets the objective of
equalizing the variance of a predicted value.

Figure 10.23 Design Selection Roadmap

Design Purpose

Estimate Variances Study Factor Effects

E.U.’s

Block Factors

One Factor

Multiple Factors

Multiple Factors
with some hard

to vary

Block size

Homogeneous                  Heterogeneous

Large        Small

RCB

GCB

PBIB, BTIB

BIB

LSD

RCD
RSE CRD

Factors
FRSE
NSE
SNSE

CRFD         CRRS SLD    RCBF           BRS PCBF
CRFF                        SCD

PB, OA                      EVD                                         CCBF

CRSP          RSSP SPMPV  RBSP
SPFF        EESPRS

One Two

class       cont. mixture cont. class
Factors

Figure 10.23 illustrates the situations where the response surface designs
shown in this chapter should be used. Standard response surface designs
(CRRS) such as central composite and Box-Behnken designs are most easily
constructed with the rsm package in R. Small composite and hybrid designs
can be recalled from stored data frames in the Vdgraph package. The model
can be fit and analyzed using the rsm function in that package. This function
can fit the general quadratic model as well as determine the factor settings
that produce the maximum or minimum response using canonical analysis or
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ridge analysis. Contour plots are also useful for visually identifying optimal
factor settings.

Non-standard response surface designs are used when a non-standard model
(such as a nonlinear model) is used or the experimental region is irregular
or consists of a discrete set of candidates. The optFederov function in the
AlgDesign package can be used to find a design in these situations. Nonlinear
models can be fit with the R nls function. Finding the optimal factor settings
in irregular design regions or with a nonlinear model can be accomplished
using numerical methods using the constrOptim function in R.

When experimental units are not homogeneous, blocked response surface
(BRS) designs should be utilized. The rsm package can be used to create
orthogonally blocked response surface designs for central composite and Box-
Behnken designs. When the number of blocks and block sizes are not flexible
enough for the problem at hand, the optBlock function in the AlgDesign

package can be used to create Ds optimal blocked response surface designs.
When there are hard-to-vary factors which make it inconvenient or costly to

completely randomize a response surface design, a split-plot response surface
(RSSP) design results. In general, the coefficients in the quadratic model for a
split-plot design should be determined using the REML method of estimation
described in Chapter 5. However, if the design satisfies the three conditions
described by Vining et al. (2005), the coefficients (but not the standard errors)
estimated by least squares will be the same as the coefficients estimated by the
REML method. Therefore, when using this type of EESPRS design the lmer

function in the lme4 package should be used for hypothesis tests concerning the
model coefficients for purposes of model simplification, but rsm function can
be used for exploration of the fitted surface using canonical or ridge analysis.
EESPRS central composite designs and Box-Behnken designs can be created
with R programming steps. Jones and Goos’s catalog of D-efficient EESPRS
designs can be recalled by functions in the daewr package.
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10.11 Exercises

1. Create a central composite design for two factors using the rsm package.

(a) Create the uniform precision CCD and store the design along with ran-
dom numbers (simulated response) in a data frame.

(b) Use the Vdgraph package to make a variance dispersion graph or a frac-
tion of design space plot of the design you created.

(c) Repeat (a) through (b) for a face-centered cube design (i.e., CCD with
axial points at ±1).

(d) Based on the graphs you made, which design do you prefer? State the
reason.

2. Compare characteristics of standard response surface designs for four fac-
tors.

(a) Create a uniform precision central composite design, a Box-Behnken
design, a small composite design, and a hybrid design.

(b) Compare the variance dispersion graphs or fraction of design space plots
for each design, also compare the number of levels and total number of
runs.

(c) Choose one of the designs you have created, export it to a .csv file to be
used as a randomized data collection for the design.

3. Following up on the experiments described in Section 6.4, AlmeidaeSilva
et al. (2003) ran a response surface design to find the optimum nutrient
levels and fermentation time for producing biomass by fermentation of eu-
calyptus hemicellulosic hydrolyzate. The data is shown in the table on the
next page. RB stands for the rice bran (g/l), AS is the ammonium sul-
fate (g/l), FT is fermentation time in hours, and Biomass is the mass of
microorganisms produced. This was a face-centered cube design (FCCD).

(a) Fit the general quadratic model using the rsm function. Check the model
to see if it is adequate. Determine whether the model can be simplified
by dropping any factor from the model.

(b) Do the canonical analysis, ridge analysis, or numerical optimization to
determine the conditions that produce the maximum biomass within the
cubical experimental region.

(c) If the model can be simplified repeat (a) and (b) with the simpler model.
Do the coordinates of the optimum change much? If the model has been
simplified by eliminating one factor, make a contour plot of the response
versus the two factors left in the model, holding the eliminated factor at
its mid-level.

4. Consider performing a response surface experiment using the paper heli-
copters described in exercise 1 of Chapter 2 and Sections 3.2 and 3.3.
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RB AS FT Biomass
10 0 72 3.83
30 0 72 5.71
10 2 72 6.74
30 2 72 5.13
10 0 96 5.55
30 0 96 7.76
10 2 96 12.45
30 2 96 12.47
10 1 84 11.54
30 1 84 9.79
20 0 84 7.13
20 2 84 10.1
20 1 72 6.29
20 1 96 13.02
20 1 84 10.66
20 1 84 10.15
20 1 84 10.97

(a) Create a response surface design of your choice by varying the wing
length between 3.5 inches and 7 inches and the width of the helicopters
from 2.25 inches to 5.5 inches. Randomize your list.

(b) Construct and test your helicopters by measuring their flight time with
a stopwatch.

(c) Fit the general quadratic model to your data, and test the adequacy of
your model.

(d) Using canonical analysis, ridge analysis, or numerical optimization, de-
termine the helicopter dimensions that you predict would result in the
maximum flight time. Make a contour plot to visually verify your pre-
dicted optimum.

(e) Actually construct a helicopter of the dimensions you predict to be op-
timal. Test this helicopter by dropping it repeatedly and recording the
flight time. Are the flight times comparable to your predictions?

5. Consider conducting a response surface experiment with the wooden cat-
apult described in exercise 2 of Chapter 3. The three factors that can be
varied on the catapult are the start angle, stop angle, and pivot height.
Each factor has three possible levels. A full 33 factorial would allow estima-
tion of all coefficients in the general quadratic model, but it would require
27 experiments with no replicates to check the model lack-of-fit.

(a) Construct a face-centered cube (central composite) design for this prob-
lem.

(b) Construct a Box-Behnken design for this problem.
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(c) Since there are only 27 candidate design points, construct a 10-run design
that is a D-optimal subset of the 27 candidates. Suggest one of the points
that could be replicated three times to test lack of fit.

(d) Use the Vdgraph package to make variance dispersion graphs or fraction
of design space plots for each design. What design do you prefer? Why?

(e) Use a catapult to actually run the experiments you have planned.

(f) Fit the general quadratic model to the data, using the rsm function and
check the adequacy of the model.

(g) Using numerical optimization, contour plots, or simply evaluating your
prediction equation over the 27 possible settings, determine the settings
(one of the 27 possible) that you predict would result in a distance closest
to exactly 12 feet.

(h) Test the settings you determined in (g). Is the distance close to your
predictions?

6. Consider the experimental region shown in Figure 10.9, where −1 < x1 < 1,
−1 < x2 < 1, and x2 ≥ −2x1 − 2, x2 ≤ −2x1 + 1.

(a) Construct a grid ± 1
2

of candidate points in the (x1, x2) design region.

(b) Construct a D-optimal subset of the candidate points for fitting the
general quadratic model.

7. Consider the nonlinear model y = f(x1, x2) = β1e
β2x1 − β3e

β4x2 .

(a) Linearize the model by taking the partial derivatives ∂f
∂βi

, i = 1,4.

(b) Construct a grid of candidate points in the experimental region range
1 ≤ x1 ≤ 7, 1 ≤ x2 ≤ 7.

(c) Use the OptFederov function to construct a D-optimal nonlinear design
for this model using the initial estimates β1 = 10.0, β2 = −0.5, β3 = 5.0,
and β4 = −2.0.

8. Consider the data in Table 10.1.

(a) Fit the general quadratic model using the rsm function as shown in
Section 10.6.1.

(b) Use canonical analysis or ridge analysis to determine the conditions that
result in the maximum workability of the cement grout within the spher-
ical region −1.73 ≤ xi ≤ 1.73 for i = 1, to 3 in coded units.

9. Consider the model for the chemical reaction in Section 10.7.4.

(a) Use the data shown on the next page that was obtained by running 20
experiments to fit model 10.13.

(b) Make a contour plot of predicted concentration over the experimental
region.

(c) Use numerical methods to find the time and temperature (within the
experimental limits) that maximize the predicted concentration of prod-
uct. Does this result agree with your contour plot?
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Time Temperature Conc.
2.5 380 26.62
2.5 287.5 36.00
2.5 395 38.83
2.5 405 40.99
5.0 380 43.20
5.0 387.5 50.60
5.0 395 51.12
5.0 405 27.11

10.0 380 57.71
10.0 387.5 51.71
10.0 395 46.34
10.0 405 7.13
2.5 420 12.82
5.0 420 1.61

10.0 420 0.02
20.0 380 54.32
20.0 387.5 30.47
20.0 395 9.24
20.0 405 0.38
25.0 425 0.00

10. Create a blocked response surface design for four factors.

(a) Use the rsm package to create an orthogonally blocked central composite
design. How many runs are in this design, and how many runs are in
each block?

(b) Use the rsm package to create an orthogonally blocked Box-Behnken
design. How many runs are in this design, and how many runs are in
each block?

(c) Supposing that only six runs can be made in each block, take the central
composite design you created in (a) and use the optBlock function to
block it into five blocks of six runs each.

(d) Take the Box-Behnken design you created in (b), and add three center
points, and then use the optBlock function to block the runs into five
blocks of six runs each.

(e) Create the variance dispersion graphs of the designs you created, and
compare them to the variance dispersion graphs of the orthogonally
blocked designs you created in (a) and (b). Do you lose much by re-
ducing the block size?

11. Fit the general quadratic model to the data from the pastry dough experi-
ment given in Table 10.9.

(a) Use the rsm function to fit the model including block effects and check
the adequacy of the model.
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(b) Use canonical analysis or ridge analysis to determine the maximum re-
sponse within the cubical experimental region.

12. A study was conducted to find the optimum ratio of chloride and alka-
line reserves (AR) in a product that was designed to add alkalinity to
livestock rations. A small composite design was planned with the factors
x1 = 1/

√
chloride and x2 = ln(AR), but one combination of x1 and x2 had to

be dropped from the study, and formulation problems with the other com-
binations resulted in an irregular design. Forty-eight cattle were blocked
into eight blocks based on initial weight and hip height. Three cattle had
to be dropped from the study due to chronic health problems that were not
related to the treatment. The goal was to find the combination of x1 and
x2 that resulted in the highest average daily gain in weight (ADG) over the
course of the study. The data from the study are shown on the next page.

(a) Analyze the data with the rsm function including dummy variables for
the blocks, and check the assumptions of the fitted model.

(b) Find the predicted maximum ADG.

(c) Make a variance dispersion graph. How far from rotatable is the irregular
design?

(d) Make a contour plot to visually confirm the coordinates of your predicted
optimum.

13. Find the optimal moist cake for the data in Table 10.10.

(a) Do the canonical analysis and make a contour plot of the moisture read-
ing, y, using the least squares coefficients shown on the left side of Table
10.11.

(b) Do the canonical analysis and make a contour plot of the moisture read-
ing, y, using the REML estimates of the coefficients shown on the right
side of Table 10.11.

14. Fit the general quadratic model to the ceramic pipe data in Table 10.13.

(a) Fit the model with the lmer function including the random whole plot
effects.

(b) Fit the model with the rsm function ignoring the random whole plot
effects.

(c) Verify that the regression coefficients are the same for both models, but
that the standard errors of the coefficients are different.

(d) What procedure would you use to fit the model in order to determine if
the model can be simplified by dropping a factor?

(e) What procedure would you use to do a canonical or ridge analysis to
determine the strongest pipe?

15. Follow Table 10.12 and use the R programming steps to create an EESPRS
split-plot central composite design with one whole-plot factor and three
sub-plot factors.
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16. Use the EEw1s2 function in the daewr package to create a estimation-
equivalent split-plot design.

(a) Call the function with no arguments to see the list of designs available.

(b) Create the design for one whole plot factor and two sub-plot factors, with
seven whole plots and two sub-plots per whole plot (do not randomize
the order).

(c) In the BYU Department of Chemistry and Biochemistry, experiments
were run to study the process of making Alumina (Al2O3—a catalyst
support) in the lab. Three factors were varied (batch mixing time, fil-
tration time, and packing density prior to calcination). The experiments
were run using the split-plot design you created in (a). Mixing time was
the whole plot factor and several batches were mixed at each of three
mixing times. Each batch was split in two after mixing and each half was
filtered and packed according to the plan you created with s1=filtration
time and s2=packing density. Surface area is one of the characteris-
tics of Alumina that was sought to be controlled. The resulting surface
area measurements for the 14 half batches (in the order generated by
the EEw1s2 function are: 186.8782, 131.9686, 210.127, 187.2568, 140.336,
163.783, 171.3387, 171.0459, 170.2234, 217.1703, 202.6545, 191.1687,
137.4807, 143.1752. Fit the general quadratic model to this data by
REML using the lmer function in the lme4 package and by least squares
using the rsm function in the rsm package. Are the resulting coefficients
the same using the two methods?

(d) Using the lmer function perform a full and reduced model test to see if
any of the factors can be dropped from the model. Can any factors be
dropped from the model to reduce the dimensions from 3 to 2?

(e) Make contour plots of the prediction equation for surface area at the
stationary point for any factors not on the axis.

Table 10.16 Average Daily Gains for Cattle Experiment
Block

x1 x2 1 2 3 4 5 6 7 8
6.723 0.1095 2.45 1.63 1.28 1.97 1.80 2.36 1.55 1.89
6.281 0.1273 2.08 2.86 3.37 2.37 2.59 2.16 4.14 2.12
5.788 0.1157 2.97 2.58 2.51 2.59 2.57 2.02 - -
5.729 0.0669 1.92 2.63 2.08 3.26 2.64 2.17 1.35 4.21
6.411 0.0729 4.17 3.09 1.37 2.79 2.38 2.40 1.80 -
6.181 0.1004 3.86 2.39 2.93 2.41 2.59 3.23 2.19 3.04



CHAPTER 11

Mixture Experiments

11.1 Introduction

Many products, such as textile fiber blends, explosives, paints, polymers, and
ceramics are made by mixing or blending two or more components or ingredi-
ents together. For example, a cotton-poly fabric is made by mixing cotton and
polyester fibers together. The characteristics of a product that is composed
of a mixture of components is usually a function of the proportion of each
component in the mixture and not the total amount present.

If the proportion of the ith component is xi, and there are k components
in a mixture, then the proportions must satisfy the constraints

0.0 ≤ xi ≤ 1.0, for each component, and
k

∑
i=1

xi = 1.0. (11.1)

For example, in a three-component mixture, 0.0 ≤ x1 ≤ 1.0, 0.0 ≤ x2 ≤ 1.0,
0.0 ≤ x3 ≤ 1.0, and x1 + x2 + x3 = 1.0.

If an experiment is conducted by varying the mixture components in an at-
tempt to determine their effect on the product characteristics, the constraints
prevent using standard factorial or response surface experimental design. If
each component in the mixture can range from 0.0 to 100.0% of the total, a 23

factorial experiment would consist of all possible combinations of proportions
0.00 and 1.00 resulting in the corners of the cube (shown graphically in Figure
11.1).

However, the constraint x1 +x2 +x3 = 1.0 reduces the three-dimensional ex-
perimental region to the two-dimensional shaded equilateral triangular plane
shown in Figure 11.1. The coordinate system in this triangular experimental
region can be represented as shown in Figure 11.2.

In this coordinate system, the proportion of component 3 can be read on
the bottom or horizontal axis, the proportion of component 2 can be read on
the left axis, and the proportion of component 1 can be read on the right axis.
The proportion of component 1 is constant along horizontal lines that extend
from the axis for component 2 on the left across to the axis for component 1
on the right. The proportion of component 2 is constant along diagonal lines
that extend from the component 2 axis on the left down to the component
3 axis on the bottom, and the proportion of component 3 is constant along
diagonal lines that extend up from the component 3 axis on the bottom to
the component 1 axis on the right.

Along the line where the proportion of one component is constant, the

447
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Figure 11.1 Experimental Region for Factorial and Mixture Experiment
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proportions of the other two components vary. For example, along the horizon-
tal line where component 1 is constant at x1 = 0.166, component 2 varies from
x2 = 0.833 at the left, where the line touches the component 2 axis, to x2 = 0.0,
where the line meets the component 1 axis on the right. The proportion of
component 3 at any point along this line where x1 = 0.166 is equal to 1−x1−x2

and can be read by projecting from the point diagonally down to the left to the
component 3 axis. For example, the point labeled just to the left of the center
of the region consists of a mixture of 16.6% of component 1, (by extending
up along the diagonal line to the component 2 axis) 50% of component 2, and
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(by extending left downward to the component 3 axis) 33.3% of component
3. The coordinates of this point can be determined by specifying the propor-
tions of two of the three components, since the third component will always
be determined as the sum of the other two subtracted from 1.0.

The experimental region for an experiment involving a four-component mix-
ture is the three-dimensional equilateral tetrahedron shown in Figure 11.3.
This figure shows that constant proportions of component 1 are represented
by planes parallel to the base where x1 = 0.0. Likewise, constant proportions
of the other components would be planes parallel to the sides where those pro-
portions are equal to 0.00. The experimental region for experiments involving
k > 4 mixture components cannot be represented graphically, but is always a
k − 1 dimensional tetrahedron.

Figure 11.3 Experimental Region for Four-Component Mixture
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11.2 Models and Designs for Mixture Experiments

As the experimental region in a mixture experiment is changed by the con-
straints, the mathematical model used to represent the data from a mixture
experiment is also changed by the constraints. The linear model used for a
three-factor factorial experiment can be represented as a linear regression
model

y = β0 + β1x1 + β2x2 + β3x3 + ε. (11.2)

However, in a mixture experiment, the constraint x1 + x2 + x3 = 1.0 makes
one of the four coefficients in model 11.2 redundant. One way of modifying
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the model is to substitute (1 − x1 − x2) for x3, resulting in the so-called slack
variable model

y = β∗0 + β
∗
1x1 + β

∗
2x2 + ε. (11.3)

In this model, the variable x3 is the slack variable, and it is usually chosen to
represent the most inert mixture component.

Many find the slack variable model objectionable because the coefficients
β∗1 and β∗2 do not represent the effects of components x1 and x2 as they would
in a factorial experiment, but rather they represent the effects of x1 and x2

confounded with the opposite of the effect of the slack variable x3.
Scheffé (1958) described more suitable polynomial models for mixture ex-

periments. In his form of the model, the coefficient for β0 in Equation (11.2)
is 1, and by substituting x1 + x2 + x3 for 1, the model can be written in the
Scheffé form as

y = β∗1x1 + β
∗
2x2 + β

∗
3x3 + ε. (11.4)

From this point on, the asterisks will be removed from the β∗i as they were
used to distinguish the coefficients in a mixture model from the coefficients in
the general regression model.

Again the coefficients in the Scheffé form of the linear model do not represent
the effects of the variables x1, x2, and x3, as in a linear regression model, and a
coefficient that is zero, or not significantly different from zero, does not mean
that changing the corresponding mixture component will not affect product
characteristics. Alternately, in the mixture model βi represents the predicted
response at the vertex of the experimental region where xi = 1.0. This can be
represented graphically for the three-component mixture in Figure 11.4 where
the predicted response is a plane above the mixture experimental region.

Figure 11.4 Interpretation of Coefficients in Scheffé Linear Model
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If the response surface over the mixture region is nonlinear, the general
quadratic model in three variables,
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y = β0 + β1x1 + β2x2 + β3x3 + β1x
2
1 + β2x

2
2 + β3x

2
3 + β12x1x2

+ β13x1x3 + β23x2x3 + ε, (11.5)

usually used as an empirical response surface model for a nonlinear surface,
is also different for mixture experiments. Multiplying β0 by x1 + x2 + x3 and
substituting x1×(1 − x2 − x3) for x2

1, and so forth, in model 11.5 results in the
Scheffé quadratic model shown in Equation (11.6).

y = β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3 + ε. (11.6)

For k mixture components this model can be written as

y =
k

∑
i=1

βixi +
k

∑

k

∑
i<j

βijxixj + ε. (11.7)

The coefficients of the product terms xixj represent the quadratic curvature
along an edge of the simplex experimental region, as illustrated for a three-
component mixture in Figure 11.5.

Figure 11.5 Interpretation of Coefficients of Product Terms in the
Scheffé Quadratic Model
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11.2.1 Experimental Designs to Fit Scheffé Models

Based on the interpretation of the coefficients in the linear and quadratic
models for mixture experiments, Scheffé (1958) proposed the simplex-lattice
designs for experiments with mixtures. These designs consist of all possible



452 MIXTURE EXPERIMENTS

combinations of proportions, where the ith proportion takes on the values
xi = 0, 1

m
, 2
m
, . . . ,1. A simplex-lattice design (SLD) in k components with m+1

equally spaced proportions for each component is designated as a simplex-
lattice{k,m} or SLD{k,m} design.

Figure 11.6 shows the linear (SLD{3,1}) and the quadratic (SLD{3,2}) de-
signs in three components. Only the pure components (i.e., (x1, x2, x3) =

(1,0,0), (x1, x2, x3) = (0,1,0), and (x1, x2, x3) = (0,0,1)) are required for
a linear design and the coefficient βi in model 11.4 can be estimated as an
average of all the response data at the pure component where xi = 1.0. In
the linear model, the effect of blending two or more components is assumed
to be linear, and no intermediate points are necessary in the design. The
50/50 mixtures of each pair of components are required to estimate the coef-
ficients βij of the quadratic blending effects in model 11.5, thus the mixtures
(x1, x2, x3) = ( 1

2
, 1

2
,0), (x1, x2, x3) = ( 1

2
,0, 1

2
), and (x1, x2, x3) = (0, 1

2
, 1

2
) are

required in addition to the pure components for a quadratic design.

Figure 11.6 Linear and Quadratic Simplex-Lattice Designs
x1=1.0

x3=1.0 x3=1.0x2=1.0 x2=1.0

x1=1.0

{3,1} {3,2}

In response surface experiments conducted with independent factors, as dis-
cussed in Chapter 10, the experimental region can be restricted so that the
general quadratic model is usually a good approximation to the true nonlinear
model relating the response to the factor levels in the restricted region. In a
mixture experiment, the experimental region consists of the full (k − 1) di-
mensional simplex or tetrahedron and cannot be restricted. Therefore, higher
order polynomial equations are sometimes necessary to approximate the true
model over the entire simplex. A full cubic model in three-mixture components
is shown in Equation (11.8).

y =β1x1 + β2x2 + β3x3

β12x1x2 + β13x1x3 + β23x2x3

δ12x1x2(x1 − x2) + δ13x1x3(x1 − x3) + δ23x2x3(x2 − x3)

β123x1x2x3 (11.8)
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The coefficients δij represent the cubic blending of binary mixtures along the
edges of the simplex as shown in Figure 11.7.

Figure 11.7 Cubic Blending of Binary Mixture of Components i and j
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The β123 coefficient represents the ternary blending of components 1, 2, and
3 in the interior of the simplex.

To estimate the coefficients in the full cubic model requires an SLD{3,3}
design consisting of the points

(x1, x2, x3) =(1,0,0), (0,1,0), (0,0,1), (
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When the coefficients δij are insignificant in the cubic Scheffé model, justi-
fying a less complicated model, the simpler special cubic model can be used.
The equation for the special cubic model in k mixture components is shown
in Equation (11.9).
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y =
k

∑
i=1

βixi +
k

∑

k

∑
i≤j

βijxixj +
k

∑

k

∑

k

∑
i<j<l

βijlxixjxl + ε. (11.9)

An alternate design, discussed by Cornell (2002), that allows estimation of
all coefficients in the special cubic model is the simplex-centroid design or
SCD. A simplex-centroid design in three-mixture components consists of the
(

3
1
) pure component blends (1,0,0), (0,1,0), and (0,0,1), the (

3
2
) binary mixtures

( 1
2
, 1

2
,0),( 1

2
,0, 1

2
), and (0, 1

2
, 1

2
), and the (

3
3
) ternary mixture ( 1

3
, 1

3
, 1

3
).

An SCD in k mixture components (SCD{k}) consists of the (
k
1
) pure com-

ponents, the (
k
2
) permutations of the binary mixtures ( 1

2
, 1

2
,0, . . . ,0), the (

k
3
)

permutations of the ternary mixtures ( 1
3
, 1

3
, 1

3
,0, . . . ,0), and so forth, up to

the k-nary mixture ( 1
k
, 1
k
, 1
k
, . . . , 1

k
).

The (SCD{k}) always includes the k-nary mixture, or centroid, which is
interior to the design region, and it supports estimation of the coefficients in
a polynomial model of the general form shown in Equation (11.10).

y =
k

∑
i=1

βixi +
k

∑

k

∑
i<j

βijxixj +
k

∑

k

∑

k

∑
i<j<l

βijlxixjxl +⋯+

β12...kx1x2x3⋯xk + ε. (11.10)

One criticism of quadratic simplex-lattice designs in three components is
that they do not contain any design points in the interior of the simplex
design region where the accuracy of a fitted model can be tested. For this
reason, these designs are often augmented by the overall centroid ( 1

3
, 1

3
, 1

3
)

and axial points of the form (1 −∆, ∆
2
, ∆

2
), (∆

2
,1 −∆, ∆

2
), and (∆

2
, ∆

2
,1 −∆)

as shown in Figure 11.8.

11.2.2 Alternate Models for Mixture Experiments

Claringbold (1955), who was the first to use a simplex-type design for study-
ing three-mixture components, described a two-step procedure for translating
the origin and orthogonally rotating the axis of the component space to pro-
duce independent factors as shown graphically in Figure 11.9. The first step
of the procedure is to translate the origin to the centroid of the simplex by
subtracting the centroid value from each component and multiplying by the
number of components. The second step is to post multiply the vector of
translated coordinates by an orthogonal matrix O to rotate the axis. In three
components, the rotated and translated axis labeled w3 is perpendicular to
the two-dimensional simplex experimental region, and all points in the exper-
imental region will have w3 = 0 in the translated and rotated factor space.
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Figure 11.8 Simplex-Lattice{3,2} Augmented with Centroid and Axial Points
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Cornell (2002) shows the translation and rotation from the k dimensional
mixture component space to k−1 dimensional space for the independent factor
space can be written as k−1 contrasts of the mixture components. For example,
in three-mixture components (x1, x2, x3),

w1 =
√

6(2x1 − x2 − x3) (11.11)

w2 =
√

18(x2 − x3). (11.12)
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The quadratic model can be written in the independent factors as shown in
Equation (11.15), which is the same as model 10.2,

y = β0 + β1w1 + β2w2 + β11w
2
1 + β22w

2
2 + β12w1w2 + ε, (11.13)

and standard regression programs and contour plotting programs like the R
rsm package can be used to fit the model and produce contour plots over the
simplex experimental region, as illustrated in the Appendix at the end of this
chapter.

Sometimes the response in a mixture experiment may increase or decrease
rapidly as one or more of the mixture components approach their lower bound-
ary. These are called edge effects. Edge effects can cause a lack of fit in first-
and second-degree polynomial models. Rather than increasing the order of the
polynomial model, Draper and John (1977) suggested including inverse terms
in the model, as shown in Equation (11.14), to model edge effects.

y = β1x1 + β2x2 + β3x3 + β−1x
−1
1 + β−2x

−1
2 + β−3x

−1
3 + ε (11.14)

Including inverse terms when there are edge effects can greatly improve the
fit of the model as will be demonstrated in an exercise.

11.3 Creating Mixture Designs in R

Simplex-lattice and simplex-centroid designs can be easily created using the
SLD function and the SCD function in the mixexp package (Lawson, 2013a). The
example code below illustrates these functions. First the function SLD is used
to create an SLD{3,2} in three components, x1, x2, and x3, and second the
SCD function is used (on the next page) to create an SCD in four components.

> library(mixexp)

> SLD(3,2)

x1 x2 x3

1 1.0 0.0 0.0

2 0.5 0.5 0.0

3 0.0 1.0 0.0

4 0.5 0.0 0.5

5 0.0 0.5 0.5

6 0.0 0.0 1.0
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> library(mixexp)

> SCD(4)

x1 x2 x3 x4

1 1.0000000 0.0000000 0.0000000 0.0000000

2 0.0000000 1.0000000 0.0000000 0.0000000

3 0.0000000 0.0000000 1.0000000 0.0000000

4 0.0000000 0.0000000 0.0000000 1.0000000

5 0.5000000 0.5000000 0.0000000 0.0000000

6 0.5000000 0.0000000 0.5000000 0.0000000

7 0.5000000 0.0000000 0.0000000 0.5000000

8 0.0000000 0.5000000 0.5000000 0.0000000

9 0.0000000 0.5000000 0.0000000 0.5000000

10 0.0000000 0.0000000 0.5000000 0.5000000

11 0.3333333 0.3333333 0.3333333 0.0000000

12 0.3333333 0.3333333 0.0000000 0.3333333

13 0.3333333 0.0000000 0.3333333 0.3333333

14 0.0000000 0.3333333 0.3333333 0.3333333

15 0.2500000 0.2500000 0.2500000 0.2500000

The DesignPoints function in the mixexp package can show a graphical
representation of a design in three factors. For example, in the code below, a
SLD{3,3} design is created with the SLD function and displayed graphically
in Figure 11.10 with the DesignPoints function.

> library(mixexp}

> des<-SLD(3,3)

> DesignPoints(des)

Figure 11.10 Graphical Representation of an SLD{3,3} Design
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11.4 Analysis of Mixture Experiments

In attempting to find a pesticide formulation that would spread evenly on the
leaves of cotton plants, researchers experimented by combining a synthetic
pyrethroid insecticide with a mixture of three Niagara emulsifiers. They used
an SLD{3,2} design, augmented by an overall centroid and six axial points.
The experimental runs and the measured surface tension from each mixture is
shown in Table 11.1. The formulations were made and tested in a completely
random order.

Table 11.1 Data Pesticide Formulation Experiment
Surface Tension

Run x1 x2 x3 (dyne/cm)
1 1.00000 0.00000 0.00000 48.7
2 0.80000 0.10000 0.10000 49.5
3 0.60000 0.20000 0.20000 50.2
4 0.50000 0.00000 0.50000 52.8
5 0.50000 0.50000 0.00000 49.3
6 0.33333 0.33333 0.33333 51.1
7 0.30000 0.20000 0.50000 52.7
8 0.30000 0.50000 0.20000 50.3
9 0.10000 0.10000 0.80000 60.7

10 0.10000 0.80000 0.10000 49.9
11 0.00000 0.00000 1.00000 64.9
12 0.00000 0.50000 0.50000 53.5
13 0.00000 1.00000 0.00000 50.6

The research goal was to determine how the proportions of the three Niagara
emulsifiers affected the surface tension of the pesticide formulation. The lower
the surface tension, the more likely the formulation would spread evenly on
the cotton leaves.

The data analysis will be illustrated with R. The data in Table 11.1 is stored
as the data frame pest in the package daewr. The code below retrieves the
data and plots the design points in Figure 11.11.

> library(daewr)

> data(pest)

> DesignPoints(pest)

The SLD{3,2} design augmented by the overall centroid supports fitting
the special cubic model. A general strategy to follow when modeling the data
from mixture experiments is to first fit the highest order model supported
by the design, then try to simplify if higher order terms are insignificant. The
variance of predicted values will be lower for simpler models with fewer terms.
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Figure 11.11 Design Points of Pesticide Experiment
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The special cubic model can be fit with the R function lm as shown in
the code below, which is followed by a portion of the output. The option -1

following the special cubic model equation in the function call specifies that
the intercept is restricted to be zero. The lm function fits the model by the
method of least squares, and the same methods for checking the assumptions
of the least squares fit (described in Chapter 2) can be made.

> library(daewr)

> spc <- lm(y ~ x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3 + x1:x2:x3

+ -1, data = pest)

> summary(spc)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

x1 48.9056 0.5645 86.628 1.59e-10 ***

x2 50.3951 0.5685 88.644 1.39e-10 ***

x3 65.3870 0.5685 115.014 2.91e-11 ***

x1:x2 -0.9156 3.0422 -0.301 0.77360

x1:x3 -16.3642 3.0422 -5.379 0.00170 **

x2:x3 -17.1440 3.0888 -5.550 0.00145 **

x1:x2:x3 3.1052 18.0351 0.172 0.86896

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.6317 on 6 degrees of freedom

Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999

F-statistic: 1.299e+04 on 7 and 6 DF, p-value: 4.146e-12



460 MIXTURE EXPERIMENTS

In the output shown, the β123 term is clearly insignificant indicating that
there is no significant ternary blending effect.

The code to refit the Scheffé quadratic model to the data and a portion of
the results are shown below.

> library(daewr)

> qm <- lm(y ~ x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3 -1,

+ data = pest)

> summary(qm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

x1 48.8934 0.5198 94.061 4.04e-12 ***

x2 50.3832 0.5237 96.202 3.46e-12 ***

x3 65.3751 0.5237 124.827 5.58e-13 ***

x1:x2 -0.6644 2.4776 -0.268 0.796309

x1:x3 -16.1130 2.4776 -6.504 0.000333 ***

x2:x3 -16.9186 2.5964 -6.516 0.000329 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.5863 on 7 degrees of freedom

Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999

F-statistic: 1.759e+04 on 6 and 7 DF, p-value: 2.937e-14

Here, it can be seen that coefficients for the linear and quadratic terms are
slightly different than they were in the special cubic model. The fact that there
was no significant ternary blending would justify using the simpler quadratic
model to explore the mixture region and identify mixtures that would satisfy
the experimental goals. The negative coefficients for quadratic terms indicate
that the fitted surface dips below a plane connecting the predicted response
at the pure blends (the opposite of that shown in Figure 11.5).

The R2 = 0.9999 was shown for the quadratic model, and the R2 = 0.9999
was shown also for the special cubic model in the two outputs above. However,
Cornell (2002) explains that when standard regression programs, like the R
function lm, are used to fit the Scheffé quadratic model, they do not provide the
correct analysis when the zero-intercept option (-1) is used. This is because
the fitted model sums of squares and total sums of squares are not corrected for
the overall mean. Therefore, the R2 value is inflated and gives the impression
that the model fits better than it actually does.

One way the correct sums of squares and R2 can be computed using the lm
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function is to fit the model

y = β0 + β1x1 + β2x2 + β12x1x2 + β13x1x3 + β23x2x3 + ε. (11.15)

By including an intercept and removing x3 from the model, the coefficients
β0, β1, and β2 take on a different meaning than in the Scheffé model shown
in Equation (11.6). β0 takes on the value of β3 in Equation (11.6), and βi
represents the difference of β0 − βi. The code for fitting this model with the
lm is shown below.

> fm <- lm(y ~ x1 + x2 + x1:x2 + x1:x3 + x2:x3, data = pest)

> summary(fm)

In the output resulting from running this code, the correct R2 = 0.9913 for
the quadratic model will be shown. By including an intercept and removing
x3 from the special cubic model, it can be shown that the correct R2 = 0.9913
is no greater than it is for the quadratic model. This gives further support to
proceeding with the simpler quadratic model.

Another way to calculate the correct R2 is to use the MixModel function in
the R package mixexp. This function produces a summary table that includes
coefficients and standard errors from the zero-intercept model, and the correct
R2. An example of the use of this function and its output is shown below.

> MixModel(pest, "y",c("x1","x2","x3"),2)

[1] "y ~ + x2 + x3 + x1 : x2 + x1 : x3 + x2 : x3"

coefficients Std.err t.value Prob

x1 48.8934291 0.5198095 94.0602787 4.044320e-12

x2 50.3832671 0.5237302 96.2008061 3.455458e-12

x3 65.3751660 0.5237302 124.8260389 5.586642e-13

x2:x1 -0.6647398 2.4775878 -0.2683012 7.962022e-01

x3:x1 -16.1133712 2.4775878 -6.5036530 3.329877e-04

x2:x3 -16.9190175 2.5964516 -6.5162076 3.290837e-04

Residual standard error: 0.5862886 on 7 degrees of freedom

Multiple R-squared: 0.9913463

Here it can be seen that the coefficients match those in the output on
page 460. The arguments to the function are: (1) the name of the data frame
containing the data, (2) the character value with the column name of the
response in the data frame, (3) a character vector containing the column names
of the mixture components in the data frame, and (4) an integer indicating the
model to be fit. Option (1) is the linear model shown in Equation (11.2); (2) is
the quadratic model shown in Equation (11.7); (3) is the cubic model shown in
Equation (11.8); and (4) is the special cubic model shown in Equation (11.9).

This function automatically prints the summary table as shown above, and
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it returns an lm object that can be captured and used later by plotting func-
tions.

Once the model is fit, there are several ways of exploring the fitted surface.
The first way to explore is to look at a contour plot over the simplex region.
This is accomplished by using the MixturePlot function in the mixexp pack-
age. This is illustrated in the code below and the result is shown in Figure
11.12. The mod = 2 option in the function call specifies the quadratic model.
Other options are 1 for linear and 3 for special cubic. Contour plots of other
more complicated models can be made with the ModelPlot function in the
mixexp package (Lawson and Willden, 2014).

> library(daewr)

> data(pest)

> MixturePlot(des = pest,mod = 2)

Figure 11.12 Contour Plot of Quadratic Model Predictions
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This figure shows that mixtures with lower surface tension can be found on the
left, along the axis where blends of emulsifiers x1 and x2 are found. The lowest
surface tension is at the top vertex, where x1 = 1.0. There, the surface tension
is slightly less than 49 dyne/cm. Moving to the lower left where x2 = 1.0,
the surface tension increases slightly to just over 50 dyne/cm. However, if the
proportion of emulsifier x3 is increased, the surface tension begins to increase
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dramatically until it reaches the maximum where x3 = 1.0. There the surface
tension is over 62.5 dyne/cm.

Another way to visualize the fitted equation is to look at the effect plot .
This is a very useful tool that allows the user to see the response trace along
the direction through the simplex introduced by Cox (1971) and illustrated
in Figure 11.13. This tool plots the predicted value of the response along
the directions shown in Figure 11.13. It is also very useful in visualizing the
results of varying the mixture components when there are more than three
components in the mixture, and the results cannot be displayed as a single
contour plot.

Figure 11.13 Cox Directions through Three-Dimensional Simplex
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The code for making the Effect Plot using the EffPlot function in the
mixexp package is shown below, and the plot is shown in Figure 11.14.

> EffPlot(des=pest,mod=2,dir=1)

The option dir = 1 in the function call specifies the response traces are to
be made along the Cox direction. The other option is 2 for a response trace
along the Piepel (Piepel, 1982) direction.

In this plot, it can again be seen that increasing the proportion of emulsifier
x2 has relatively little effect. Increasing the proportion of emulsifier x1 has a
slightly negative effect on surface tension, and increasing the proportion of
emulsifier x3 causes a large increase in surface tension. Therefore, just as can
be seen on the contour plot, the conclusion reached by looking at the effect
plot would be to choose 100% of emulsifier x1 or a blend of emulsifiers x1 and
x2 to reach the lowest levels of surface tension.

In mixture experiments with several components, it is important to deter-
mine which components are most influential. This can simplify the problem
and allow the experimenters to focus on optimization with respect to the most
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Figure 11.14 Effect Plot along the Cox Direction for a Quadratic Model Fit to Pes-
ticide Data
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important components. Since the coefficients in the models for mixture exper-
iments do not represent effects in the same way as they do for independent
factors, tests of the significance of linear coefficients in the model are not a
good way to determine the important components. However, the effect plot is
a good tool to use for this purpose. When a linear design is used as a screen-
ing experiment for several components, and the Scheffé linear model is fit to
the data, the response traces will be straight lines and the least important
components will have traces with relatively flat slopes, while the important
components will have traces with steep slopes. Thus, the response trace plots
can be used as a graphical tool to determine the important components similar
to the way that the normal or half-normal plot of effects is used for screening
experiments with independent factors. Cornell (2002) and Snee and Marquardt
(1976) discuss other strategies for screening with mixture experiments.

When fitting the model 11.7 or 11.9 with lm function, the mixture that pro-
duces the maximum or minimum response can also be also found numerically
using constrOptim function as shown in Section 10.7.4.

11.5 Constrained Mixture Experiments

In some mixture experiments, it is impossible to test pure components. For
example, fuel for solid rocket boosters is a mixture of binder, oxidizer, and fuel,
and it must contain a percentage of each. Proportions can be varied but must
remain within certain constraints in order for the propellant to work. Kurotori
(1966) described an example of this situation where experiments with rocket
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propellent were performed. In that case, x1: the binder, had to be at least 20%
of the mixture; x2: the oxidizer, could be no less than 40% of the mixture;
and x3: the fuel, had to comprise at least 20% of the mixture. This leads to
three new constraints shown in Equation (11.16), and the experimental region
is restricted to the shaded subset of the simplex shown in Figure 11.15.

x1 ≥ 0.20

x2 ≥ 0.40

x3 ≥ 0.20 (11.16)

Figure 11.15 Constrained Region for Rocket Propellant Experiment
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When each mixture component only has a lower constraint as shown in Fig-
ure 11.15, the constrained region (if consistent) will always be a smaller sim-
plex within the original simplex as shown in the figure. The component space
within this smaller simplex can be conveniently transformed into a pseudo-
component space where the same simplex-lattice and simplex-centroid designs
can be used for an experimental design. If the lower constraint for mixture
component xi is defined to be li, then the ith pseudo component is defined to
be

x′i =
xi − li

1 −∑
k
i=1 li

, (11.17)

where k is the number of mixture components. A simplex-lattice design can
be constructed in the pseudo components and the actual mixtures to be tested
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can then be obtained by solving Equation (11.17) for xi as

xi = li + (1 −
k

∑
i=1

li)x
′
i. (11.18)

For example, Table 11.2 shows an SLD{3,2} design in pseudo components
translated into a design with the actual components for the rocket propellent
experiment using the lower bounds given in Equation (11.16). The experiments
were run by making each mixture of fuel oxidizer and binder, then measuring
the resulting elasticity. The general quadratic or special cubic model can be
fit to either the pseudo or actual components.

Table 11.2 Simplex-Lattice Design in Pseudo and Actual Components

Pseudo Actual
Component Component Response

Run x′1 x′2 x′3 x1=Fuel x2=Oxidizer x3=Binder Elasticity
1 1 0 0 0.400 0.400 0.200 2350

2 0 1 0 0.200 0.600 0.200 2450

3 0 0 1 0.200 0.400 0.400 2650

4 1
2

1
2

0 0.300 0.500 0.200 2400

5 1
2

0 1
2

0.300 0.400 0.300 2750

6 0 1
2

1
2

0.200 0.500 0.300 2950

7 1
3

1
3

1
3

0.266 0.466 0.266 3000

11.5.1 Upper and Lower Constraints

In some special cases when there are only upper constraints or both upper and
lower constraints, the constrained experimental region will result in a smaller
inverted simplex within the simplex component space. However, in the more
common situation, the constrained region will be an irregular hyperpolyhe-
dron. In this case, McLean and Anderson (1966) recommend a design that
consists of the extreme vertices (EVD) of the experimental region, possibly
augmented by edge and facet centroids. They propose an algorithm for finding
the extreme vertices by forming a two-level factorial in k − 1 mixture compo-
nents (using the lower and upper constraints as levels), then setting the kth
component equal to one minus the sum of the other k − 1 components. Each
point in this factorial, where the computed value of the kth component falls
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within its lower and upper constraints, is an extreme vertex. All the extreme
vertices can be found by repeating this procedure using all possible subsets of
k − 1 mixture components for the two-level factorial.

Once the extreme vertices of the experimental region are found, the coor-
dinates of the edge centroids can be found by first locating all vertices with
a constant value for one component (i.e., two points on an edge) then aver-
aging the other components. The centroids of two-dimensional facets can be
found by first finding all vertices where two components are constant and then
averaging the remaining k − 2 components, and so forth.

Snee and Marquardt (1974) defined the XVERT algorithm for finding the
extreme vertices, which is similar to McLean and Anderson’s algorithm, and
Piepel (1988) published FORTRAN code for finding extreme vertices and
centroids. When there are many components in the mixture problem, there
may be many more extreme vertices in the experimental region than there
are coefficients in the Scheffé linear or quadratic model. In that case Snee and
Marquardt (1974) recommended choosing the A-optimal subset of the extreme
vertices that minimizes the trace of the (X ′X)−1 matrix.

Piepel’s (1988) FORTRAN code to generate the vertices and centroids of a
multi-constrained experimental region has been incorporated into the Xvert

function in the mixexp package. To illustrate the use of this function, con-
sider a problem studied by Barbuta and Lepadatu (2008). They investigated
mechanical properties such as compressive strength, flexural strength, and
adhesion stress of polymer concrete. Polymer concrete (PC) has many uses:
precast components for buildings, bridge panels, repair of structural mem-
bers, waterproofing, and decorative overlay of pavements. Polymer concrete is
formed by binding aggregates together with a resin that reacts with a hard-
ener. The relatively high cost of PC led Barbuta and Lepadatu (2008) to study
ways of reducing the dosage of polymer in the mix without diminishing the
mechanical properties. The mixture components they studied were x1 :Epoxy
resin, x2: Silica Fume (SUF), x3 :Aggregate Sort I, and x4: Aggregate Sort II.
Constraints on the mixture components are shown in Equation (11.19) below.

0.124 ≤ x1 ≤ 0.188

0.064 ≤ x2 ≤ 0.128

0.374 ≤ x3 ≤ 0.438

0.374 ≤ x4 ≤ 0.438 (11.19)

The Xvert function call on the next page shows how to create a data frame
containing the extreme vertices. By default the last line in the data frame is
the overall centroid. The two vectors uc and lc contain the upper and lower
constraints for each component.
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> library(mixexp)

> Xvert(4,uc=c(.188,.128,.438,.438),lc=c(.124,.064,.374,.374))

x1 x2 x3 x4 dimen

1 0.124 0.064 0.374 0.4379999 0

2 0.188 0.064 0.374 0.3740000 0

3 0.124 0.128 0.374 0.3740000 0

4 0.124 0.064 0.438 0.3740000 0

5 0.140 0.080 0.390 0.3900000 3

An optional argument ndm can be included in the Xvert function call that
specifies the maximum order of centroids to be generated. The overall centroid
is always included but, by including ndm = 1 edge centroids will be added, and
by including ndm = 2 face centroids will be added, and so forth. For example,
the code below finds the four extreme vertices shown in the listing above, plus
the six edge centroids and the overall centroid.

> library(mixexp)

> Xvert(4,uc=c(.188,.128,.438,.438),lc=c(.124,.064,.374,.374),

+ ndm=1)

x1 x2 x3 x4 dimen

1 0.124 0.064 0.374 0.4379999 0

2 0.188 0.064 0.374 0.3740000 0

3 0.124 0.128 0.374 0.3740000 0

4 0.124 0.064 0.438 0.3740000 0

5 0.124 0.064 0.406 0.4060000 1

6 0.124 0.096 0.374 0.4060000 1

7 0.124 0.096 0.406 0.3740000 1

8 0.156 0.064 0.374 0.4060000 1

9 0.156 0.064 0.406 0.3740000 1

10 0.156 0.096 0.374 0.3740000 1

11 0.140 0.080 0.390 0.3900000 3

For many constrained mixture problems, the number of extreme vertices
and edge centroids will be much greater than the number of coefficients in
the Scheffé quadratic model. To reduce the number of mixtures and still allow
fitting a quadratic model to the resulting data, a D-optimal subset can be
selected using the optFederov function in the AlgDesign package as shown in
the example below. In this example, a 12-run D-optimal subset of 15 mixtures
in the data frame exvert will be output to the data frame desMix$design.

> library(mixexp}

> exvert<-Xvert(4,uc=c(.188,.128,.438,.438),lc=c(.124,.064,.374,

+ .374), ndm=2)

> library(AlgDesign)

> desMix <- optFederov(~ -1 + x1 + x2+ x3 + x4 + x1:x2 + x1:x3 +

+ x1:x4 + x2:x3 + x2:x4 + x3:x4 ,data = exvert, nTrials = 12)
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The model formula in the optFederov function call specifies no intercept
and the Scheffé quadratic model. If the constraint equations such as Equation
(11.19) are inconsistent, there will be no feasible points within the constrained
region. In that case, Xvert will report the message “There are inconsistent

constraints”.
When there are only three mixture components Xvert not only finds a

design composed of vertices and centroids, but it also graphs the feasible
region and design points. For example, consider the three-component mixture
studied by Juan et al. (2006).

They studied consumer acceptance of polvoron composed of a mixture of
x1: sugar, x2: peanut fines, and x3: butter. Polvoron is a Philippine ethnic
dessert or candy usually composed of milk powder, toasted flour, sugar, and
butter. Ground nuts can be added to vary its flavor and texture properties. If
acceptable to consumers, utilizing peanut fines (which are usually a discarded
byproduct of the roasted peanut process) in polvoron could reduce waste and
create an additional product line. The constraints on the mixture space are
shown in Equation (11.20).

0.00 ≤ x1 ≤ 0.80

0.10 ≤ x2 ≤ 0.95

0.05 ≤ x3 ≤ 0.50 (11.20)

Calling the Xvert function with the constraints listed in Equation (11.20)
produces the graph of the constrained region in Figure 11.16.

Figure 11.16 Constrained Region for Peanut Fine Polvoron Experiment
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Table 11.3 shows data from the article. They left out the edge centroid at
the top of Figure 11.16, and replicated the overall centroid. The response,
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overall liking, was the average ranking of 115 taste panelists who ranked the
mixtures on a 9-point scale where 1 = dislike extremely, 5 = neither like nor
dislike, and 9 = extremely like. Three additional mixtures in the interior of the
simplex (that are not shown in the table) were also tested to help discriminate
between possible models for the data.

Table 11.3 Data from Polvoron Mixture Experiment

Overall
Run x1 x2 x3 Liking

1 vertex 0.800 0.150 0.050 5.33
2 edge cent. 0.400 0.550 0.050 5.87
3 vertex 0.000 0.950 0.050 3.69
4 edge cent. 0.000 0.725 0.275 3.83
5 vertex 0.000 0.500 0.500 3.85
6 edge cent. 0.200 0.300 0.500 5.23
7 vertex 0.400 0.100 0.500 5.68
8 edge cent. 0.600 0.100 0.300 5.88
9 vertex 0.800 0.100 0.100 5.75

10 centroid 0.400 0.360 0.240 6.54
11 centroid 0.400 0.360 0.240 6.82
12 centroid 0.400 0.360 0.240 6.41

Since there are only seven coefficients in the special cubic model, only a
subset of the total runs produced by Xvert are needed to estimate all the
model coefficients. For example, a D-optimal subset can be created using the
optFederov function as shown below, and the resulting constrained region
and design points can be graphed using the DesignPoints function in the
package mixexp. The option pseudo=TRUE in the call to the DesignPoints (or
the Xvert function) will cause the plot to zero in on the pseudo component
region as shown in Figure 11.17.

> library(mixexp)

> des<-Xvert(3,uc=c(.8,.95,.50),lc=c(0,.10,.05),ndm=1,

+ plot=FALSE)

> library(AlgDesign)

> desPolv <- optFederov(~ -1 + x1 + x2+ x3 + x1:x2 + x1:x3

+ + x2:x3 + x1*x2*x3, des ,nTrials=9)

> DesignPoints(desPolv$design, x1lower = 0, x1upper = .8,

+ x2lower = .1, x2upper = .95, x3lower = .05, x3upper = .50,

+ pseudo=TRUE)

In this graph it can be seen that the D-optimal subset consists of the eight
most spread-out design points around the perimeter of the design region plus
the overall centroid.
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Figure 11.17 Design Points for D-Optimal Design for Special Cubic Model for
Polvoron Experiment
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11.5.2 Analysis of Constrained Mixture Experiments

The models used to analyze constrained mixture experiments are the same
as those used for unconstrained problems, unless one of the constraints is an
equality (such as an ionic balance constraint). In that case the constraint must
be incorporated into the model, resulting in a loss of dimension (see Schrevens
and DeRijck, 2008, for an example).

Analysis of the data in Table 11.3 with standard Scheffé models will be
illustrated using R. The code below shows how to fit the model with the lm

function. The data in Table 11.3 is stored in the data frame polvdat in the
daewr package.

> library(daewr)

> data(polvdat)

> sqm <- lm(y ~ x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3 +

+ x1:x2:x3 -1, data = polvdat)

> summary(sqm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

x1 4.4259 0.4483 9.873 0.000182 ***

x2 3.5181 0.3079 11.427 8.99e-05 ***

x3 1.2367 1.6150 0.766 0.478400

x1:x2 6.9004 2.0179 3.420 0.018846 *

x1:x3 8.9528 4.1427 2.161 0.083071 .

x2:x3 5.3135 3.4988 1.519 0.189310

x1:x2:x3 25.5460 11.2023 2.280 0.071499 .

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Although two quadratic terms and the third order term are insignificant,
the model fits the data well since a lack-of-fit is insignificant. The reduced
model that included only the terms x1, x2, x3, and x1x2 had an adjusted R2

of 0.754 compared to 0.9516 shown for the special cubic model, and it fit worse
at three interior checkpoints that were made by the experimenters to check
the model. These checkpoints are not shown in Table 11.3.

Figure 11.18 shows a contour plot over the constrained region produced
by the MixturePlot call shown below. In this call the option constrts=TRUE

adds the constraint lines to the plot, and the option pseudo=TRUE restricts the
region to the pseudo component space bounded by the lower constraints on
all components. The lims=c(0,.8,.1,.95, .05, .50) option supplies the
constraint lines to the function.

> MixturePlot(des = polvdat, mod = 3, lims=c(0,.8,.1,.95, .05,

+ .50), constrts=TRUE, pseudo=TRUE)

Figure 11.18 Contour Plot in Restricted Pseudo Component Region
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The conclusion the authors reached (that can be verified with Figure 11.18)
was that mixtures containing 40–54% sugar (x1), 22–36% peanut fines (x2),
and 24% butter (x3) would have consumer acceptance ratings greater than
6.0.
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11.6 Blocking Mixture Experiments

Whenever experimental units for a mixture experiment (which may simply
be the conditions that exist at the time a mixture is made and tested) are
not homogeneous, a blocked design should be used. Levels of a blocking factor
could include things such as the batches of mixture components or the times or
different pieces of equipment used to test and measure a response. If runs can
be blocked into groups that are large enough to include a complete replicate
of the mixture experiment, a complete block design can be utilized. On the
other hand, if the block size is smaller than a complete replicate of the mixture
design, some kind of incomplete block design must be used.

In the discussion of incomplete block designs for 2k factorials in Section 7.6
and of standard response surface experiments in Section 10.8, an important
feature of the blocked design was to have the blocks orthogonal to the coded
factor levels. In this way, the factor effects were unconfounded with the block
effects or unaffected by the block differences. It is more difficult to achieve
orthogonal incomplete block designs for mixture experiments because, except
for the SLD{k,1}, the mixture designs themselves are not orthogonal.

If a mixture experiment in which N not necessarily unique mixture blends
are to be arranged in t blocks, where the wth block contains nw blends and
n1 + n2 + ⋯ + nt = N , then Nigam (1970), Nigam (1977), and John (1984)
suggested conditions on the moments that ensure orthogonal blocks. For the
Scheffé second-degree model these conditions are

nw

∑
u=1

xui = ci for each block, i = 1,2, . . . , k

nw

∑
u=1

xuixuj = cij for each block, i, j = 1,2, . . . , k; i ≠ j. (11.21)

This means that the sum of proportions for component i must be the same
value, ci, in each of the blocks, but it is not necessary that c1 = c2, . . . = ck;
and the sum of the products of proportions for components i and j are the
same within each block, but it is not necessary that cij = ci′j′ .

Cornell (2002) presented an example of an orthogonally blocked mixture
design in three components (shown in Table 11.4). From this table, it can be
verified that the conditions shown in Equation (11.21) hold, and this design
can be visualized in Figure 11.19. The first block consists of all the mixtures in
an SLD{3,2} design, and the second block consists of an SLD{3,1} augmented
with three axial points. While the order of making and testing the mixtures for
designs presented earlier in this chapter should be conducted in a completely
random order, the mixtures in Table 11.4 should be run one block at a time
randomizing the order within the blocks.

Orthogonal block designs can also be created for constrained mixture prob-
lems. For a three-component constrained mixture problem, where each com-
ponent has the same upper and lower bounds (U, L) and the design region is



474 MIXTURE EXPERIMENTS

Table 11.4 Orthogonally Blocked Simplex-Lattice Design Augmented by Axial Points

Block 1 Block 2
Run x1 x2 x3 x1 x2 x3

1 1 0 0 1 0 0
2 0 1 0 0 1 0
3 0 0 1 0 0 1
4 1

2
1
2

0 2
3

1
6

1
6

5 1
2

0 1
2

1
6

2
3

1
6

6 0 1
2

1
2

1
6

1
6

2
3

Figure 11.19 Diagram of Design in Table 11.4

hexagonal as shown in Figure 11.20, Cornell (2002) showed that an orthog-
onally blocked mixture design can be created using the two Latin squares
shown in Table 11.5.

In this table, the Latin-square treatment indicator A refers to the common
lower constraint (L), B refers to the common upper constraint (U), and C
the mid-point between A and B. Again, it can be verified that the conditions
shown in Equation (11.21) hold for Table 11.5 when the upper and lower
constraints are such that the constrained region is a hexagon. A centroid of
the constrained region is added to each block so that all six coefficients in
the Scheffé quadratic model can be estimated. Figure 11.20 shows that the
extreme vertices of the constrained region are divided between the two blocks
and a centroid is added to each block.

Other designs have been derived for orthogonally blocked constrained and
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Table 11.5 Orthogonally Blocked Constrained Mixture Using
Latin Squares

Block 1 Block 2
Blend x1 x2 x3 Blend x1 x2 x3

1 A1 B C 4 A C B
2 B2 C A 5 B A C
3 C3 A B 6 C B A

centroid D4 D D centroid D D D
1 A=Lower Constraint
2 B=Upper Constraint
3 C=(1–A–B)
4 D=(A+B+C)/3

Figure 11.20 Orthogonally Blocked Constrained Mixture Design

11 =x

12 =x 13 =x

Block 1 Block 2

L

U

unconstrained mixture experiments. Cornell (2002) summarizes many of these,
but he also states that the number of practical designs that satisfy Equation
(11.21) are rare.

Another approach to find blocked mixture designs that can be accomplished
easily with R is to find a Ds-optimal design using the optFederov function
in the AlgDesign package (this is similar to what was done for response sur-
face designs in Section 10.8). Atkinson et al. (2007) show several examples
of D-optimal blocked mixture experiments. Although D-optimal blocked de-
signs are not orthogonally blocked, Goos and Donev (2006) show that they
are actually more efficient in the sense of reducing variances of the estimated
coefficients, and they can be created for a wide variety of situations. For exam-
ple, the code below shows how to create an unconstrained mixture experiment
in three components blocked into two blocks of four. In this example, a set of
candidate mixtures is created using a simplex-lattice{3,2} design or SLD{3,2}
(created by the SLD function in the mixexp package).
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> library(mixexp)

> indes <- SLD(3, 2)

> library(AlgDesign)

> bdesign <- optBlock(~ -1 + x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3,

+ indes, rep(4,2), criterion = "Dpc", nRepeats = 1000)

The D-optimal design is not unique, but it always consists of points around
the perimeter of the simplex, as shown in Figure 11.21, rather than including
interior points, as did the orthogonally blocked design shown in Figure 11.19.

Figure 11.21 D-Optimal Blocked Mixture Experiment
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By changing the file of candidate mixtures, D-optimal blocked designs for
constrained mixture experiments can also be created easily. To illustrate this,
consider the example presented by Goos and Donev (2006). The experiment
investigated the surface adhesive properties of polypropylene used in the Bel-
gian car industry. The mixture components were x1: talcum, x2: mica, and
x3: polypropylene. The following constraints applied:

0.0 ≤x1 ≤ 0.1

0.0 ≤x2 ≤ 0.1

0.0 ≤ x1 + x2 ≤ 0.15 (11.22)

Ten tests could be run in 2 days, so the experiment had to be blocked in two
sets of five.

The last constraint is not a simple upper or lower bound, and therefore a list
of extreme vertices cannot be constructed using the Xvert function. However,
the crtave function in the mixexp package can create a matrix of extreme
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vertices and the centroid of the region bounded by Equation (11.22). The
crvtave function finds extreme vertices of a region bounded by constraints of
the form A1x1 +A2x2 +⋯ +Akxk +A0 ≥ 0, and takes as input a matrix A of
the form:

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A11 A12 ⋯ A10

A21 A22 ⋯ A20

⋯

⋯

⋯

An1 An2 ⋯ A0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where n is the number of constraints. For example, the constraints in Equation
(11.22) can be written in the form:

1 × x1 + 0 × x2 + 0 × x3 + 0 ≥ 0

−1 × x1 + 0 × x2 + 0 × x3 + 0.1 ≥ 0

0 × x1 + 1 × x2 + 0 × x3 + 0 ≥ 0

0 × x1 + −1 × x2 + 0 × x3 + 0.1 ≥ 0

−1 × x1 + −1 × x2 + 0 × x3 + 0.15 ≥ 0

The code below creates a candidate file of extreme vertices and interior
points, using the crvtave, and Fillv functions from the package mixexp.
The output of crvtave is a matrix and had to be transformed to a data
frame before calling the Fillv function, which averages all pairs of points
in the data frame to come up with additional interior points. Finally, the
optBlock function in the AlgDesign package was used, as in the example
above, to create a blocked design.

> conmx <- matrix(c(1, 0, 0, 0,

-1, 0, 0, .1,

0, 1, 0, 0,

0,-1, 0, .1,

-1,-1, 0, .15),nrow=5,byrow=TRUE)

> library(mixexp)

> ev <- crvtave(0, conmx)

> evd <- data.frame(ev)

> cand <- Fillv(3, evd)

> library(AlgDesign)

> bdesign <- optBlock( ~ x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3 -1,

+ cand, rep(5, 2), criterion ="D", nRepeats = 1000)
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11.7 Mixture Experiments with Process Variables

In some mixture experiments, the qualities or characteristics of the product
are influenced by process variables in addition to the proportions of the mixing
components. For example, the strength of carbide ceramics used in advanced
heat engines depends not only on the proportions of the mixture components
but also on the sintering time and sintering temperature. In mixture experi-
ments involving process variables, or MPV experiments, let zl represent the
coded level of the lth process variable. When there are three mixture com-
ponents and one process variable z1, the experimental region changes from a
simplex like that shown in Figure 11.2 to a prism, as shown in Figure 11.22.

Figure 11.22 Experimental Region with Three Mixture Components
and One Process Variable
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As an example of a mixture experiment with a process variable, or MPV,
consider the situation studied by Chau and Kelly (1993). They studied the
opacity of a printable coating material used for identification labels and tags.
The coating material was a mixture of two pigments, x1 and x2, and a poly-
meric binder (x3). The opacity of the coating was not only influenced by the
mixture of the three components, but also by the thickness of the coating (z).
Constraints on the component proportions were

0.13 ≤x1 ≤ 0.45

0.21 ≤x2 ≤ 0.67

0.20 ≤x3 ≤ 0.34

If two levels (−1 and +1) of the coded process variable z are used, an
appropriate experimental design would consist of the extreme vertices and
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edge centroids of the mixture space crossed with each level of the process
variable.

This list can be easily created with the code below. The Xvert function
creates the data frame ev that contains a list of the extreme vertices of the
mixture region including the edge centroids and the overall centroid. The next
three statements delete the overall centroid, and repeats each line of ev at the
low and high levels of the process variable z. The results are output to the
data frame mp.

> library(mixexp)

> ev<-Xvert(3, uc=c(.45,.67,.34),lc=c(.13,.21,.20), ndm=1)

> mp <- subset(ev, dimen <= 1)

> mp <- rbind(mp, mp)

> z <- c( rep(-1, 8), rep(1, 8))

> mp <- cbind( z, mp )

> mp

z x1 x2 x3 dimen

1 -1 0.45 0.21 0.34 0

2 -1 0.13 0.67 0.20 0

3 -1 0.45 0.35 0.20 0

4 -1 0.13 0.53 0.34 0

5 -1 0.13 0.60 0.27 1

6 -1 0.45 0.28 0.27 1

7 -1 0.29 0.51 0.20 1

8 -1 0.29 0.37 0.34 1

9 1 0.45 0.21 0.34 0

10 1 0.13 0.67 0.20 0

11 1 0.45 0.35 0.20 0

12 1 0.13 0.53 0.34 0

13 1 0.13 0.60 0.27 1

14 1 0.45 0.28 0.27 1

15 1 0.29 0.51 0.20 1

16 1 0.29 0.37 0.34 1

11.7.1 Models for Mixture Experiments with Process Variables

The model for a mixture experiment with process variables results from cross-
ing the model for the mixture components and the model for the process
variables. For fixed levels of the process variables, the model for the mixture
components is

ηx = f(x), (11.23)

and the model for the process variables is

ηz = g(z), (11.24)
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where f(x) is the Scheffé linear, quadratic, or cubic mixture model, and g(z)
is the linear or general quadratic model for independent factors. The combined
model is then found as the cross-product ηxz = (f(x)) × (g(z)). For example,
assuming a quadratic mixture model for the coating experiment where there
were three mixture components and one two-level process variable,

f(x) = β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3,

and
g(z) = α0 + α1z.

The combined model is

ηxz =β1(z)x1 + β2(z)x2 + β3(z)x3 + β12(z)x1x2 + β13(z)x1x3

+ β23(z)x2x3, (11.25)

where βi(z) = βi × (α0 + α1z).

Multiplying the terms we can write this model as:

ηxz =γ
0
1x1 + γ

0
2x2 + γ

0
3x3 + γ

0
12x1x2 + γ

0
13x1x3 + γ

0
23x2x3+

γ1
1x1z + γ

1
2x2z + γ

1
3x3z + γ

1
12x1x2z + γ

1
13x1x3z + γ

0
23x2x3z, (11.26)

where γ0
i = βi × α0 and γ1

i = βi × α1.
In this model, the first six terms represent the linear and quadratic blending

of the mixture components since these terms involve only the mixture com-
ponents. The last six terms in the model represent the changes in the linear
and quadratic blending effects caused by changes in the process variable.

If the process variable has a constant effect on the response, which would
cause the same change in all blends of the mixture components, there is no
term in model 11.26 that can represent the constant effect of the process
variable. Gorman and Cornell (1982) have suggested an alternate form of the
model substituting (1 − x2 − x3) for x1 in the term γ1

1x1z, resulting in the
model

ηxz =γ
0
1x1 + γ

0
2x2 + γ

0
3x3 + γ

0
12x1x2 + γ

0
13x1x3 + γ

0
23x2x3+

γ1
1z + γ

2
2x2z + γ

2
3x3z + γ

1
12x1x2z + γ

1
13x1x3z + γ

0
23x2x3z, (11.27)

where γ2
i = γ1

i − γ
1
1 for i = 2,3. If the process variable has a constant effect

on the response, the last five terms in the model would be zero, and γ1
1 will

represent the constant effect of the process variable.
Another model that allows isolation of process variable effects can be ob-

tained by first translating the mixture components (x1, x2,and x3) to indepen-
dent factors (w1,w2) as shown in Section 11.2.2, then writing the combined
model as the cross-product of the model for the w’s and the z’s.
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11.7.2 Multiple Process Variables and Mixture Components

Figure 11.23 shows the design for an MPV with three mixture components
and two process variables. The 6-run SLD{3,2} for the mixture components is
crossed with a 4-run 22 design in the process variables, resulting in a product
array of 6 × 4 = 24 experiments. The runs in the design can be represented
graphically as a 22 design with a simplex-lattice repeated at each corner, as
shown on the left side of the figure, or as a simplex-lattice with a 22 design
repeated at each lattice point as shown on the right side of the figure.

Figure 11.23 Experimental Region with Three Mixture Components and Two Process
Variables

This design can be easily created in R by repeating the six runs of the simplex-
lattice (created by the SLD function) at each run of a 22 factorial (created by
expand.grid function) as shown in the code below.

> library(mixexp)

> sld <- SLD(3, 2)

> id <- c( rep(1, 6), rep(2, 6), rep(3, 6), rep(4, 6))

> sldl <- rbind(sld, sld, sld, sld)

> sldl <- cbind(sldl, id)

> facdes <- expand.grid(z1 = c(-1, 1),z2 = c(-1, 1))

> id <- c(1, 2, 3, 4)

> facdes <- cbind(facdes, id)

> comdes <- merge(sldl, facdes, by = "id", all = TRUE)

The design created by repeating or crossing the 6-run SLD{3,2} at each of
the points in a 22 factorial is reasonable for two mixture components and
two process variables, but as the number of mixture components and pro-
cess variables increases, cross-product designs can become unwieldy. For ex-
ample, if there are four mixture components and five process variables, the



482 MIXTURE EXPERIMENTS

simplex-lattice{4,2} design has only 10 runs, but the 25 design in the process
variables has 32 runs, and the cross-product design has 320 runs.

In most industrial experimentation, restrictions due to time and cost pro-
hibit such large designs. Cornell and Gorman (1984) proposed running frac-
tions of the 2p design in the process variables. Linear designs in the mixture
components can also be employed to reduce the total number of runs. For ex-
ample, in the case of four mixture components and five process variables, if an
8-run resolution III fractional factorial in the process variables is substituted
for the 25 design, and a 4-run SLD{4,1} is substituted for the SLD{4,2}, the
total number of experiments could be reduced to 4 × 8 = 32 and would allow
for fitting the model

ηxz =γ
0
1x1 + γ

0
2x2 + γ

0
3x3 + γ

0
4x4+

γ1
1x1z1 + γ

1
2x2z1 + γ

1
3x3z1 + γ

1
4x4z1+

γ2
1x1z2 + γ

2
2x2z2 + γ

2
3x3z2 + γ

2
4x4z2+

γ3
1x1z3 + γ

3
2x2z3 + γ

3
3x3z3 + γ

3
4x4z3+

γ4
1x1z4 + γ

4
2x2z4 + γ

4
3x3z4 + γ

4
4x4z4+

γ5
1x1z5 + γ

5
2x2z5 + γ

5
3x3z5 + γ

5
4x4z5

But, this model only allows for linear blending and seeing how the predicted
response at the pure components (as shown in Figure 11.4) is affected by
the process variables. On the other hand, if the experimenter can propose
a reasonable model to investigate, an economical design can be found using
optimal design theory.

For example, the 40-term model in Equation (11.28), on the next page, is
a subset of the terms in an expanded version of Equation (11.27) that was
proposed by Kowalski et al. (2000). Equation (11.28) includes the quadratic
mixture model as well as interactions among the main effects of the process
variables and interactions between the main effects of the process variables and
the linear blending terms of the mixture components. In their article, Kowalski
et al. (2000) considered a simple situation with three mixture components
and two process variables, and they proposed two specific designs to allow
fitting their proposed model (that included quadratic process variable effects
in addition to the terms in Equation (11.28)). Their designs performed well in
terms of D-efficiency for the specific situation with three mixture components
and two process variables, but for the more general case, a D-optimal search
will find a reasonable design.
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45x5z5 (11.28)

At least 40 experiments must be performed to collect the data necessary for
estimating the coefficients in model 11.28, and a 44-run D-optimal set can
be easily obtained using the optFederov function as shown in the commands
below. The first two statements in this code loads the mixexp package, then
creates the 10-run SLD{4,2} design. The next nine statements make 32 copies
of the SLD{4,2} design with a unique id for each run in a 25 factorial design in
the process variables. The resulting data frame of candidates cand contains 320
rows. Finally, the AlgDesign package is loaded and the optFederov function
is used to select a 44-run subset (MixPro) of the candidates that is D-optimal
for model 11.28.

> library(mixexp)

> sld<-SLD(4,2)

> id <- rep(1, 10)

> for (i in 2:32) {id <- c(id, rep(i, 10))}

> sldm<-sld

> for (i in 2:32) { sldm <- rbind(sldm, sld) }

> sldm <- cbind(sldm, id)

> facdes <- expand.grid(z1 = c(-1, 1), z2 = c(-1, 1),

+ z3=c(-1, 1), z4 = c(-1, 1), z5 = c(-1, 1))

> id <- c(1:32)

> facdes <- cbind(facdes, id)

> cand <- merge(sldm, facdes, by = "id", all = TRUE)

> library(AlgDesign)

> MixPro <- optFederov(~ x1 + x2 + x3 + x4 + x1:x2 + x1:x3 +

+ x1:x4 + x2:x3 + x2:x4 + x3:x4 + z1:z2 + z1:z3 + z1:z4 +

+ z1:z5 + z2:z3 + z2:x4 + z2:z5 + z3:z4 + z3:z5 + z4:z5 +

+ x1:z1 + x1:z2 + x1:z3 + x1:z4 + x1:z5 + x2:z1 + x2:z2 +

+ x2:z3 + x2:z4 + x2:z5 + x3:z1 + x3:z2 + x3:z3 + x3:z4 +

+ x3:z5 + x4:z1 + x4:z2 + x4:z3 + x4:z4 + x4:z5 -1,

+ cand, nTrials = 44, criterion = "D", maxIteration = 100,

+ nRepeats=10)
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11.7.3 An Example of a Mixture Experiment with Process Variables (MPV)

To illustrate the analysis of a mixture experiment with process variables, con-
sider the problem discussed by Sahni et al. (2009). They studied a process to
produce low-fat mayonnaise. The product was a mixture of three components
x1: stabilizer, x2: starch 1, and x3: starch 2. The response they were interested
in was the viscosity of the final product that was influenced not only by the
ingredients but also by two process variables: z1: heat exchanger temperature
and z2: the flow rate through the system. The goal was to achieve a viscosity
of 3657 at the lowest cost. The constraints on the mixture components are
shown below

0.0 ≤ x1 ≤ 0.0549

0.0 ≤ x2 ≤ 0.9725

0.0 ≤ x3 ≤ 0.9725, (11.29)

and the constrained experimental region for the mixture components is shown
as the shaded region in the simplex on the left side of Figure 11.24. This figure
diagrammatically represents the subset of the authors’ experiments that we
will discuss. The dots on the constrained mixture region indicate the actual
mixtures tested. Each of these seven mixtures was tested at five combinations

Figure 11.24 Design for Mayonnaise Formulation Experiment

x2=starch 1

x1=stabilizer

x3=starch 2

3
54

2
7 1 6

z1=Temp Heat 
Exchanger

z2=Flow Rate

of the two process variables as shown in the right side of Figure 11.24, resulting
in a total of 7 × 5 = 35 experiments. A Scheffé quadratic model was used for
the mixture components, and the model ηz = α0+α1z1+α2z2+α12z1z2 for the
process variables. By crossing the two models, the resulting combined model
is
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The viscosity measurements in Pa⋅s for the 35 experiments are shown in
Table 11.6.

Table 11.6 Viscosity Response Measurements (Pa⋅s) for Mixture-Process Variable
Experiment with Mayonnaise

Mixture Components Process Variables Factorial + Center
# x1 x2 x3 (−1,1) (1,1) (−1,−1) (1,−1) (0,0)

1 0.0241 0.6018 0.3741 3010 3480 2780 4100 3840
2 0.0275 0.9725 0 8510 5670 7060 5210 6320
3 0.0275 0 0.9725 1600 2580 1660 2440 2210
4 0 0.6667 0.3333 4560 4350 3990 4130 5210
5 0 0.3333 0.6667 1930 3080 1810 3340 2600
6 0.0549 0.63 0.3151 1900 4740 2160 4330 2780
7 0.0549 0.3151 0.63 1780 3750 2000 3350 3140

The data in Table 11.6 is in the data frame MPV in the daewr package and
the code to retrieve the data and fit the combined model to the data are
shown below. This model could also be fit with the MixModel function (with
the option model=5) to produce the correct R2.

> library(daewr)

> data(MPV)

> modmp <- lm(y ~ x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3 +

+ x1:z1 + x2:z1 + x3:z1 + x1:x2:z1 + x1:x3:z1 +x2:x3:z1 +

+ x1:z2 + x2:z2 + x3:z2 + x1:x2:z2 + x1:x3:z2 + x2:x3:z2 +

+ x1:z1:z2 + x2:z1:z2 + x3:z1:z2 + x1:x2:z1:z2 + x1:x3:z1:z2 +

+ x2:x3:z1:z2 -1, data=MPV)

> summary(modmp)

Since the target viscosity of 3657 Pa⋅s is within the constrained mixture region
for all combinations of the process variables, the processing cost can be reduced
by first choosing to run at the lowest heat exchanger temperature (z1 = −1



486 MIXTURE EXPERIMENTS

in coded units) and the fastest flow rate (z2 = +1 in coded units). By setting
z1 = −1 and z2 = +1, the fitted equation simplifies to

Predicted viscosity =229186.40x1 + 11487.06x2 + 817.8356x3 − 346975x1x2

− 194919x1x3 − 12628.5x2x3.

Additional costs were incurred for the three raw materials and they could
be summarized in the simple equation shown below (in units of Norwegian
Kroner, NOK), where mixture component x1: stabilizer is the most costly
ingredient.

Raw Material Cost = 54.59x1 + 5.69x2 + 7.49x3

To find the mixture combination that minimizes cost while meeting the tar-
get viscosity, nonlinear optimization similar to the example shown in Section
10.7.4 can be used. The constrOptim function in R can find the minimum of
a function subject to the constraints given in the matrix equation u′

i
x−ci ≥ 0.

In this example, the boundary constraints in Equation (11.29) can be written
in the matrix equation when:

ui =
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1 0
0 1
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⎟
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⎟
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. (11.30)

The constraint that the predicted viscosity is 3657 can be included in the
objective function to be minimized in the same way the cost constraint was
added to the objective function in Section 10.7.5. The code to do this is shown
below.

> cosvis<-function(x) {

+ x1 <- x[1]

+ x2 <- x[2]

+ x3 <- 1-(x1+x2)

+ f <- (54.59 * x1 + 5.69 * x2 + 7.49 * x3) +

+ abs(229186.4 * x1 + 11487.06 * x2 + 817.8356 * x3 -

+ 346975 * x1 * x2 - 19419 * x1 * x3 - 12628.5 * x2 *

+ x3-3657) }

> ui <- t(matrix(c(1, 0, 0, 1, -1, 0, 0, -1, 1, 1, -1, -1), 2, 6))

> ci <- c(0, 0, -.0549, -.9725, .0275, -1)

> constrOptim( c(.014415, .613363), cosvis, NULL, ui, ci )
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The resulting minimum cost for raw materials is 6.49 NOK at the combina-
tion of mixture components x1 = 0.0, x2 = 0.558, and x3 = 0.442, where none of
the more expensive stabilizer is used. This optimum can be visualized on the
contour plot of predicted viscosity over the constrained mixture region shown
in Figure 11.25.

Figure 11.25 Contour Plot of Viscosity at Low Temperature, High Flow Rate

X2 = 1.0
Starch 1

X3 = 1.0
Starch 2

11.8 Mixture Experiments in Split-Plot Arrangements

When running mixture experiments with process variables, experiments are
often large, and due to the combination of mixture proportions and process
variables, it may be inconvenient to run all combinations in a random order.
For example, the mayonnaise experiments were actually run by making large
batches of each of the seven mixtures on separate days; then while running
each batch through the processing equipment, the combinations of the heat
exchanger temperature and flow rate were varied. The specific mixtures were
randomized to 7 days, and the order of the processing conditions were random-
ized within a day, but the entire sequence was not randomized. Due to this
restricted randomization, the resulting experiment was actually a split-plot
experiment like those described in Chapter 8 and Section 10.9. We call the
designs for this type of an experiment a split-plot mixture process variable,
or SPMPV, experiment.

The whole-plot experimental units were days, and the sub-plot experimen-
tal units were times within a day. The terms in the quadratic Scheffé mix-
ture model were the whole-plot effects, since they were held constant within
the whole plots, and the interactions between the mixture model terms and
the process variables were the sub-plot factors. In split-plot experiments, the
proper denominator for the F -test on whole-plot effects is the whole-plot mean
square, while the proper denominator for the split-plot effects is the error mean
square. In the mayonnaise experiments, the whole plot variance component,
or day-to-day variability, was found to be negligible by the authors; therefore,
it was dropped from the model resulting in the analysis presented in the last
section.
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To illustrate how to properly analyze a split-plot mixture process variable
experiment when the whole-plot variance is not negligible, consider another
experiment presented by Kowalski et al. (2002). They modified an example
taken from Cornell (1988). The experiment involved studying the mixtures
of three plasticizers used in producing vinyl for automobile seat covers. The
response was the thickness of extruded vinyl, which was affected by two pro-
cess variables (z1: extrusion speed and z2: drying rate) in addition to the
proportions of the three plasticizers (x1, x2, and x3).

A simplex-centroid design was used for the mixture components, and a 22

factorial plus three replicate center points were used for the process variables.
In this example, the process variables were hard to change and were held
constant in blocks, while a random subset of the mixtures in the simplex-
centroid design was formulated and processed. With this scheme, the process
variables were the whole-plot effects, and the mixture components, which were
varied within each set of constant process variable settings, were the sub-plot
effects.

To combine the simplex-centroid in the mixture components, with the 22

factorial plus three replicate center points in the process variables, would
require a total of 7 × 7 = 49 runs. However, to fit a model of the form of
Equation (11.31) (the general form of Equation (11.28) proposed by Kowalski
et al. (2000)) with only k = 3 mixture components and n = 2 process variables
does not require that many experiments.

ηzx =
k

∑
i=1

βixi +∑
k

∑
i<j

βijxixj +∑
n

∑
l<m

αlmzlzm +
k

∑
i=1

n

∑
l=1

γilxizl (11.31)

The 28 experiments listed in Table 11.7 are sufficient. This table shows the
thickness measurements taken from a fractional split-plot design suggested by
Kowalski et al. (2002) for fitting a model of the form of Equation (11.31) with
three mixture components and three process variables. The table shows that
the vertices of the simplex-centroid design plus one centroid were selected to
be run in the whole plots where z1: extrusion speed was low and z2: drying
time was high (and vice versa), while the binary mixtures plus the centroid
were selected to be run in the whole plots where both process variables were
either at their high or low settings. Four replicates of the mixture centroid
were run in the three whole plots where both process variables were at their
mid-settings.

In order to get accurate estimates of the effects and their standard errors
with data from a split-plot mixture process variable experiment, the model can
be fit using the REML method with the lmer function in the lme4 package.
The code to fit the model to the data in Table 11.7 and a portion of the output
are shown on the next page.

> library(daewr)

> data(SPMPV)

> library(lme4)
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Table 11.7 Vinyl Thickness Values for Example Experiment

Mixture Component Combinations
z1 z2 (100) (010) (001) (1

2
1
2
0) ( 1

2
0 1

2
) (0 1

2
1
2
) ( 1

3
1
3

1
3
)

−1 1 10 8 3 8
1 −1 10 5 9 9
1 1 5 4 7 10
−1 −1 7 8 4 7

0 0 8, 7
7, 8

0 0 7, 8
9, 9

0 0 12, 10
9, 11

> modsp <- lmer( y ~ -1 + z1:z2 +x1 +x2+ x3 + x1:x2 + x1:x3 +

+ x2:x3 + z1:x1 + z1:x2 + z1:x3 + z2:x1 + z2:x2 + z2:x3 +

+ ( 1 | wp ), data = SPMPV )

> summary(modsp)

Random effects:

Groups Name Variance Std.Dev.

wp (Intercept) 1.5781 1.2562

Residual 1.9014 1.3789

Number of obs: 28, groups: wp, 7

Fixed effects:

Estimate Std. Error t value

x1 8.9194 1.2046 7.404

x2 5.4194 1.2046 4.499

x3 4.9242 1.2056 4.085

z1:z2 -1.1646 0.7686 -1.515

x1:x2 3.3793 4.6592 0.725

x1:x3 4.4435 4.6238 0.961

x2:x3 9.4435 4.6238 2.042

z1:x1 -2.0143 1.1435 -1.762

z1:x2 0.7357 1.1435 0.643

z1:x3 2.0154 1.1408 1.767

z2:x1 -2.0082 1.1435 -1.756

z2:x2 2.2418 1.1435 1.961

z2:x3 -0.9782 1.1408 -0.857

In the output on the previous page, it can be seen that the variance of whole-
plot experimental units is estimated as σ̂2

wp = 1.578 and the variance of sub-
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plot experimental is estimated as σ̂2
sp = 1.9014. If the standard least squares

estimates are used, rather than the REML estimates, the sub-plot effects will
be estimated inaccurately, and their standard errors will be underestimated,
as was the case for split-plot response surface designs shown in Table 10.10.

The design shown in Table 11.7 is balanced, in that the whole simplex-
centroid design in mixture components is repeated for both levels of one pro-
cess variable when the other is ignored, and it has center points at xi =

1
3

and
zj = 0 for i = 1,3 and j = 1,2, which allow for testing the goodness of fit of
model 11.31. However, Goos and Donev (2007) point out two shortcomings of
the design shown in Table 11.7. The first shortcoming is that the parameters
of interest in model 11.31 are not estimated precisely with this design because
half of the runs in the design are center points used to estimate pure error and
test lack of fit. The second shortcoming is that this design is not flexible for
practical situations in which the number of runs possible within each whole
plot may be dictated by the experimental situation. They propose alternative
tailor-made split-plot designs that can be constructed using the algorithms
of Goos and Vandebroek (2003) or Jones and Goos (2007). The algorithm of
Jones and Goos (2007) is available in the software package JMP, versions 6.0.2
and later.
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11.9 Review of Important Concepts

Mixture experiments are conducted when the response is a function of the
proportion of each component in the design rather than the total amount.
When the only restriction is that the component proportions add to one, the
simplex-lattice or simplex-centroid designs shown in Figure 11.26 are appro-
priate. These designs can be used to fit the Scheffé linear, quadratic, special

Figure 11.26 Design Selection Roadmap
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cubic, or cubic model. When there are constraints on the mixture proportions,
an extreme vertices design, or EVD, can be used, which consists of all vertices
of the constrained region possibly augmented by edge centroids. An EVD can
be created by the Xvert function in the R package mixexp. When there are
many more extreme vertices and edge centroids than there are terms in the
Scheffé model, a D-optimal subset can be selected using the optFederov func-
tion in the R package AlgDesign. These designs should be run in completely
random order. Scheffé models can be fit using standard regression procedures
like the lm function in R.

When experimental units (normally trials for mixture experiments) are not
homogeneous due to changes over time or in processing or measuring condi-
tions, the experiments should be blocked rather than being run in a completely
random order. There are two examples of orthogonally blocked mixture ex-
periments in Section 11.6, but in general they are rare. D-efficient blocked
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mixture experiments can be found using the optBlock function in the R pack-
age AlgDesign as shown in Section 11.6.

When a mixture experiment includes process variables (MPV), a design and
an appropriate model can be found by crossing the appropriate design used
for the mixture components with the design used for the process variables.
The appropriate models can be found in the same way. In many mixture
experiments with process variables, the randomization is restricted, resulting
in split-plot mixture process variable experiments (SPMPV). When there is
non-negligible whole-plot variability, the REML method should be used to get
accurate parameter estimates and hypothesis tests. This method is available
in the lmer function in the R package lme4.
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11.10 Exercises

1. A mixture experiment was run in three components: x1, x2, and x3.

(a) If the Scheffé model that best represented the data was y = 13.5x1 +

3.2x2 + 9.8x3, then what is the predicted response at the pure blend
x2 = 1.0? What is the predicted response at the 50-50 blend of x1 and
x2?

(b) If the Scheffé model that best represented the data was y = 13.5X1 +

3.2x2 + 9.8x3 − 2.9x1x2 + 8.7X1x3 + 0.9x2x3, and the goal was to increase
the response y, then does blending x1 and x2 have a synergistic effect or
an antagonistic effect? Does blending x1 and x3 have a synergistic effect
or an antagonistic effect? What is the predicted response at the mixture
of equal proportions for all three components?

2. Belloto et al. (1985) studied the relation between y= Soluability of pheno-
barbital and mixture components x1: ethanol, x2: propylene gycol and x3:
water.

(a) Use the mixexp package to list the experiments required to fit a linear
Scheffé model.

(b) Use the mixexp package to list the experiments required to fit a Scheffé
quadratic model.

(c) Use the mixexp package to list the experiments required to fit a special
cubic model.

(d) Use the mixexp package to list the experiments required to fit a full cubic
model.

3. Cornell (2002) describes an experiment to make a fruit punch composed of
three types of juice: x1: watermellon, x2: pineapple, and x3: orange. The
general acceptance of the fruit punch was to be determined by a taste panel
that would rate them on a 1 to 9 scale where 1=dislike extremely, 5=neither
like nor dislike, and 9=like extremely. If the proportions of the three juices
are restricted by cost according to the inequalities below

0.20 ≤ x1 ≤ 0.80

0.10 ≤ x2 ≤ 0.40

0.10 ≤ x3 ≤ 0.50

(a) Graph the restricted experimental region within the simplex.

(b) Create a design appropriate for fitting the Scheffé linear model.

(c) Create a design appropriate for fitting the Scheffé quadratic model.

(d) Would there be any value in including an overall centroid or other interior
points in the design?
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4. In agricultural field tests, two or more herbicides are often mixed together
in so-called tank mixes in order to find a mixture that is more effective than
individual herbicides in controlling a multitude of pest weeds. In a specific
test, various mixtures of x1: a herbicide formulated to control broad leaf
weeds, x2: a herbicide formulated to control grass seedlings, and x3: a
general-purpose herbicide were tested. The data from the tests are shown
in Table 11.8. The response is the proportion of weeds controlled.

Table 11.8 Data from Herbicide Tank Mix Experiment

Mixture Component % Weed Control
Run x1 x2 x3 x1 y

1 1 0 0 73
2 0 1 0 68
3 0 0 1 80
4 1

2
1
2

0 77

5 1
2

0 1
2

86

6 0 1
2

1
2

75

7 1
3

1
3

1
3

92

8 1
3

1
3

1
3

93

9 1
3

1
3

1
3

88

(a) Create the design shown in the table above using the SLD function in
the mixexp package.

(b) Input the data and fit the Scheffé special cubic model.

(c) Make a contour plot of your fitted model and identify a mixture that
would result in the highest % weed control.

(d) Transform the mixture components to independent factors and fit the
general quadratic model in the independent factors using R function lm.

(e) Make a contour plot in the independent factors as shown in the Appendix
at the end of this chapter.

5. Consider the problem discussed by Anik and Sukumar (1981). They studied
the solubility of a butoconazole nitrate imidazole antifungal agent in a
mixture of x1: polyethylene glycol 400, x2: glycerin, x3: polysorbate 60, x4:
water, and x5: poloxamer 407. Constraints on the mixture components are
shown below.
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0.10 ≤ x1 ≤ 0.40

0.10 ≤ x2 ≤ 0.40

0.00 ≤ x3 ≤ 0.08

0.30 ≤ x4 ≤ 0.70

x5 = 0.10

(a) Use the Xvert function in the mixexp package to find the extreme ver-
tices of the experimental region, and check to see if the ones listed in
Table 11.9 form an extreme vertices design.

(b) Given the data from Anik and Sukumar (1981) experiments shown in Ta-
ble 11.9, fit the Scheffé quadratic model to the four mixture components
that are not constant.

Table 11.9 Design and Response Data for Solubility Experiments

Solubility,
Run x1 x2 x3 x4 x5 mg/ml

vertices
1 0.1 0.1 0.0 0.70 0.10 3.0
2 0.1 0.1 0.08 0.62 0.10 7.3
3 0.15 0.4 0.0 0.35 0.10 4.9
4 0.11 0.4 0.08 0.31 0.10 8.4
5 0.4 0.15 0.0 0.35 0.10 8.6
6 0.4 0.11 0.08 0.31 0.10 12.7

centroids
7 0.1 0.1 0.04 0.66 0.10 5.1
8 0.4 0.13 0.04 0.33 0.10 10.8
9 0.13 0.4 0.04 0.33 0.10 6.6
10 0.216 0.216 0.0 0.468 0.10 4.4
11 0.203 0.203 0.08 0.414 0.10 7.9
12 0.255 0.255 0.08 0.31 0.10 9.4
13 0.275 0.275 0.0 0.35 0.10 5.8

overall
centroid

14 0.21 0.21 0.04 0.44 0.10 5.6
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6. Consider the mixture experiment described by Anderson and McLean
(1974). They presented a problem where the formula for a flare was ob-
tained by mixing four chemicals x1: magnesium, x2: sodium nitrate, x3:
strontium nitrate, and x4: binder. Constraints on the components were

0.40 ≤ x1 ≤ 0.60

0.10 ≤ x2 ≤ 0.50

0.10 ≤ x3 ≤ 0.50

0.03 ≤ x4 ≤ 0.08

(a) Given the data from the experiments in Table 11.10, where the response
is y=illumination, fit the Scheffé quadratic model to the data.

(b) Fit the model in Equation (11.9) to the data.

(c) Which model appears to fit best? Why? What does this imply?

Table 11.10 Design and Response Data for Flare Experiments
Run x1 x2 x3 x4 y

1 0.4 0.1 0.47 0.03 75
2 0.4 0.1 0.42 0.08 480
3 0.6 0.1 0.27 0.03 195
4 0.6 0.1 0.22 0.08 300
5 0.4 0.47 0.1 0.03 145
6 0.4 0.42 0.1 0.08 230
7 0.6 0.27 0.1 0.03 220
8 0.6 0.22 0.1 0.08 350
9 0.5 0.1 0.345 0.055 220
10 0.5 0.345 0.1 0.055 260
11 0.4 0.2725 0.2725 0.055 190
12 0.6 0.1725 0.1725 0.055 310
13 0.5 0.235 0.235 0.03 260
14 0.5 0.21 0.21 0.08 410
15 0.5 0.2225 0.2225 0.055 425

7. Shumate and Montgomery (1996) developed a TiW plasma etch process for
semiconductor manufacturing by studying a mixture of three gases x1: SR6,
x2: He, and x3: N2. The partial pressures of the three gases were forced to
add to a constant value of total pressure to form the mixture constraint.
The constraints in micrometers of pressure were

100 ≤ SF6 ≤ 160

100 ≤ He ≤ 160

SF6 +He +N2 = 650
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Expressing the components as mixture proportions, these constraints are

0.153846 ≤ x1 ≤ 0.246154

0.153846 ≤ x2 ≤ 0.246154

The authors created a design composed of the extreme vertices of the con-
strained region plus the overall centroid. Six responses were measured for
each mixture and the table below shows the responses and their specifica-
tions.

Response Name Specification
y1 Delta critical dimension (CD) positive PR < 0.25 µm
y2 Positive PR etch uniformity < 2.5%
y3 Delta CD negative PR < 0.25 µm
y4 Negative PR etch uniformity < 2.5%
y5 Selectivity (TiW: positive PR) > 0.85
y6 Selectivity (TiW: negative PR) > 0.85

(a) Create the design below using functions in the mixexp package and enter
data for the six responses that are shown in Table 11.11.

Table 11.11 Data from Plasma Etch Experiment
x1 x2 x3 y1 y2 y3 y4 y5 y6

0.153846154 0.153846154 0.692307692 0.26 0.90 0.24 0.93 0.91 0.94
0.153846154 0.153846154 0.692307692 0.30 0.94 0.22 0.98 0.88 1.00
0.246153846 0.246153846 0.507692308 0.33 1.82 0.14 1.49 0.99 1.04
0.246153846 0.246153846 0.507692308 0.36 1.84 0.14 1.64 1.02 1.04
0.246153846 0.153846154 0.600000000 0.62 7.14 0.22 7.35 0.84 0.84
0.246153846 0.153846154 0.600000000 0.68 7.10 0.17 7.27 0.87 0.87
0.153846154 0.246153846 0.600000000 0.23 2.62 0.25 2.16 0.77 0.92
0.153846154 0.246153846 0.600000000 0.23 2.73 0.31 1.88 0.76 0.88
0.153846154 0.200000000 0.646153846 0.27 3.01 0.15 2.70 0.91 0.98
0.200000000 0.153846154 0.646153846 0.39 4.50 0.17 4.25 0.87 0.92
0.246153846 0.200000000 0.553846154 0.30 4.79 0.20 4.50 0.99 0.96
0.200000000 0.246153846 0.553846154 0.31 2.88 0.19 2.36 0.91 1.01
0.200000000 0.200000000 0.600000000 0.34 1.22 0.13 1.54 0.92 0.99

(b) Fit the Scheffé special cubic model for each response, check the adequacy
of the fits, and reduce the model to the quadratic for responses where
the ternary mixture coefficient is not significant.

(c) Make contour plots of the fitted surface for each response.
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(d) By examining your contour plots, find a region in the constrained space
where the fitted models predict that all response specifications can be
met.

8. If all three components in a mixture design have the same lower and upper
constraints (L=0.20, U=0.50), use Table 11.5 to create an orthogonally
blocked mixture design, for fitting the Scheffé quadratic model, with two
blocks of four mixtures in each block.

9. The numbers in parentheses below are the responses for the design shown
in Figure 11.19.

11 =x

12 =x 13 =x 13 =x12 =x

11 =x

Block 1
Block 2

(77)

(42)         (68)

(29)              (46)                (56)

(76)

(61)

(27)                                     (55)

(38)          (58)

(a) Fit the Scheffé quadratic model to the data above.

(b) Verify that the design blocks orthogonally by checking to see that the
type I and type III sums of squares for blocks are the same.

10. Table 11.12 shows the results of Chau and Kelly’s (1993) mixture process
variable experiments (MPV) with printable coating material, which were
described in Section 11.7.

(a) Create this design and merge the response values.

(b) Fit a simplified model of the form of Equation (11.31) with only one
process variable z.

(c) Does the process variable thickness affect the opacity?

(d) Make a contour plot over constrained mixture space holding the process
variable thickness constant at its mid-point (i.e., coded value z=0).

(e) Can you identify a region where predicted opacity > 0.86?

11. Steiner et al. (2007) describe a mixture-process variable (MPV) experiment
conducted by students to find an optimal homemade bubble solution for
use in a battery operated bubble-blowing toy. The response was the average
number of bubbles produced by the bubble-blowing toy. The homemade
bubble solution was made as a mixture of x1: dish soap, x2: water, and x3:
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Table 11.12 Mixture Experiments with Printable Coating Material
Run x1 x2 x3 z Opacity

1 0.13 0.53 0.34 −1 0.698
2 0.13 0.53 0.34 −1 0.711
3 0.13 0.53 0.34 1 0.912
4 0.13 0.53 0.34 1 0.930
5 0.13 0.60 0.27 −1 0.700
6 0.13 0.67 0.20 −1 0.710
7 0.13 0.67 0.20 −1 0.680
8 0.13 0.67 0.20 1 0.908
9 0.13 0.67 0.20 1 0.901
10 0.29 0.37 0.34 −1 0.772
11 0.29 0.51 0.20 −1 0.772
12 0.45 0.21 0.34 −1 0.823
13 0.45 0.21 0.34 −1 0.798
14 0.45 0.21 0.34 1 0.992
15 0.45 0.28 0.27 −1 0.818
16 0.45 0.35 0.20 −1 0.802
17 0.45 0.35 0.20 1 0.976
18 0.45 0.35 0.20 1 0.940

glycerin. The following constraints were placed on the mixture components,
based on recipes found in children’s books and cost,

0.04 ≤ x1 ≤ 0.35

0.60 ≤ x2 ≤ 0.98

0.00 ≤ x3 ≤ 0.15.

Two process variables were also included in the study, which were z1:
brand of soap (−1=Joy, +1=Ivory) and z2: type of water (−1=spring water,
+1=tap water).

(a) Create a design for this experiment by crossing a design appropriate for
fitting a Scheffé quadratic model in the mixture components and a 22

factorial in the process variables.

(b) Write the model that can be fit from the design you created.

(c) Given the actual data from Steiner et al.’s (2007) experiments shown in
Table 11.13, that were run in a completely random order, fit the model
you propose in (b) to the data.

(d) Is the process water significant? Can it be safely removed from the
model?

(e) Make a contour plot over the constrained mixture space for each level of
the process variable soap type.
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Table 11.13 Data from Mixture Process Experiments with Bubble Mixture
z1: −1 −1 1 1
z2: −1 1 −1 1

x1 x2 x3

0.350 0.600 0.05 23.8 14.2 4.2 3.6
0.250 0.600 0.15 12.6 13.6 2.6 3.4
0.350 0.650 0.00 7.8 10.6 2.4 1.0
0.250 0.650 0.10 12.0 12.0 5.8 2.6
0.250 0.750 0.05 12.8 15.4 4.0 4.4
0.150 0.700 0.15 10.8 9.2 3.2 3.4
0.145 0.775 0.08 8.8 11.2 4.4 3.0
0.200 0.800 0.00 10.2 13.6 3.8 2.2
0.040 0.810 0.15 2.4 4.0 3.0 4.2
0.120 0.850 0.03 12.8 8.0 1.6 3.4
0.040 0.880 0.08 2.0 4.6 0.6 0.6
0.050 0.950 0.00 4.0 2.8 3.0 3.0

(f) Make a recommendation for the optimal bubble solution.

12. Cornell (1988) presented the original example of mixture experiment for
producing vinyl for automobile seat covers. The data is shown in Table
11.14, and the variable names are the same as those given in Section 11.8.

(a) Given that this is a cross between an extreme vertices design (plus the
overall centroid appropriate for fitting a Scheffé linear model in the mix-
ture components) and a 22 factorial in the process variables, what is the
appropriate model for this data?

(b) Fit the model by least squares using the R lm function.

(c) In this experiment, the runs were not made in a completely random or-
der, but rather randomized within whole plots and run as a split-plot
experiment. Refit the model using the lmer in the R package lme4 in-
cluding a random term for whole plots like the example shown in Section
11.8. Is there any difference in the parameter estimates you get in (b)
and (c)? What does this imply?
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Table 11.14 Data for Mixture Experiments for Producing Vinyl
z1: 1 −1 −1 1
z2: −1 1 −1 1

Whole Plot x1 x2 x3

1 0.85 0 0.15 8 12 7 12
2 0.72 0 0.28 6 9 7 10
3 0.6 0 0.15 10 13 9 14
4 0.47 0.25 0.28 4 6 5 6
5 0.66 0.125 0.215 11 15 9 13
6 0.85 0 0.15 7 10 8 11
7 0.72 0 0.28 5 8 6 9
8 0.6 0 0.15 11 12 10 12
9 0.47 0.25 0.28 5 3 4 5
10 0.66 0.125 0.215 10 11 7 9

11.11 Appendix—Example of Fitting Independent Factors

The R code below illustrates how to transform mixture components to inde-
pendent factors using the translation and rotation of axis described in Figure
11.9 and Equations (11.11) and (11.12). The data used is the pesticide formu-
lation data from Table 11.1. After adding the orthogonal components w1 and
w2 to the data frame orth with the transform command, the rsm function
in the rsm package is used to fit the general quadratic model to the data. The
contour function is used to make a contour plot of the fitted equation, and
the polygon and abline commands are used to place boundaries around the
simplex region. The resulting graph shown in Figure 11.27 shows the same
thing as Figure 11.12 that was created with the daewr package.

> library(daewr)

> data(pest)

> orth <- transform(pest, w1 = sqrt(6)*(2*x1-x2-x3), w2 =

+ -sqrt(18)*(x2 - x3))

> library(rsm)

> orth.mod <- rsm(y ~ SO(w1, w2), data = orth)

> contour(orth.mod, w1 ~ w2)

> polygon(c( -4.3, 0, -4.30),c(-2.54777591, 4.89898, 4.89898),

+ col = "white", border = "white")

> abline(4.89898, ((4.89898 + 2.44944) / 4.24264))

> polygon(c(4.3, 0, 4.3),c(-2.54777591, 4.89898, 4.89898),

+ col = "white", border = "white")

> abline(4.89898, -((4.89898 + 2.44944) / 4.24264))
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Figure 11.27 Contour Plot of Pesticide Formulation Data
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CHAPTER 12

Robust Parameter Design Experiments

12.1 Introduction

In this chapter no new designs are presented, but rather a slightly different
application of previous designs is demonstrated. In Chapter 5, sampling ex-
periments were presented for the purpose of characterizing the variability in
the response. In the other chapters, the main purpose has been to establish
cause and effect relationships between the factors and the average response,
so that in the future the average response at selected levels of the factors can
be predicted, or the levels of the factors can be chosen to produce a desired
value of the response. In this chapter the purpose is to determine what levels
of the factors should be chosen to simultaneously produce a desired value of
the response and at the same time minimize the variability of the response.

After World War II, as Japan was attempting to reestablish telephone com-
munications throughout the country, many problems were encountered be-
cause of the poor quality switching systems that had been manufactured in
Japan. American advisors such as W.E. Deming visited Japan and taught the
principles of quality control that were most useful to Americans during the
war production effort. During this industrial recovery period, a Japanese engi-
neer from the Electrical Communications Laboratory, Genichi Taguchi, came
to devote his life’s work to the application of designed experiments in industry
(see Taguchi, 1987). Quality control has been traditionally thought of as an
activity that is performed in the manufacturing process, but Taguchi took the
ideas of experimental design that he learned at the Statistical Research Lab-
oratory in India and at the Bell Telephone laboratories in the United States
and directed them to quality improvement activities upstream in the product
design stage. This was a more cost-effective way that is now referred to as off-
line quality control. In off-line quality control, experimental design techniques
are utilized to find nominal settings of system parameters that will make the
products robust to noise encountered in the manufacturing process and in the
use environment.

To show appreciation for what the American advisors had done for the
Japanese after WWII, Taguchi introduced his ideas for optimizing the design
of products and production processes in a cost-effective way to the United
States in 1980. He not only presented his methods but also sought appraisal
and comments (see Taguchi, 1987). Since then, Taguchi’s contributions have
been recognized as major advances in the history of engineering and man-
ufacturing industries. However, some of the statistical design and analysis

503
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methods recommended by Taguchi have been found to be somewhat ineffi-
cient, and suggestions have been made for simpler, more efficient alternatives
to implement some of Taguchi’s ideas. In this chapter, Taguchi’s engineer-
ing philosophy is presented and illustrated, when necessary, by more modern
statistical methods.

12.2 Noise Sources of Functional Variation

Taguchi has defined quality as the loss a product causes society after it is
shipped (see Taguchi, 1986). We might think of this more as a definition of
the lack of quality. By loss, Taguchi specifically means (1) loss caused by
variability in function or (2) loss due to harmful side effects. For example,
losses to a customer could occur due to subpar performance, early failure,
or product deterioration, while losses to third parties (or society in general)
could be caused by things such as emitted pollutants or safety concerns. Vari-
ation in product function is caused by what is commonly called noise. Taguchi
has defined three distinct classes of noise that cause functional variation in
products and manufacturing processes. These classes are (1) inner or deteri-
oration noise, (2) outer or environmental noise, and (3) variational noise or
piece-to-piece variation caused in manufacturing.

Inner noise or deterioration noise refers to changes in product or components
that occur as the product ages or wears out preventing it from achieving
its target function. Outer or environmental noise refers to external factors
in the use environment such as temperature, humidity, vibration, or human
treatment that affect product performance. Finally, variational noise refers
to manufacturing imperfections. As an example, Phadke (1989) described the
three sources of noise in a refrigerator temperature control. The inner noise
would consist of things such as the leakage of refrigerant and mechanical
wear of compressor parts. The outer noise would consist of things such as
the number of times the door is opened and closed, the amount of food kept,
the ambient temperature, and the voltage supply variation. The variational
noise would consist of the tightness of the door closure, quality of the seals on
the refrigerant, amount of refrigerant charged, and the fit and finish of moving
parts in the compressor.

Taguchi pointed out that only variational noise can be reduced with tra-
ditional quality control activities in manufacturing, but that in the product
design stage it may be possible to find countermeasures for all three sources of
noise using experimental design techniques. This is done through a procedure
called robust parameter design.

The performance of products and manufacturing processes are affected by
factors that are controlled by the designers of these products and processes
(called control factors) and by other hard-to-control factors such as environ-
mental conditions, raw material quality, and aging (often called noise factors
or environmental factors). In conducting a robust parameter design exper-
iment, the levels of the noise factors are varied systematically to represent
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their variation in normal conditions. The levels of the control factors are var-
ied over levels which are thought to include the optimal levels. The purpose
of the parameter design experiment is to discover interactions between the
control factors and the noise factors. Once discovered, these interactions can
be exploited to reduce variation in the product or process function caused by
hard-to-control variation in the noise factors.

The model for a robust design experiment can be represented symbolically
as

y =Xβ +Zγ + ε, (12.1)

where y is the response or vector of measures of the product or process func-
tion. X represents the design matrix for the control factors and β represents
the control factor effects or regression coefficients. Z represents the design ma-
trix for the noise factors and the interactions between the noise factors and
control factors. Obviously, variation in the levels of the noise factors will be
transmitted to variation in the response y. If there are interactions between
the control factors and the noise factors, it may be possible to reduce variation
in the response caused by changes in the levels of the noise factors through
choice of the levels of the control factors.

The procedure for conducting a parameter design is shown below:

1. Select control factors that are easily controlled.

2. Determine the sources of noise, and choose the most important noise
sources to be represented as factors in the design. This sometimes requires
some ingenuity to define factors that will represent the inner, outer, and
variational noise you are trying to mitigate.

3. Select an appropriate experimental design.

4. Perform the experiment.

5. Analyze the data and detect significant main effects and interactions.

6. Select levels of the control factors to reduce variation caused by the noise
factors and meet the target performance.

The aspect that is different about parameter design experiments is the em-
phasis on including noise factors in the design, and the ability to determine
control factor settings that not only ensure that the response will achieve the
target level but will also reduce variation in the response caused by the sources
of noise.

Two experimental strategies have been used in parameter design experi-
ments. One is to use a cartesian product design, which is composed of all
combinations of levels of the control factors (in a control factor array) with all
combinations of levels of the noise factors (in a noise factor array). The other
approach is to combine both control and noise factors into one single array
design. Two separate analysis strategies have been used. One strategy is called
the loss model approach or location-dispersion modeling. This strategy can be
used when the experiment is conducted as a product array. A second analysis
strategy that has been used is called the response modeling strategy, and is
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the same as the approach described in previous chapters. This strategy is the
only analysis strategy that can be used when the experiment is conducted as
a single array, but it can also be used when the experiment is conducted as a
product array. The next four sections will present examples of both product
and single array parameter design experiments along with both strategies for
analysis.

12.3 Product Array Parameter Design Experiments

To begin illustrating product array parameter design experiments we will con-
sider a classic example that has been used by Taguchi (1987). This experiment
was conducted in the summer of 1953 at Ina Seito Tile and Porcelain Com-
pany in Japan. Figure 12.1 is a flow diagram of the production process of wall
tiles. The raw materials are clays and various stones.

Figure 12.1 Ina Tile Process

Apportion, 
pulverize and
mix materials

Mold Prefire Glaze Fire

After pulverizing the stones, they are mixed with the clays, finely ground
in a ball mill and molded in a press. Next, they are loaded on a kiln car and
pre-fired in a tunnel kiln. After a glaze is applied to the surface, the tiles are
again loaded on the kiln car and the main firing is performed to produce the
final product. When considering a cross-section of the tunnel kiln shown in
Figure 12.2, there is a steep temperature gradient with higher temperatures
near the outer wall closer to the burner. Many of the colored tiles processed
in this region were defective due to improper shape and appearance.

Figure 12.2 Ina Tile Kiln

Tunnel Kiln

Inner Kiln
Position

Outer Kiln
Position

Since there were not resources to replace the kiln in 1953, a less costly option
was to experiment with the clay mixture to see if varying the components in
the mixture could to some extent reduce the effect of the temperature gradient
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in the kiln. This is an example of using a parameter design experiment to
reduce variational noise in manufacturing. The control factors in this example
are the composition elements of the raw materials (clay), and the noise factor
is the position of a tile in the tunnel kiln. Table 12.1 shows the control factors
that were used in the experiment and their levels. The noise factor had two
levels: the low level stands for tiles fired in an inner kiln position and the high
level stands for tiles fired in the outer kiln position closer to the burner.

Table 12.1 Control Factors and Levels for Tile Experiment
Levels

Factor − +

A: kind of agalmatolite existing new
B: fineness of additive courser finer
C: content of lime 5% 1%
D: content of waste return 4% 0%
E: raw material charging quantity 1200kg 1300kg
F : content of agalmatolite 43% 53%
G: content of feldspar 0% 5%

The control factor array or experimental design was an eight run 27−4 frac-
tional factorial, and the noise factor array was a 21 design. The product array
then consisted of all possible combinations of the runs in the control factor
array and the noise factor array that resulted in 27−4×21 = 16 runs. The design
and resulting responses are shown in Table 12.2.

Table 12.2 Product Design and Response for Tile Experiment
H

A B C D E F G − +

− − − + + + − 16 47
+ − − − − + + 17 41
− + − − + − + 12 20
+ + − + − − − 6 28
− − + + − − + 21 74
+ − + − + − − 68 100
− + + − − + − 42 80
+ + + + + + + 26 100
Generators D = AB,E = AC,F = BC,G = ABC
Note: responses on line 5 have been modified
(Bisgaard and Sutherland, 2004)

The response was the observed number of defectives per 100 tiles. Since the
clay mixture is made and molded first, then tiles from the same clay mixture
are fired in both the inner and outer regions of the kiln at the same time. It
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should be recognized that this particular product array design is a split-plot
design that is quite similar to the experiment used to formulate a boxed cake
mix (presented in exercise 9 of Chapter 8). Bisgaard and Sutherland (2004)
noticed unusual observations on line 5 in the original Ina tile data. These
observations have been modified in Table 12.2 to simplify the discussion of
the analysis in the next section.

As a second example of a product array, consider an experiment described
by Taguchi and Byrne (1984) to optimize the installation procedure for an
elastomeric connector used in the automotive industry. The desire was to
maximize the separation pull-off force and minimize the variability in this
force. There were four control factors and three noise factors. These factors
are shown in Table 12.3 and illustrated in Figure 12.3.

Table 12.3 Control and Noise Factors for Connector Experiment
Control Factors: Levels

A: Interference Low Medium High
B: Connector wall thickness Thin Medium Thick
C: Insertion depth Shallow Medium Deep
D: Percentage of adhesive Low Medium High

Noise Factors: Levels

E: Conditioning time 24 hours 120 hours
F : Conditioning temperature 72○F 150○F
G: Conditioning relative humidity 25% 75%

The interference (or allowance between the force fit elastometric connector and
the metal tube it is connected to), the wall thickness of the connector, inser-
tion depth of the connector onto the metal tube, and percent adhesive that is
in the solution the connector is dipped into before insertion on the metal tube
are specified by the designer and are therefore designated as control factors.
The conditioning or setup time, the temperature during the setup time, and
the relative humidity during the setup time may affect the pull-off force but
are usually difficult to control during routine production conditions. There-
fore these three factors are designated as noise factors. During the parameter
design experiments, extra care was taken to control these factors.

The complete layout of the control factor array, noise factor array, and
resulting data is shown in Figure 12.4. There, the control and noise factor
arrays are shown in symbolic levels (1, 2, etc.) and actual levels. The control
factor array was a 34−2 fractional factorial. The noise factor array is a full 23

factorial where the symbolic levels are 1 and 2 rather than − and +. The run
numbers for the two designs are shown in the far left and top rows, respectively.
The randomization of runs in this experiment was not restricted, and each of
the 34−2 × 23 = 72 runs could have been run in a completely random order.



PRODUCT ARRAY PARAMETER DESIGN EXPERIMENTS 509

Figure 12.3 Illustration of Control Factors for Connector Experiment

φ1φ2

A= φ1- φ2

B
C

D = % Adhesive

Therefore, this was not a split-plot experiment like the tile example. The
oa.design and cross.design functions in the R package DoE.base (Groemp-
ing, 2011a) can be used to create a cartesian product design. This is illustrated
in the code below.

> library(DoE.base)

> des.control <- oa.design(nfactors = 4, nlevels = 3,

+ factor.names = c("A","B","C","D"))

> des.noise <- oa.design(nfactors = 3,nlevels = 2, nruns = 8,

+ factor.names = c("E","F","G"))

> des.crossed <- cross.design( des.control, des.noise)

One of the comments that has been made about product array parameter
design experiments popularized by Taguchi is that they require more exper-
iments than are necessary. One of the main purposes of parameter design
experiments is to detect interactions between control factors and noise fac-
tors. By understanding the interactions it may be possible to select levels of
the control factors that will minimize the effect of the noise factors. By uti-
lizing a cartesian product array design, all interactions between the factors in
the control array and the factors in the noise array will be estimable. How-
ever, it may be possible to do this with fewer runs by utilizing resolution IV or
resolution V fractional factorial designs where all interactions between control
and noise factors are clear. Examples of this will be shown in Section 12.5.
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One situation where product arrays are actually more efficient is when the
experiment is a split-plot. For example, in the Ina tile experiment, the noise
factor array consisted of simply measuring the response (number of defective
tiles in a sample of 100) once for tiles produced in the inner kiln position and
again for tiles produced in the outer kiln position. Therefore no additional
experimental effort was required. Only eight batches of clay were mixed and
molded, but more information was produced by measuring multiple responses
for each run of the control factor array. Split-plot designs are sometimes de-
scribed as super efficient since the sub-plot factors and interactions between
sub-plot and whole-plot factors can be tested with the (usually) smaller sub-
plot error term.

A third example of a product array parameter design experiment involves
the design of a product. The product is the simple circuit for a temperature
controller that uses resistance thermometer RT . The circuit diagram that
is shown in Figure 12.5 was described by Taguchi and Phadke (1985). The

Figure 12.5 Temperature Controller Circuit

E0 E2

R3

RT

R1

R2

RELAY

R4

response, or measure of product performance, is the resistance value of RT at
which the relay turns on. Through circuit relations, the response is given by
the rational function

RT =
R3R2(E2R4 +E0R1)

R1(E2R2 +E2R4 −E0R2)
.

(12.2)

The adjustment factor is R3, which is known by the circuit relations. The
control factors that a designer can specify are the nominal ratings of the
resistors and diodes A = R1, B = R2/R1, C=R4/R1, D = E0, and F = E2.
The noise factors are deviations from the nominal values of the control factors
that would be expected due to manufacturing imperfections and deterioration
while the product is in use. The objective was to find the nominal settings of
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the control factors that minimize the variation in RT since the desired value
of RT can always be obtained by adjusting R3. This is an example of the type
of problems encountered in the electronics industry in Japan, which were
successfully solved using parameter design experiments. In problems similar
to this where there is no clear functional relation like Equation (12.2), Taguchi
recommends the values of the response be determined experimentally.

Since the response is a known function of the factors or independent vari-
ables, statisticians evaluating the methods used by Taguchi have shown that
this particular kind of problem can be solved more efficiently using computer
optimization as described by Box and Fung (1986) and illustrated by Lawson
and Madrigal (1994). However, computer optimization was not possible in the
early 1960s and the solution to this problem will be illustrated using a product
array parameter design experiment to give a historical perspective.

The control factors and levels used in the control factor array are shown in
Table 12.4.

Table 12.4 Factors and Levels for Circuit Parameter Design
Levels

Control Factors 1 2 3
A ∶ R1 2.67 4.0 6.0
B ∶ R2/R1 1.33 2.0 3.0
C ∶ R4/R1 5.33 8.0 16.0
D ∶ E0 8.00 10.0 12.0
F ∶ E2 4.80 6.0 7.2
Noise Factors 97.96% of Nominal Nominal 102.04% of Nominal

The experimental design for the control factors is the 18-run orthogonal
array shown in Table 12.5. A table similar to the coded factor levels on the left
side (with a different order of runs) could be created for using the oa.design

function as shown in the commands below.

oa.design(nfactors = 8,nlevels=c(2, 3, 3, 3, 3, 3, 3, 3),

+ factor.names = c("X1", "X2", "X3", "X4", "X5", "X6", "X7"

+ ,"X8"), randomize = FALSE)

For this experiment there is no experimental error since the response is
obtained by evaluating a deterministic function, so there is no need for a
randomized list. The default levels for the factors produced by the oa.design

function are 1, 2, . . . , k where k is the number of levels of the factor.
The design that is created by the oa.design function is the OA(18) design

that was popularized by Taguchi for use in parameter design experiments.
Wang and Wu (1995) found this design to have properties similar to the
Plackett-Burman designs in that main effects plus linear×linear two-factor
interactions can be fit using a subset selection regression analysis even though
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Table 12.5 OA18 Design for Control Factors
Coded Factor Levels Actual Factor Levels

X1 X2 X3 X4 X5 X6 X7 X8 A B C D F
1 1 1 1 1 1 1 1 2.67 1.33 5.33 8 4.8
1 1 1 3 2 2 3 2 2.67 1.33 16 10 6
1 1 2 3 1 1 2 3 2.67 2 16 12 4.8
1 3 1 2 2 3 1 3 6 1.33 8 10 7.2
1 3 3 3 3 3 3 1 6 3 16 12 7.2
1 3 3 2 1 1 2 2 6 3 8 8 4.8
1 2 3 1 1 2 3 3 4 3 5.33 8 6
1 2 2 1 3 3 1 2 4 2 5.33 12 7.2
1 2 2 2 2 2 2 1 4 2 8 10 6
3 1 3 1 2 3 2 2 2.67 3 5.33 10 7.2
3 1 3 2 3 2 1 1 2.67 3 8 12 6
3 1 2 2 1 3 3 3 2.67 2 8 8 7.2
3 3 1 1 3 2 2 3 6 1.33 5.33 12 6
3 3 2 1 2 1 3 1 6 2 5.33 10 4.8
3 3 2 3 1 2 1 2 6 2 16 8 6
3 2 1 3 1 3 2 1 4 1.33 16 8 7.2
3 2 1 2 3 1 3 2 4 1.33 8 12 4.8
3 2 3 3 2 1 1 3 4 3 16 10 4.8

the design is resolution III. Since there were only five three-level factors in
this problem, the 1’s, 2’s, and 3’s in columns X2 through X6 were replaced
by the actual factor levels in Table 12.4 to form the design shown in the right
half of Table 12.5, and X1, X7, and X8 were unassigned or not used in this
problem.

The experimental design in coded factor levels for the noise factors is the
same OA(18) used for the control factors. The effect of changing levels of
the noise factors is a perturbation of the levels of the control factors. For
example, when the coded level of the noise factor is 1, the nominal settings
of the control factors are modified by multiplying them by 0.9796. When the
coded level of the noise factor is 3, the nominal settings of the control factors
are modified by multiplying them by 1.0204. When the noise factor is at the 2,
or mid-level, the nominal value of the control factor is left unchanged. This is
done to simulate the noise environment where the actual values of the control
factors may differ from the specified nominal values by a tolerance of ±2.04%
due to manufacturing imperfections and deterioration over time in use. For
a particular run in the control factor design, a set of modified control factor
levels are calculated for each run in the noise factor array and the response,
RT , is calculated using Equation (12.2).

In product array parameter design experiments the noise factor array is
usually shown horizontally across the top similar to Figure 12.4. For this ex-
ample the product array is too large (18×18) to represent as a single table. In
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Table 12.6 the coded factor levels of the noise factor array are shown trans-
posed in the first five columns. The next five columns of the table illustrate
the calculations of the modified control factor levels for the first run of the
control factor array where A = 2.67, B = 1.33, C = 5.33, D = 8.0, and F = 4.8.
The last column of Table 12.6 shows the response, RT , calculated with Equa-
tion (12.2). This would be repeated for each row of the control factor array to
obtain all the simulated response data for the product array design. Although
the values shown in Table 12.6 were calculated with a spreadsheet, it would
have been possible to calculate them manually as Taguchi might have in 1960.

Table 12.6 Transposed Noise Factor Array and Modified Control Factor Levels and
Response for the First Run of Control Factor Array
X2 X3 X4 X5 X6 A B C D F y

1 1 1 1 1 2.62 1.30 5.22 7.84 4.70 103.09
1 1 3 2 2 2.62 1.30 5.44 8.00 4.80 101.28
1 2 3 3 1 2.62 1.33 5.44 8.16 4.70 106.98
3 1 2 2 3 2.72 1.30 5.33 8.00 4.90 100.70
3 3 3 3 3 2.72 1.36 5.44 8.16 4.90 106.34
3 3 2 1 1 2.72 1.36 5.33 7.84 4.70 107.29
2 3 1 1 2 2.67 1.36 5.22 7.84 4.80 106.61
2 2 1 3 3 2.67 1.33 5.22 8.16 4.90 105.67
2 2 2 2 2 2.67 1.33 5.33 8.00 4.80 104.71
1 3 1 2 3 2.62 1.36 5.22 8.00 4.90 106.64
1 3 2 3 2 2.62 1.36 5.33 8.16 4.80 108.94
1 2 2 1 3 2.62 1.33 5.33 7.84 4.90 101.69
3 1 1 3 2 2.72 1.30 5.22 8.16 4.80 104.66
3 2 1 2 1 2.72 1.33 5.22 8.00 4.70 107.35
3 2 3 1 2 2.72 1.33 5.44 7.84 4.80 102.29
2 1 3 1 3 2.67 1.30 5.44 7.84 4.90 98.46
2 1 2 3 1 2.67 1.30 5.33 8.16 4.70 105.31
2 3 3 2 1 2.67 1.36 5.44 8.00 4.70 107.98

12.4 Analysis of Product Array Experiments

12.4.1 Loss Model or Location-Dispersion Modeling

One method of analyzing the data from a product array parameter design
experiment is to summarize the responses across the combinations of factor
levels in the noise array for each run of the control factor array and then
analyze the summary statistics as a function of the control factor settings.
Usually two summary statistics are calculated, one being the mean and the
other being a measure of the dispersion or variability. Taguchi employed three
different performance measures he called SN ratios as a measure of dispersion.
Finding the control factor levels to maximize Taguchi’s SNL performance
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measure was designed to make the response as large as possible, and finding the
control factor levels to maximize his SNS was designed to make the response
as small as possible. However, because these performance measures confuse
the mean response level and variability about the mean, Box (1988) has shown
they are inefficient. Wu and Hamada (2000) instead recommend a two-step
procedure shown below:

1. Select the levels of the control factors (that affect the variation in the re-
sponse) to minimize the variation.

2. Select the levels of the control factors (that affect the mean response but not
the variation) to bring the response to the desired target.

In the first step the control factors that affect ln(s2), where the sample
variance s2 is calculated across the levels of the noise factor array for each
run in the control factor array, are identified and their factor levels are chosen
to minimize ln(s2). Other factors may affect the average response but not
ln(s2). These control factors are called adjustment factors. The second step
involves identifying the levels of the adjustment factors that bring the response
to the desired target level. When the objective is to minimize or maximize the
response with minimum variability, the order of the two steps is reversed.

To illustrate this procedure, consider the data in the Ina tile experiment.
Since the responses were binomial counts, the sin−1

√
y/n transformation de-

scribed in Section 2.5.2 was used. Table 12.7 shows the control factor settings,
the transformed response, and the two summary statistics ȳ and ln(s2).

Table 12.7 Control Factor Array and Summary Statistics
H

A B C D E F G − + ȳ ln(s2)

− − − + + + − 0.412 0.755 0.583 -2.828
+ − − − − + + 0.425 0.695 0.560 -3.312
− + − − + − + 0.354 0.464 0.409 -5.109
+ + − + − − − 0.247 0.558 0.402 -3.035
− − + + − − + 0.476 1.036 0.756 -1.854
+ − + − + − − 0.970 1.570 1.270 -1.711
− + + − − + − 0.705 1.107 0.906 -2.515
+ + + + + + + 0.535 1.571 1.053 -0.623

The data in Table 12.7 is stored in the data frame tile in the daewr package.
The code to retrieve the data and fit the model to the average response is
shown on the next page along with a portion of the output.
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> library(daewr)

> modyb <- lm(ybar ~ A + B + C + D + E + F + G, data = tile)

> summary(modyb)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.74246 NA NA NA

A 0.07893 NA NA NA

B -0.04990 NA NA NA

C 0.25381 NA NA NA

D -0.04376 NA NA NA

E 0.08635 NA NA NA

F 0.03314 NA NA NA

G -0.04810 NA NA NA

> cfs <- coef(modyb)[-1]

> halfnorm(cfs,names(cfs), alpha=.2)

Figure 12.6 shows a half-normal plot of the regression coefficients.

Figure 12.6 Half-Normal Plot of Effects on Average Response—Ina Tile Experiment
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Here it can be seen that control factor C, the content of lime, appears to be
the only one to have a significant effect on the mean response. Since the effect
is positive and the low level was defined in Table 12.1 as 5%, the number of
defective tiles can be reduced by mixing 5% of lime in the clay mixture rather
than 1% as was previously the practice. Since the objective is to minimize the
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number of defective tiles, the first step in the procedure shown above would
be to choose the 5% level of lime in the clay mix.

The second step starts by identifying the control factors that affect the log
variance. The code and output below shows the results of fitting the same
model using the summary statistic ln(s2) as the response.

> library{daewr}

> modlv <- lm(lns2 ~ A + B + C + D + E + F + G, data = tile)

> summary(modlv)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.62342 NA NA NA

A 0.45326 NA NA NA

B -0.19715 NA NA NA

C 0.94775 NA NA NA

D 0.53851 NA NA NA

E 0.05564 NA NA NA

F 0.30372 NA NA NA

G -0.10125 NA NA NA

> cfs <- coef(modlv)[-1]

> halfnorm(cfs,names(cfs),alpha=0.5)

Figure 12.7 Half-Normal Plot of Effects on Log Variance of Response—Ina Tile
Experiment
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The half-normal plot of the regression coefficient in Figure 12.7 shows again
that control factor C has the largest effect on variability. Luckily in this case
the effect is positive (like it was for the mean response) and therefore the low
or 5% level of lime minimizes the variability in the percentage of defective
tiles.

If the goal were to minimize the response with minimum variability and one
or more control factors have significant effects of different directions on the
mean and log variance, then a compromise must be reached. In this case that
was not necessary, and the Ina tile company was able to greatly improve the
quality of their finished tiles without upgrading their kiln. Simply increasing
the amount of lime in the clay mixture, which was an inexpensive change to
make, had the desired effect. This example is one of the first examples that
Taguchi used when explaining his ideas on using experimental designs to find
cost effective ways to improve products and production processes.

A second example of location-dispersion modeling of a product array param-
eter design experiment will be illustrated with the data from the temperature
controller circuit design experiment. The purpose of the parameter design was
to discover control factor levels, or the design specifications for the nominal
ratings of resistors and diodes, that would minimize the variation in RT caused
by small deviations from the nominal settings due to manufacturing imper-
fections and deterioration while in use. The experiments were actually done
by simulation since there is a rational function (Equation (12.2)) relating the
control factor settings and the response. In this example, it is only necessary
to calculate one summary statistic (the log variance) across the levels of the
noise factor array since the mean value of RT can be set to any desired value
by adjusting R3. Table 12.8 shows the control factor array in actual levels
along with the log variance of the simulated responses calculated over the
noise factor array. For example, the variance calculated from the simulated
responses in the first row of the control factor array (shown as a column in
Table 12.6) is Var(103.09, 101.28, ...,107.98) = 8.421, and the ln(s2) = 2.131.

In this table, it can be seen that changes in control factors cause large differ-
ences in the variance ofRT . The minimum variance inRT is exp(0.468) = 1.597
for run number 16, while the maximum variance is exp(4.892) = 133.219 for
run 14, and the average variance being 14.33. Although there is a rational
function relating the value of RT to the settings on the control factors, there
is not a function relating the log of the variance of RT to the settings of the
control factors. To solve this problem with computer optimization an approxi-
mation formula relating the variance of RT can be developed and numerically
minimized as a function of the control factor settings (Box and Fung, 1986;
Lawson and Madrigal, 1994). To solve the problem using a parameter design
experiment, a function relating the log of the variance of RT to the settings
of the control factors is found by fitting a model to the data in Table 12.8.

Although the OA(18) control factor array is resolution III, Wang and
Wu (1995) have shown that it has similar hidden projection properties as
the Plackett-Burman designs. Therefore, it is possible to identify significant
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Table 12.8 Actual Factor Levels and Log Variance for Circuit Design Experiment
A B C D F ln(s2)

2.67 1.33 5.33 8 4.8 2.131
2.67 1.33 16 10 6 0.778
2.67 2 16 12 4.8 2.537

6 1.33 8 10 7.2 1.046
6 3 16 12 7.2 2.839
6 3 8 8 4.8 4.192
4 3 5.33 8 6 4.032
4 2 5.33 12 7.2 3.478
4 2 8 10 6 2.629

2.67 3 5.33 10 7.2 4.180
2.67 3 8 12 6 5.069
2.67 2 8 8 7.2 1.656

6 1.33 5.33 12 6 2.705
6 2 5.33 10 4.8 4.892
6 2 16 8 6 1.500
4 1.33 16 8 7.2 0.468
4 1.33 8 12 4.8 2.546
4 3 16 10 4.8 3.447

interactions using a regression subset procedure like the example shown for a
Plackett-Burman design in Section 6.6. The R code below retrieves the data
from the daewr package, creates coded factor levels XA–XD, squares of the
coded factor levels, and linear×linear interaction terms. The square terms were
created to fit quadratic terms to the three-level factors. Next, the regsubsets
function in the leaps packages is used to perform an all-subsets regression.

> library(daewr)

> data(cont)

> mod <- transform(cont, XA = (A - 4)/2, XB = (B - 2), XC =

+ (C - 8)/8, XD = (D - 10)/2, XF = (F - 6)/1.2)

> xvar <- transform(mod, XA2 = XA*XA, XB2 = XB*XB, XC2 = XC*XC,

+ XD2 = XD*XD, XF2 = XF*XF, XAB = XA*XB, XAC = XA*XC, XAD = XA*XD,

+ XAF = XA*XF, XBC = XB*XC, XBD = XB*XD, XBF = XB*XF, XCD = XC*XD,

+ XCF = XC*XF, XDF = XD*XF)

> library(leaps)

> modc <- regsubsets(lns2 ~ XA + XB + XC + XD + XF + XA2 + XB2 + XC2 +

+ XD2 + XF2 + XAB + XAC + XAD + XAF + XBC + XBD + XBF + XCD + XCF + XDF,

+ data = xvar, nvmax = 8, nbest = 4)

> rs <- summary(modc)

> plot(c(rep(1:8,each=4)), rs$adjr2, xlab="No. of Parameters",

+ ylab="Adjusted R-square")
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The summary is voluminous and the plot is not shown, but Table 12.9
summarizes the important information.

Table 12.9 Results of All-Subsets Regression

Number of
Terms Adjusted Variables

in Model R-Square in Model
1 0.5106 XB
1 0.2436 XC
1 0.1936 XAF
1 0.1848 XC2
2 0.7541 XB XC
2 0.6953 XB XC2
2 0.6068 XB XF
2 0.5842 XB XAC
3 0.8504 XB XC XF
3 0.8245 XB XC XD
3 0.7924 XB XC XAC
3 0.7916 XB XF XC2
4 0.9207 XB XC XD XF
4 0.8679 XB XC XF XBD
4 0.8660 XB XC XF XAB
4 0.8641 XB XC XF XAB

5 0.9425 XB XC XD XF XAF
5 0.9396 XB XC XD XF XCD
5 0.9313 XB XC XD XF XC2
5 0.9295 XB XC XD XF XBC

6 0.9600 XB XC XD XF XAF XBD
6 0.9547 XB XC XD XF XC2 XAF
6 0.9515 XB XC XD XF XAF XCF
6 0.9509 XB XC XD XF XBD XCD
7 0.9711 XB XC XD XF XC2 XAF XBD
7 0.9676 XA XB XC XD XF XAF XBD
7 0.9645 XB XC XD XF XAF XBD XCD
7 0.9638 XB XC XD XF XC2 XAF XCF
8 0.9799 XA XB XC XD XF XAF XBC XBD
8 0.9797 XB XC XD XF XC2 XAD XAF XBD
8 0.9786 XA XB XC XD XF XC2 XAF XBD
8 0.9774 XB XC XD XF XC2 XAF XBD XBF

It can be seen that R2 increases as the number of variables in the model
increases, but that when the number of variables exceeds six, the rate of
increase in R2 diminishes.
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Increasing the number of variables from six to seven only increases R2 for
the best model from 0.9600 to 0.9711, and the seventh term is probably not
necessary. The best model for six variables includes the terms XB , XC , XD,
XF , XA ×XF , and XB ×XD. This appears to be a reasonable model, since all
interactions in the model involve at least one main effect in the model (effect
heredity). The code below fits the best six variable model.

> pmod <- lm(lns2 ~ XB + XC + XD + XF + XAF + XBD, data=xvar)

> summary(pmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.89027 0.08844 32.681 2.63e-12 ***

XB 1.27701 0.12306 10.377 5.10e-07 ***

XC -1.10776 0.15937 -6.951 2.42e-05 ***

XD 0.50914 0.10588 4.809 0.000546 ***

XF -0.53056 0.10541 -5.033 0.000382 ***

XAF -0.52806 0.17853 -2.958 0.013027 *

XBD 0.37318 0.17016 2.193 0.050694 .

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

All the model terms appear to be significant, and plots of the residual from
this model showed that the least squares assumptions appear justified. Now
that a model is found relating the control factor settings to the log variance
of RT , the next step is to determine the factor settings that minimize the
log variance. The negative coefficient for the linear effect of factor C indicates
that the high level should be chosen for this ratio of nominal resistor ratings in
order to minimize the ln(s2). For factors A, B, D, and F the interpretation
is not so straightforward since there are significant interactions with these
factors.

The prediction equation for the fitted model can be written as

ln(s2
) = 2.890 + 1.277(

B − 2

1
) − 1.108(

C − 8

8
)

+ .509(
D − 10

2
) − .531(

F − 6

1.2
)

− .528(
A − 4

2
)(

F − 6

1.2
) + .373(

B − 2

1
)(

D − 10

2
) .

(12.3)

Using this equation with factors A, C, and F held constant at their mid-
levels, the predicted ln(s2) shown in Table 12.9 were calculated. Here it can
be seen that the combination of factors B and D that are predicted to have
the lowest ln(s2) is B = 1.33 (or the nominal rating of resistor R2 should be
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specified as 1.33×R1) and D = 8.0 (or the nominal rating of diode E0 should
be specified as 8.0).

Table 12.10 Predicted ln(s2) as Function of B and D

B=R2/R1

1.33 3.0
8.0 1.776 3.285

D=E0

12.0 2.294 5.050

A similar table of predicted values for the four combinations of low and high
levels for factors A and F reveals that factor A should be set at its high level
(or the nominal rating of R1 should be specified as 6.0) and factor F should be
set at its high level (or the nominal rating for diode E2 should be specified as
7.2). Therefore, the optimum combination of factor levels for minimizing the
log variation in RT is (A=6.0, B=1.33, C=16, D=8.0, and F=7.2). The factor
settings for the 16th run in the control factor design shown in Table 12.8 are
practically the same, the only difference being A=4.0 instead of A=6.0, and
it had the smallest log variance (0.468) of any of the experimental conditions.
Testing the predicted optimal conditions in Equation (12.2) across all the
values in the noise factor array resulted in exactly the same predicted mean
and log variance response, since the level for A can be factored from the
numerator and denominator of Equation (12.2) and canceled.

Although not the optimal way of solving this problem, the parameter design
experiment would enable a circuit designer (in 1960) to find settings for the
nominal ratings of the resistors and diodes that will reduce the variance in
RT tenfold over the average control factor settings in Table 12.8, and make
the circuit perform much more consistently in the presence of variation from
the nominal ratings caused by manufacturing imperfections and deterioration
in use. When the response is not a deterministic function of the control factor
settings, parameter design experiments are a very effective way of improving
quality and reducing the effects of noise.

12.4.2 Response Modeling

The other method of analyzing data from a product array parameter design
experiment is to analyze the response directly as a function of the control and
noise factor settings rather than analyze a summary statistic calculated over
the levels of the noise factor array. This is the approach that has been used
for analysis of all the experimental data discussed prior to this chapter. For
parameter design experiments special attention will be given to discovering
interactions between control and noise factors and to interpreting these inter-
actions in order to find control factor settings that minimize the effect of noise
factors.
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As an example consider a reanalysis of the data from the Ina tile experiment.
The experiment was a split plot and the whole-plot factors or control factors
were A through G shown in Table 12.1 that defined the clay mixture. The
whole-plot design or control factor array was a 27−3 saturated resolution III
fractional factorial. The noise factor array or sub-plot design consisted of one
factor, H:position of tile in the kiln, with two levels that specified where the
tiles were sampled. The split-plot cartesian product design guarantees that
all interactions between the control factors and noise factor will be estimable.
The model for this split-plot design can be written in the form

yijklmnop = µ + αi + βj + γk + δl + ξm + φn + ηo +wijklmno

+ πp + απip + βπjp + γπkp + δπlp + ξπmp + φπnp + ηπop + εijklmnop,
(12.4)

where α-η represent the control factor effects, π represents the noise factor ef-
fect, wijklmno is the whole-plot error term, and εijklmnop is the sub-plot error
term. Since there were no replicates in this experiment, wijklmno and εijklmnop
cannot be estimated, and the significance of effects must be judged with nor-
mal plots like the examples in Section 8.4 and Section 8.5.2. The complete
raw data from the Ina tile experiment is stored in the data frame strungtile

in the daewr package. The code to retrieve the data and fit Equation (12.4)
are shown below with the resulting parameter estimates.

> library(daewr)

> smod<-lm(y ~ A + B + C + D + E + F + G + H + AH + BH + CH + DH +

+ EH + FH + GH, data = strungtile)

> summary(smod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.742463 NA NA NA

A 0.078932 NA NA NA

B -0.049897 NA NA NA

C 0.253807 NA NA NA

D -0.043764 NA NA NA

E 0.086348 NA NA NA

F 0.033145 NA NA NA

G -0.048099 NA NA NA

H 0.227037 NA NA NA

AH 0.050093 NA NA NA

BH 0.005195 NA NA NA

CH 0.097810 NA NA NA

DH 0.054139 NA NA NA

EH 0.034308 NA NA NA

FH 0.029413 NA NA NA

GH 0.019868 NA NA NA
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The code to extract the effects and make separate half-normal plots of the
whole-plot and split-plot effects using the halfnormal function in the daewr

package is shown below. Reference lines were added manually with the abline
function.

> effects <- coef(smod)

> effects <- effects[c(2:16)]

> Wpeffects <- effects[c(1:7)]

> Speffects <- effects[c(8:15)]

> halfnorm(Wpeffects, names(Wpeffects), alpha=.10)

> halfnorm(Speffects, names(Speffects), alpha=.25)

A half-normal plot of the whole-plot or control factor effects is shown in Figure
12.8. Here it can be seen that Factor C, the content of lime, appears to have
a significant effect on the sin−1 transformation of the percent defective tiles.

Figure 12.8 Half-Normal Plot of Whole-Plot Effects—Ina Tile Experiment
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Since the effect is positive and the low level for factor C was defined in
Table 12.1 as 5%, the number of defective tiles can be reduced by mixing 5%
of lime in the clay. This is the same conclusion that was reached earlier by
analyzing the average response across the levels of the noise factor H, position
of tile in the kiln, in Section 12.4.1.

Figure 12.9 shows a half-normal plot of the sub-plot effects, which include
the noise factors and interactions between the control and noise factors. Here
it can be seen that both the noise factor H and the interaction between control
factor C and the noise factor H appear to be significant. The effect of the noise
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Figure 12.9 Half-Normal Plot of Sub-Plot Effects—Ina Tile Experiment
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factor H in conjunction with the control factor C can best be visualized by
examining the interaction plot shown in Figure 12.10. In this plot, shown on
the next page, it can be seen that in general there is a higher proportion of
defective tiles in the outer region of the kiln which is closer to the burner.
However, if 5% lime is added to the clay mixture, rather than 1%, the effect
of kiln position on the proportion of defective tiles (i.e., the slope of the line in
Figure 12.10) is reduced. Therefore, it can be said that not only is the average
proportion of defective tiles reduced by using 5% lime, but also the variability
in proportion of defective tiles is reduced.

This is the same conclusion that was reached in Section 12.4.1 by analyzing
the log variance of the response across the levels of the noise factor. However,
when there are multiple noise factors, the response modeling approach can of-
ten provide much more information than can be obtained by simply modeling
the mean and log variance as a function of the control factors alone. The next
example illustrates this.

When a product array parameter design experiment is performed as a split
plot experiment, Box and Jones (1992) have recommended, when possible,
to make the noise factors the whole-plot factors and the control factors the
sub-plot factors (exactly opposite of Table 12.2). This is because split-plot
experiments have more precision for detecting sub-plot effects and interactions
between whole-plot and sub-plot effects. If the experiment is conducted this
way, the control factor effects and the control-by-noise factor effects can be
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Figure 12.10 Interaction between Percent Lime and Kiln Position—Ina Tile Exper-
iment
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tested with the smaller sub-plot error term. In experiments where noise factors
represent environmental variables like ambient temperature and humidity, this
arrangement makes more sense. All combinations of levels of the control factors
could be run in random order within blocks where the environmental variables
are constant. Resolution III designs could be utilized for the noise factor whole-
plot array since estimating interactions between noise factors is usually not of
interest.

As an example of the response modeling approach with multiple noise fac-
tors, consider analyzing the data from the experiment to optimize the installa-
tion procedure for an elastometric connector used in the automotive industry
described by Taguchi and Byrne (1984) and shown in Figure 12.4. The design
was a 34−2 × 23 resulting in a total of 72 experiments with no replicates. The
runs were made in a completely random order, and this was not a split-plot
design. From the 34−2 control factor array only the main effects A, B, C, and
D are estimable. Each of these main effects have two degrees of freedom. From
the noise factor array, the main effects (E, F , and G), all two-factor inter-
actions (EF , EG, FG), and the three-factor interaction EFG are estimable.
Since the design is a cartesian product design, all interactions between es-
timable effects from the control factor array and estimable effects from the
noise factor array are estimable, that is, AE, AF , AG, AEF , AEG, AFG,
AEFG, BE, ..., DEFG. However, if a model involving all of these effects is
fit to the response (pull-off force) there will be zero degrees of freedom for
error and no way to test for significance.
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A normal probability plot of the estimated effects or regression coefficients
can be used to get an initial idea about which effects may be significant. How-
ever, it is not as straightforward as the normal plots of regression coefficients
described previously in Chapters 3 and 6. When all the factors have two levels
as the examples shown in Chapters 3 and 6, each regression coefficient repre-
sents one single degree of freedom. When there are factors with more than two
levels, like the control factors in the elastometric connector problem, the main
effects and interactions have more than one degree of freedom so the first step
in making a normal plot is to represent each main effect by an orthogonal set
of single-degree-of-freedom contrasts. This can be accomplished by using the
orthogonal polynomial contrasts described in Section 2.8.1. The data in Fig-
ure 12.4 is stored in the data frame prodstd in the daewr package where the
factor levels are numeric variables. Since the control factor main effects have
three levels, the code below illustrates the creation of linear and quadratic
contrasts for main effect A, creation of the coded factor level, XE , for main
effect E, and the creation of the linear×XE and quadratic×XE parts of the
A × E interaction. The linear and quadratic contrasts for the other control
factors, coded factor levels for the other noise factors, and the remainder of
the interactions were created similarly.

> library(daewr)

> data(prodstd)

> cont3<-contr.poly(3)

> lin<-cont3[,1]

> quad<-cont3[,2]

> Al<-prodstd$A

> Aq<-prodstd$A

> for (i in 1:72) {

+ if (Al[i]==1) {Al[i]<-lin[1]; Aq[i]<-quad[1]}

+ else if (Al[i]==2) {Al[i]<-lin[2]; Aq[i]<-quad[2]}

+ else {Al[i]<-lin[3]; Aq[i]<-quad[3] }

+ }

> Al<-Al/sqrt(24)

> Aq<-Aq/sqrt(24);

> XE<-(prodstd$E-1.5)/.5

> E<-XE/sqrt(72)

> AlE<-Al*XE

> AqE<-Aq*XE

When all the factors have two levels, theX matrix for the regression is made
up of orthogonal columns of −1’s and 1’s, and the X ′X matrix is diagonal
with n on the diagonal where n is the total number of runs in the unreplicated
design. The variance of the regression coefficient β̂i is σ2×cii where cii is the ith
diagonal of X ′X

−1
. Even though σ2 cannot be estimated in an unreplicated

2k or 2k−p design, all the regression coefficients have the same theoretical
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variance since diagonal elements cii are all equal to 1/n. Because they all have
the same variance, they can be plotted on a normal plot.

However, when some of the regression coefficients represent orthogonal poly-
nomial contrasts of factors with more than two levels and other regression co-
efficients represent coded two-level factors, their variances are not equal. For
example, the sum of squares of the linear contrast for a three-level factor will
be equal to r×((−.707107)2+02+.7071072), where r is the number of times each
level of the factor is repeated in the design, the sum of squares for the quadratic
contrast for a three-level factor will be r×(.40824832+(−.816497)2+.40824832),
and the sum of squares for a coded two-level factor will be q × ((−1)2 + 12),
where q is the number of times each level of the two-level factor is repeated
in the design.

Since the sum of squares ((−.707107)2 + 02 + .7071072) = (.40824832 +

(−.816497)2 + .40824832) = 1, and there are 24 replicates of each level of the
three-level factors in the 72 runs of the design, the diagonal elements of X ′X
for each contrast of the three-level factors is 24. Since there are 36 replicates
of each level of the two-level factors in the 72 runs, the diagonal element of
the X ′X for each two-level factor and interaction between two-level factors is
72. All of the regression coefficients in the 72-run design can be standardized
to have the same variance by dividing each contrast by the square root of
the diagonal element of the unstandardized X ′X matrix. For example, in the
code above this is illustrated for factors A and E (e.g., Al<-Al/sqrt(24).
This was done for all the coded factor levels and contrasts in the design re-
sulting in an X ′X that is equal to a 72 × 72 identity matrix. Recall that no
interactions were created between three-level control factors because they are
not estimable from the 34−1 control factor array.

The estimated regression coefficients were determined by the lm function
in R similar to the examples in Chapters 3 and 6, and a normal plot was
made of the coefficients. The code for doing this is shown on the Web site for
the book (www.jlawson.byu.edu) in the R code for Chapter 12. The resulting
normal plot of the 71 regression coefficients (excluding the intercept) is shown
in Figure 12.11. Examining the plot and the list of coefficients printed by
proc glm, the largest coefficients were found to be E, F , Cl, AlG, DqE, DqF
CqEFG, Dl, ClEG, Aq, and AlEF . These single degree of freedom contrasts
appear to be significant, and the others, that fall along the straight line in the
normal plot, would appear to represent experimental error.

A more formal test of the significance of effects can be made by running
a model that includes all main effects plus the interactions that include the
single degree of freedom interaction contrasts identified on the normal plot
(i.e., interaction DE includes both DlE and DqE that was identified on the
plot). The error mean square from this model will estimate the variance of
experimental error and can be used as the denominator of the F -tests for
terms in the model. This model was fit using the lm function and the Anova

function from the car package. The code is shown below Figure 12.11 shown
on the next page with the results directly following.

http://www.jlawson.byu.edu


ANALYSIS OF PRODUCT ARRAY EXPERIMENTS 529

Figure 12.11 Normal Plot of Standardized Contrasts from Connector Experiment
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> prodfac <- data.frame(A = as.factor(prodstd$A), B = as.factor

+ (prodstd$B), C = as.factor(prodstd$C), D = as.factor(prodstd$D),

+ E = as.factor(prodstd$E), F = as.factor(prodstd$F), G =

+ as.factor(prodstd$G), Pof = prodstd$Pof)

> library(car)

> rmod <- lm(Pof ~ A + B + C + D + E + F + G + A:G + D:E + D:F,

+ data = prodfac, contrasts=list(A = contr.sum, B = contr.sum,

+ C = contr.sum, D = contr.sum, E = contr.sum, F = contr.sum,

+ G = contr.sum))

> Anova(rmod, type="III")

Anova Table (Type III tests)

Response: Pof

Sum Sq Df F value Pr(>F)

(Intercept) 28033.2 1 8092.5084 < 2.2e-16 ***

A 50.6 2 7.3002 0.0015625 **

B 13.4 2 1.9318 0.1547742

C 68.6 2 9.9007 0.0002172 ***

D 23.7 2 3.4170 0.0400570 *

E 275.7 1 79.5977 3.305e-12 ***

F 161.7 1 46.6790 7.715e-09 ***

G 1.1 1 0.3035 0.5839868

A:G 26.6 2 3.8347 0.0277171 *

D:E 21.7 2 3.1387 0.0513418 .

D:F 15.5 2 2.2301 0.1173325

Residuals 187.1 54
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The first four lines in the code simple convert the numeric factor levels in
the data frame prodstd to factors in the data frame prodfac. The results
show that control factor main effects A, C, and D, noise factor main effects
E and F , and interactions between control and noise factors AG and DE are
significant at the 5% significance level.

Since there were no significant interactions with factor C, the insertion
depth, the lsmeans shown below indicate that medium or deep level should
be chosen to maximize the pull-off force.

> library(lsmeans)

> lsmeans(rmod, ~ C)

$‘C lsmeans‘

C lsmean SE df lower.CL upper.CL

1 18.36250 0.3799172 54 17.60081 19.12419

2 20.26667 0.3799172 54 19.50498 21.02835

3 20.56667 0.3799172 54 19.80498 21.32835

To determine where control main effects A and D should be set, we must
examine the interaction plots. Examining the interaction between control fac-
tor A, interference, and noise factor G, conditioning relative humidity, shown
in Figure 12.12, it can be seen that choosing the mid-level of interference
can simultaneously minimize the effect of uncontrollable changes in relative
humidity and maximize the pull-off force.

Figure 12.12 Interaction between A=Interference and G=Conditioning Relative Hu-
midity
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Finally, by examining the interaction between D, percentage of adhesive,
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and E, conditioning time, shown in Figure 12.13, it can be seen that the effect
of uncontrolled variation in conditioning time can be reduced by choosing the
medium-level percent adhesive.

In summary, the results of the response modeling analysis indicate that all
three noise factors had significant effects on the pull-off force, but by choosing
the mid level of A: interference, minimizes the effect of noise factor G: condi-
tioning relative humidity; choosing the medium D: percent adhesive, reduces
the effect of E: conditioning time, and choosing the medium to deep level of
C: insertion depth, will maximize the pull-off force.

Choosing the levels of factors A and D to reduce the effects of G and E
makes the pull-off force more consistent. Control factor B: connector wall
thickness, does not have a significant effect on pull-off force and can be set
at the level to minimize cost. Even though noise factor F : the conditioning
temperature, affects the pull-off force there was no easily manipulated control
factor that could counteract its effect. Therefore, to make the pull-off force
more consistently high, efforts should be made in the manufacturing process
to control the conditioning temperature as much as possible. The effects of
conditioning humidity and time are less critical since control factor levels have
been found that reduce their effects.

Figure 12.13 Interaction between D=Percent Adhesive and E=Conditioning Time
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Had the loss model or location-dispersion modeling approach been used (left
for an exercise) with this data, the optimal levels of the control factors could
still be identified, but there is no way to determine which noise factors are
important and which noise factor effects are reduced or minimized by choice
of the control factor levels. Thus the response modeling approach results in
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more information than the location-dispersion modeling approach when there
is more than one noise factor.

12.5 Single-Array Parameter Design Experiments

In a single-array parameter design experiment, both control and noise factors
are included as factors in a single experimental design, and the analysis is
completed using the response modeling approach. Product design experiments
usually provide more information than single-array experiments. However,
when the levels of the noise factors are actual settings rather than sampling
locations or simulations like those illustrated in the Ina tile example and the
circuit design and each experiment consists of making an actual assembly like
the elastometric connector example, the product array design often requires
more effort than is necessary.

As an example, consider the following experiment described by Lawson and
Erjavec (2001) that is patterned after an experiment that was conducted in
a motorscooter manufacturer in Taiwan.∗ The purpose for the experiment
was to select the nominal values for certain parameters in an electric starting
motor. The desired function of the starting motor was to deliver a torque of
0.25kgs or more with high probability. The four parameters of the starting
motor that are under the control of the designer are B: the inside diameter
of the starting motor casing, C: the spring constant, D: the R.L.C., and E:
the type of weld (spot or line), used in the assembly process. These were the
control factors. Three levels were chosen for factors B, C, and D and there
were just two alternatives for factor E.

In order to simulate noise caused by manufacturing imperfections and dete-
rioration while in use, a composite noise factor, A, was defined. At the low level
of this noise factor, starting motors were assembled with loose rusty springs
and motor casings were used with a rough inside surface finish. At the high
level of the noise factor, starting motors were assembled with tight springs
without rust and smooth finished casings. These two extremes were thought
to represent the worst and best case that might occur in the use environment.
The factors and levels for the experiment are shown in Table 12.11.

Table 12.11 Factors and Levels for Motorscooter Starting Motor Experiment
Levels

Factor 1 2 3
A: simulated noise worst case best case
B: inside diameter small medium large
C: spring constant weak medium strong
D: R.L.C. low medium high
E: weld type spot line

∗ The experiment was conducted with consultation help from G. Taguchi and Y. Wang.
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To use a product design for this problem, a control array would be chosen
for the control factors, and then it would be repeated for both levels of the
noise factor. Since there are three three-level control factors and one two-
level control factor, a call to the show.oas function in the DoE.base package
reveals that the smallest orthogonal array for one two-level and three three-
level factors is an OA(18). Thus, the product array would require 18 × 2 = 36
experiments. Since each experiment actually required assembling a prototype
starting motor and then putting it on the test stand to measure the torque
generated in the locked position, it would be desirable to reduce the total
number of experiments as long as it would be possible to still estimate the
control factor by noise factor interactions.

Since the OA(18) has hidden projection properties described by Wang
and Wu (1995), it can allow estimation of many two-factor interactions. A
call to the oa.design(nlevels=c(2,3,3,3,3), nruns= 18) function in the
DoE.base package can create an 18-run main effect plan. Combining the noise
factor and the control factors in this single array would reduce the total num-
ber of prototype starting motors that must be assembled and tested from 36
to 18.

Table 12.12 shows the single-array design and the measured response for
each of the 18 prototype starting motors. The runs in this design could be
discharged in a completely random order.

Table 12.12 Single Array for Starting Motor Design
Run A B C D E Torque

1 1 1 1 1 1 0.225353
2 1 1 2 2 2 0.257185
3 1 1 3 3 2 0.276032
4 1 2 1 1 2 0.224485
5 1 2 2 2 2 0.242203
6 1 2 3 3 1 0.258791
7 1 3 1 2 1 0.208673
8 1 3 2 3 2 0.231972
9 1 3 3 1 2 0.257377
10 2 1 1 3 2 0.241026
11 2 1 2 1 1 0.259373
12 2 1 3 2 2 0.284073
13 2 2 1 2 2 0.266845
14 2 2 2 3 1 0.278359
15 2 2 3 1 2 0.307101
16 2 3 1 3 2 0.248256
17 2 3 2 1 2 0.270575
18 2 3 3 2 1 0.293259
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The R code below retrieves the data frame Smotor from the daewr package,
and uses the lm function to fit a model that includes all main effects and
control-factor by noise-factor interactions. The adjusted sums of squares and
F -tests are produced by the Anova function in the car package. The output
indicates that the noise factor, A, control factors B: the inside diameter, and
C: the spring constant, along with the interaction between the noise factors
A and B, were all significant.

> library(daewr)

> library(car)

> rmod <- lm(torque ~ A + B + C + D + E + A:B + A:C + A:D + A:E,

+ data = Smotor, contrasts=list(A = contr.sum, B = contr.sum,

+ C = contr.sum, D = contr.sum, E = contr.sum))

> Anova(rmod, type="III")

Anova Table (Type III tests)

Response: torque

Sum Sq Df F value Pr(>F)

(Intercept) 0.94747 1 1.2943e+05 7.726e-06 ***

A 0.00342 1 4.6776e+02 0.002131 **

B 0.00038 2 2.6073e+01 0.036937 *

C 0.00320 2 2.1868e+02 0.004552 **

D 0.00003 2 1.8319e+00 0.353123

E 0.00004 1 5.7744e+00 0.138172

A:B 0.00101 2 6.8767e+01 0.014333 *

A:C 0.00000 2 2.1340e-01 0.824110

A:D 0.00001 2 3.5360e-01 0.738760

A:E 0.00003 1 3.5198e+00 0.201458

Residuals 0.00001 2

The least square means (shown below) for factor C: the spring constant show
that the torque generated by the starting motor increases nearly linearly as
the spring constant increases. Therefore, the strong level of the spring constant
should be used to maximize the torque.

> library(lsmeans)

> lsmeans(rmod, ~ C)

$‘C lsmeans‘

C lsmean SE df lower.CL upper.CL

1 0.2367998 0.001625843 2 0.2298043 0.2437952

2 0.2542423 0.001625843 2 0.2472468 0.2612377

3 0.2784824 0.001314669 2 0.2728258 0.2841389



SINGLE-ARRAY PARAMETER DESIGN EXPERIMENTS 535

The interaction between A and B should be studied in order to determine
which level of B, inside diameter, should be used. The output below shows
the least squares means for the different combinations of levels of factors A
and B and Figure 12.14 shows the interaction plot.

> library(lsmeans)

> lsmeans(rmod, ~ A:B)

$‘A:B lsmeans‘

A B lsmean SE df lower.CL upper.CL

1 1 0.2514923 0.001625843 2 0.2444968 0.2584877

2 1 0.2613227 0.001625843 2 0.2543272 0.2683181

1 2 0.2404619 0.001625843 2 0.2334665 0.2474574

2 2 0.2839337 0.001625843 2 0.2769382 0.2909291

1 3 0.2313096 0.001625843 2 0.2243141 0.2383050

2 3 0.2705287 0.001625843 2 0.2635332 0.2775241

Figure 12.14 Interaction between Casing inside Diameter and Simulated Noise Fac-
tor
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In the plot, it can be seen that on the average the torque is higher when
the noise factor is set at the best case than it is when the noise factor is
set at the worst case. However, when the inside diameter is small, the differ-
ence in the torque generated at the best and worst cases for the noise fac-
tor is minimized. Although the average torque appears to be slightly higher
when B: the inside diameter is at the medium level, the range in differ-
ences (0.28393367-0.24046192=0.04347175) caused by the noise factor is over
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four times larger than it is when B is set at its small level (0.26132267 –
0.25149225=0.00983042). Therefore, in order to maximize the probability that
the starting motor will deliver a torque of 0.25 kg or more, the small inside
diameter should be used, and the strong level of the spring constant.

As a second example of a single-array parameter design, consider an ex-
periment described by Montgomery (1990) to improve an injection molding
process for producing plastic parts. Prior to the experiment there was exces-
sive shrinkage of parts after molding that was causing downstream assembly
problems. Four factors that could easily be controlled in the process were A:
mold temperature; B: screw speed; C: holding time; and D: gate size. These
were the control factors. Process variables that could affect shrinkage but that
were normally difficult to control are E: cycle time; F : moisture content; and
G: holding pressure. These were identified as noise factors. The operational
personnel and quality engineer proposed to use three levels (low, mid, and
high) for each factor. The design initially considered was a product-array de-
sign using a 34−1 design for the control factors and a 33 for the noise factors.
This would have required 272 = 729 runs, and since each run required actu-
ally making parts and measuring the percent shrinkage, an alternative plan
requiring less experimentation was desired.

A single array experiment utilizing a 27−3 fractional factorial with four
added center points to check for curvature in the response only required
20 experiments. This was a resolution IV design with generators E = ABC,
F = BCD, and G = ACD, and each two-factor interaction is confounded with
two other two-factor interactions. In general this design would appear to be
unsuitable for a parameter design experiment since the interactions between
control and noise factors are not clear of other two-factor interactions. How-
ever, after completing this design, if any of the confounded strings of two-factor
interactions appear to be significant, additional runs consisting of a foldover
fraction reversing signs on some of the factors (as described in Section 6.5.1)
could be used to break the confounding. If no two-factor interactions appear
significant, then no additional experiments will be required and the single ar-
ray experiment will require less than 1/30 the runs of the 34−1 × 33 product
array design originally considered. Table 12.13 shows the factor settings and
the response for the experiment in standard order.

An analysis including the center points showed no significant curvature
and Figure 12.15 shows a normal plot of the regression coefficients from the
saturated model. Here it can be seen that factor B, the screw speed; factor A,
the mold temperature; and the confounded string of two-factor interactions
AB + CE + FG appear to be significant. The effect-heredity principle would
lead one to the conclusion that the confounded string of interactions represents
the interaction between mold temperature and screw speed. None of the noise
factors E, F , or G seem to have any effect on the percent shrinkage. Figure
12.16 shows the interaction between factors A and B.

This plot shows that when B, screw speed, is at its low level, shrinkage
is minimized, and that changing A, mold temperature, has a minimal effect
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Table 12.13 Factors and Response for Injection Molding Experiment
Run A B C D E F G Shrinkage

1 − − − − − − − 6
2 + − − − + − + 10
3 − + − − + + − 32
4 + + − − − + + 60
5 − − + − + + + 4
6 + − + − − + − 15
7 − + + − − − + 26
8 + + + − + − − 60
9 − − − + − + + 8
10 + − − + + + − 12
11 − + − + + − + 34
12 + + − + − − − 60
13 − − + + + − − 16
14 + − + + − − + 5
15 − + + + − + − 37
16 + + + + + + + 52
17 0 0 0 0 0 0 0 25
18 0 0 0 0 0 0 0 29
19 0 0 0 0 0 0 0 24
20 0 0 0 0 0 0 0 27

Figure 12.15 Normal Plot of Regression Coefficients from Injection Molding Exper-
iment
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Figure 12.16 Interaction between Mold Temperature and Screw Speed
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when screw speed is low. Therefore, choosing the low screw speed will reduce
shrinkage to an average of about 10%, and the mold size can be adjusted
so that the average part size will be on target. However, the unexplained
variability about the average due to experimental error (shown in the box plot
in Figure 12.17) is still too large, with values ranging from 4 to 16, and will
cause problems in assembly. None of the noise factors used in the experiment
can explain this variability, but by making box plots of the percent shrinkage

Figure 12.17 Box Plot of % Shrinkage at Low Screw Speed
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(with screw speed at the low level) versus each control factor separately, one
potential dispersion effect appears as illustrated in Figure 12.18.

Figure 12.18 Box Plots of % Shrinkage at Low Screw Speed at Each Level of Holding
Time
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A dispersion effect is a control factor that affects the variability in the
response. It can be seen in Figure 12.18 that at the low level of C: holding
time, there appears to be less variability in percent shrinkage than there is
when holding time is at the high level. Therefore the conclusion is to fix
both B: screw speed, and C: holding time, at their low levels. This should
result in shrinkage of about 9% plus or minus 3% as shown in the right side
of Figure 12.18. In this example there were no significant noise factors, and
no significant interactions between the control and noise factors. Therefore,
variability in percent shrinkage could not be accomplished by reducing or
nullifying the effect of the suspected noise factors used in the experiment.
However, there are obviously other unknown or lurking noise factors that
are causing variability in the response. By identifying a dispersion effect and
choosing the level which minimizes the variability, one actually reduces the
effects of the unknown noise factors resulting in a more consistent response.

Box and Meyer (1986b) described a more formal method of detecting dis-
persion effects. They propose to first fit a model to the response (for this
example A, B, and A ×B) and calculate the residuals from the model. Next,
they calculate the dispersion statistic for each factor as the natural log of the
ratio of the sample variances of the residuals at the high and low levels with
the formula

F ∗
i = ln

S2(i+)
S2(i−)

, (12.5)
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where S2(i+) is the sample variance of the residuals at the high level of factor
i and S2(i−) is the sample variance of the residuals at the low level of factor i.
They show that these statistics are approximately normally distributed with
mean zero and standard deviation 1.

12.6 Joint Modeling of Mean and Dispersion Effects

12.6.1 Joint Modeling

One of the assumptions that justifies fitting a linear model by least squares
is constancy of the variance of the experimental error across all levels of the
factors in the model. If there is a dispersion effect, this assumption will obvi-
ously be violated. Therefore, the accuracy of the coefficients in the model for
the average response will be reduced because too much weight will be given
to minimizing errors in prediction in regions where the variance is larger.
Nelder and Lee (1998) and Lee and Nelder (2003) have suggested an iterative
weighted least squares approach to estimation. This consists of:

1. Fitting a model
β̂ = (X ′X)

−1X ′y (12.6)

which includes all terms that affect the mean response, and calculating and
storing the residuals from this model.

2. Fitting a model
γ̂ = (X ′X)

−1X ′z (12.7)

which includes all dispersion effects is fit, using zi = ln r2
i as the response,

where ri are the residuals from the model 12.6. The predicted values from
this model, ẑi, are calculated and stored.

3. Finally, fitting a model using the method of weighted least squares,

β̂ = (X ′WX)
−1X ′Wy. (12.8)

This model includes all terms that affect the mean response, and W =

diag (1/
√

exp ẑi), where ẑi = ln(r̂2
i ) are the predicted values from model

12.7. After the residuals are calculated and stored from this model, return
to step 2.

This process is continued until convergence.
An alternate way to do the same thing is to use the lme function in the nlme

package to estimate the effects and variances of the residuals simultaneously
using the method of maximum likelihood or REML.

To illustrate this procedure, consider the following example described by
Shoemaker et al. (1991) that involves a process for growing a uniform layer of
silicon on top of a silicon wafer. This is one of the earliest steps in manufactur-
ing integrated circuits. It is important that the added layer be as uniform as
possible because electrical devices will be formed within these layers in later
process steps. The layers are grown in a reactor that holds 14 wafers simul-
taneously on a susceptor. The reactor is heated and gases are introduced at
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the top. The susceptor rotates to mix the gases and silicon is deposited on the
upper surface of the wafers. When the deposited layer approaches the target
thickness, the heat in the reactor is reduced to stop the deposition process.

There were eight control factors in the study shown in Table 12.14. The
response was the thickness of the silicon layer deposited. Four replicate mea-
surements of thickness were taken from wafers in different positions of the
reactor to represent the noise array.

Table 12.14 Control Factors and Levels for Silicon Layer Growth Experiment
Levels

Factor − +

A: rotation method continuous oscillating
B: wafer code 668G4 678D4
C: deposition temperature 1,210 1,220
D: deposition time High Low
E: arsenic flow rate 57% 59%
F : HCI etch temp. 1,180 1,215
G: HCI flow rate 10% 14%
H: nozzle position 2 6

The control factor array was a resolution IV 28−4 fractional factorial with
generators D = ABC, F = ABE, G = ACE and H = BCE. It is shown in Table
12.15 along with the summary statistics calculated across the noise array.

Table 12.15 Mean and Variance for Each Row in Control Array
A B C D E F G H ȳ s2

i

− − − − − − − − 14.804 0.00171
+ − − + − + + − 13.979 0.10942
− − − − + + + + 14.880 0.00372
+ − − + + − − + 14.120 0.10615
− + − + − + − + 14.158 0.00060
+ + − − − − + + 14.766 0.19199
− + − + + − + − 13.837 0.00612
+ + − − + + − − 14.846 0.22907
− − + + − − + + 14.034 0.00305
+ − + − − + − + 14.792 0.38227
− − + + + + − − 13.891 0.00096
+ − + − + − + − 14.348 0.21191
− + + − − + + − 14.728 0.00144
+ + + + − − − − 13.738 0.26182
− + + − + − − + 14.884 0.01923
+ + + + + + + + 13.973 0.07569
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Figure 12.19 is a normal plot of the regression coefficients from the saturated
model relating ȳ to the factors, and Figure 12.20 is a normal plot of the
regression coefficients from the saturated model relating ln(s2

i ) to the factors.
In Figure 12.19 it can be seen that D: deposition time and H: nozzle position
appear to have the largest effects on the average thickness.

Figure 12.19 Normal Plot of Regression Coefficients for Mean Silicon Thickness
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In Figure 12.20 it can be seen that A: rotation method appears to have a
positive effect on ln(s2

i ). This is a dispersion effect and should be set to its
low level (continuous) to minimize variability of the silicon layer thickness.

The levels of the adjustment factors (D: deposition time, and H: nozzle
position) can be chosen to bring the average thickness to the desired target.
However, since A: rotation method affects ln(s2

i ), the variance of the residuals
will not be constant and the assumptions required for the least squares esti-
mates of the D and H effects are violated. Therefore, inaccuracy will result if
the least squares coefficients for D and H are used in predicting the levels of
D and H needed to bring the average thickness to the desired target.

In the code below, use of the VarIdent option in the call to the lme function
in the nlme package causes the function to model the data with different
variances (or standard deviations) for each level of the factor A. To use the
VarIdent function the lme function must work on a grouped data object
that is created by the groupedData function in the nlme package as shown in
the code. The lme function simultaneously computes weighted least squares
estimates of the adjustment factor effects and REML estimates of the variance
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Figure 12.20 Normal Plot of Regression Coefficients for Log Variance
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of the residuals within each level of the dispersion factor. A portion of the
output is shown following the code.

> library(daewr)

> data(eptaxr)

> library(nlme)

> eptaxg <- groupedData(y ~ 1|A, data = eptaxr)

> cnt<-lmeControl(opt="optim")

> modj <- lme(y ~ D+H,data = eptaxg,weights = varIdent(form = ~ 1 | A ),

+ control = cnt )

> summary(modj)

Linear mixed-effects model fit by REML

Data: eptaxg

AIC BIC logLik

3.613591 26.8332 9.193205

Variance function:

Structure: Different standard deviations per stratum

Formula: ~1 | A

Parameter estimates:

-1 1

1.000000 5.203138

Fixed effects: y ~ D + H

Value Std.Error DF t-value p-value

(Intercept) 14.383237 0.03539982 60 406.3083 0
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D -0.409472 0.02570892 60 -15.9272 0

H 0.088225 0.01406711 60 6.2717 0

In the output above the weighted least squares estimates of the adjustment
factors are shown. From these coefficients, the coded level of D: deposition
time, and H: nozzle position, can be determined by solving the equation:

desired thickness = 14.383 − 0.40947XD + 0.0882XH (12.9)

for XD and XH .

12.6.2 Designing a Noise Array

When the noise-factor array consists of replicate samples over time or space
like the tile experiment or the silicon layer growth experiment, and the analysis
is to be completed using the location-dispersion modeling approach, a frac-
tional factorial or orthogonal array design may not be the most efficient way to
design the noise array. When the analysis is completed using the location dis-
persion modeling, the purpose of the noise array is not to efficiently estimate
the effects of the noise factors, but rather to allow accurate estimation of the
variance in the response across the noise space. Therefore, rather than using
an orthogonal array or fractional factorial that distributes points in the noise
space to the extremes, a plan that provides representative points from the
noise space would be better. Wang et al. (1995) introduced the concept of a
quantizer to select optimally representative points from the noise space. They
tabulated their representative points for practical use. Table 12.16, shown on
the next page, is a part of their table of representative points.

As one example of the use of these tables, Wang, Fang, and Lin used them
to construct an improved noise array for an experiment that was described
by Phadke (1989). The experiment involved a process to deposit polysilicon
on silicon wafers. In this process wafers are placed on two quartz carriers that
were positioned in a hot-wall-reduced pressure reactor. Silane and nitrogen
gases were introduced at one end of the reactor and pumped out the other.
As the silane gas pyrolizes a polysilicon layer is deposited on the wafers. The
quartz carriers each held 25 wafers and occupied half the reactor so that a
total of 50 wafers were deposited along the flow of gases from the inlet to
outlet. Gas flow patterns caused different concentrations along the length of
the reactor. The noise array consisted of three measurements made along the
two quartz carriers at locations 3, 23, and 48. The optimal spacing of samples
is shown in Table 12.16 with n=3 and k=1 (0.1667, 0.5000, 0.8333). Therefore,
a better noise array could be constructed using the table. It would consist of
sampling locations 8=50×0.1667, 25=50×0.5000, and 42=50×0.8333.

As a second example of using the tables, consider again the design of the
temperature controller circuit described in Section 12.3. In that example, a
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Table 12.16 Optimal Representative Points in [0,1]k Assuming Uniform Distribution

Number
of Runs Number of Noise Factors k

n 1 2 3 4 5 6
3 0.1667

0.5000
0.8333

4 0.1250 0.3750 0.8750 0.6250
0.3750 0.8750 0.6250 0.1250
0.6250 0.1250 0.3750 0.8750
0.8750 0.6250 0.1250 0.3750

5 0.1000 0.3000 0.7000 0.5000
0.3000 0.7000 0.5000 0.1000
0.5000 0.1000 0.3000 0.7000
0.7000 0.5000 0.1000 0.3000
0.9000 0.9000 0.9000 0.9000

6 0.0833 0.4167 0.2500 0.9167 0.5833 0.7500
0.2500 0.9167 0.5833 0.7500 0.0833 0.4167
0.4167 0.2500 0.9167 0.5833 0.7500 0.0833
0.5833 0.7500 0.0833 0.4167 0.2500 0.9167
0.7500 0.0833 0.4167 0.2500 0.9167 0.5833
0.9167 0.5833 0.7500 0.0833 0.4167 0.2500

7 0.0714 0.3571 0.2143 0.7857 0.5000 0.6429
0.2143 0.7857 0.5000 0.6429 0.0714 0.3571
0.3571 0.2143 0.7857 0.5000 0.6429 0.0714
0.5000 0.6429 0.0714 0.3571 0.2143 0.7857
0.6429 0.0714 0.3571 0.2143 0.7857 0.5000
0.7857 0.5000 0.6429 0.0714 0.3571 0.2143
0.9286 0.9286 0.9286 0.9286 0.9286 0.9286

8 0.0625 0.4375 0.8125 0.1875 0.9375 0.5625
0.1875 0.9375 0.5625 0.4375 0.8125 0.0625
0.3125 0.3125 0.3125 0.6875 0.6875 0.6875
0.4375 0.8125 0.0625 0.9375 0.5625 0.1875
0.5625 0.1875 0.9375 0.0625 0.4375 0.8125
0.6875 0.6875 0.6875 0.3125 0.3125 0.3125
0.8125 0.0625 0.4375 0.5625 0.1875 0.9375
0.9375 0.5625 0.1875 0.8125 0.0625 0.4375
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OA(18) was used for the noise factor array to simulate the noise environment
where actual values of the control factors could deviate from the specified
nominal values by ±2.04%. To get a more accurate estimate of the variance of
RT for any combination of levels of the control factors Wang, Fang, and Lin’s
table can be used. For example, the left side of Table 12.17 shows the coded
factor levels for five noise factors and n=8 runs taken from Table 12.16. The
right side of Table 12.16 shows the perturbations of the actual control factor
levels across the noise-factor array when all control factors are set at their low
levels (i.e., A=2.67, B=1.33, C=5.33, D=8.00, F=4.80).

Table 12.17 Representative Noise Samples for Temperature Controller
Coded Levels on [0,1]5 Actual Factor Levels

1 2 3 4 5 A B C D F
.0625 .4375 .8125 .1875 .9375 2.62 1.33 5.40 7.90 4.89
.1875 .9375 .5625 .4375 .8125 2.64 1.35 5.34 7.98 4.86
.3125 .3125 .3125 .6875 .6875 2.65 1.32 5.29 8.06 4.84
.4375 .8125 .0625 .9375 .5625 2.66 1.35 5.23 8.14 4.81
.5625 .1875 .9375 .0625 .4375 2.68 1.31 5.43 7.86 4.79
.6875 .6875 .6875 .3125 .3125 2.69 1.34 5.37 7.94 4.76
.8125 .0625 .4375 .5625 .1875 2.70 1.31 5.32 8.02 4.74
.9375 .5625 .1875 .8125 .0625 2.72 1.33 5.26 8.10 4.71

The perturbed level for factor A in the first line of the table was created as
2.62 = 2.67+ ((2× .0625) − 1.0) × 0.0204× 2.67. Here the term (2× .0625) − 1.0
converts the coded level from the [0,1] scale to the [−1,1] scale. Multiplying
by 0.0204×2.67 changes the coded level on the [−1,1] scale to a perturbation
of the specified nominal level in the ±2.04% of nominal range. Similar calcu-
lations were made to convert the other coded factor levels to perturbations
of the specified nominal values for factors B through F on runs one through
eight. Notice that by using Wang, Fang, and Lin’s table to create the noise
array, perturbed values for the control factors will be created within the tol-
erance range of deviations from the specified nominals, while when using the
orthogonal array perturbed values are pushed to the extremes of the toler-
ance range. A more accurate representation of the true variance of RT can be
made when the noise array more uniformly spaces sampling points over the
tolerance range.

The response RT could now be calculated for each combination of levels of
factors A through F using Equation (12.2), as was shown in Table 12.6 for the
OA(18) noise array, and the variance of these values could be calculated like
the log variance statistics shown in Table 12.8. The method of using the noise
factor array from Wang, Fang, and Lin’s tables to simulate the variance of RT
could be used whether a parameter design experiment were used to find the
optimal nominal values of the control factors or the more accurate method of
computer optimization.

Wang, Fang, and Lin’s tables for representative points in noise arrays
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include up to 12 noise factors and 25 runs. They also include a table for rep-
resentative samples over a disk, ball, or spherical surface. However, for cases
where these tables are unavailable, another option for designing the noise ar-
ray that would be better than a fractional factorial or orthogonal array would
be to use a Latin-hypercube design or the space filling criterion=u option
of proc optex.

12.7 Review of Important Concepts

Taguchi’s ideas of using experimental designs to improve products and produc-
tion processes has been hailed as one of the major advances in the twentieth
century in engineering and manufacturing. Taguchi showed that variation from
ideal product and process function is caused by noise. Utilizing experimental
designs that contain control factors (which are easy for designers or operators
to manipulate) and noise factors (that represent difficult to control sources of
noise), he showed that settings of the control factors can often be found to
nullify or reduce the effects of the noise factors. This chapter has illustrated
how product-array designs or single-array designs can be used to accomplish
this. Product array designs provide more information but require more effort
if changing levels of noise factors actually involve physical changes. If the noise
factors simply represent sampling over space, the product array designs may
not involve much additional work.

Analysis of data can be accomplished using location-dispersion modeling,
where summary statistics (mean and log variance) are calculated across the
levels of the noise array and analyzed as the responses for the control factor
array. Control factors that affect the mean, but not the log variance of the
response, are called adjustment factors. Their levels can be chosen to bring
the response to a maximum, minimum, or target value. Control factors that
affect the log variance should be set at a level that will minimize the variance
in the response. A two-step procedure is usually used to identify the optimal
levels of the control factors and adjustment factors.

The other method of analysis is to use the response model, which is the
same as described in the other chapters of this book. When using the response
modeling approach, identifying interactions between control and noise factors
becomes very important. The levels of control factors that interact with noise
factors can sometimes be selected to minimize the effect of the noise factor.
When using the response modeling approach, it is easier to determine exactly
what noise factors cause functional variation, and what control factor settings
can reduce their effects. When no significant noise factors can be found, but
experimental error is too high and there is too much functional variation at
optimal control factor settings, residuals should be plotted versus the levels
of each control factor to identify any dispersion effects. Dispersion effects are
factors that have an effect on the variation of the response. Choosing the level
of the dispersion effect to minimize residual variation will reduce the effect of
unknown or lurking noise factors.
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When levels of the noise factors represent replicate samples over the noise
space, the product array may actually be more efficient than a single-array
design. When analyzing product arrays using location-dispersion modeling,
Wang, Fang, and Lin’s tables, or uniformly spaced points generated by proc

optex, will give better estimates of the variance in the response over the noise
array.

Sometimes product arrays are actually split-plot experiments, and when
modeled using the response modeling, they should be analyzed as a split-
plot experiment. Box and Jones (1992) have recommended, when possible, to
conduct product array parameter design experiments with the noise factors
as the whole-plot factors and the control factors as the sub-plot factors. This
way the control factor effects and the control-by-noise factor effects can be
tested with the smaller sub-plot error term.
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12.8 Exercises

1. Consider the commercial product test of erasers conducted by Sachiyo and
Kosaka in 1971 and discussed by Taguchi (1987). The purpose of the test
was to determine the quality of erasure when lines of the same length
drawn on different types of paper were rubbed with different erasers. For
the experiment, lines of the same length were drawn on each type of paper
by different pencils. The lines were rubbed three times back and forth by
each eraser and then judged for quality. A response of 0 = top means that
no pencil trace was left on the paper. A response of 1 = middle means only
a faint pencil trace was left on the paper, and response of 2 = bottom means
it did not erase very well.

Factors and levels for the experiment are shown in Table 12.18. The hope
was to identify the brand and material that produced the best quality
erasure consistently regardless of the type of paper or the hardness of the
pencil lead used.

Table 12.18 Factors and Levels for Commercial Product Test of Erasers
Levels

Factor 1 2 3 4 5
Control Factors:
A: Manufacturer Rabbit Staedtler
B: Material Rubber Plastic
Noise Factors:
C: Paper Note Paper Tracing Paper
D: Lead Hardness 4H 2H HB 2B 4B

The control-factor array was a 22 factorial. One cell is missing since one
manufacturer did not make rubber erasers, and one cell is duplicated since
the other manufacturer made two types of plastic erasers. The noise factor
array was a 2 × 5 full factorial. The product array design and the judged
responses are shown in Table 12.19.

Table 12.19 Product Array Design and Response for Commercial Product Test
C 1 2

A B D 1 2 3 4 5 1 2 3 4 5
1 1 1 0.5 1 1 1 0 0.5 0.5 2 1.5
1 2 0.5 1 1 1 1 0 0 0 0.5 1.5
2 2 0 0 0 0 0.5 0 0 0 0.5 0
1 2 0 0.5 1 1 0 0 0 0.5 1.5 1.5

(a) Analyze the data using location-dispersion modeling.

(b) Use the two-step procedure in Section 12.4.1 to identify the brand and
material that produce the best quality erasure.
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(c) Repeat the analysis using the response modeling approach.

(d) Are there significant interactions between control and noise factors? Can
they be exploited to reduce the effect of the noise factors?

(e) Is there an adjustment factor?

2. Reconsider the cake mix experiment described in exercise 9 of Chapter 8.
The control factors that can be selected by the manufacturer are F : the
amount of flour; S: the amount of shortening; and E: the amount of egg
powder in the mix. The noise factors are T : baking temperature, and t:
baking time.

(a) Did you detect any control-by-noise interactions in the split-plot analysis
conducted in Chapter 8? If so, can these interactions be exploited to
reduce the effects of variation in baking time or baking temperature?

(b) Reanalyze the data using the location-dispersion modeling approach. Do
you reach the same conclusion about the optimal choice of levels of F ,
S, and E?

(c) Which method of analysis gives you more information?

3. Lawson (1990) describes an experiment in a chemical process with the
aim of producing less byproduct tars. The control factors were A, reaction
temperature; B, catalyst concentration; and C, excess of reagent 1. The
noise factors were E, purity of the recycled solvent; and D, purity of reagent
1 that comes from a supplier. A product-array design was used for the
experiment that is shown in Table 12.20. The control-factor array is a Box-
Behnken design that will allow estimation of all terms in a full quadratic
model involving factors A, B, and C. The noise factor array is a 22 factorial.

(a) What interactions are estimable in this design?

(b) Analyze the data using the response modeling method. Are there any
interactions between control and noise factors that would allow you to
reduce or nullify the effect of uncontrollable variability in the purity of
the solvent stream and purity of reagent 1?

(c) Reanalyze the data using the location-dispersion modeling method. Do
you reach the same conclusions about optimal settings of the control
factors? Is any information lost in analyzing the data in this way?

(d) Explain how the response modeling analysis would change if this exper-
iment had been conducted as a split-plot design, where the noise factors
were the whole-plot factors and the control factors were the sub-plot
factors. Is there any advantage to running a product array split-plot de-
sign with the noise factors as the whole-plot factors, rather than having
the control factors as the whole-plot factors as in the Ina tile example
presented in Section 12.3?
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Table 12.20 Product Array Design for Chemical Process Experiment
E − + − +

D − − + +

A B C
− − 0 37.29 57.81 42.87 47.07
+ − 0 4.35 24.89 8.23 14.69
− + 0 9.51 13.21 10.10 11.19
+ + 0 9.15 13.39 10.30 11.23
− 0 − 20.24 27.71 22.28 24.32
+ 0 − 4.48 11.40 5.44 8.23
− 0 + 18.40 30.65 20.24 24.45
+ 0 + 2.29 14.94 4.30 8.49
0 − − 22.42 42.68 21.64 30.30
0 + − 10.08 13.56 9.85 11.38
0 − + 13.19 50.60 18.84 30.97
0 + + 7.44 15.21 9.78 11.82
0 0 0 12.29 19.62 13.14 14.54
0 0 0 11.49 20.60 12.06 13.49
0 0 0 12.20 20.15 14.06 13.38

4. Because the elastometric connector experiments described in Section 12.3
required physical experimentation, Song and Lawson (1988) suggested us-
ing a single array design to save on the number of experiments required.
Table 12.21 shows a resolution IV 27−2 fractional factorial design and the
resulting pull-off force. The factor names and levels are the same as those
shown in Table 12.3 of Section 12.3. The generators for the design were
F = ABC and G = ABD.

(a) What is the defining relation for this design, and how many of the 12
control-by-noise factor interactions can be estimated clear of other main
effects or two-factor interactions?

(b) Using the FrF2 package, can you find a 32-run resolution IV design that
has more control-by-noise factor interactions clear? If so, what are the
generators?

(c) Calculate a set of 31 saturated effects for this design, and make a normal
plot to determine which effects, interactions, and confounded strings of
two-factor interactions appear to be significant. Is there a clear interpre-
tation of any confounded strings of interactions?

(d) Make interaction and contour plots of any two-factor interactions be-
tween control factors and noise factors and use them to choose the level
of control factors that will minimize the effect of noise factors.

(e) Are there any adjustment factors? If so, what levels should be chosen to
maximize the pull-off force?
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Table 12.21 Single-Array Experiment for Elastometric Connector
A B C D E F G Pull-Off Force
Low High High Low 120 150 75 22.0
High High High High 120 150 75 27.6
High High High Low 120 72 25 22.1
High High Low High 120 72 75 20.2
Low Low Low High 120 72 75 18.9
High High High High 24 150 25 13.8
Low High High High 24 72 75 15.2
Low Low Low Low 120 150 25 23.1
High Low High High 24 72 75 16.1
High Low High High 120 72 25 20.1
Low Low High High 120 150 75 21.9
High Low Low Low 24 72 25 17.1
High Low High Low 24 150 25 18.1
Low High Low High 24 150 75 9.6
Low Low High Low 24 72 75 18.3
Low High Low Low 120 72 75 19.1
High Low High Low 120 150 75 27.0
Low Low Low Low 24 150 75 17.3
Low Low High High 24 150 25 17.7
Low Low Low High 24 72 25 14.7
High Low Low Low 120 72 75 22.2
Low High High Low 24 150 25 21.1
Low Low High Low 120 72 25 24.3
Low High Low Low 24 72 25 13.9
High Low Low High 24 150 75 19.4
High Low Low High 120 150 25 22.7
High High Low High 24 72 25 14.6
High High Low Low 120 150 25 23.3
High High High Low 24 72 75 20.4
Low High Low High 120 150 25 22.6
Low High High High 120 72 25 21.0
High High Low Low 24 150 75 17.5
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5. Taguchi (1987) described an experiment to find the source of clutch slip-
ping in automobiles. Prototype clutches were assembled using some new
components and some components taken from disassembled clutches that
had complaints. Each prototype was tested and the response, y, was ob-
tained by dividing the slipping time by the number of revolutions of the
engine and then multiplying by 10,000. The control and noise factors and
their levels are shown in Table 12.22.

Table 12.22 Factors and Levels for Auto Clutch Slipping

Levels
Control Factors: − +

B:Spring Allignment 5 levels
A:Force current +50kg
D:Clutch Plate Running Distance ≤10,000km ≥30,000km
F :Cover Running Distance ≤10,000km ≥30,000km

Levels
Noise Factors: − +

C:Clutch Plate ordinary product object of complaint
E:Cover ordinary product object of complaint

A 20-run orthogonal array (shown in Table 12.23) was used to study both
control and noise factors in a single array.

(a) Read the data into a data frame and construct −1 and +1 coded factor
levels for factors A, D, F , C, and 4 orthogonal polynomial contrasts for
factor B. Create columns for the interactions between control and noise
factors.

(b) Find a model for the data using an all-subsets regression, as shown for
analysis of a Plackett-Burman design in Section 6.6 and for the analysis
of the log variance for the temperature controller circuit in Section 12.4.

(c) From your model, identify any significant adjustment factors and control-
by-noise interactions, and determine the levels of the control factors that
will minimize clutch slippage with minimum variation.

(d) Are all control-by-noise factor interactions estimable from this design?

6. An experiment originally performed by the National Railway Corpora-
tion of Japan (Taguchi and Wu, 1980) was reanalyzed by Box and Meyer
(1986b). The control factors in the design were A, kind of welding rods;
B, period of drying; C, welded materials; D, thickness; E, angle; F , open-
ing; G, current; H, welding method; and J , preheating. Taguchi and Wu
also considered the interactions AC, AG, AH, and GH. The design and
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Table 12.23 Orthogonal Array Experiment for Clutch Slipping
B A D F E C y
1 1 1 1 1 1 1.0
1 1 1 1 1 2 1.4
1 2 2 2 2 1 1.1
1 2 2 2 2 2 1.0
2 1 1 2 2 1 1.2
2 1 1 2 2 2 1.6
2 2 2 1 1 1 0.9
2 2 2 1 1 2 1.2
3 1 2 1 2 1 1.6
3 1 2 1 2 2 1.8
3 2 1 2 1 1 1.2
3 2 1 2 1 2 1.0
4 1 2 2 1 1 1.3
4 1 2 2 1 2 1.3
4 2 1 1 2 1 1.0
4 2 1 1 2 2 1.6
5 1 2 2 1 1 1.3
5 1 2 2 1 2 1.1
5 2 1 1 2 1 1.2
5 2 1 1 2 2 1.1

response y= tensile strength of welds is shown in Table 12.24 where e1 and
e2 are unassigned columns that represent confounded interactions.

(a) Calculate effects for each of the 15 columns in Table 12.24, and make a
normal plot to identify factors that affect the tensile strength.

(b) Fit a model to the data including only the effects that appear significant
on the normal plot, and calculate the residuals from the fitted model.

(c) Calculate the sample variance of residuals from the last model for the −
and + level of each column in Table 12.24, and calculate the dispersion
statistic (given by Equation (12.5)) for each column. Make a normal plot
of the dispersion statistics and identify any potential dispersion effects.

(d) Use the lme function in the nlme package to simultaneously estimate the
location-dispersion effect using the method of iterative weighted least
squares.

(e) What factor levels do you recommend to maximize the tensile strength
with minimum variation?
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Table 12.24 Design and Tensile Strength for Weld Experiment
D H G A F GH AC E AH AG J B C e1 e2 y
− − − − + + − + + + − − + + − 43.7
+ − − − − + + − + + + − − − + 40.2
− + − − + − + + − + − + − − + 42.4
+ + − − − − − − − + + + + + − 44.7
− − + − − − + + + − + + − + − 42.4
+ − + − + − − − + − − + + − + 45.9
− + + − − + − + − − + − + − + 42.2
+ + + − + + + − − − − − − + − 40.6
− − − + + + − − − − + + − + + 42.4
+ − − + − + + + − − − + + − − 45.5
− + − + + − + − + − + − + − − 43.6
+ + − + − − − + + − − − − + + 40.6
− − + + − − + − − + − − + + + 44.0
+ − + + + − − + − + + − − − − 40.2
− + + + − + − − + + − + − − − 42.5
+ + + + + + + + + + + + + + + 46.5

7. In the design of a thin film redistribution layer (cited by J. Lorenzen,
IBM Kingston and discussed by Lawson and Madrigal (1994)), the cir-
cuit impedance (Z) is a function of three design factors: the A, insulator
thickness; B, linewidth; and C, line height as shown in Figure 12.21. From
engineering first principles, it can be shown that the impedance is given by
Equation (12.10), where ε is the dielectric constant of the insulator and is
assumed to be constant at 3.10.

Z = f(A,B,C) =
87.0

√
ε + 1.41

ln(
5.98A

0.8B +C
) (12.10)

Figure 12.21 Thin Film Distribution Layer

The nominal or mean values of A, B, and C can be specified by the design
engineer, but in actual circuits these characteristics will vary from their
nominal values due to manufacturing imperfections and wear during use.
The table above shows the feasible range and tolerance limits for these
variables.

(a) Construct a control-factor array using a 23 factorial design.
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Low-Cost
Feasible Tolerance
Range Range

Control Factor (µm) (µm)
A: Insulator thickness 20-30 ±1.0
B: Linewidth 12.5-17.5 ±0.67
C: Line height 4-6 ±0.33

(b) Construct a noise-factor array (in deviations from the nominal settings
in the control-factor array) using the table of Wang, Fang, and Lin.

(c) Evaluate Equation (12.10) for each combination of values in the product
array, and calculate the mean and log variance impedance across the
noise-factor array for each of the eight points in the control-factor array.

(d) Fit a model to the mean and log variance and identify the control fac-
tor settings that will make the impedance equal to 85Ω with minimum
variability.

(e) Approximate the variance of Z, using the formula σ2
Z ≈ (

∂f
∂A

)
2
σ2
A +

(
∂f
∂B

)
2
σ2
B + (

∂f
∂C

)
2
σ2
C (where σ2

A=tolerance range/6, etc.), and use nu-
merical optimization such as the optim function as described in Chapter
10 to minimize σ2

Z as a function of A, B, and C subject to the constraint
that Z = 85Ω. Do the results differ substantially from the answer you
got in (d)?

8. Consider the data for the product array design for the elastometric connec-
tor shown in Figure 12.4.

(a) Calculate the mean pull-off force and log variance of the pull-off force
across the noise array for each run in the control-factor array.

(b) Analyze the data using the location-dispersion modeling method.

(c) Do you find the same optimal levels of the control factors as identified
in Section 12.4.2?

(d) Is any information lost when analyzing this data using location-
dispersion modeling?

9. Reconsider the data from the injection molding experiment in Table 12.13.

(a) Fit the model y = β0 + βAXA + βBXB + βA×BXAXB in the adjustment
factors using the method of least squares.

(b) Simultaneously estimate the variance of the residuals at each level of the
dispersion factor, C, and compute the weighted least squares estimates
of the coefficients in the model in (a) using proc mixed as shown in
Section 12.6.1.



CHAPTER 13

Experimental Strategies for Increasing
Knowledge

13.1 Introduction

Experimental designs are the basis for collecting data to discover cause and
effect relationships. A number of different experimental designs have been pre-
sented in this book. The experimental design most appropriate for a particular
situation will depend upon the circumstances. Throughout this book, the de-
sign selection roadmap (Figure 1.2) has been used to indicate when specific
experimental designs should be used based on the number of factors, homo-
geneity of the experimental units, and the ease of randomizing treatments to
experimental units. However, another way of viewing experimental designs is
as a collection of tools that are useful for increasing the state of knowledge
about a particular phenomenon.

The appropriate design (or tool) depends on how much knowledge is avail-
able, and what additional information the experimenter would like to discover.
The different experimental designs and corresponding methods of data anal-
ysis presented in this book can be used in a sequence to advance knowledge,
often referred to as sequential experimentation. This chapter presents an out-
line of how experimental designs can be used in sequential experimentation.
Only one detailed example is presented in this chapter, but reference is made
to specific examples that have been presented in previous chapters.

13.2 Sequential Experimentation

Figure 13.1 illustrates the state of knowledge about a phenomenon as a contin-
uous line that goes from zero knowledge on the left to a high state of knowledge
on the right. The purpose for experimenting is to advance the state of knowl-
edge. Various stages along the line, descriptive names for the stages, purposes
for experimenting at each stage, and appropriate experimental designs for each
stage are shown below the knowledge line in the figure.

When there is a very low state of knowledge, the experimenter may know
that the response is variable but he or she may not know what factors cause
variability in the response. When this is the case, determining the sources of
variability may give an experimenter clues to potential factors. Random sam-
pling experiments, nested, and staggered nested designs described in Chapter
5 are useful for determining sources of variability.

When the experimenter has a list of potential factors that could influence the

557
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response, screening designs such as fractional factorials, model robust screen-
ing designs, and orthogonal array designs are useful for separating the list of
potential factors into those that (1) influence the response and (2) those that
do not. When there are many factors to be tested in few runs, the experi-
menter should not expect to do much more than identify the factors that are
important. This stage of experimentation is called screening, and the so-called
screening designs are described in Chapters 6, 7, and 8. When experimental
units are homogeneous and there is no restriction on randomization, the de-
signs in Chapter 6 are appropriate. Blocked designs are discussed in Chapter
7 and split-plot designs in Chapter 8. The design roadmap (Figure 1.2) helps
in determining which of these screening designs should be used.

Figure 13.1 The State of Knowledge Line

Stage            Preliminary       Screening          Effect    Optimization               Mechanistic
Exploration        Factors          Estimation                                                  Modeling

Purpose        Determine          Identify        Estimate Main Fit Empirical           Estimate Parameters
Sources of        Important   Effects, Interactions       Models and            of Theoretical Model
Variability           Factors         and Optimum            Interpolate to             and Extrapolate

Conditions Tested     Find Optimum in       Predictions Outside
Bounded Region     Region of Experiments

Useful               RSE                CRFF                 CRFD                     CRRS                          D-optimal 
Designs            NSE                  PB                    RCBF                    D-optimal                       Designs

SNSE                 OA                 CCBF                     Designs
SPFF           PCBF                       BRS 

CRSP                      RSSP
RBSP                     EESPRS

State of
Knowledge    0%                                                 100%

In most problems, the number of factors that have a practical and statis-
tically significant effect on the response will be reasonably small. Once they
have been identified, the next stage of experimentation is called estimation.
Here, the purpose is to estimate the factor effects and interactions. Experi-
mental designs useful at this stage are full factorial designs, two-level factorial
designs, and resolution V fractional factorials. These are described in Chapters
3, 4, 6, 7, and 8. When the main effects and interactions have been estimated,
it is also possible to identify the conditions (among those tested) that result
in a maximum or minimum predicted response.

Once the most desirable levels of the qualitative factors have been chosen,
experimenters can further advance the state of knowledge, during the estima-
tion stage, by finding an empirical equation relating the response to the levels
of the quantitative factors. Using this equation, the settings of the quantita-
tive factors that result in an optimum response within the region studied can
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be identified. This is called the optimization stage. The experimental designs
useful for this stage are the response surface designs and mixture experiment
designs discussed in Chapters 10 and 11.

Box and Wilson (1951), who were the first to propose response surface
methods, also described an intermediate stage of experimentation between the
estimation of effects and optimization. They proposed to estimate first the di-
rection of maximum improvement from the 2k design run in the estimation
stage, and next conduct a series of one-at-a-time experiments outside the orig-
inal experimental region along this path, as illustrated in Figure 13.2. When
the response from individual experiments continues to improve, additional ex-
periments are run along the path. When the response from experiments along
the path stops improving, a second order or response surface experiment is
then conducted to identify the optimum conditions. This whole process is
called the method of steepest ascent. Myers and Montgomery (2002) show the
details of how to determine the path of steepest ascent. In many cases the
method of steepest ascent is impractical because (1) the experimental error
makes it very difficult to determine if individual experiments are improving or
not, and (2) sometimes it is impossible to go outside the range of the original
experiments.

Figure 13.2 The Method of Steepest Ascent
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When it is not possible to experiment outside the region used in the es-
timation stage, the transition from the estimation stage to the optimization
stage can be accomplished by running a standard response surface design
in blocks. This is illustrated in Figure 13.3. The first block includes a 2k−p
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fractional factorial design plus center points involving the quantitative fac-
tors. After collecting data from the first block, the significance of factor main
effects can be determined. If there are insignificant main effects, they can be
ignored and the design collapses to a factorial plus center points as shown in
the bottom leg of the next stage of experimentation in Figure 13.3. If all main
effects are significant, a second block of experiments is performed to create a
full factorial plus center points as shown in the top leg of Figure 13.3. In the
analysis of data at the second stage, a test for curvature should be performed
as described in Section 10.6.1. If there is significant curvature, a third block
of experiments involving central-composite-design-axial points and additional
center points should be run to complete a response surface design.

Figure 13.3 Blocked Response Surface

State of
Knowledge    0%                                                 100%

Screening                    Effect Estimation                  Optimization

Fractional                            Factorial +               Central 
Factorial                            center points             Composite

The orthogonally blocked central composite designs, which are produced
automatically by the ccd function in the rsm package, can be used as illus-
trated in Figure 13.3 if they have at least three blocks. For example, there
is a three-factor central composite design that blocks orthogonally into three
blocks. The first block is the half-fraction plus center points. The second block
is the mirror image half-fraction plus additional center points, and the third
block is the axial points plus center points. There is a similar four-factor cen-
tral composite design in three blocks. For five- and six-factor designs there
are central composite designs that block into five blocks. The first four blocks
consist of 1

4
fractions ( 1

8
fractions for the six-factor design) and it may be

possible to eliminate some of these blocks if not all factors are significant.
An example of using a sequence of fractional factorial, factorial, and cen-

tral composite design to increase knowledge in the way shown in Figure 13.3
was illustrated in the example of producing an amino acid rich biomass from
eucalyptus wood given in Section 6.4 and continued in exercise 3 of Chapter
10.
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After the data is collected in the optimization stage of experimentation,
general quadratic or cubic (in the case of some mixture experiments) models
are fit to the resulting data, and various tools are used to explore the fitted sur-
face and identify optimum operating conditions. Since the polynomial models
used in the optimization stage are just approximations to the true relationship
between the quantitative factors and the response, predictions should never
be made with these models outside the region of experimentation.

When more knowledge is available in the form of a theoretical model, like
the compartment model described in Section 10.5 or the chemical degrada-
tion model determined from first-order kinetics in Section 10.7.4, there is no
need to conduct a traditional response surface experiment. When a theoretical
model is available, the parameters of this model can be estimated from data
collected using custom experimental designs that are based on the form of
the model and prior estimates of the parameters. Once data is collected and
a theoretical model is fit, predictions or extrapolations can be made outside
the experimental region.

Utilizing all the stages of experimentation shown in Figure 13.1, the state of
knowledge can be advanced through a sequence of experiments as illustrated
in Figure 13.4. A plan of action to gain knowledge in this way is called a
sequential experimentation strategy.

Figure 13.4 Sequential Experimentation
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13.3 One-Step Screening and Optimization

In some cases when experiments are conducted in a manufacturing facility,
a pilot plant (that can only be scheduled for a limited time), in market-
ing research studies or engineering prototype testing (where there is a fixed
deadline), the sequential experimentation strategy may not be possible. Af-
ter beginning experiments, some experimental plans must be modified when
an experimenter finds that factors cannot be varied independently, the cho-
sen range for one or more factors is infeasible, or a previously unknown but
highly influential factor is discovered. However, when the time allotted for
experimentation is tight, rarely is it possible to start with a screening experi-
ment and proceed with additional designs and analysis to arrive at the desired
state of knowledge.
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For the reasons above, the sequential experimentation strategy is sometimes
abandoned in favor of a single design or set of experiments. Even so, the designs
used for screening and optimization are mutually exclusive. If an experimenter
can only afford to run one set of experiments, he is forced to choose between
one objective or the other. If the experimenter chooses a classical response
surface design, he must select a subset of the factors to work with, and he
risks the possibility of missing other important factors. On the other hand, if
the experimenter chooses a screening experiment to avoid missing important
factors, important interactions and quadratic effects will be missed.

It would be desirable in some situations to have experimental design plans
that allow for (1) screening a reasonably large number of factors to identify
the important ones, and (2) refitting a model to the data in only the important
factors, so that important interactions or optimum operating conditions can
be determined after one set of experiments. Recent literature has shown this
is possible using certain experimental plans.

Lawson (2003) illustrates how screening followed by estimation of interac-
tions can be accomplished using Plackett-Burman designs. The example in
Section 6.6 illustrates how this can be accomplished. Cheng and Wu (2001)
proposed a strategy for using non-regular fractions of 3k designs for simulta-
neous screening and response surface exploration. Lawson (2003) presents 18-,
27-, and 36-run examples of these non-regular fractions and an example using
Chen and Wu’s strategy with an 18-run design. Many additional non-regular
fractions of 3k designs are stored in a catalog and can be accessed using the
DoE.base package described in Section 6.7.

The definitive screening designs proposed by Jones and Nachtsheim (2011)
and Jones and Nachtsheim (2013), described in Section 6.8, may be even better
for simultaneous screening and response surface exploration using quantitative
factors with three levels. Using one of these designs with six or more three-
level factors allows fitting the full quadratic model involving any subset of
three three-level factors.

13.4 An Example of Sequential Experimentation

TiO2 is an excellent catalyst support material for metal and metal oxide cata-
lysts used in oxidative synthesis and pollution-control reactions such as com-
plete oxidation of volatile organic compounds. Different uses of this material
require different anatase or anatase/rutile properties such as surface area, pore
volume, and pore diameter. Olsen et al. (2014) performed a sequence of ex-
periments to determine what factors in the synthesis of TiO2 could be used to
control the resulting material properties. The end goal was to develop predic-
tion equations that could identify conditions necessary to produce TiO2 with
pore diameters useful for various applications while simultaneously having a
large surface area and pore volume.
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13.4.1 Fractional Factorial Design

A 16-run 210−6
III fractional factorial was first run with the factors and levels

listed in Table 13.1 (see exercise 7, Chapter 6). After analysis of the data
from this experiment, only one factor (A-mixing order) was considered to
have a negligible effect. Factor D (rinsing order) was found to have a large
effect on pore diameter and pore volume, but due to the confounding of main
effects with two-factor interactions it was difficult to rule out the effects of
other factors or interactions involving other factors.

Table 13.1 Factors in the Factional Factorial Experiments of TiO2 Synthesis
Levels

Label Factor − +

A Mixing Order ABC and AINO3 TiCl4 and AINO3

B Speed of H2O addition slow fast
C Amount of H2O small large
D Order of Rinsing dry-rinse-calcine dry-calcine-rinse
E Drying Time short long
F Drying Temperature low high
G Calcination Ramp slow rate fast rate
H Calcination Temperature low high
J Calcination Time short long
K Dopant Amount 5% 22%

For the next set of experiments, one option was to run a mirror image design to
separate main effects from two-factor interactions. However, since the eventual
goals of experimentation were to consider quadratic effects on all factors except
A and D (which had discrete levels), and to find prediction equations for
surface area, pore volume, and pore diameter, using the mirror image design
as the next set of experiments would have been only one of possibly many
future designs. Instead it was decided to run one of Jones and Nachtsheim’s
(2011) definitive screening designs for a one-step screening and optimization.
Designs were run using the eight factors, B, C, E, F, G, H, J, and K in Table
13.1 for each level of the discrete factor D.

13.4.2 Definitive Screening Design

This section discusses the definitive screening design run with factor D (or-
der of rinsing) held constant as dry-rinse-calcine. Another definitive screening
design was run with the order of rinsing held constant as dry-calcine-rinse. De-
tailed descriptions of both designs and the results are in the paper by Olsen
et al. (2014). This section illustrates the use of R to design and analyze data
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from the experiments in order to develop a prediction equation from the data.
The eight factors used in the definitive screening designs were relabeled A–H
as shown in Table 13.2, and a mid-level of each factor was used in addition to
the low and high levels shown in Table 13.1.

Table 13.2 Factors in the Definitive Screening Experiments of TiO2 Synthesis
Label Factor
A Speed of H2O addition
B Amount of H2O
C Drying Time
D Drying Temperature
E Calcination Ramp
F Calcination Temperature
G Calcination Time
H Dopant Amount

The DefScreen function in the R package daewr was used to create a defini-
tive screening design in coded levels for eight factors as shown below. This
design is listed in standard order, although the experiments were performed
in a randomized order.

> library(daewr)

> des <- DefScreen( m = 8 )

> des

A B C D E F G H

1 0 -1 1 1 -1 1 1 1

2 0 1 -1 -1 1 -1 -1 -1

3 -1 0 -1 1 1 1 1 -1

4 1 0 1 -1 -1 -1 -1 1

5 -1 -1 0 1 1 -1 -1 1

6 1 1 0 -1 -1 1 1 -1

7 1 -1 1 0 1 1 -1 -1

8 -1 1 -1 0 -1 -1 1 1

9 -1 -1 1 -1 0 -1 1 -1

10 1 1 -1 1 0 1 -1 1

11 1 -1 -1 -1 1 0 1 1

12 -1 1 1 1 -1 0 -1 -1

13 -1 1 1 -1 1 1 0 1

14 1 -1 -1 1 -1 -1 0 -1

15 1 1 1 1 1 -1 1 0

16 -1 -1 -1 -1 -1 1 -1 0

17 0 0 0 0 0 0 0 0
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13.4.3 Analysis and Interpretation of Results

The data was analyzed using the forward regression functions (described in
Section 6.6) that enforce effect heredity in the model. The response data for
pore diameter and the call to fit the initial model using the ihstep function
in the daewr package is shown below along with a portion of the results.

> pd <- c(5.35, 4.4, 12.91, 3.79, 4.15, 14.05,

+ 11.4, 4.29, 3.56, 11.4, 10.09, 5.9, 9.54,

+ 4.53,3.919,8.1,5.35)

> trm <- ihstep( pd, des )

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.2194 0.5140 14.045 4.89e-10 ***

F 3.1508 0.5664 5.563 5.43e-05 ***

Multiple R-squared: 0.6735, Adjusted R-squared: 0.6518

In this step the linear effect of factor F (calcination temperature) enters the
model. The next two steps resulting from calling the fhstep function, and
portions of the outputs produced, are shown below.

> trm <- fhstep( pd, des, trm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.0333 1.0345 4.865 0.000309 ***

F 3.1508 0.4789 6.579 1.77e-05 ***

A 0.7664 0.4789 1.600 0.133553

I.A.2. 2.6545 1.1400 2.328 0.036668 *

Multiple R-squared: 0.7977, Adjusted R-squared: 0.751

> trm <- fhstep( pd, des, trm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.0333 0.9280 5.424 0.000154 ***

F 3.1508 0.4296 7.335 9.04e-06 ***

A 0.7664 0.4296 1.784 0.099715 .

I.A.2. 2.6545 1.0226 2.596 0.023407 *

C -0.8758 0.4296 -2.039 0.064137 .

Multiple R-squared: 0.8498, Adjusted R-squared: 0.7997
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In the second step, the function fhstep adds the quadratic effect of factor
A (speed of H2O addition) to the model and the linear effect of factor A as
well, to preserve effect heredity. In the third step, the function fhstep adds
the linear effect of factor C (drying time) to the model. In the fourth step
(not shown), fhstep added the A×D interaction and the linear main effect
of factor D (drying temperature) to the model, but neither of these terms
were significant at the α = 0.10 significance level. Calling the bstep function
twice trims the two insignificant terms from the model. The final model was
determined to be:

Pore Diameter = 5.0333 + 0.7664x1 − 0.8758x2 + 3.1508x3 + 2.6545x2
1,

where x1 is the coded levels of A (speed of H2O addition), x2 is the coded level
of C (drying time), and x3 is the coded levels of F (calcination temperature).
Figure 13.5 shows a contour plot of this fitted surface, when the Drying Time
is held constant at its mid level.

Figure 13.5 Contour Plot of Pore Volume with Drying Time Fixed at Mid-Level
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From the contour plot it can be seen that the fitted equation predicts pore
diameters that range from 2 to 12. Therefore it was envisioned that TiO2

catalyst supports for a variety of applications could be created at will. Similar
equations were fit to the pore volume and the surface area responses. The
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fitted equations were used to predict the synthesis conditions that would result
in low, medium, and large pore diameters (for various applications) while
maintaining a large surface area and pore volume. Confirmation experiments
verified that these predictions were accurate.

This example illustrates the progression from a preliminary exploration
stage to an optimization stage of the knowledge line using just two experi-
mental designs in sequence. The definitive screening designs allowed progres-
sion from a screening experiment with eight quantitatively leveled factors to
response surface type optimization without collecting additional data.

13.5 Evolutionary Operation

The idea of using optimization experiments, or any experimentation for that
matter, is often met with resistance in an operating manufacturing facility. In
manufacturing, the key process variables thought to influence production are
usually tightly controlled in order to ensure the quality of the manufactured
product. Tampering or experimenting with the levels of key process variables
could result in the production of off-grade or scrap product. However, the
levels at which the process variables are controlled in a manufacturing process
may not be optimal. These levels may have been determined in pilot plant or
laboratory experiments where conditions may differ in many ways from the
actual manufacturing facility. In other cases, where the levels of key process
variables were actually determined through preliminary experiments in the
manufacturing facility, they may no longer be optimal due to drift over time
in raw materials or environmental conditions. Therefore, although acceptable
product is being produced with current process variable settings, there may
be benefits in experimenting to obtain improved settings or to counteract drift
over time.

Box (1957) proposed a method for finding improved settings of key process
variables without upsetting production. He believed that a manufacturing pro-
cess should not only produce product, but also information that can be used
to improve the process over time. Data is normally collected in manufactur-
ing facilities regarding (1) the settings of key process variables during each
production run (to ensure operating procedures are being followed) and (2)
measured characteristics of product (to monitor quality). While recording this
informaton, Box suggested making small perturbations in key process variable
settings from time to time according to a statistical plan like a 22 or 23 ex-
periment. The planned changes in the key process variables would be small
enough that the product output would not be degraded, yet large enough that
potential process improvements could be recognized after a number of cycles
through the planned settings. He called this method Evolutionary Operation
or EVOP for short.

When using EVOP, the center point in a 22 or 23 design is assigned to
the current operating conditions (in terms of what is believed to be the key
process variables). Figure 13.6 illustrates the plan for two process variables.
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The five different process settings would each be run during one block of
manufacturing. Running all five of these conditions completes one cycle of the
EVOP.

Figure 13.6 A 22 Plan for EVOP
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If the average measure of product characteristic is yijk during the kth EVOP
cycle at process variable settings i and j, then after two or more cycles, the
main effect of process variable 1 (ȳ+⋅⋅−ȳ−⋅⋅), the main effect of process variable 2
(ȳ⋅+⋅− ȳ⋅−⋅), their interaction effect ((ȳ++⋅+ ȳ−−⋅)−(ȳ+−⋅+ ȳ−+⋅) and the curvature
effect (ȳ00⋅ − ȳ⋅⋅⋅) can be calculated. The standard error of the main effect and
interaction estimates is 2sp/

√
4 × r, and the standard error of the curvature

effect is 2sp ×
√

1/r + 1/4r, where sp is the pooled standard deviation over the
five treatment combinations and r is the number of cycles of EVOP performed.
The statistical significance of the effects can be determined by dividing the
effect by its appropriate standard error and comparing it to the reference t-
distribution with 5× (r − 1) degrees of freedom. Since r is in the denominator
of the standard errors, they will decrease as the number of cycles of EVOP
increases.

If after five or more cycles of EVOP there is no practical or statistically sig-
nificant effects, then either the process performance is optimal and stable over
the experimental region, or improved operating conditions may exist outside
the current experimental region. If it is believed that further improvement
may be possible outside the range of the current EVOP, the ranges on the
key process variables should be increased and another phase of EVOP should
begin. If the effects of the key process variables (or their interaction effect)
are statistically significant after two or more cycles of EVOP, a new phase of
EVOP should begin where the center point of the new phase is selected to
be the process condition that produced the optimum result in the last phase.
If the curvature effect is statistically significant after several cycles of EVOP,
and the measured product characteristics are better at the center point, the
current operating conditions are optimal and EVOP should be discontinued.
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Given the objective and sufficient training, EVOP should be carried out by
the operators in the manufacturing facility without intervention from engi-
neering or production management. In their book on EVOP, Box and Draper
(1969) provide detailed worksheets which facilitate the EVOP calculations
in a manufacturing environment. These can also be carried out simply in a
modern spreadsheet program. Box and Draper suggest displaying a bulletin
board in plain sight where the current EVOP status can be displayed. This
will motivate the operators conducting the EVOP and inform them of the
latest results.

13.6 Concluding Remarks

For each type of experimental design presented in this book, there are exam-
ples of R commands to create the design. Earlier chapters emphasized how to
randomize lists of experiments to avoid bias from unknown factors and ensure
valid analyses of data. In later chapters, the need for randomization was as-
sumed, but the specific details were not emphasized since they are the same
as shown in Chapter 2. In Chapter 4, the purpose for blocking experimental
designs was described and the methods to create blocked designs in SAS were
illustrated. The importance of blocking was emphasized throughout the re-
mainder of the book, and situations where blocking should be used with each
type of design were discussed and illustrated in the appropriate chapters.

For each type of experimental design presented, an appropriate model for
the data analysis was given along with a description of the way to fit that
model using R software. In Chapter 8, restricted randomization or split-plot
designs were discussed and it was shown how to construct designs and ana-
lyze the data when randomization is restricted. Again the situations where
this occurs and the means to handle them were emphasized in the remaining
chapters of the book with all the types of designs presented. In addition, this
book emphasizes the interpretation and presentation of results which is amply
described and demonstrated in every chapter. The exercises at the end of each
chapter provide practice for design creation and analysis and interpretation of
data. They were selected to reinforce all the concepts presented in the book.

In the author’s experience, the experimental design topics presented in the
book cover most of the situations encountered in practice. With the power
of the software in base R and the many add on packages available for R, a
researcher has a powerful set of tools that simplify most research design and
data analysis problems. By emphasizing where to use each of the different
types of experimental designs, illustrating the creation of designs and analysis
of data with R, and presenting many examples of interpretation and presen-
tation of results, this book provides an updated guide to researchers when
compared to the earlier books by Fisher (1935), Cochran and Cox (1950), and
Kempthorne (1952).

After completing the study of this book, you should be able to (1) choose an
experimental design that is appropriate for a research problem; (2) construct
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the design (including performing proper randomization and determining the
proper number of replicates); (3) execute the plan (or advise a colleague to do
it); (4) determine a model appropriate for the data; (5) fit the model to the
data; (6) interpret the results; and (7) present them in a meaningful way to
answer the research question at hand. The use of R software simplifies many
of these tasks, demonstrated by the examples throughout the book.



Appendix—Brief Introduction to R

R is an environment for statistical computing and graphics. It is similar to
the S language that was developed at Bell Laboratories (formerly AT&T now
Lucent Technologies). R is a different implementation of the S language that
is public domain (a so called “GNU”) Project. The advantages of R is that it
is freeware and there is a lot of help available. It is widely used throughout the
world as a research tool in academia and industry. R will run on a Windows
computer, Macintosh, or Linux. There is also a GUI interface for R, called
RStudio, that will give R the same interface on all of these operating systems.

R can be obtained from http://www.r-project.org/. To install R, assum-
ing you are on a Windows computer and have an Internet connection, go to
the Web site then:

1. click on download CRAN

2. choose a download site

3. choose Windows as the target operating system

4. click base

5. choose Download the latest version of R for Windows and choose the default
answers to all questions.

For Macintosh or Linux operating systems follow the instructions on the Web
site.

To install the RStudio interface on a Windows computer go to the Web site
http://www.rstudio.org/, then:

1. click download RStudio

2. click download RStudio Desktop

3. click Recommended for Your System

4. download the .exe file and run it (choose default answers for all questions)

The RStudio interface contains a console window in the lower left. In this
window R commands can be typed after the “>” prompt, and the results
will be shown. If output results more than fill the screen, you can scroll back
and forth to view all of it. The upper left part of the interface contains an
editor window that is also called a script window. In this window, you can
type and edit commands and save them to .R script files that can be opened
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in future sessions. You can run a command or group of commands from the
script window, by highlighting the commands you want to run, then clicking
the Run icon at the top right corner of the window. The Web site for the
book contains all the R commands or code in the book organized by chapters.
You can download these from jlawson.byu.edu and open them in the script
window using the File->Open File menu.

In addition to base R commands, several user written packages are illus-
trated in this book. A package or a library is a group of user written functions
and data frames that can be loaded and used during an R session. The pack-
age daewr, for example, includes data sets for the examples shown in this
book and several useful functions. Some packages come with the standard R
installation, and others must be installed. In RStudio, on the Packages Tab in
the lower right window, you can see a list of what packages are installed, or
type the command library() in the console window to get a list of packages
installed there. To install additional packages click the “Install Packages” icon
on the Packages Window, and when the template appears give the package
name you want to install. You can do this through the network if you have a
connection, or from a package archive where you can place previously down-
loaded .zip files. Once a package is installed, it must then be loaded before
it can be actually used in an R session. To load a package, either click the
check box in front of the package name on the Package Window, or give the
command library ("packagename") in the console, where "packagename"

is the name of the package you would like to use. Once a package is loaded, it
will remain loaded until the current R session ends.

User written packages that are illustrated in this book are Vdgraph mixep

car, multcomp, BsMD, FrF2, DoE.base, AlgDesign, lme4, gmodels, MASS,
agricolae, gdata, leaps, effects, GAD, crossdes, rsm, and nlme.
The Web site:
http://cran.r-project.org/web/views/ExperimentalDesign.html has in-
formation on many other R packages that are useful in the design and analysis
of experiments.

In the future, it is possible that some of the R packages illustrated in this
book may be removed from CRAN, if the developer drops support, or they
may be changed by the developer so that the examples in the book no longer
work. If problems such as this arise, revisions will be made to the code online
so that a working copy of the examples will be available.

There is extensive help for R available on the Internet. A .pdf document
called A (very) short introduction to R, gives a basic overview of R and RStu-
dio. It can be downloaded from:
cran-r-project/doc/contrib/Torfst+Bauer-Short-R-Intro. More lengthy
manuals such as An Introduction to R, and R Data Import/Export are avail-
able from cran-r-project.org/manuals/. For those wishing more details
there are published guides such as Zuur et al.’s (1985) A Beginner’s Guide to
R, and Dalgaard’s (2004) Introductory Statistics with R.

http://cran.r-project.org/web/views/ExperimentalDesign.html
http://cran-r-project.org/manuals/
http://jlawson.byu.edu


Answers to Selected Exercises

Chapter 1

1.1 a. EU a person, b. Factors (1) water temp. (2) detergent conc., c. Re-
sponse bacterial count.

1.2 Sub-sample is a subset of the experimental unit. In this case, one palm
of a person.

1.3 Duplicate is a repeat measurement of the same experimental unit, in
this case a repeat measure of the bacterial count on the same person.

1.5 In this case, the experimental units are groups of subjects, not individual
subjects, because groups are receiving the random treatment assignments.

Chapter 2

2.1 Objective—to determine how changing rise time affects loaf height, EU—
dough in a loaf pan, Response—measured height of risen dough, Independent
variable or factor—rise time, Lurking variables—differences in amount of ac-
tive yeast from loaf to loaf, temperature gradient in the room. Pilot test—a
test to determine if rise time can be controlled and loaf height accurately
measured.

2.4 a. EU—dough for a biscuit, c. Linear trend significant, e. Normality and
equal variance assumptions appear justified.

2.5 a. SST = 337.49, dfT = 4, SSE = 270.27, F = 6.98, c. Only CPPU
group significantly improved yield.

2.6 b. r=9.

Chapter 3

3.1 b. As course length goes up, it causes an increase in the test scores.
This increase is approximately the same for officers assigned to middle class
and upper class beats. However, for officers assigned to lower class beat, the
increase in scores was approximately six times as great as it was for officers
assigned to the other two beats.

3.2 c. 6 replicates per cell needed for power > .90 in cell means, d. Due to
the hidden replication, power of approximately 1 for detecting differences in
marginal means can be achieved with 2 replicates per cell.

3.6 a. F-value for testing linear by linear is 2.92 and not significant. It is
probably safe to assume no significant interaction, b. Tukey’s test for non-
additivity fails P-value = .931
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3.8 c. B appears significant, d. Observation 3 is an outlier, corrected effects
indicate A, and AB interaction significant in addition to B.

3.9 b. Main effects A, D, C, B, and interactions AC, AD, and AB appear
significant, b. Outlier check reveals observations 12, 22, and 28 appear smaller
than expected with this model, but eliminating them does not diminish the
significance of terms found in a and b.

Chapter 4

4.1 a. Subject and condition of his or her taste buds and frame of mind at
time gum is chewed, b. block by subject and point in time since these may
affect results.

4.3 a. So that variability caused by geographical and meteorological condi-
tions can be removed from the error sum of squares, and that conclusions can
be generalized over the range of geographical and meteorological conditions
studied. c. SSBlocks = 31,913.3, SSVarieties = 5310.0.

4.5 a. SST = 99,122.1, SSE = 228,213.5, c. Yes, discovery of a significant
differences due to treatments using the RCB model results from removing
experiment to experiment variability from the error sum of squares.

4.7 a. RCB with player being the blocking factor, c. Wide angle method
results in significantly shorter times to second base. e. Residual plots identify
one outlier (player 3 using roundout method).

Chapter 5

5.3 90% interval 0.00893 < σ2
op < 0.02190

5.5 a. σ2
Supplier = 677.86, σ2

Batch = 123.95, σ2
Mix = 5.66, σ2 = 300.52, c. No.

5.7 a. yijk = ai + b(i)j + εijk, where ai is the random trailer effect, b(i)j is
the random sample within trailer effect, and εijk is the random
measurement error effect. c. σ̂2

a = 0.721, σ̂2
b = 6.139, σ̂2 = 3.397.

Chapter 6

6.1 a. library(FrF2)
des <- FrF2(4,3), c. I +ABC,A +BC,B +AC,C +AB
6.3 a. Use generators D = AB, E = AC, c. I = ABD = ACE = BCDE
6.5 a. I = ABCE = ABDF = ACDG = CDEF = BDEG = BCFG =

AEFG, c. Fold on factor B to unconfound BC and BE from other two
factor interactions.
6.7 b. Largest effects on particle size and surface area were H +BF + JK+

CD+AG, Largest effects on pore diameter and pore volume were D+EK+

CH.
6.11 a. C = ABD
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Chapter 7

7.1 a. 210
7.3 Two-way GI AB, BDE, and ADE, Three-way GI CD, no main effects
confounded.
7.5 a. Block generators: ACF , ABCD, CDEF , ABCDEF . c. Fractional
factorial generators E = ABC, F = ABD, Block generators AC, BC, AD.
e. Main effects + Block effects
7.7 a. D, c. Sub-experiment 1 confound A × d1 × d2,
Sub-experiment 2 confound B +C(Mod 3), Unconfounded are main effects
and AB, AC, BD, CD, ABC, ABD, BCD.

Chapter 8

8.1 The EU is a tray of cookies, and an individual cookie is a sub-sample
or observational unit.
8.3 a. Unit, c. Shelf within unit, e. F2,6 = 7.33 for Temperature,
F1,6 = 3.99 for Type, F2,6 = 1.42 for Temp × Type, only
Temperature has a significant effect. g. Homogeneity and Normality
assumptions appear reasonable for whole- and split-plot error terms.
8.5 a. RCB in whole plots, c. F1,7 = 3.36 for filmtype, F2,28

= 4.23 for pressure, and F2,28 = 4.11 for filmtype × pressure.
filmtype and pressure effects are significant. e. Since
timeblock × filmtype is insignificant and EBLUPs are zero there
is no need to check assumptions for whole-plot errors. Homogeneity and
Normality appear justified for split-plot errors.
8.7 a. ABCD, ABPR, BCPQS, c. A +BCD +BPR, B +ACD +APR,
C +ABD +DPR, D +ABC +CPR, AB +CD + PR, AC +BD +QRS,
AD +BC + PQS, 7 effects for 24−1 fraction in whole plots.
8.9 a. T = FSEt is the generator. c. Whole-plot effects are F , S,
E, FS, FE, SE, FSE, and their aliases. e. Whole-plot effects
F and E and Split-plot effects T and t appear to be significant.

Chapter 9

9.1 a. Type III SS: (patient) 18.599, (period) 0.956, (treatment) 18.954,
c. Assuming no group effect, the test for carryover is not significant
P ≈ .14.
9.3 a. To prevent carryover effects from biasing treatment effects.
Alternatives are RCB and Latin square.
9.5 c. Sphericity test is significant P < 0.05 indicating that the
univariate split-plot analysis is not justified.
e. Neither linear nor quadratic trends over time are significant for
any of the factors.
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Chapter 10

10.3 a. LoF not significant P ≈ 0.15, rice bran terms can be
dropped from the model to simplify. c. Optimum biomass ≈ 12.9 at
AS ≈ 1.57, FT ≈ 95.93, RB ≈ 20, not much
different between full and reduced model.
10.9 a. Fitted coefficients â = 0.444, b̂ = 10137.7, ĉ = 0.1944,
r̂0 = 218.9, c. Max. conc. = 65.45 at Time = 20.4 Temp = 375.0
10.11 a. Block terms are significant F6,12 = 33.6, Lack of fit
not significant F9,12 = 2.85, b. Max light reflectance ≈ 14.15
when FR ≈ 32.8, MC ≈ 23.3, SS ≈ 300.
10.13 a. Max moisture ≈ 3.5 when Bake temp ≈ 351.5,
Bake time ≈ 27.5

Chapter 11

11.1 a. (i) 3.2, (ii) 8.35
11.3 c. X ′

1 = (.2, .2, .4, .42, .5, .5, .6, .65, .8)
X ′

2 = (.3, .4, .1, .26, .4, .4, .1, .25, .1) X ′
3 = (.5, .4, .5, .32, .1, .1, .3, .1, .1)

11.5 a. They do not form an extreme vertices design,
b. y = 55.57x1+8.21x2+120.11x3+5.4x4−61.99x1x2−147.13x1x3−92.22x1x4

−100.44x2x3 − 75.83x3x4, design does not support fitting full
quadratic model.
11.7 b. y1 = 9.088x1+23.485x2+.3185x3−62.393x1x2−1.057x1x3−31.51x2x3,
d. all constraints met near x1=.1538, x2=.173, x4=.674.
11.9 a. y = 76.35x1 + 27.92x3 + 55.73x3 − 41.71x1x2 + 9.14x1x3 + 18.57x2x3,
b. Blocks orthogonally.
11.11 c. y = 17.03x1 + 1.60x2 − 128.4x3 + 54.03x1x2 + 269.8x1x3 + 145.9x2x3+

1.43x1z1 − .08x2z1 + 113.9x3z1 − 26.6x1x2z1 − 1.07x1x3z1 + 67.6x2x3z1−

23.2x1z2 − 204.8x2z2 − 124.3x3z2 + 42.2x1x2z2 − 98.1x1x3z2 + −67.4x2x3z2+

25.4x1z1z2 + 1.36x2z1z2 − 45.5x3z1z2 − 43.9x1x2z1z2 + 73.1x1x3z1z2+

43.7x2x3z1z2+,
d. Simultaneous test of all z1 terms not significant, F12,24 = 1.86.

Chapter 12

12.1 a. P-values for log variance: A(.08), B(.97), P-values for mean response:
A(.052), B(.099), c. Significant effect A(.0091), d. Yes, factor A.
12.5 a. Best 5-variable model includes quadratic and cubic orthogonal
polynomial contrasts for B, main effects A and E, and the FC
interaction along with the cubic contrast of B by C.
c. Choose F>30,000 and second level of B to minimize variation caused by
noise factor C, A is an adjustment factor.
d. No.
12.7 d. A=27.25, B= 17.5, C=6.
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a rotatable orthogonal central composite design to the optimization of the
formulation and utilization of a useful plasticizer for cement. EDP Sciences,
27, 91–96.

Kempthorne, O. (1952). The Design and Analysis of Experiments. John Wiley
& Sons, New York, first edition.

Kenett, R. S. and Steinberg, D. M. (1987). Some experiences teaching factorial
design in introductory statistics courses. Journal of Applied Statistics, 14,
219–227.

Kerry, S. M. and Bland, J. M. (1998). Analysis of a trial randomized in
clusters. British Journal of Medicine, 316, 54–54.

Keuls, M. (1952). The use of the studentized range in connection with analysis
of variance. Euphytica, 1, 112–122.

Kiefer, J. (1958). On the nonrandomized optimality and randomized nonop-
timality of symmetrical designs. Annals of Mathematical Statistics, 29,
675–699.

Kowalski, S. M., Cornell, J. A., and Vining, G. G. (2000). A new model and
class of designs for mixture experiments with process variables. Communi-
cations in Statistics: Theory and Methods, 29, 2255–2280.

Kowalski, S. M., Cornell, J. A., and Vining, G. G. (2002). Split-plot designs
and estimation methods for mixture experiments with process variables.
Technometrics, 44, 72–79.

Kshirsager, A. M. (1958). A note on incomplete block designs. Annals of
Mathematical Statistics, 29, 907–910.

Kuehl, R. O. (2000). Design of Experiments: Statistical Principles of Research
Design and Analysis. Duxbury, Pacific Grove, CA, second edition.

Kuhfeld, W. F. (2009). Orthogonal arrays. website courtesy of SAS institute.
URL http://support.sas.com//techsup/technote/ts723.html.

Kuhn, M. (2013). Desirability Function Optimization and Ranking . R package
version 1.05.

Kulahci, M., Ramirez, J. G., and Tobias, R. (2006). Split plot fractional
designs: Is minimum aberration enough? Journal of Quality Technology ,
38, 56–64.

Kurotori, I. S. (1966). Experiments with mixtures of components having lower
bounds. Industrial Quality Control , 22, 592–596.

Kutner, M. H., Nachtsheim, C. J., and Neter, J. (2004). Applied Linear Re-
gression Models. McGraw-Hill Irwin, Boston, fourth edition.

http://support.sas.com//techsup/technote/ts723.html


586 BIBLIOGRAPHY

Lawson, J. (1982). Applications of robust regression in designed industrial
experiments. Journal of Quality Technology , 14, 19–33.

Lawson, J. (1990). Improve a chemical process through use of a designed
experiment. Quality Engineering , 3, 215–235.

Lawson, J. (2002). Regression analysis of experiments with complex confound-
ing patterns guided by the alias matrix. Computational Statistics and Data
Analysis, 39, 227–241.

Lawson, J. (2010). Design and Analysis of Experiments with SAS . CRC Press,
Boca Raton.

Lawson, J. (2012). Vdgraph: A package for creating variance dispersion
graphs. The R Journal , 4(1), 41–44.

Lawson, J. (2013a). mixexp: Designs and analysis of mixture experiments. R
package version 1.0-5.

Lawson, J. (2013b). Vdgraph: Variance Dispersion Graphs for Response Sur-
face Designs. R package version 2.2.3.

Lawson, J. and Erjavec, J. (2001). Modern Statistics for Engineering and
Quality Improvement . Duxbury, Pacific Grove, CA, first edition.

Lawson, J. and Willden, C. (2014). Mixture experiments in R using mixexp.
Journal of Statistical Software, To Appear, 1–19.

Lawson, J., Grimshaw, S., and Burt, J. (1998). A quantitative method for
identifying active contrasts in unreplicated factorial experiments based on
the half normal plot. Computational Statistics and Data Analysis, 26, 425–
436.

Lawson, J. S. (2003). One step screening and process optimization experi-
ments. The American Statistician, 57, 15–20.

Lawson, J. S. (2008). Bayesian interval estimates of variance components used
in quality improvement studies. Quality Engineering , 20, 334–345.

Lawson, J. S. and Gatlin, J. (2006). Finding bad values in factorials–revisited.
Quality Engineering , 18, 491–501.

Lawson, J. S. and Madrigal, J. L. (1994). Robust design through optimization
techniques. Quality Engineering , 6, 593–608.

Lawson, J. S., Schaalje, G. B., and Collings, B. J. (2009). Blocking mixed
level factorials with SAS. Journal of Statistical Software, 32, 1–19.

le Riche, W. H. and Csima, A. (1964). A clinical evaluation of four hypnotic
agents, using a Latin square design. Canadian Medical Association Journal ,
91, 435–438.

Lee, Y. and Nelder, J. A. (2003). Robust design via generalized linear models.
Journal of Quality Technology , 35, 2–12.

Leitnaker, M. G. and Cooper, A. (2005). Using statistical thinking and de-
signed experiments to understand process operation. Quality Engineering ,
17, 279–289.



BIBLIOGRAPHY 587

Lenth, R. V. (1989). Quick and easy analysis of un-replicated factorials. Tech-
nometrics, 31, 469–473.

Lenth, R. V. (2009). Response-surface methods in r, using rsm. Journal of
Statistical Software, 32(7), 1–17.

Lenth, R. V. (2013). rsm: Response Surface Analysis. R package version 2.03.

Letsinger, J. D., Myers, R. H., and Letner, M. (1996). Response surface
methods for bi-randomization structures. Journal of Quality Technology ,
28, 381–397.

Lew, M. (2007). Good statistical practice in pharmacology problem 2. British
Journal of Pharmacology , 152, 299–303.

Li, W. and Nachtsheim, C. (2000). Model robust factorial designs. Techno-
metrics, 42, 345–352.

Li, X., Sudarsanam, N., and Frey, D. (2006). Regularities in data from factorial
experiments. Complexity , 11, 32–45.

Lim, D. H. and Wolfe, D. A. (1997). Nonparametric tests for comparing
umbrella pattern treatment effects with a control in a randomized block
design. Biometrics, 53, 410–418.

Lin, D. K. J. (1999). Spotlight interaction effects in main effect plans: A
superstaturated design approach. Quality Engineering , 11, 133–139.

Lin, D. K. J. and Draper, N. R. (1992). Projection properties of Plackett-
Burman designs. Technometrics, 34, 423–428.

Lin, L. I. and Stephenson, W. R. (1998). Validating an assay of viral con-
tamination. In R. Peck, L. D. Haugh, and A. Goodman, editors, Statistical
Case Studies: A Collaboration Between Academe and Industry , pages 43–48.
SIAM, Philadelphia.

Loepky, J. L., Sitter, R. R., and Tang, B. (2007). Nonregular designs with
desireable projection properties. Technometrics, 49, 454–467.

Lucas, H. L. (1957). Extra-period Latin square change-over designs. Journal
of Dairy Science, 40, 225–239.

Lumley, T. (2009). leaps: Regression subset selection. R package version 2.9.

Marcharia, H. and Goos, P. (2010). D-optimal and d-efficient equivalent-
estimation second-order split-plot designs. Journal of Quality Technology ,
42, 358–372.

Mason, R. L., Gunst, R. F., and Hess, J. L. (1989). Statistical Design and Anal-
ysis of Experiments: with Applications to Engineering and Science. John
Wiley & Sons, New York.

MATLAB (2010). version 7.10.0 (R2010a). The MathWorks Inc., Natick,
Massachusetts.

Mauchly, J. W. (1940). Significance test for sphericity of a normal n-variate
distribution. Annals of Mathematical Statistics, 11, 204–209.



588 BIBLIOGRAPHY

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. Chapman
& Hall, London, second edition.

McLean, R. A. and Anderson, V. L. (1966). Extreme vertices designs of
mixture experiments. Technometrics, 8, 447–454.

Meier, P. (1972). The biggest health experiment ever: The 1954 field trial of
the Salk polio vaccine. In J. M. Tanur, F. Mosteller, W. H. Kruskal, R. F.
Link, and R. Pieters, editors, Statistics: A Guide to the Unknown, pages
2–13. Holden Day, San Francisco.

Melo, I. R., Pimentel, M. F., Lopes, C. E., and Calazans, G. M. T. (2007).
Application of fractional factorial design to levan production by Zymomonas
mobilis. Brazilian Journal of Microbiology , 38, 45–51.

Montgomery, D. C. (1990). Using fractional factorial designs for robust process
development. Quality Engineering , 3, 193–205.

Montgomery, D. C. and Runger, G. C. (1996). Foldovers of 2k−p resolution
IV experimental designs. Journal of Quality Technology , 28, 446–450.

Moskowitz, H. (1988). Applied Sensory Analysis of Foods. CRC Press, Boca
Raton, FL.

Myers, R. H. and Montgomery, D. C. (2002). Response Surface Methodology:
Process and Product Optimization Using Designed Experiments. John Wiley
& Sons, New York, second edition.

Myers, R. H., Vining, G. G., Giovannitti-Jensen, A., and Myers, S. L. (1992).
Variance dispersion properties of second order response surface designs.
Journal of Quality Technology , 24, 1–11.

Nelder, J. A. and Lee, Y. (1998). Letter to the editor. Technometrics, 40,
168–175.

Nelson, L. S. (1983). Variance estimation using staggered nested designs.
Journal of Quality Technology , 15, 232–242.

Newman, D. (1939). The distribution of the range in samples from a nor-
mal population, expressed in terms of an independent estimate of standard
deviation. Biometrika, 31, 20–20.

Nigam, A. K. (1970). Block designs for mixture experiments. Annals of
Mathematical Statistics, 41, 1861–1869.

Nigam, A. K. (1977). Corrections to blocking conditions for mixture experi-
ments. Annals of Mathematical Statistics, 47, 1294–1295.

Nyberg, K. (1999). Using factorial design and response surface methodology
to optimize growth parameters of PECVD silicon nitride. Physica Scripta,
T79, 266–271.

Olsen, R. F., Bartholomew, C. F., Enfield, D. B., Lawson, J. S., Rohbock,
N., Scott, B. S., and Woodfield, B. F. (2014). Optimizing the synthesis
and properties of al-modified anatase catalyst supports by statistical exper-
imental design. Journal of Porous Materials, 21(5), 827–837.



BIBLIOGRAPHY 589

Ott, E. (1967). Analysis of means- a graphical procedure. Industrial Quality
Control , 24, 101–109.

Phadke, M. S. (1989). Quality Engineering Using Robust Design. Prentice
Hall, New York.

Piepel, G. F. (1982). Measuring component effects in constrained mixture
experiments. Technometrics, 25, 97–105.

Piepel, G. F. (1988). Programs for generating extreme vertices and centroids
of linearly constrained experimental regions. Journal of Quality Technology ,
20, 125–139.

Plackett, R. L. and Burman, J. P. (1946). The design of optimum multifac-
torial experiments. Biometrika, 33, 305–325.

Porter, W. P. and Busch, R. L. (1978). Fractional factorial analysis of growth
and weaning success in Peromyscus maniculatus. Science, 202, 907–910.

Prairie, R. R. and Anderson, R. L. (1962). Optimal designs to estimate vari-
ance components and to reduce product variability for nested classifications.
North Carolina State College, Raleigh, Inst. of Stat Mimeo Series, 313, 80–
81.

Prince, E. (2007). Real-time PCR optimization for S. pyogenes detection
assay - a fractional factorial approach. Term Paper Stat 431, BYU Dept.
of Statistics.

R Development Core Team (2003). R: A language and environment for sta-
tistical computing. R Foundation for statistical computing.

Ramakrishna, D. M., Viraraghavan, T., and Jin, Y. (2006). Iron oxide coated
sand for arsenic removal: Investigation of coating parameters using a fac-
torial design approach. Practice Periodical of Hazardous, Toxic, and Ra-
dioactive Waste Management , 10, 198–206.

Ramirez, J. G. and Tobias, R. (2007). Split and conquer! using SAS/QC to
design quality into complex manufacturing processes. In Global Forum Pa-
per 190-2007 . SAS Institute. URL:www2.sas.com/proceedings/forum/190-
2007.pdf.

Rao, P. S. and Rao, R. S. (1997). Variance Component Estimation. Chapman
& Hall, London, first edition.

Rogness, N. and Richardson, M. (2003). Using chewing gum to illustrate
intermediate statistical concepts. Proceedings of the 2003 Joint Statistical
Meetings - Section on Statistical Education, pages 3545–3547.

Roquemore, K. G. (1976). Hybrid designs for quadratic response surfaces.
Technometrics, 18, 419–423.

Sahni, N. S., Piepel, G. F., and Naes, T. (2009). Product and process im-
provement using mixture-process variable methods and robust optimization
techniques. Journal of Quality Technology , 41, 181–197.

Sandriti-Neto, L. and Camargo, M. G. (2012). GAD: GAD:Analysis of vari-
ance from general principles. R package version 1.1.1.

http://www2.sas.com/proceedings/forum/190-2007.pdf
http://www2.sas.com/proceedings/forum/190-2007.pdf


590 BIBLIOGRAPHY

SAS Institute (2004a). Gantt Procedure SAS/QC . Cary, NC.

SAS Institute (2004b). Ishakawa Procedure SAS/QC . Cary, NC.
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