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The course is split in 4 units

UNIT 1: statistical regression
Data, information, models, data types, analytical representation 
of data

Calibration and regression, Introduction to Statistics

Average & Variance

The Normal distribution, theory of measurement errors, the 
central limit theorem and the theorem of Gauss

Maximum likelihood, method of least squares, Generalization of 
the method of least squares

Polynomial regression, non-linear regression, the χ2 method, 
Validation of the model

UNIT 2: Design of Experiments
Basic design of experiments and analysis of the resulting 
data

Analysis of variance, blocking and nuisance variables

Factorial designs

Fractional factorial designs

Overview of other types of experimental designs (Plackett–
Burman designs, D-optimal designs, Supersaturated designs, 
Asymmetrical designs)

Response surface methods and designs

Applications of designed experiments from various fields of 
food science 

UNIT 3: Data Matrices and sensor 
arrays
Correlation

Multiple linear regression

Principal component analysis (PCA)

Principal component regression (PCR) and Partial least squares 
regression - (PLS)

UNIT 4: Elements of Pattern recognition
Cluster analysis

Normalization

The space representation (PCA) Examples of PCA

Discriminant analysis (DA) PLS-DA

Examples of PLS-DA



UNIT 1: statistical regression
Data, information, models, data types, analytical 
representation of data
Calibration and regression, Introduction to Statistics
Average & Variance
The Normal distribution, theory of measurement errors, 
the central limit theorem and the theorem of Gauss
Maximum likelihood, method of least squares, 
Generalization of the method of least squares
Polynomial regression, non-linear regression, the χ2
method, Validation of the model
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CHEMOMETRICS 

• The science of extracting information from 
chemical systems by data-driven means. 

• It is a highly interfacial discipline, using 
methods frequently employed in core data-
analytic disciplines such as multivariate 
statistics, applied mathematics, and 
computer science, in order to address 
problems in chemistry, biochemistry, 
medicine, biology and chemical 
engineering.

• The goal is using data from 
multidimensional signals for examples 
spectrometers or chromatograms 

Dedicated journals
• Chemometrics and Intelligent Laboratory 

systems
• Journal of Chemometrics
Articles are published also in:
• Analytical Chemistry
• Analytica Chimica Acta
• Trends in Analytical Chemistry
• J. computer aided molecular design
• ………………
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DATA

• Data are are individual pieces of information.
• For Example human being data: 

– Height, weight, chemical blood analysis DNA composition, hair color…

• Data can be qualitative or quantitative
• Data must be analysed to have information and to increase knowledge 

– Example: a chemical blood analysis has to be supported by a human being 
model

data Information knowledge

analysis model



Data  Information  Knowledge

• Data
– unrelated facts

• Information
– facts plus relations

• Knowledge
– information plus patterns

Connectedness

Understanding
DATA

INFORMATION

KNOWLEDGE

+ relations

+ patternsObserved 
associations

Raw Numbers

Scientific 
principles

The aim of data-mining can 
be illustrated graphically as 
follows:
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Univariate analysis

 Any measurement can be judged by the following meta-measurement 
criteria values: level of measurement (which includes magnitude), 
dimensions (units), and uncertainty:

• Electrical resistance is 100KΩ
• The apple weight is è 80g
• The K+ concentration in water is 1.02 mg/l

 Describing the distribution of a single 
variable, including its central tendency 
(including the mean, median, and mode) 
and dispersion (including the range and 
quantiles of the data-set, and measures of 
spread such as the variance and standard 
deviation). Characteristics of a variable's 
distribution may also be depicted in 
graphical or tabular format, including 
histograms and stem-and-leaf display.
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Bivariate analysis

 The major differentiating point between 
univariate and bivariate analysis, in addition to 
the latter's looking at more than one variable, is 
that the purpose of a bivariate analysis goes 
beyond simply descriptive: it is the analysis of 
the relationship between the two variables. 
Bivariate analysis is a simple (two variable) 
special case of multivariate analysis (where 
multiple relations between multiple variables 
are examined simultaneously)

 It involves the analysis of two variables (often denoted as X, Y), for 
the purpose of determining the empirical relationship between them. 
In order to see if the variables are related to one another, it is 
common to measure how those two variables simultaneously change 
together (covariance). 
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Why Multivariate?

• Typically more than one measurement is taken on a given experimental 
unit

• Need to consider all the measurements together so that one can 
understand how they are related

• Need to consider all the measurements together so that one can 
extract essential structure



What is MVA?

MVA


Multivariate analysis (MVA) is defined as the simultaneous analysis of 
more than five variables.  Some people use the term “megavariate” 
analysis to denote cases where there are more than a hundred 
variables.

MVA uses ALL available data to capture the most information 
possible.  The basic principle is to boil down hundreds of variables 
down to a mere handful.



Many organisations today are faced with the same challenge: TOO 
MUCH DATA.  These include:

–Business - customer transactions
–Communications - website use
–Government - intelligence
–Science - astronomical data
–Pharmaceuticals - molecular configurations
–Industry - process data

It is the last item that is of interest to us as chemical engineers…

Process Integration Challenge:
Make sense of masses of data



Tmt X1 X4 X5 Rep Y avec Y sans

1 -1 -1 -1 1 2.51 2.74

1 -1 -1 -1 2 2.36 3.22

1 -1 -1 -1 3 2.45 2.56

2 -1 0 1 1 2.63 3.23

2 -1 0 1 2 2.55 2.47

2 -1 0 1 3 2.65 2.31

3 -1 1 0 1 2.45 2.67

3 -1 1 0 2 2.6 2.45

3 -1 1 0 3 2.53 2.98

4 0 -1 1 1 3.02 3.22

4 0 -1 1 2 2.7 2.57

4 0 -1 1 3 2.97 2.63

5 0 0 0 1 2.89 3.16

5 0 0 0 2 2.56 3.32

5 0 0 0 3 2.52 3.26

6 0 1 -1 1 2.44 3.1

6 0 1 -1 2 2.22 2.97

6 0 1 -1 3 2.27 2.92

Graphical representation of MVA

Raw Data: 
impossible to 

interpret

Statistical Model

2-D Visual Outputs

(internal 
to 

software)

trends

trends
trends

Y

X
X

X

X

thousands of rows

hundreds of columns
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.
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.

.

. .



Multidimensional Instruments

• Gas chromatography

QuickTime™ e un decompressore TIFF (Non compresso) 

2.000 4.000 6.000 8.000 10.000 12.000 14.000 16.000 18.000 20.000
rt0

100

%

0.991

0.859

13.284
8.3665.644

2.5421.238
3.680

4.835 6.287

10.907

8.630

13.036

18.415
13.779

14.901
15.825

19.603 20.329

Scan EI+ 
TIC

1.36e5
RT

ALC04092



14

 

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

Isomer/Congener
Pe

rc
en

t o
f S

ub
st

an
ce

 

Ty pical Chromatogram f or PCB

In Chromatography

one observation



15

Multidimensional Instruments

• Spectroscopy
– Vis/NIR of an apple
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Multidimensionali Instruments
• Sensors Array
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To illustrate these concepts, we take an easy-to-understand 
example involving food.

Data on food preferences in 16 different European countries are 
considered, involving the consumption patterns for 18 different 
food groups.

Look at the table on the following page.  Can you tell anything 
from the raw numbers?  Of course not.  No one could.

Illustrative Data Set: Food Consumption 
in European Countries



Data Table: Food Consumption in 
European Countries

Note that MVA can handle up 
to 10-20% missing data

Courtesy of Umetrics corp.



The MVA software generates two main types of plots to represent 
the data: Score plots and Loadings plots.

The first of these, the Score plot, shows all the original data 
points (observations) in a new set of coordinates or components. 
Each score is the value of that data point on one of the new
component dimensions:

A score plot shows how the observations are arranged in the new 
component space.  The score plot for the food data is shown on 
the next page.  Note how similar countries cluster together…

Score Plot

The Score Plot is the 
projection of the original  
data points onto a plane 
defined by two new 
components.

.
.

. .

..

..

. .



Score Plot for Food Example

Score Plot = 
observations

95% Confidence interval 
(analogous to t-test)



Loadings Plot
The second type of data plot generated by the MVA software is the 
Loadings plots.  This is the equivalent to the score plot, only from the 
point of view of the original variables.

Each component has a set of loadings or weights, which express the 
projection of each original variable onto each new component.

Loadings show how strongly each variable is associated with each new 
component.  The loadings plot for the food example is shown on the 
next page.  The further from the origin, the more significant the 
correlation.

Note that the quadrants are the same on each type of plot.  Sweden 
and Denmark are in the top-right corner; so are frozen fish and 
vegetables.  Using both plots, variables and observations can be 
correlated with one another.



Use of loadings (illustration)

Loadings Plot = 
variables

Projection 
of old 
variabiles 
onto new



To MVA, Data Overload is Good!

1.

2.

3.
Looks random

After 
1500 
trials


Not random at all
(+ve and –ve noise 

cancels out)

One great advantage of MVA is that the more data are available, 
the less noise matters (assuming that the noise is normally 
distributed).  This is one of the reasons MVA is used to mine huge 
amounts of data.  

This is analogous to NMR measurements in a laboratory.  The 
more trials there are, the clearer the spectrum becomes:



Multivariate Analysis: Benefits
What is the point of doing MVA?

The first potential benefit is to explore the inter-relationships 
between different process variables.  It is well known that simply 
creating a model can provide insight in the process itself (“Learn by 
modelling”).

Once a representative model has been created, the engineer can 
perform “what if?” exercises without affecting the real process.  
This is a low-cost way to investigate options.

Some important parameters, like final product quality, cannot be 
measured in real time.  They can, however, be inferred from other 
variables that are measured on-line.  When incorporated in the 
process control system, this inferential controller or “soft sensor” 
can greatly improve process performance.



Statistics
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What is Statistics?

Statistics: The science of collecting, describing, and interpreting data.

Two areas of statistics:
Descriptive Statistics: collection, presentation, and description of 
sample data.
Inferential Statistics: making decisions and drawing conclusions about 
populations.



Example: A recent study examined the math and verbal 
SAT scores of high school seniors across the country.  
Which of the following statements are descriptive in 
nature and which are inferential.

• The mean math SAT score was 492.
• The mean verbal SAT score was 475.
• Students in the Northeast scored higher in math but 

lower in verbal.
• 80% of all students taking the exam were headed for 

college.
• 32% of the students scored above 610 on the verbal 

SAT.
• The math SAT scores are higher than they were 10 

years ago.



Introduction to Basic Terms

Population: A collection, or set, of individuals or objects or events whose 
properties are to be analyzed.
Two kinds of populations: finite or infinite.

Sample: A subset of the population.



Variable: A characteristic about each individual element 
of a population or sample.
Data (singular): The value of the variable associated 
with one element of a population or sample.  This value 
may be a number, a word, or a symbol.
Data (plural): The set of values collected for the 
variable from each of the elements belonging to the 
sample.
Experiment: A planned activity whose results yield a 
set of data.
Parameter: A numerical value summarizing all the data 
of an entire population.
Statistic: A numerical value summarizing the sample 
data.



Example: A college dean is interested in learning about the average 
age of faculty.  Identify the basic terms in this situation.

The population is the age of all faculty members at the college.
A sample is any subset of that population.  For example, we might 
select 10 faculty members and determine their age.
The variable is the “age” of each faculty member.
One data would be the age of a specific faculty member.
The data would be the set of values in the sample.
The experiment would be the method used to select the ages 
forming the sample and determining the actual age of each faculty 
member in the sample.
The parameter of interest is the “average” age of all faculty at the 
college.
The statistic is the “average” age for all faculty in the sample.



Two kinds of variables:
Qualitative, or Attribute, or Categorical, 
Variable: A variable that categorizes or 
describes an element of a population.
Note: Arithmetic operations, such as addition 
and averaging, are not meaningful for data 
resulting from a qualitative variable.
Quantitative, or Numerical, Variable: A 
variable that quantifies an element of a 
population.
Note: Arithmetic operations such as addition and 
averaging, are meaningful for data resulting 
from a quantitative variable.



Example: Identify each of the following examples as attribute 
(qualitative) or numerical (quantitative) variables.

1. The residence hall for each student in a statistics class. 
(Attribute)

2. The amount of gasoline pumped by the next 10 customers at 
the local Unimart.  (Numerical)

3. The amount of radon in the basement of each of 25 homes 
in a new development.  (Numerical)

4. The color of the baseball cap worn by each of 20 students.  
(Attribute)

5. The length of time to complete a mathematics homework 
assignment.  (Numerical)

6. The state in which each truck is registered when stopped 
and inspected at a weigh station.  (Attribute)



Qualitative and quantitative variables may be further 
subdivided:

Nominal
Qualitative

Ordinal
Variable

Discrete
Quantitative

Continuous



Nominal Variable: A qualitative variable that categorizes (or 
describes, or names) an element of a population.

Ordinal Variable: A qualitative variable that incorporates an 
ordered position, or ranking.

Discrete Variable: A quantitative variable that can assume a 
countable number of values.  Intuitively, a discrete variable can 
assume values corresponding to isolated points along a line 
interval.  That is, there is a gap between any two values.

Continuous Variable: A quantitative variable that can assume 
an uncountable number of values.  Intuitively, a continuous 
variable can assume any value along a line interval, including 
every possible value between any two values.



Note:
1.In many cases, a discrete and continuous variable 

may be distinguished by determining whether the 
variables are related to a count or a measurement.

2. Discrete variables are usually associated with 
counting.  If the variable cannot be further 
subdivided, it is a clue that you are probably 
dealing with a discrete variable.

3. Continuous variables are usually associated with 
measurements.  The values of discrete variables 
are only limited by your ability to measure them.



Measure and Variability

• No matter what the response variable: there will always be variability
in the data.

• One of the primary objectives of statistics: measuring and 
characterizing variability.

• Controlling (or reducing) variability in a manufacturing process: 
statistical process control.



Example: A supplier fills cans of soda marked 12 
ounces.  How much soda does each can really 
contain?

• It is very unlikely any one can contains exactly 12 
ounces of soda.

• There is variability in any process.
• Some cans contain a little more than 12 ounces, and 

some cans contain a little less.
• On the average, there are 12 ounces in each can.
• The supplier hopes there is little variability in the 

process, that most cans contain close to 12 ounces of 
soda.



Data Collection

• First problem a statistician faces: how to obtain the data.
• It is important to obtain good, or representative, data.
• Inferences are made based on statistics obtained from the data.
• Inferences can only be as good as the data.



Biased Sampling Method: A sampling method that 
produces data which systematically differs from the 
sampled population.  An unbiased sampling method
is one that is not biased.

Sampling methods that often result in biased samples:
1.Convenience sample: sample selected from 
elements of a 

population that are easily accessible.
2.Volunteer sample: sample collected from those 
elements 

of the population which chose to contribute the 
needed 

information on their own initiative.



Process of data collection:

1.Define the objectives of the survey or experiment.
Example: Estimate the average life of an electronic 

component.
2.Define the variable and population of interest.

Example: Length of time for anesthesia to wear off 
after surgery.

3.Defining the data-collection and data-measuring 
schemes.  This includes sampling procedures, sample 
size, and the data-measuring device (questionnaire, 
scale, ruler, etc.).

4.Determine the appropriate descriptive or inferential 
data-analysis techniques.



Methods used to collect data:

Experiment: The investigator controls or modifies the 
environment and observes the effect on the variable 
under study.

Survey: Data are obtained by sampling some of the 
population of interest.  The investigator does not modify 
the environment.

Census: A 100% survey.  Every element of the 
population is listed.  Seldom used: difficult and time-
consuming to compile, and expensive.



Sampling Frame: A list of the elements belonging to 
the population from which the sample will be drawn.

Note: It is important that the sampling frame be 
representative of the population.

Sample Design: The process of selecting sample 
elements from the sampling frame.

Note: There are many different types of sample 
designs.  Usually they all fit into two categories: 
judgment samples and probability samples.



Judgment Samples: Samples that are selected on the 
basis of being “typical.”

Items are selected that are representative of the 
population.  The validity of the results from a judgment 
sample reflects the soundness of the collector’s 
judgment.

Probability Samples: Samples in which the elements 
to be selected are drawn on the basis of probability.  
Each element in a population has a certain probability of 
being selected as part of the sample.



Random Samples: A sample selected in such a way 
that every element in the population has a equal 
probability of being chosen.  Equivalently, all samples of 
size n have an equal chance of being selected.  Random 
samples are obtained either by sampling with 
replacement from a finite population or by sampling 
without replacement from an infinite population.

Note:
1. Inherent in the concept of randomness: the next result (or 

occurrence) is not predictable.
2. Proper procedure for selecting a random sample: use a 

random number generator or a table of random numbers.



Example: An employer is interested in the time it takes 
each employee to commute to work each morning.  A 
random sample of 35 employees will be selected and 
their commuting time will be recorded.

There are 2712 employees.
Each employee is numbered: 0001, 0002, 0003, etc. up 
to 2712.
Using four-digit random numbers, a sample is identified: 
1315, 0987, 1125, etc.



Systematic Sample: A sample in which every kth item 
of the sampling frame is selected, starting from the first 
element which is randomly selected from the first k
elements.

Note: The systematic technique is easy to execute.  
However, it has some inherent dangers when the 
sampling frame is repetitive or cyclical in nature.  In 
these situations the results may not approximate a 
simple random sample.

Stratified Random Sample: A sample obtained by 
stratifying the sampling frame and then selecting a fixed 
number of items from each of the strata by means of a 
simple random sampling technique.



Proportional Sample (or Quota Sample): A sample 
obtained by stratifying the sampling frame and then 
selecting a number of items in proportion to the size of 
the strata (or by quota) from each strata by means of a 
simple random sampling technique.

Cluster Sample: A sample obtained by stratifying the 
sampling frame and then selecting some or all of the 
items from some of, but not all, the strata.



Numerical Presentation 

To understand how well a central value characterizes a set of observations, let 
us consider the following two sets of data:

A: 30, 50, 70
B: 40, 50, 60

The mean of both two data sets is 50. But, the distance of the observations from 
the mean in data set A is larger than in the data set B. Thus, the mean of data 
set B is a better representation of the data set than is the case for set A.

A fundamental concept in summary statistics is that of a central value for a set 
of observations and the extent to which the central value characterizes the 
whole set of data. Measures of central value such as the mean or median must 
be coupled with measures of data dispersion (e.g., average distance from the 
mean) to indicate how well the central value characterizes the data as a whole. 



Methods of Center Measurement

Commonly used methods are mean, median, mode, geometric mean etc.

Mean: Summing up all the observation and dividing by number of observations. 
Mean of 20, 30, 40 is (20+30+40)/3 = 30. 
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Methods of Center Measurement

Median: The middle value in an ordered sequence of observations. That is, 
to find the median we need to order the data set and then find the middle 
value. In case of an even number of observations the average of the two 
middle most values is the median. For example, to find the median of {9, 3, 
6, 7, 5}, we first sort the data giving {3, 5, 6, 7, 9}, then choose the middle 
value 6. If the number of observations is even, e.g., {9, 3, 6, 7, 5, 2}, then 
the median is the average of the two middle values from the sorted 
sequence, in this case, (5 + 6) / 2 = 5.5.

Mode: The value that is observed most frequently. The mode is undefined 
for sequences in which no observation is repeated.



Mean or Median

The median is less sensitive to outliers (extreme scores) than the mean and
thus a better measure than the mean for highly skewed distributions, e.g.
family income. For example mean of 20, 30, 40, and 990 is
(20+30+40+990)/4 =270. The median of these four observations is (30+40)/2
=35. Here 3 observations out of 4 lie between 20-40. So, the mean 270 really
fails to give a realistic picture of the major part of the data. It is influenced by
extreme value 990.



Methods of Variability Measurement

Commonly used methods: range, variance, standard deviation, interquartile 
range, coefficient of variation etc.

Range: The difference between the largest and the smallest observations. The 
range of 10, 5, 2, 100 is (100-2)=98. It’s a crude measure of variability.

Variability (or dispersion) measures the amount of scatter in a dataset. 



Methods of Variability Measurement

Variance: The variance of a set of observations is the average of the squares of 
the deviations of the observations from their mean.  In symbols, the variance of 
the n observations x1, x2,…xn is

Variance of 5, 7, 3?  Mean is (5+7+3)/3 = 5 and the variance is  
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Standard Deviation: Square root of the variance. The standard deviation of the 
above example is 2.



Methods of Variability Measurement

Quartiles: Data can be divided into four regions that cover the total range of 
observed values. Cut points for these regions are known as quartiles.

The first quartile (Q1) is the first 25% of the data. The second quartile (Q2) is
between the 25th and 50th percentage points in the data. The upper bound of Q2
is the median. The third quartile (Q3) is the 25% of the data lying between the
median and the 75% cut point in the data.

Q1 is the median of the first half of the ordered observations and Q3 is the
median of the second half of the ordered observations.

In notations, quartiles of a data is the ((n+1)/4)qth observation of the data, 
where q is the desired quartile and n is the number of observations of data. 



Methods of Variability Measurement

An example with 15 numbers
3 6 7 11 13 22 30 40 44 50 52 61 68 80 94                                       

Q1              Q2              Q3
The first quartile is   Q1=11. The second quartile is  Q2=40  (This is also the 
Median.)  The third quartile is Q3=61. 

Inter-quartile Range: Difference between Q3 and Q1. Inter-quartile range of the
previous example is 61- 40=21. The middle half of the ordered data lie between 40
and 61.

In the following example Q1= ((15+1)/4)1 =4th observation of the data. The 4th

observation is 11. So Q1 is of this data is 11.   



Deciles and Percentiles

Percentiles: If data is ordered and divided into 100 parts, then cut points are 
called Percentiles. 25th percentile is the Q1, 50th percentile is the Median (Q2) 
and the 75th percentile of the data is Q3.

Deciles: If data is ordered and divided into 10 parts, then cut points are called 
Deciles

In notations, percentiles of a data is the ((n+1)/100)p th observation of the data, 
where p is the desired percentile and n is the number of observations of data. 

Coefficient of Variation: The standard deviation of data divided by it’s mean. It is 
usually expressed in percent. 

100
x


Coefficient of Variation =



Five Number Summary

Five Number Summary: The five number summary of a distribution consists of 
the smallest (Minimum) observation, the first quartile (Q1),
The median(Q2), the third quartile, and the largest (Maximum) observation 
written in order from smallest to largest.  

Box Plot: A box plot is a graph of the five number summary. The central box 
spans the quartiles. A line within the box marks the median. Lines extending 
above and below the box mark the smallest and the largest observations 
(i.e., the range). Outlying samples may be additionally plotted outside the 
range.



Boxplot
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Choosing a Summary

The five number summary is usually better than the mean and standard deviation 
for describing a skewed distribution or a distribution with extreme outliers. The 
mean and standard deviation are reasonable for symmetric distributions that are 
free of outliers.

In real life we can’t always expect symmetry of the data. It’s  a common practice 
to include number of observations (n), mean, median, standard deviation, and 
range as common for data summarization purpose. We can include other summary 
statistics like Q1, Q3, Coefficient of variation if it is considered to be important for 
describing data. 



Shape of Data

• Shape of data is measured by 
– Skewness 
– Kurtosis



Skewness

• Measures asymmetry of data 
– Positive or right skewed: Longer right tail
– Negative or left skewed: Longer left tail
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Kurtosis

• Measures peakedness of the distribution of data. The 
kurtosis of normal distribution is 0.
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Summary of the Variable ‘Age’ in the 
given data set

Mean 90.41666667

Standard Error 3.902649518

Median 84

Mode 84

Standard Deviation 30.22979318

Sample Variance 913.8403955

Kurtosis -1.183899591

Skewness 0.389872725

Range 95

Minimum 48

Maximum 143

Sum 5425

Count 60
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Summary of the Variable ‘Age’ in 
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Microsoft Excel

A Spreadsheet Application. It features calculation, graphing tools, pivot tables 
and a macro programming language called VBA (Visual Basic for Applications).

There are many versions of MS-Excel. Excel XP, Excel 2003, Excel 2007 are 
capable of performing a number of statistical analyses.

Starting MS Excel: Double click on the Microsoft Excel icon on the desktop or Click 
on Start --> Programs --> Microsoft Excel.

Worksheet: Consists of a multiple grid of cells with numbered rows down the page 
and alphabetically-tilted columns across the page. Each cell is referenced by its 
coordinates. For example, A3 is used to refer to the cell in column A and row 3. 
B10:B20 is used to refer to the range of cells in column B and rows 10 through 
20.



Microsoft Excel

Creating Formulas: 1. Click the cell that you want to enter the 
formula, 2. Type = (an equal sign), 3. Click the Function Button, 4. 
Select the formula you want and step through the on-screen 
instructions.

Opening a document: File  Open (From a existing workbook). Change the 
directory area or drive to look for file in other locations. 

Creating a new workbook: FileNewBlank Document 
Saving a File: FileSave

Selecting more than one cell: Click on a cell e.g. A1), then hold the Shift key and 
click on another (e.g. D4) to select cells between and A1 and D4 or Click on a cell 
and drag the mouse across the desired range.   



Microsoft Excel

Entering Date and Time: Dates are stored as MM/DD/YYYY. No need to enter  
in that format. For example, Excel will recognize jan 9 or jan-9 as 1/9/2007 and 
jan 9, 1999 as 1/9/1999. To enter today’s date, press Ctrl and ; together. Use a 
or p to indicate am or pm. For example, 8:30 p is interpreted as 8:30 pm. To 
enter current time, press Ctrl and : together.  

Copy and Paste all cells in a Sheet: Ctrl+A for selecting, Ctrl +C for copying  and 
Ctrl+V for Pasting.

Sorting: Data  Sort Sort By …

Descriptive Statistics and other Statistical methods: ToolsData Analysis Statistical 
method. If Data Analysis is not available then click on Tools Add-Ins and then select 
Analysis ToolPack and Analysis toolPack-Vba 



Microsoft Excel

Statistical and Mathematical Function:  Start with ‘=‘ sign and then select 
function from function wizard .xf
Inserting a Chart: Click on Chart Wizard (or InsertChart), select chart, give, 
Input data range, Update the Chart options, and Select output range/ Worksheet.

Importing Data in Excel: File open FileType Click on File Choose Option ( 
Delimited/Fixed Width) Choose Options (Tab/ Semicolon/ Comma/ Space/ Other) 
 Finish. 

Limitations: Excel uses algorithms that are vulnerable to rounding and truncation 
errors and may produce inaccurate results in extreme
cases.



Statistical Inference

• Statistical Inference – the process of drawing 
conclusions about a population based on 
information in a sample

• Unlikely to see this published…
“In our study of a new antihypertensive drug we found an 
effective 10% reduction in blood pressure for those on 
the new therapy. However, the effects seen are only 
specific to the subjects in our study. We cannot say this 
drug will work for hypertensive people in general”.



• Characteristics of a population, e.g. the 
population mean  and the population standard 
deviation  are never known exactly

• Sample characteristics, e.g.    and    are 
estimates of population characteristics  and 

• A sample characteristic, e.g.    ,is called a 
statistic and a population characteristic, e.g. 
is called a parameter

Describing a population

x s

x



Statistical Inference

Population 
(parameters, e.g.,  and )

select sample at random

Sample 

collect data from 
individuals in sample

Data 

Analyse data (e.g. 
estimate       ) to 
make inferences

sx,





Distributions

• As sample size increases, histogram class widths can be narrowed such 
that the histogram eventually becomes a smooth curve

• The population histogram of a random variable is referred to as the 
distribution of the random variable, i.e. it shows how the population 
is distributed across the number line



Density curve

• A smooth curve representing a relative frequency distribution is called a 
density curve

• The area under the density curve between any two points a and b is 
the proportion of values between a and b.
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Population Relative Frequency Distribution 
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Distribution Shapes



The Normal Distribution

• The Normal distribution is considered to be the most 
important distribution in statistics

• It occurs in “nature” from processes consisting of a very 
large number of elements acting in an additive manner

• However, it would be very difficult to use this argument to 
assume normality of your data
– Later, we will see exactly why the Normal is so important in 

statistics



Normal Distribution

• Closely related is the log-normal distribution, 
based on factors acting multiplicatively. This 
distribution is right-skewed. 
– Note: The logarithm of the data is thus normal.

• The log-transformation of data is very common, 
mostly to eliminate skew in data



Properties of the Normal 
Distribution

• The Normal distribution has a symmetric bell-shaped density curve
• Characterised by two parameters, i.e. the mean , and standard 

deviation 
– 68% of data lie within 1 of the mean 
– 95% of data lie within 2 of the mean 
– 99.7% of data lie within 3 of the mean 
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Probability Density Functions…

• Unlike a discrete random variable which we studied in Chapter 7, a 
continuous random variable is one that can assume an 
uncountable number of values.

•  We cannot list the possible values because there is an infinite 
number of them.

•  Because there is an infinite number of values, the probability of 
each individual value is virtually 0.



Point Probabilities are Zero

 Because there is an infinite number of values, the probability of each 
individual value is virtually 0.

Thus, we can determine the probability of a range of values only.

• E.g. with a discrete random variable like tossing a 
die, it is  meaningful to talk about P(X=5), say.

• In a continuous setting (e.g. with time as a random 
variable), the probability the random variable of 
interest, say task length, takes exactly 5 minutes is 
infinitesimally small, hence P(X=5) = 0.

• It is meaningful to talk about P(X ≤ 5).



Probability Density Function…
• A function f(x) is called a probability density function (over the 

range a ≤ x ≤ b if it meets the following requirements:

1) f(x) ≥ 0 for all x between a and b, and

2) The total area under the curve between a and b is 1.0

f(x)

xba

area=1



The Normal Distribution…

• The normal distribution is the most important of all probability 
distributions. The probability density function of a normal random 
variable is given by:

• It looks like this:
• Bell shaped,
• Symmetrical around the mean     …



The Normal Distribution…

• Important things to note:

The normal distribution is fully defined by two parameters:
its standard deviation and mean

Unlike the range of the uniform distribution (a ≤ x ≤ b)
Normal distributions range from minus infinity to plus infinity

The normal distribution is bell shaped and
symmetrical about the mean
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Standard Normal Distribution…
• A normal distribution whose mean is zero and standard deviation is one

is called the standard normal distribution.

• As we shall see shortly, any normal distribution can be converted to a 
standard normal distribution with simple algebra. This makes 
calculations much easier.

0
1

1



Calculating Normal Probabilities…
• We can use the following function to convert any normal random 

variable to a standard normal random variable…

Some advice: always 
draw a picture!

0



Calculating Normal Probabilities…

• Example: The time required to build a computer is normally 
distributed with a mean of 50 minutes and a standard deviation of 10 
minutes: 

• What is the probability that a computer is assembled in a time between 
45 and 60 minutes?

• Algebraically speaking, what is P(45 < X < 60) ?

0



Calculating Normal Probabilities…

• P(45 < X < 60) ?

0

…mean of 50 minutes and a
standard deviation of 10 minutes…



Calculating Normal Probabilities…

• We can use Table 3 in
• Appendix B to look-up
• probabilities P(0 < Z < z)

• We can break up P(–.5 < Z < 1) into:
• P(–.5 < Z < 0) + P(0 < Z < 1)

• The distribution is symmetric around zero, so we have:
• P(–.5 < Z < 0) = P(0 < Z < .5)
• Hence: P(–.5 < Z < 1) = P(0 < Z < .5) + P(0 < Z < 1)



Calculating Normal Probabilities…

• How to use Table …

This table gives probabilities P(0 < Z < z)
First column = integer + first decimal
Top row = second decimal place

P(0 < Z < 0.5) 

P(0 < Z < 1)

P(–.5 < Z < 1) = .1915 + .3414 = .5328



Using the Normal Table

0 1.6

P(0 < Z < 1.6) = .4452

P(Z > 1.6) = .5 – P(0 < Z < 1.6)
= .5 – .4452
= .0548

z

• What is P(Z > 1.6) ?



Using the Normal Table (Table 3)…

• What is P(Z < -2.23) ?

0 2.23

P(0 < Z < 2.23)

P(Z < -2.23) = P(Z > 2.23)
= .5 – P(0 < Z < 2.23)
= .0129

z

-2.23

P(Z > 2.23)P(Z < -2.23)



Using the Normal Table (Table 3)…

• What is P(Z < 1.52) ?

0 1.52

P(Z < 0) = .5

P(Z < 1.52) = .5 + P(0 < Z < 1.52)
= .5 + .4357
= .9357

z

P(0 < Z < 1.52)



Using the Normal Table (Table 3)…

• What is P(0.9 < Z < 1.9) ?

0 0.9

P(0 < Z < 0.9)

P(0.9 < Z < 1.9) = P(0 < Z < 1.9) – P(0 < Z < 0.9)
=.4713 – .3159 
= .1554

z

1.9

P(0.9 < Z < 1.9)



Sampling Distributions of a Mean
The sampling distributions of a mean (SDM)  
describes the behavior of a sampling mean
SE=standard error

 

n
SE

SENx

x

x




 where

,~



Standard Normal distribution

• If X is a Normally distributed random variable with mean =  and 
standard deviation = , then X can be converted to a Standard Normal 
random variable Z using: 





XZ



Standard Normal distribution (contd.)

• Z has mean = 0 and standard deviation = 1
• Using this transformation, we can calculate areas under any normal distribution



Example

• Assume the distribution of blood pressure is Normally distributed with   = 
80 mm and  = 10 mm

• What percentage of people have blood pressure greater than 90?
• Z score transformation:

Z=(90 - 80) /10 = 1



Example (contd.)

• The percentage greater 
than 90 is equivalent to the 
area under the Standard 
Normal curve greater then 
Z = 1.

• From tables of the 
Standard Normal 
distribution, the area to the 
right of Z=1 is 0.1587 (or 
15.87%)

Area = 0.1587
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Central Limit Theorem (CLT)

• Suppose you take any random sample from a 
population with mean μ and variance σ2

• Then, for large sample sizes, the CLT states that 
the distribution of sample means is the Normal 
Distribution, with mean μ and variance σ2/n (i.e. 
standard deviation is σ/√n )

• If the original data is Normal then the sample 
means are Normal, irrespective of sample size
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What is it really saying?

(1) It gives a relationship between the sample 
mean and population mean
– This gives us a framework to extrapolate our sample 

results to the population (statistical inference);
(2) It doesn’t matter what the distribution of the 

original data is, the sample mean will always be 
Normally distributed when n is large.
– This why the Normal is so central to statistics



Example: Toss 1, 2 or 10 dice (10,000 
times)

Toss 1 dice
Histogram of

data

Toss 2 dice
Histogram of 

averages

Toss 10 dice
Histogram of averages

Distribution of data 
is far from Normal

Distribution of averages approach Normal as 
sample size (no. of dice) increases



CLT cont’d

(3) It describes the distribution of the sample mean
– The values of     obtained from repeatedly taking samples 

of size n describe a separate population
– The distribution of any statistic is often called the 

sampling distribution

x
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Sampling distribution of    X

 and 

Population

Sample 1 Sample 2 Sample 3 Sample 4 Sample k……

Sampling Distribution
1x 2x 3x 3x kx……
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CLT continued
(4) The mean of the sampling distribution of      is equal to the population 

mean, i.e.

(5) Standard deviation of the sampling distribution of      is the population 
standard deviation  square root of sample size, i.e.

X

 X

X

nX
 
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Estimates

• Since s is an estimate of , an estimate of                is

• This is known as the standard error of the mean

• Be careful not to confuse the standard deviation and 
the standard error !
– Standard deviation describes the variability of the data
– Standard error is the measure of the precision of

as a measure of 

n


n
sSEx 

x



Confidence Interval

• A confidence interval for a population 
characteristic is an interval of plausible values for 
the characteristic. It is constructed so that, with 
a chosen degree of confidence (the confidence 
level), the value of the characteristic will be 
captured inside the interval

• E.g. we claim with 95% confidence that the 
population mean lies between 15.6 and 17.2



Methods for Statistical Inference

Confidence Intervals

Hypothesis Tests



Confidence Interval for when  is known

• A 95% confidence interval for  if  is known is given by:

n
x 

 96.1



Sampling distribution of  
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Rationale for Confidence 
Interval

• From the sampling distribution of     conclude that  and    are within 1.96

• standard errors (    ) of each other 95% of the time

• Otherwise stated, 95% of the intervals contain 

• So, the interval can be taken as an interval that 
typically would include 

X
n


x

n
x  96.1



Example

• A random sample of 80 tablets had an average 
potency of 15mg. Assume  is known to be 4mg.

• =15,  =4, n=80
• A 95% confidence interval for  is 

= (14.12 , 15.88)

x

80
496.115 



Confidence Interval for when  is unknown

• Nearly always  is unknown and is estimated using sample standard deviation s
• The value 1.96 in the confidence interval is replaced by a new quantity, i.e., 

t0.025
• The 95% confidence interval when  is unknown is:

n
stx  025.0



Student’s t Distribution

• Closely related to the standard normal distribution Z
– Symmetric and bell-shaped 
– Has mean = 0 but has a larger standard deviation

• Exact shape depends on a parameter called degrees of freedom (df) which 
is related to sample size
– In this context df = n-1



Student’s t distribution for 3, 10 df and 
standard Normal distribution

-4 -3 -2 -1 0 1 2 3 4

t quantile

df = 3

df = 10Standard Normal



Definition of t0.025 values

-4.5 -3.0 -1.5 0.0 1.5 3.0 4.5
t

t0.025- t0.025

0.025 0.0250.95



Example

• 26 measurements of the potency of a single batch 
of tablets in mg per tablet are as follows

498.38 489.31 505.50 495.24 490.17 483.2

488.47 497.71 503.41 482.25 488.14

492.22 483.96 473.93 463.40 493.65

499.48 496.05 494.54 508.58 488.42

463.68 492.46 489.45 491.57 489.33



Example (contd.)

• mg per tablet

• t0.025 with df = 25 is 2.06

• So, the batch potency lies between 485.74 and 494.45 mg per tablet

783.10 and,096.490  sx

356.4096.490
26
783.1006.2096.490025.0




n
stx



General Form of Confidence Interval

Estimate ±(critical value from distribution).(standard error)



Hypothesis testing

• Used to investigate the validity of a claim about the value of a population 
characteristic

• For example, the mean potency of a batch of tablets is 500mg per tablet, 
i.e.,
0 = 500mg



Procedure

• Specify Null and Alternative hypotheses
• Specify test statistic
• Define what constitutes an exceptional outcome
• Calculate test statistic and determine whether or not to reject the Null 

Hypothesis



Step 1

• Specify the hypothesis to be tested and the alternative that will be decided 
upon if this is rejected
– The hypothesis to be tested is referred to as the Null Hypothesis (labelled H0)
– The alternative hypothesis is labelled H1

• For the earlier example this gives:

mg500:
mg500:0







aH
H



Step 1 (continued)

• The Null Hypothesis is assumed to be true unless the data clearly 
demonstrate otherwise



Step 2

• Specify a test statistic which will be used to measure 
departure from  

where     is the value specified under the Null 
Hypothesis, e.g.             in the earlier example.

• For hypothesis tests on sample means the test statistic 
is: 

00 :  H
0

5000 

n
s

xt 0



Step 2 (contd.)

• The test statistic

is a ‘signal to noise ratio’, i.e. it measures how far     
is from     in terms of standard error units

• The t distribution with df = n-1 describes the 
distribution of the test statistics if the Null 
Hypothesis is true

• In the earlier example, the test statistic t has a t
distribution with df = 25  

n
s

xt 0

x 0



Step 3

• Define what will be an exceptional outcome
– a value of the test statistic is exceptional if it has only a small chance of occurring 

when the null hypothesis is true
• The probability chosen to define an exceptional outcome is called the 

significance level of the test and is labelled 
– Conventionally,  is chosen to be = 0.05



Step 3 (contd.)

•  = 0.05 gives cut-off values on the sampling distribution of t called critical 
values
– values of the test statistic t lying beyond the critical values lead to rejection of the 

null hypothesis
• For the earlier example the critical value for a t distribution with df = 25 is 

2.06  



t distribution with df=25 showing critical 
region

-3 -2 -1 0 1 2 3
t

critical values

critical region

0.025 0.025



Step 4

• Calculate the test statistic and see if it lies in the 
critical region

• For the example

• t = -4.683 is < -2.06 so the hypothesis that the 
batch potency is 500 mg/tablet is rejected

683.4
26

783.10
500096.490




t
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P value

The P value associated with a hypothesis test is the 
probability of getting sample values as extreme or 
more extreme than those actually observed, 
assuming null hypothesis to be true



Example (contd)

• P value = probability of observing a more extreme value of t
• The observed t value was -4.683, so the P value is the probability of 

getting a value more extreme than ± 4.683
• This P value is calculated as the area under the t distribution below -

4.683 plus the area above 4.683, i.e., 0.00008474 !



Example (contd)

• Less than 1 in 10,000 chance of observing a value of t more extreme than -
4.683 if the Null Hypothesis is true  

• Evidence in favour of the alternative hypothesis is very strong



P value (contd.)

-5 -4 -3 -2 -1 0 1 2 3 4 5
t

-4.683 4.683



Two-tail and One-tail tests

• The test described in the previous example is a two-tail test
– The null hypothesis is rejected if either an unusually large or unusually small 

value of the test statistic is obtained, i.e. the rejection region is divided 
between the two tails



One-tail tests

• Reject the null hypothesis only if the observed value of the test statistic 
is 
– Too large 
– Too small

• In both cases the critical region is entirely in one tail so the tests are 
one-tail tests



Statistical versus Practical Significance

• When we reject a null hypothesis it is usual to say the result is statistically 
significant at the chosen level of significance

• But should also always consider the practical significance of the magnitude
of the difference between the estimate (of the population characteristic) and 
what the null hypothesis states that to be



Hypothesis Testing
• Is also called significance testing
• Tests a claim about a parameter using evidence (data in a sample
• The technique is introduced by considering a one-sample z test 
• The procedure is broken into four steps
• Each element of the procedure must be understood



Hypothesis Testing Steps

A. Null and alternative hypotheses
B. Test statistic
C. P-value and interpretation
D. Significance level (optional)



Null and Alternative Hypotheses

• Convert the research question to null and alternative hypotheses 
• The null hypothesis (H0) is a claim of “no difference in the population” 
• The alternative hypothesis (Ha) claims “H0 is false”
• Collect data and seek evidence against H0 as a way of bolstering Ha 

(deduction)



Illustrative Example: “Body 
Weight”

• The problem: In the 1970s, 20–29 year old men in the U.S. had a mean μ
body weight of 170 pounds. Standard deviation σ was 40 pounds. We test 
whether mean body weight in the population now differs.

• Null hypothesis H0: μ = 170 (“no difference”)
• The alternative hypothesis can be either Ha: μ > 170 (one-sided test) 

or  
Ha: μ ≠ 170 (two-sided test)



§9.2 Test Statistic

n
SE

H
SE

x

x

x













 and

 trueis  assumingmean  population  where

 z 

00

0
stat

This is an example of a one-sample test of a 
mean when σ is known. Use this statistic to 
test the problem:



Illustrative Example: z statistic
• For the illustrative example, μ0 = 170
• We know σ = 40
• Take an SRS of n = 64. Therefore

• If we found a sample mean of 173, then 

5
64

40


n
SEx



60.0
5

170173  0
stat 







xSE
x

z




Illustrative Example: z statistic
If we found a sample mean of 185, then

00.3
5

170185  0
stat 







xSE
x

z




Reasoning Behin µzstat

 5,170~ NxSampling distribution of xbar 
under H0: µ =  170 for n = 64 



P-value

• The P-value answer the question: What is the 
probability of the observed test statistic or one 
more extreme when H0 is true? 

• This corresponds to the AUC in the tail of the 
Standard Normal distribution beyond the zstat. 

• Convert z statistics to P-value : 
For Ha: μ > μ0  P = Pr(Z > zstat) = right-tail beyond 

zstat
For Ha: μ < μ0  P = Pr(Z < zstat) = left tail beyond zstat
For Ha: μ μ0  P = 2 × one-tailed P-value

• Use Table B or software to find these 
probabilities (next two slides).



One-sided P-value for zstat of 0.6



One-sided P-value for zstat of 3.0



Two-Sided P-Value
• One-sided Ha  AUC in tail 

beyond zstat
• Two-sided Ha  consider 

potential deviations in both 
directions  double the one-
sided P-value

Examples: If one-sided P
= 0.0010, then two-sided 
P = 2 × 0.0010 = 0.0020. 
If one-sided P = 0.2743, 
then two-sided P = 2 ×
0.2743 = 0.5486.



Interpretation 
• P-value answer the question: What is the probability of the observed test 

statistic … when H0 is true?
• Thus, smaller and smaller P-values provide stronger and stronger evidence 

against H0
• Small P-value  strong evidence



Interpretation 

Conventions*
P > 0.10  non-significant evidence against H0
0.05 < P  0.10  marginally significant evidence
0.01 < P  0.05  significant evidence against H0
P  0.01  highly significant evidence against H0

Examples
P =.27  non-significant evidence against H0

P =.01  highly significant evidence against H0

* It is unwise to draw firm borders for “significance”



α-Level (Used in some 
situations)

• Let α ≡ probability of erroneously rejecting H0
• Set α threshold (e.g., let α = .10, .05, or 

whatever)
• Reject H0 when P ≤ α
• Retain H0 when P > α
• Example: Set α = .10. Find P = 0.27  retain 

H0
• Example: Set α = .01. Find P = .001  reject 

H0



(Summary) One-Sample z Test

A. Hypothesis statements
H0: µ = µ0 vs. 
Ha: µ ≠ µ0 (two-sided) or 
Ha: µ < µ0 (left-sided) or
Ha: µ > µ0 (right-sided) 

B. Test statistic

C. P-value: convert zstat to P value
D. Significance statement (usually not necessary)

n
SE

SE
x

x
x





   where z 0

stat



Two-Sample Inferences

• So far, we have dealt with inferences about µ for 
a single population using a single sample. 

• Many studies are undertaken with the objective 
of comparing the characteristics of two 
populations. In such cases we need two samples, 
one for each population

• The two samples will be independent or 
dependent (paired) according to how they are 
selected



Example

• Animal studies to compare toxicities of two drugs

2 independent 
samples:

2 paired samples:

Select sample of rats for drug 1 and 
another sample of rats for drug 2

Select a number of pairs of litter 
mates and use one of each pair for 
drug 1 and drug 2



Two Sample t-test

0 :H       
0 :H       

hypothesesFormulate

12a

120







• Consider inferences on 2 independent samples
• We are interested in testing whether a difference 

exists in the population means, µ1 and µ2



Two Sample t-Test

• It is natural to consider the statistic                   and its 
sampling distribution  

• The distribution is centred at µ2-µ1, with standard error

• If the two populations are normal, the sampling 
distribution is normal

• For large sample sizes (n1 and n2 > 30), the sampling 
distribution is approximately normal even if the two 
populations are not normal (CLT)
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Two Sample t-Test
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• The two-sample t-statistic is defined as

 The two sample standard deviations are 
combined to give a pooled estimate of the 
population standard deviation σ



Two-sample Inference

• The t statistic has n1+n2-2 degrees of freedom
• Calculate critical value & p value as per usual
• The 95% confidence interval for µ2-µ1 is

21
025.012
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Example

Population n mean s
Drug 1 20 35.9 11.9
Drug 2 38 36.6 12.3

01.148
56
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Example (contd)

• Two-tailed test with 56 df and α=0.05 therefore 
we reject the null hypthesis if t>2 or t<-2

• Fail to reject - there is insufficient evidence of a 
difference in mean between the two drug 
populations

• Confidence interval is -7.42 to 6.02

-0.21
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Paired t-test

• Methods for independent samples are not appropriate 
for paired data.

• Two related observations (i.e. two observations per 
subject) and you want to see if the means on these two 
normally distributed interval variables differ from one 
another.

• Calculation of the t-statistic, 95% confidence intervals 
for the mean difference and P-values are estimated as 
presented previously for one-sample testing.



Example

• 14 cardiac patients were placed on a special diet to lose weight. Their 
weights (kg) were recorded before starting the diet and after one 
month on the diet

• Question: Do the data provide evidence that the diet is effective? 
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Patient Before After Difference
1 62 59 3
2 62 60 2
3 65 63 2
4 88 78 10
5 76 75 1
6 57 58 -1
7 60 60 0
8 59 52 7
9 54 52 2
10 68 65 3
11 65 66 -1
12 63 59 4
13 60 58 2
14 56 55 1



Example
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Example (contd)

• Critical Region (1 tailed) t > 1.771

• Reject H0 in favour of Ha

• P value is the area to the right of 3.14
= 1-0.9961=0.0039

• 95% Confidence Interval for
2.5 ± 2.17 (2.98/√14) 
= 2.5 ±1.72
=0.78 to 4.22

21  d



Example (cont)

 Suppose these data were (incorrectly) 
analysed as if the two samples were 
independent…

 t=0.80



Example (contd)

• We calculate t=0.80
• This is an upper tailed test with 26 df and α=0.05 (5% level of 

significance) therefore we reject H0 if t>1.706 
• Fail to reject - there is not sufficient evidence of a difference in mean 

between ‘before’ and ‘after’ weights



Wrong Conclusions

• By ignoring the paired structure of the data, we 
incorrectly conclude that there was no evidence of 
diet effectiveness.

• When pairing is ignored, the variability is inflated by 
the subject-to-subject variation.

• The paired analysis eliminates this source of variability 
from the calculations, whereas the unpaired analysis 
includes it.

• Take home message: NB to use the right test for your 
data. If data is paired, use a test that accounts for 
this.



Analysis of Variance (ANOVA) 

• Many investigations involved a comparison of 
more than two population means

• Need to be able to extend our two sample 
methods to situations involving more than two 
samples

• i.e. equivalent of the paired samples t-test, but 
allows for two or more levels of the categorical 
variable

• Tests whether the mean of the dependent 
variable differs by the categorical variable

• Such methods are known collectively as the 
analysis of variance



Completely Randomised 
Design/one-way ANOVA

• Equivalent to independent samples design for two 
populations

• A completely randomised design is frequently referred 
to as a one-way ANOVA

• Used when you have a categorical independent 
variable (with two or more categories) and a normally 
distributed interval dependent variable (e.g. 
$10,000,$15,000,$20,000) and you wish to test for 
differences in the means of the dependent variable 
broken down by the levels of the independent variable

• e.g. compare three methods for measuring tablet 
hardness. 15 tablets are randomly assigned to three 
groups of 5 and each group is measured by one of 
these methods
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ANOVA 
example

Mean of the dependent variable differs 
significantly among the levels of 
program type. However, we do not 
know if the difference is between only 
two of the levels or all three of the 
levels. 

See that the students in the academic 
program have the highest mean 
writing score, while students in the 
vocational program have the lowest. 
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Example
Compare three methods for measuring tablet hardness. 
15 tablets are randomly assigned to three groups of 5 

Method A Method B Method C

102 99 103

101 100 100

101 99 99

100 101 104

102 98 102



Hypothesis Tests: One-way ANOVA

• K populations

kH   ...: 210

differentisoneleastatHA :



A B

DATA
NO YES

Ho

Do the samples come from different 
populations?

• Two-sample (t-test)

Ha



A B C

AB C

A BC

A BC

DATAHo Ha

• One-way ANOVA (F-test)

Do the samples come from different 
populations?



F-test

• The ANOVA extension of the t-test is called the F-test
• Basis: We can decompose the total variation in the study into sums of 

squares
• Tabulate in an ANOVA table
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Decomposition of total variability (sum of 
squares)

Assign subscripts to the data 
 i is for treatment (or method in this case)
 j are the observations made within treatment

e.g.
 y11= first observation for Method A i.e. 102 
 y1. = average for Method A

Using algebra
Total Sum of Squares  (SST)=Treatment Sum of Squares (SSX) 

+ Error Sum of Squares (SSE)

2
.

2
.

2 )()()(   iijiij yyyyyy



df SS MS F P-value

Treatment 
(between 
groups)

df (X) SSX SSX
df (X)

MSX
MSE

Look
up !

Error 
(within 
groups)

df (E) SSE SSE
df (E)

Total df (T) SST

}

}

ANOVA table



Example (Contd)

• Are any of the methods different?
• P-value=0.0735
• At the 5% level of significance, there is no evidence that the 3 methods 

differ



Two-Way ANOVA

• Often, we wish to study 2 (or more) independent variables (factors) in 
a single experiment

• An ANOVA of observations each of which can be classified in two ways 
is called a two-way ANOVA



Randomised Block Design

• This is an extension of the paired samples 
situation to more than two populations

• A block consists of homogenous items and is 
equivalent to a pair in the paired samples design

• The randomised block design is generally more 
powerful than the completely randomised design 
(/one way anova) because the variation between 
blocks is removed from the test statistic



Decomposition of sums of squares
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 Similar to the one-way ANOVA, we can 
decompose the overall variability in the data 
(total SS) into components describing variation 
relating to the factors (block, treatment) & the 
error (what’s left over)

 We compare Block SS and Treatment SS with 
the Error SS (a signal-to-noise ratio) to form F-
statistics, from which we get a p-value

Total SS = Between Blocks SS + Between Treatments SS + Error SS



Example

• An experiment was conducted to compare the mean bioavailabilty (as 
measured by AUC) of three drug products from laboratory rats. 

• Eight litters (each consisting of three rats) were used for the 
experiment. Each litter constitutes a block and the rats within each 
litter are randomly allocated to the three drug products



Example (cont’d)

Litter Product A Product B Product C
1 89 83 94
2 93 75 78
3 87 75 89
4 80 76 85
5 80 77 84
6 87 73 84
7 82 80 75
8 68 77 75



Example (cont’d): 
ANOVA table

Source df SS MS F-ratio P-value
Product
Litter
Error
Total

2
7
14
23

200.333
391.833
405.667
997.833

100.167
55.9762
28.9762 

3.4569
1.9318

0.0602
0.1394



Interactions

• The previous tests for block and treatment are 
called tests for main effects

• Interaction effects happen when the effects of 
one factor are different depending on the level 
(category) of the other factor



Example

• 24 patients in total randomised to either Placebo or Prozac
• Happiness score recorded
• Also, patients gender may be of interest & recorded
• There are two factors in the experiment: treatment & gender

– Two-way ANOVA



Example

• Tests for Main effects: 
– Treatment: are patients happier on placebo or prozac?
– Gender: do males and females differ in score?

• Tests for Interaction: 
– Treatment x Gender: Males may be happier on prozac 

than placebo, but females not be happier on prozac 
than placebo. Also vice versa. Is there any evidence for 
these scenarios?

– Include interaction in the model, along with the two 
factors treatment & gender



More jargon: factors, levels & cells
Happiness score

3 7
4 7
2 6
3 5
4 6
3 6

4 5
5 5
4 5
6 4
6 6
4.5 6

Placebo Prozac

Male

Female

Factor 1
Gender

Factor 2  TreatmentLevels

Cells



Placebo         Prozac
NO INTERACTION!

H
a
p
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What do interactions looks like?

No Yes

Yes Yes

H
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Placebo         Prozac Placebo         Prozac

Placebo         Prozac



Results

Tests of Between-Subjects Effects

Dependent Variable: Happiness

28.031a 3 9.344 14.705 .000
565.510 1 565.510 889.984 .000

15.844 1 15.844 24.934 .000
.844 1 .844 1.328 .263

11.344 1 11.344 17.852 .000
12.708 20 .635

606.250 24
40.740 23

Source
Corrected Model
Intercept
Drug
Gender
Drug * Gender
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

R Squared = .688 (Adjusted R Squared = .641)a. 



Interaction? Plot the means
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Estimated Marginal Means of Happiness



Example: Conclusions
• Significant evidence that drug treatment affects happiness in depressed 

patients (p<0.001)
– Prozac is effective, placebo is not

• No significant evidence that gender affects happiness (p=0.263)
• Significant evidence of an interaction between gender and treatment 

(p<0.001)
– Prozac is effective in men but not in women!!*



Introduction to Linear Regression 
and Correlation Analysis



Goals
After this, you should be able to:

• Calculate and interpret the simple correlation 
between two variables

• Determine whether the correlation is 
significant

• Calculate and interpret the simple linear 
regression equation for a set of data

• Understand the assumptions behind regression 
analysis

• Determine whether a regression model is 
significant



Goals

After this, you should be able to:
• Calculate and interpret confidence intervals for the regression coefficients
• Recognize regression analysis applications for purposes of prediction and 

description
• Recognize some potential problems if regression analysis is used 

incorrectly
• Recognize nonlinear relationships between two variables

(continued)



Scatter Plots and Correlation

• A scatter plot (or scatter diagram) is used to show the relationship 
between two variables

• Correlation analysis is used to measure strength of the association (linear 
relationship) between two variables

–Only concerned with strength of the 
relationship 

–No causal effect is implied



Scatter Plot Examples

y

x

y

x

y

y

x

x

Linear 
relationships

Curvilinear 
relationships



Scatter Plot Examples

y

x

y

x

y

y

x

x

Strong 
relationships

Weak 
relationships

(continued)



Scatter Plot Examples

y

x

y

x

No relationship
(continued)



Correlation Coefficient

• The population correlation coefficient  ρ (rho) measures the 
strength of the association between the variables

• The sample correlation coefficient  r is an estimate of  ρ and is 
used to measure the strength of the linear relationship in the sample 
observations

(continued)



Features of  ρ and  r

• Unit free
• Range between -1 and 1
• The closer to -1, the stronger the negative linear relationship
• The closer to 1, the stronger the positive linear relationship
• The closer to 0, the weaker the linear relationship



r = +.3 r = +1

Examples of Approximate 
r  Values

y

x

y

x

y

x

y

x

y

x

r = -1 r = -.6 r = 0



Calculating the 
Correlation Coefficient
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where:
r = Sample correlation coefficient
n = Sample size
x = Value of the independent variable
y = Value of the dependent variable
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Sample correlation coefficient:

or the algebraic equivalent:



Calculation Example

Tree 
Height

Trunk 
Diamete

r
y x xy y2 x2

35 8 280 1225 64
49 9 441 2401 81
27 7 189 729 49
33 6 198 1089 36
60 13 780 3600 169
21 7 147 441 49
45 11 495 2025 121
51 12 612 2601 144

=321 =73 =3142 =14111 =713
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Trunk Diameter, x

Tree
Height, 
y

Calculation Example
(continued)

r = 0.886 → relatively strong 
positive 
linear association between x and y



Excel Output

Tree Height Trunk Diameter
Tree Height 1
Trunk Diameter 0.886231 1

Excel Correlation Output
Tools / data analysis / correlation…

Correlation between 
Tree Height and Trunk Diameter



Significance Test for Correlation

• Hypotheses 

H0: ρ = 0 (no correlation) 
HA: ρ ≠ 0 (correlation exists)

• Test statistic

– (with n – 2 degrees of freedom)

2n
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rt
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

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Example: Produce Stores

Is there evidence of a linear relationship 
between tree height and trunk diameter at 
the .05 level of significance?

H0: ρ = 0    (No correlation)
H1: ρ ≠ 0    (correlation 

exists)
 =.05 ,   df = 8 - 2  = 6

4.68

28
.8861

.886

2n
r1

rt
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
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

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4.68

28
.8861

.886

2n
r1

rt
22
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Example: Test Solution

Conclusion:
There is 
evidence of a 
linear relationship 
at the 5% level 
of significance

Decision:
Reject H0

Reject H0Reject H0

/2=.025

-tα/2
Do not reject H0

0 tα/2

/2=.025

-2.4469 2.4469 4.68

d.f. = 8-2 
= 6



Introduction to Regression 
Analysis

• Regression analysis is used to:
– Predict the value of a dependent variable based on the value of at least 

one independent variable
– Explain the impact of changes in an independent variable on the 

dependent variable
Dependent variable: the variable we wish to explain
Independent variable: the variable used to explain the dependent 

variable



Simple Linear Regression Model

• Only one independent variable, x
• Relationship between  x  and  y  is described by a linear function
• Changes in  y  are assumed to be caused by changes in  x



Types of Regression Models

Positive Linear Relationship

Negative Linear Relationship

Relationship NOT Linear

No Relationship



εxββy 10 
Linear component

Population Linear Regression

The population regression model:

Population 
y  intercept 

Population 
Slope
Coefficient 

Random 
Error 
term, or 
residualDependent 

Variable

Independen
t Variable

Random Error
component



Linear Regression Assumptions

• Error values (ε) are statistically independent
• Error values are normally distributed for any given value of  x
• The probability distribution of the errors is normal
• The probability distribution of the errors has constant variance
• The underlying relationship between the x variable and the y variable is 

linear



Population Linear Regression
(continued)

Random Error 
for this x value

y

x

Observed Value 
of y for xi

Predicted Value 
of y for xi

εxββy 10 

xi

Slope = β1

Intercept = β0

εi



xbbŷ 10i 

The sample regression line provides an estimate of 
the population regression line

Estimated Regression Model

Estimate of 
the regression 
intercept

Estimate of the 
regression slope

Estimated  
(or predicted) 
y value

Independen
t variable

The individual random error terms  ei have a mean of 
zero



Least Squares Criterion

• b0 and  b1 are obtained by finding the values of  b0 and  b1 that 
minimize the sum of the squared residuals

2
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The Least Squares Equation

• The formulas for  b1 and  b0 are:

algebraic 
equivalent:
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• b0 is the estimated average value of 
y when the value of x is zero

• b1 is the estimated change in the 
average value of y as a result of a 
one-unit change in x

Interpretation of the 
Slope and the Intercept



Finding the Least Squares 
Equation

• The coefficients  b0 and  b1 will 
usually be found using computer 
software, such as Excel or Minitab

• Other regression measures will also 
be computed as part of computer-
based regression analysis



Simple Linear Regression 
Example

• A real estate agent wishes to examine the relationship between the selling 
price of a home and its size (measured in square feet)

• A random sample of 10 houses is selected

–Dependent variable (y) = house price in 
$1000s

– Independent variable (x) = square feet



Sample Data for House Price 
Model

House Price in $1000s
(y)

Square Feet 
(x)

245 1400
312 1600
279 1700
308 1875
199 1100
219 1550
405 2350
324 2450
319 1425
255 1700



Regression Using Excel

• Tools / Data Analysis / Regression



Excel Output
Regression Statistics

Multiple R 0.76211
R Square 0.58082
Adjusted R 
Square 0.52842
Standard Error 41.33032
Observations 10

ANOVA
df SS MS F

Significance 
F

Regression 1 18934.9348
18934.934

8
11.084

8 0.01039
Residual 8 13665.5652 1708.1957
Total 9 32600.5000

Coefficien
ts Standard Error t Stat

P-
value Lower 95%

Upper 
95%

Intercept 98.24833 58.03348 1.69296
0.1289

2 -35.57720
232.0738

6

Square Feet 0.10977 0.03297 3.32938
0.0103

9 0.03374 0.18580

The regression equation is:
feet) (square 0.10977 98.24833 price house 
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Graphical Presentation

• House price model:  scatter plot and regression line

feet) (square 0.10977 98.24833 price house 

Slope 
= 0.10977

Intercept 
= 98.248  



Interpretation of the 
Intercept,  b0

• b0 is the estimated average value of Y when the value of X is zero (if x = 0 
is in the range of observed x values)
– Here, no houses had 0 square feet, so b0 = 98.24833 just indicates that, for 

houses within the range of sizes observed, $98,248.33 is the portion of the 
house price not explained by square feet

feet) (square 0.10977 98.24833 price house 



Interpretation of the 
Slope Coefficient,  b1

• b1 measures the estimated change in 
the average value of Y as a result of 
a one-unit change in X
– Here, b1 = .10977 tells us that the average value of a house increases by 

.10977($1000) = $109.77, on average, for each additional one square foot of 
size

feet) (square 0.10977 98.24833 price house 



Least Squares Regression Properties

• The sum of the residuals from the least 
squares regression line is 0   (                   )

• The sum of the squared residuals is a 
minimum (minimized                   )

• The simple regression line always passes 
through the mean of the y variable and the 
mean of the x variable

• The least squares coefficients are unbiased 
estimates of  β0 and  β1

0)ˆ(  yy

2)ˆ( yy 



Explained and Unexplained 
Variation

• Total variation is made up of two parts:

SSR       SSE       SST 
Total sum 

of Squares
Sum of 
Squares 

Regression

Sum of 
Squares Error

  2)yy(SST   2)ŷy(SSE   2)yŷ(SSR

where:
= Average value of the dependent variable

y = Observed values of the dependent variable
= Estimated value of y for the given x valueŷ

y



• SST = total sum of squares 
– Measures the variation of the yi values around their mean y

• SSE = error sum of squares 
– Variation attributable to factors other than the relationship between x and y

• SSR = regression sum of squares 
– Explained variation attributable to the relationship between x and y

(continued)

Explained and Unexplained 
Variation



(continued)
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• The coefficient of determination is the portion of the total variation in 
the dependent variable that is explained by variation in the independent 
variable

• The coefficient of determination is also called R-squared and is denoted 
as R2

Coefficient of Determination, R2

SST
SSRR 2 1R0 2 where



Coefficient of determination

Coefficient of Determination, R2

squares of sum total
regressionby  explained squares of sum

SST
SSRR 2

(continued)

Note: In the single independent variable case, the coefficient 
of determination is

where:
R2 = Coefficient of determination
r = Simple correlation coefficient

22 rR 



R2 = +1

Examples of Approximate 
R2 Values

y

x

y

x

R2 = 1

R2 = 1

Perfect linear relationship 
between x and y:  

100% of the variation in 
y is explained by 
variation in x



Examples of Approximate 
R2 Values

y

x

y

x

0 < R2 < 1

Weaker linear 
relationship between x 
and y:  

Some but not all of the 
variation in y is explained 
by variation in x



Examples of Approximate 
R2 Values

R2 = 0

No linear relationship 
between x and y:  

The value of Y does not 
depend on x.  (None of 
the variation in y is 
explained by variation in 
x)

y

xR2 = 0



Regression Statistics
Multiple R 0.76211
R Square 0.58082
Adjusted R 
Square 0.52842
Standard Error 41.33032
Observations 10

ANOVA
df SS MS F

Significanc
e F

Regression 1 18934.9348
18934.934

8
11.084

8 0.01039
Residual 8 13665.5652 1708.1957
Total 9 32600.5000

Coefficien
ts

Standard 
Error t Stat

P-
value Lower 95%

Upper 
95%

Intercept 98.24833 58.03348 1.69296
0.1289

2 -35.57720
232.0738

6

Square Feet 0.10977 0.03297 3.32938
0.0103

9 0.03374 0.18580

Excel Output

58.08% of the variation in 
house prices is explained by 

variation in square feet

0.58082
32600.5000
18934.9348

SST
SSRR2 



Standard Error of Estimate

• The standard deviation of the variation of observations around the 
regression line is estimated by

1
 kn

SSEs

Where
SSE  = Sum of squares error

n = Sample size
k = number of independent variables in the 

model



The Standard Deviation of the Regression Slope

• The standard error of the regression slope coefficient (b1) is estimated 
by

  






n
x)(

x

s
)x(x

ss
2

2

ε
2

ε
b1

where:
= Estimate of the standard error of the least squares slope

= Sample standard error of the estimate

1bs

2n
SSEsε 





Regression Statistics
Multiple R 0.76211
R Square 0.58082
Adjusted R 
Square 0.52842
Standard Error 41.33032
Observations 10

ANOVA
df SS MS F

Significance 
F

Regression 1 18934.9348
18934.934

8
11.084

8 0.01039
Residual 8 13665.5652 1708.1957
Total 9 32600.5000

Coefficien
ts Standard Error t Stat

P-
value Lower 95%

Upper 
95%

Intercept 98.24833 58.03348 1.69296
0.1289

2 -35.57720
232.0738

6

Square Feet 0.10977 0.03297 3.32938
0.0103

9 0.03374 0.18580

Excel Output

41.33032sε 

0.03297s
1b 



Comparing Standard Errors

y

y y

x

x

x

y

x

1bs small

1bs large

s small

s large

Variation of observed y values 
from the regression line

Variation in the slope of regression 
lines from different possible samples



Inference about the Slope: 
t Test

• t test for a population slope
– Is there a linear relationship between x and y?

• Null and alternative hypotheses
– H0:  β1 = 0 (no linear relationship)
– H1:  β1  0 (linear relationship does exist)

• Test statistic

–

–

1b

11

s
βbt 



2nd.f. 

where:
b1 = Sample regression slope

coefficient
β1 = Hypothesized slope
sb1 = Estimator of the 

standard
error of the slope



House Price 
in $1000s

(y)

Square Feet 
(x)

245 1400
312 1600
279 1700
308 1875
199 1100
219 1550
405 2350
324 2450
319 1425
255 1700

(sq.ft.) 0.1098 98.25 price house 

Estimated Regression 
Equation:

The slope of this model is 0.1098 
Does square footage of the house 
affect its sales price?

Inference about the Slope: 
t Test

(continued)



Inferences about the Slope: 
t Test Example

H0: β1 = 
0

HA: β1  0

Test Statistic:  t = 3.329

There is sufficient evidence 
that square footage affects 
house price

From Excel output: 

Reject H0

Coefficients Standard Error t Stat P-value
Intercept 98.24833 58.03348 1.69296 0.12892
Square Feet 0.10977 0.03297 3.32938 0.01039

1bs tb1

Decision:

Conclusion:

Reject H0Reject H0

/2=.025

-tα/2
Do not reject H0

0 tα/2

/2=.025

-2.3060 2.30603.32
9

d.f. = 10-2 = 
8



Regression Analysis for Description

Confidence Interval Estimate of the Slope:

Excel Printout for House Prices:

At 95% level of confidence, the confidence interval for 
the slope is (0.0337, 0.1858)

1b/21 stb 

Coefficient
s

Standard 
Error t Stat P-value Lower 95%

Upper 
95%

Intercept 98.24833 58.03348 1.69296 0.12892 -35.57720 232.07386
Square Feet 0.10977 0.03297 3.32938 0.01039 0.03374 0.18580

d.f. = n -
2



Regression Analysis for Description

Since the units of the house price variable is 
$1000s, we are 95% confident that the average 
impact on sales price is between $33.70 and 
$185.80 per square foot of house size

Coefficient
s

Standard 
Error t Stat P-value Lower 95%

Upper 
95%

Intercept 98.24833 58.03348 1.69296 0.12892 -35.57720 232.07386
Square Feet 0.10977 0.03297 3.32938 0.01039 0.03374 0.18580

This 95% confidence interval does not include 0.
Conclusion: There is a significant relationship between 
house price and square feet at the .05 level of significance 



Confidence Interval for 
the Average y, Given x

Confidence interval estimate for the 
mean of y given a particular xp

Size of interval varies according 
to distance away from mean, x    

 


  2

2
p

ε/2 )x(x
)x(x

n
1stŷ



Confidence Interval for 
an Individual y, Given x

Confidence interval estimate for an 
Individual value of y given a particular xp

 


  2

2
p

ε/2 )x(x
)x(x

n
11stŷ

This extra term adds to the interval width to 
reflect the added uncertainty for an individual 
case



Interval Estimates 
for Different Values of x

y

x

Prediction Interval 
for an individual y, 
given xp

xpx

Confidence 
Interval for 
the mean of 
y, given xp



House Price 
in $1000s

(y)

Square Feet 
(x)

245 1400
312 1600
279 1700
308 1875
199 1100
219 1550
405 2350
324 2450
319 1425
255 1700

(sq.ft.) 0.1098 98.25 price house 

Estimated Regression 
Equation:

Example: House Prices

Predict the price for a house 
with 2000 square feet



317.85

0)0.1098(200  98.25

(sq.ft.) 0.1098 98.25 price house







Example: House Prices

Predict the price for a house 
with 2000 square feet:

The predicted price for a house with 2000 
square feet is 317.85($1,000s) = $317,850

(continued)



Estimation of Mean Values: Example

Find the 95% confidence interval for the average 
price of 2,000 square-foot houses

Predicted Price Yi = 317.85 ($1,000s)


Confidence Interval Estimate for E(y)|xp

37.12317.85
)x(x

)x(x
n
1stŷ 2

2
p

εα/2 






The confidence interval endpoints are 280.66 -- 354.90, 
or from $280,660 -- $354,900



Estimation of Individual Values: Example

Find the 95% confidence interval for an individual 
house with 2,000 square feet

Predicted Price Yi = 317.85 ($1,000s)


Prediction Interval Estimate for y|xp

102.28317.85
)x(x

)x(x
n
11stŷ 2

2
p

εα/2 






The prediction interval endpoints are 215.50 -- 420.07, 
or from $215,500 -- $420,070



Residual Analysis

• Purposes

–Examine for linearity assumption
–Examine for constant variance for all 

levels of x  
–Evaluate normal distribution 

assumption
• Graphical Analysis of Residuals

–Can plot residuals vs. x
–Can create histogram of residuals to 

check for normality



Residual Analysis for Linearity

Not Linear Linear

x

re
sid

ua
ls

x

y

x

y

x

re
sid

ua
ls



Residual Analysis for 
Constant Variance 

Non-constant variance Constant variance

x x

y

x x

y

re
sid

ua
ls

re
sid

ua
ls



House Price Model Residual Plot

-60

-40

-20

0

20

40

60

80

0 1000 2000 3000

Square Feet

R
es

id
ua

ls

Excel Output

RESIDUAL OUTPUT
Predicted 

House 
Price Residuals

1 251.92316 -6.923162
2 273.87671 38.12329
3 284.85348 -5.853484
4 304.06284 3.937162
5 218.99284 -19.99284
6 268.38832 -49.38832
7 356.20251 48.79749
8 367.17929 -43.17929
9 254.6674 64.33264

10 284.85348 -29.85348



Summary

• Introduced correlation analysis
• Discussed correlation to measure the strength of a linear association
• Introduced simple linear regression analysis
• Calculated the coefficients for the simple linear regression equation
• measures of variation (R2 and sε)
• Addressed assumptions of regression and correlation



Summary

• Described inference about the slope
• Addressed estimation of mean values and prediction of individual 

values
• Discussed residual analysis

(continued)



Example

• Daytime SBP (systolic 
blood pressure) and 
age collected for 447  
hypertensive males.

SBP
115
130
128
123
126
…

Age
34
40
28
21
39
…



Example (contd)

• Is there a linear relationship between SBP and Age?
• r=0.145  weak positive relationship



Correlation examples



Example 2: Height vs. Weight

Graph One: Relationship between Height 
and Weight

0
20
40
60
80

100
120
140
160
180

0 50 100 150 200

Height (cms)

W
ei

gh
t (

kg
s)

 Strong positive correlation 
between height and weight

 Can see how the 
relationship works, but 
cannot predict one from the 
other

 If 120cm tall, then how 
heavy?



Problem: to draw a straight line through the points that best explains 
the variance

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6

Regression

Line can then be used to 
predict Y from X



• “Best fit line”
• allows us to describe 

relationship between variables 
more accurately.

• We can now predict specific 
values of one variable from 
knowledge of the other

• All points are close to the line

Graph Three: Relationship between 
Symptom Index and Drug A 

(with best-fit line)
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Example: Symptom Index vs Drug A



• Assume the population regression line:
y = α+βx

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250

Where: α = y intercept (constant)
β = slope of line
y = dependent variable
x = independent variable

Simple Linear Regression

 yi = α+βxi+εi



• Establish equation for the best-fit line:
y = a+bx

 Best-fit line same as regression line
 b is the regression coefficient for x
 x is the predictor or regressor variable for y

Regression
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Fit a line to the data:

• Not great:
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Fit a line to the data:

• Better:



Least Squares 

• Minimise the (squared) distance between the 
points and the line

• a and b are the estimates of α and β which 
minimise

   2)( ii xy 



Least Squares Estimates

• Using calculus (partial derivatives), we get

xbya
xx

yyxxb
i

ii










2)(

))((

 Note b is related to the correlation coefficient r 
(same numerator)- if x and y are positively 
correlated then the slope is positive



Example from the literature

• Predicting tandem repeat variability



• “Best fit line”
• Allows us to describe 

relationship between variables 
more accurately.

• We can now predict specific 
values of one variable from 
knowledge of the other

• All points are close to the line

Graph Three: Relationship between 
Symptom Index and Drug A 

(with best-fit line)
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Example: symptom Index versus Drug A dose



Graph Four: Relationship between Symptom 
Index and Drug B 
(with best-fit line)
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• We can still predict specific 
values of one variable from 
knowledge of the other

• Will predictions be as accurate?
• Why not?
• Large “residual” variation 

(random error)
= Difference between observed

data and that predicted by 
the equation

Example: Symptom Index versus Drug B dose



Regression Hypothesis Tests

• Hypotheses about the intercept
H0: α = 0   HA:  α  0

• But most research focuses on the slope
H0: β = 0   HA:  β  0

This addresses the general question “Is X predictive of Y?”



Regression

• Estimates of a slope (b) have a sampling distribution, like any other 
statistic

• If certain assumptions are met (NB normality, homogeneity of variance) 
the sampling distribution approximates the t-distribution

• Thus, we can assess the probability that a given value of b would be 
observed, if  = 0

→ hypothesis tests & confidence intervals
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Regression
• R2, the coefficient of determination, is the percentage of 

variation explained by the “regression”. 
• R2 > 0.6 is deemed reasonably good. 
• Note, the model must also be significant, e.g.



Back to SBP and Age example

• a=123 and b=0.159 approximately
• What does b mean? 
• Is age predictive of BP? i.e. is there evidence that b ≠ 0?
• How good is the fit of the regression line?
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Regression R2 Interpretation

• R2= proportion of variation explained by (or predictive ability of) the 
regression

Variation in y is almost fully 
explained by x: R2 ≈ 1

Still some variation in y left over
(not explained by x): R2 < 1

Y variation Y variation 
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Regression – four possibilities

b ≠ 0
P-value non-
significant

b ≈ 0
P-value non-
significant

b ≠ 0
P-value 
significant

b ≈ 0
P-value 
significant

Relationship but not much evidence Plenty of evidence for a relationship

No relationship & not much evidence Plenty of evidence for no relationship



INCOME

100000800006000040000200000
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PP

Y

10

8

6

4

2

0

Regression Assumption:
Homoscedasticity (Equal Error Variance)

Examine error at 
different values of X.  
Is it roughly equal?

Here, things look 
pretty good.



INCOME
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Heteroscedasticity:  Unequal Error 
Variance

At higher values of 
X, error variance 
increases a lot.  

A transformation 
of data (e.g. log) 

can remove 
heterskedasticity



288

Multiple Regression
• Extension of simple linear regression to more than one 

(continuous/ordinal) independent variables
• We use least squares in exactly the same way to obtain 

estimates of the regression coefficients
• e.g. with 2 independent variables x and z, we fit the regression

y=a+bx+cz…
where a,b and c are the regression coefficients. This represents 
a plane in 3d space

Previous example



Notes on multiple regression

• Make sure variables are normal. If not, transform them. If still not, can split into 2 
groups (categories (0/1)) for e.g. high vs. low responders

• Can combine with “stepwise selection”: instead of using every variable and forcing 
them into a final model, can drop out variables automatically, e.g. petri dish 
temperature, that are not predictive



Example

• Study to evaluate the effect of the duration of anesthesia and degree 
of trauma on percentage depression of lymphocyte transformation

• 35 patients
• Trauma factor classified as 0, 1, 3 and 4, depending upon severity  
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Duration Trauma Depression Duration Trauma Depression
4
6
1.5
4
2.5
3
3
2.5
3
3
2
8
5
2
2.5
2
1.5
1

3
3
2
2
2
2
2
2
3
3
3
3
4
2
2
2
2
1

36.7
51.3
40.8
58.3
42.2
34.6
77.8
17.2
-38.4
1
53.7
14.3
65
5.6
4.5
1.6
6.2
12.2

3
4
3
3
7
6
2
4
2
1
1
2
1
3
4
8
2

3
3
3
3
4
4
2
2
2
1
1
1
1
1
3
4
2

29.9
76.1
11.5
19.8
64.9
47.8
35
1.7
51.5
20.2
-9.3
13.9
-19
-2.3
41.6
18.4
9.9



Example (con’t)

• Fitted regression line is

y=-2.55+10.375x+1.105z
or
Depression= -2.55+10.375*Trauma+1.105*Duration

• Both slopes are non-significant (p-value=0.1739 for trauma, 
0.7622 for duration)

• R2=16.6% of the variation in lymphocyte depression is 
explained by the regression

• Conclusion: Trauma score and duration of anesthesia are 
poor explanations for lymphocyte depression



Collinearity

• If two (independent) variables are closely related its difficult to 
estimate their regression coefficients because they tend to get 
confused

• This difficulty is called collinearity
• Solution is to exclude one of the highly correlated variables



Example

• Correlation between trauma and duration= 0.762 (quite 
strong)

• Drop trauma from regression analysis

Depression=9.73+4.94*Duration

• P-value for duration is 0.0457, statistically significant! 
• However, the R2 is still small (11.6%) 
• Conclusion: Although there is evidence for a non-zero slope 

or linear relationship with duration, there is still considerable 
variation not explained by the regression.



Outliers in Regression

• Outliers: cases with extreme values that differ greatly from the rest of 
your sample

• Even a few outliers can dramatically change estimates of the slope (b)
• Outliers can result from:

– Errors in coding or data entry (→rectify)
– Highly unusual cases (→exclude?)
– Or, sometimes they reflect important “real” variation (→include?)



Outliers: Example

-4               -2              0                2              4    

4

2

-2

-4

Extreme case that 
pulls regression 

line up

Regression line 
with extreme case 

removed from 
sample



Fail to 
reject β=0

Reject β=0

What about non-linear relationships?



Non-linear models

• Linear Regression fits a straight line to your data
• Non-linear models may, in some cases, be more appropriate
• Non-linear models are usually used in situations where non-

linear relationships have some biological explanation
• e.g. non-linear models are commonly used in  

pharmacokinetics studies and compartmental analysis
• Computationally intensive - estimates may not “converge” 

and results may be difficult to interpret
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Analysis of Covariance-ANCOVA

• Modelling both categorical and continuous independent variables  
(covariates)

• Justification: Consideration of a covariate may improve the precision 
(reduce variability) of the comparisons of categories made in ANOVA

• Often used as a correction for baseline imbalances
• ANOVA + regression combined





Example

• Antihypertensive Drug Clinical Trial: 84 patients randomly allocated to 
either Aliskiren or Losartan. Blood pressure measured at baseline and 
after several weeks treatment. Age and gender was also recorded for 
each patient. Is there  a significant difference in the two treatments for 
BP reduction?



Age Treatment   Ba_daySBP Red_daySBP gender
66 SPP75 131.1 0.6       Female
62 SPP75 160.4 -0.7 Male
48 Los100 147.3 17.9 Male
32 Los100 144.8 -2.4 Male
61 Los100 150.7 21.6 Female
68 SPP75 152.4 6 Male
60 Los100 143.6 15.3 Male
33 SPP75 143.2 5.1 Male
69 Los100 166.6 24.6 Male
53 SPP75 147.6 Female
63 SPP75 163.7 -0.2 Male
64 Los100 145.7 15.5 Male
58 SPP75 168.3 0.5 Male
52 SPP75 156.8 0.6 Male
54 SPP75 154.9 7.3 Male
43 SPP75 170.5 -2.7 Female
46 SPP75 155.5 18.3 Female
46 Los100 173.1 26.7 Male
66 Los100 151.2 -1.7 Male
29 SPP75 139.8 -1.5 Male
50 SPP75 162.6 13 Male
49 SPP75 178.8 17.2 Female
40 SPP75 146.8 0 Male
52 Los100 157.1 -0.2 Female
68 Los100 152 8.9 Male
35 SPP75 145.4 2.8 Male
49 Los100 153.7 14.9 Male
47 SPP75 139.2 10 Male

Age Treatment   Ba_daySBP Red_daySBP gender
45 Los100 156 17 Male
68 Los100 149.9 6.8 Female
48 Los100 147 16 Female
69 SPP75 145.3 -1.2 Male
64 Los100 142.5 20.6 Female
40 SPP75 168.6 2.6 Male
61 SPP75 165.6 8.1 Male
47 Los100 156.3 2.3 Female
60 Los100 147.7 11.5 Female
35 SPP75 157.4 12.5 Male
61 SPP75 143.7 -1.8 Male
62 Los100 148.6 6.6 Male
54 Los100 164.6 39.6 Female
45 Los100 145.3 -6.1 Female
57 SPP75 143.9 7 Female
48 SPP75 144.3 2.4 Male
59 Los100 147.8 1.1 Female
47 SPP75 150.4 -2.3 Male
54 Los100 143.9 -0.2 Male
45 SPP75 145.1 6.6 Male
61 SPP75 158 3 Male
69 Los100 154.8 Male
21 SPP75 142.1 Male
69 SPP75 171.3 -2 Male
66 Los100 140.3 2.8 Male
42 SPP75 146 5.7 Male
47 SPP75 159.3 14.6 Female
60 SPP75 157.8 6.8 Male



Age Treatment   Ba_daySBP Red_daySBP gender
45 SPP75 162.9 10.7 Male
62 SPP75 173.4 55.9 Female
57 SPP75 141.1 0.2 Female
54 Los100 147.6 11.1 Male
54 Los100 140.5 -16.5 Male
63 Los100 156 19.3 Female
35 SPP75 150.9 26.8 Male
52 SPP75 143.8 -9.7 Female
66 Los100 150.9 0.6 Male
55 SPP75 155.8 -3 Female
61 Los100 162.1 21 Male
35 Los100 149.1 21.3 Male
52 Los100 177 -2.7 Male
60 SPP75 157.8 6.8 Male
37 SPP75 143.4 -3.9 Male
54 Los100 163.9 26.6 Male
62 Los100 147.4 Female
55 Los100 141.9 8.7 Female
57 Los100 163.1 3.6 Male
40 SPP75 153.3 0.9 Male
56 SPP75 165.9 11.9 Male
53 Los100 144.1 -1.9 Female
52 Los100 144.1 18.6 Male
46          SPP75 147.7 -5.6 Male

Age Treatment   Ba_daySBP Red_daySBP gender

58 Los100 153 -10.3 Male
41 SPP75 149.9 4.3 Male
42 Los100 165.8 35.5 Male
57 SPP75 154.8 16.1 Female
56 Los100 146.6 18.1 Female



Analysis without covariates

• Since treatment has only 2 levels (Losartan & Aliskiren), the ANOVA is 
equivalent to the two-sample t-test

• Treatment difference (Losartan-Aliskiren)=5.06 with P-value=0.0554
• Borderline non-significant at the 5% level of significance



ANCOVA analysis

• We have as factors (categorical independent variables)
– Treatment
– Gender

• As covariates (continuous independent variables)
– Age
– Baseline BP



Results: ANOVA table

Source df SS MS F P-value

Baseline BP
Treatment
Age
Gender

1
1
1
1

1572.90
651.73
71.57
279.02

1572.90
651.73
71.57
279.02

14.36
5.58
0.61
2.39

0.0005
0.0208
0.4363
0.1264



Classification of statistical methods based 
on distributional assumptions

• Likelihood Based Methods
– Assume a distribution of data explicitly at the outset
– Can fit very complex models e.g. model correlation 

structures with the data, allow for unequal variances, 
etc.

• T-tests, ANOVA, regression, etc. rely on normality of 
data or that the data be of a sufficiently large size 
(Central Limit Theorem)

• Non-parametric methods
– Relaxes assumptions about the shape of the distribution
– Methods are based on ranking of the data pointsD
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So how normal is your data?

• Difficult to see visually if 
a histogram looks normal

• Use normal probability 
(quantile-quantile) plots

• Points must lie along a 
line

• Also useful for detecting 
outliers



Significant Deviations from Normality: 
Alternatives

• Transform your data to make it more “normal” and 
use standard parametric tests
– e.g. log transform (eliminates skew)
– Difficulty - may wish to reverse-transform results back (e.g. exponentiate 

parameter estimates)

• Use non-parametric methods
– Make less assumptions on distribution shape
– These may have less power than parametric methods



Non-parametric Equivalents

Parametric Non-parametric

Paired T-test

Two-sample T-test

ANOVA

Pearson’s Correlation

ANCOVA

Wilcoxon Signed Rank Test

Wilcoxon Rank-Sum

Kruskal Wallis Analysis

Spearman’s Rank Correlation

ANCOVA on ranked data



Other Multivariate Methods

• Multivariate Analysis of Variance (MANOVA)
– ANOVA with more than one dependent variable or response
– Also MANCOVA
– Low power is a problem
– Not so widely used

• The objectives behind multivariate analyses can be quite 
different (to those presented), namely
– Discriminant Analysis
– Classification
– Clustering
– Pattern Recognition (principal components analysis)



Multivariate analysis:
mineral water

Pattern Pattern recogni



Correlation coefficients in data 

• The square root of coefficient R  is C.
• Example: we measure 5 variables of a population of peaches :

– Total acidity, anthocyanin, brix, carotene e chlorophyll
– We want to know the correlation between them

• The correlation can be shown as a matrix 5*5

Acid Anth Brix Carot chlo

acid 1.00 -0.48 0.34 0.15 -0.32

anth -0.48 1.00 -0.70 -0.56 0.88

brix 0.34 -0.70 1.00 0.30 -0.76

carot 0.15 -0.56 0.30 1.00 -0.25

chlor -0.32 0.88 -0.76 -0.25 1.00



correlation matrix

• The matrix is symmetric
– Y to X has the same correlation of X to Y

• I the values are between -1 (anticorrelation) and 1 (correlation)
• Usually to variables are not 100% correlated (c=1) or not at all 

correlated c=0) there are always a partial correlation between variables

Acid Antho Brix Carot chlo

acid 1.00 -0.48 0.34 0.15 -0.32

antoc -0.48 1.00 -0.70 -0.56 0.88

brix 0.34 -0.70 1.00 0.30 -0.76

carot 0.15 -0.56 0.30 1.00 -0.25

clorof -0.32 0.88 -0.76 -0.25 1.00
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Correlation graph
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Multivariate probability 

• What is the probability that a peach has at the same time a 
concentration of carotene of  0.40±0.02 and of chlorophyll of 
4.31±0.23?

• To answer this question we have to know the joint probability.
– Thera re two possibilities :

• Y and X are independents  P(X,Y)=P(X)+P(Y)
• Y and X are dependents to each other  P(X,Y)

– In the first case we have the product of the PDF monovariate functions 
(PDF)

– In the second case we have to introduce the bivariate PDF
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Multivariate data

• The multivariate value is a vector 
• The multivariate data are shown as a matrix
• Example :

– A population of 20 peaches having measured 5 variables:
– Total acidity, anthocyanin, brix, carotene e chlorophyll

Acidity anthocyanin Brix Carotene chlorophyll
0.8200 0.0206 9.8000 0.8231 4.4600
0.7300 0.0165 8.0000 0.8179 4.2900
0.6000 0.0165 10.2000 0.8179 4.2900
2.0400 0.0060 9.1000 0.9642 3.6600
1.7600 0.0060 11.3000 0.9642 3.6600
1.4200 0.0060 12.8000 0.9642 3.6600
1.9700 0.0060 11.3000 0.9642 3.6600
2.6800 0.0060 11.2000 0.9642 3.6600
1.2440 0.0057 9.9000 0.9634 3.5700
0.8300 0.0206 7.7000 0.8231 4.4600
0.7880 0.0057 11.5000 0.9634 3.5700
0.8600 0.0206 11.9000 0.8231 4.4600
1.1800 0.0206 11.6000 0.8231 4.4600
1.2700 0.0165 9.2000 0.8179 4.2900
0.7300 0.0165 8.3000 0.8179 4.2900
0.7200 0.0165 11.9000 0.8179 4.2900
0.6600 0.0165 10.4000 0.8179 4.2900
1.2600 0.0165 9.5000 0.8179 4.2900
1.0000 0.0025 11.2000 0.9756 2.0300
0.6400 0.0025 13.2000 0.9756 2.0300

1 2 3 4 5
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10

12
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Multivariate average 

• The average multivariate data is a vector made by the average of the 
single variable (the column).

Acidity anthocyanin Brix Carotene chlorophyll
0.8200 0.0206 9.8000 0.8231 4.4600
0.7300 0.0165 8.0000 0.8179 4.2900
0.6000 0.0165 10.2000 0.8179 4.2900
2.0400 0.0060 9.1000 0.9642 3.6600
1.7600 0.0060 11.3000 0.9642 3.6600
1.4200 0.0060 12.8000 0.9642 3.6600
1.9700 0.0060 11.3000 0.9642 3.6600
2.6800 0.0060 11.2000 0.9642 3.6600
1.2440 0.0057 9.9000 0.9634 3.5700
0.8300 0.0206 7.7000 0.8231 4.4600
0.7880 0.0057 11.5000 0.9634 3.5700
0.8600 0.0206 11.9000 0.8231 4.4600
1.1800 0.0206 11.6000 0.8231 4.4600
1.2700 0.0165 9.2000 0.8179 4.2900
0.7300 0.0165 8.3000 0.8179 4.2900
0.7200 0.0165 11.9000 0.8179 4.2900
0.6600 0.0165 10.4000 0.8179 4.2900
1.2600 0.0165 9.5000 0.8179 4.2900
1.0000 0.0025 11.2000 0.9756 2.0300
0.6400 0.0025 13.2000 0.9756 2.0300

1.2874    0.0084   11.4516    0.8867    3.0586



variance in Multivariate data

• In multivariate data the variance is a matrix called covariance matrix
• The covariance matrix is linked to correlation and correlation matrix
• The covariance matrix is defined as:

• The covariance matrix is symmetric and quadratic. The dimensions are 
equal to the variables measured

• each element on the principal diagonal of the covariance matrix is just 
the variance of each of the elements in the vector

• The other elements of the covariance matrix are proportional to the 
correlation coefficients ()

  
cov X   E x  m T  x  m 





0.4167 -0.0023    0.4175    0.0072   -0.2635
-0.0023 0.0001 -0.0099   -0.0003    0.0084
0.4175   -0.0099    3.5179 0.0409   -1.8080
0.0072   -0.0003    0.0409    0.0053 -0.0236
-0.2635    0.0084   -1.8080   -0.0236    1.5868

kiikikiii      ;   2



Covariance and Correlation

• The covariance matrix can be written as:

– Where R is the correlation matrix

  

   R   

 1 0  0
0  2
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
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
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
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Correlation and independence

• Two variables are independent if :

– This condition is also called linear independence

• Two variables are independent if:

 E X  Y  E X  E Y 

 P X  Y  P X  P Y 
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PDF multivariate 1

The probability points are quadratic 
forms. Ellipse for the PDF bivariate.
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Instruments review

Instrument Converts information stored in the 
physical or chemical characteristics of the analyte 
into useful information

Require a source of energy to stimulate 
measurable response from analyte

Data domains
Methods of encoding information electrically
Nonelectrical domains
Electrical domains

Analog, Time, Digital



Detector
Device that indicates a change in one 
variable in its environment (eg., 
pressure, temp, particles)
Can be mechanical, electrical, or 
chemical

Sensor
Analytical device capable of 
monitoring specific chemical species 
continuously and reversibly

Transducer
Devices that convert information in 
nonelectrical domains to electrical 
domains and the converse



Method Validation

• Specificity
• Linearity
• Accuracy
• Precision
• Range
• Limits of Detection and Quantitation



Method Validation ‐ Specificity

• How well an analytical method distinguishes the analyte from everything else in 
the sample.

• Baseline separation

vs.

time time



Method Validation‐ Linearity
• How well a calibration curve follows a straight line.
• R2 (Square of the correlation coefficient) 



Method Validation‐ Linearity



Method Validation‐ LOD and LOQ
Sensitivity

• Limit of detection (LOD) – “the lowest content that can
be measured with reasonable statistical certainty.”

• Limit of quantitative measurement (LOQ) – “the lowest
concentration of an analyte that can be determined with
acceptable precision (repeatability) and accuracy under
the stated conditions of the test.”

• How low can you go?



Limit of Detection (LOD)

• Typically 3 times the signal-to-noise
(based on standard deviation of the noise)



Limit of Linear Response (LOL)

• Point of saturation for an instrument detector so that 
higher amounts of analyte do not produce a linear 
response in signal.



Useful Range of an Analytical Method
si
gn

al
l

concentration

LOD (Limit of detection)

LOQ (Limit of quantitation)

LOL (Limit of linearity)

Dynamic range

LOD = 3x SD of blank
LOQ = 10x SD of blank



Method Validation‐ Linearity
si
gn

al
l

concentration

Slope is related to the sensitivity



Method Validation‐ Accuracy and 
Precision

Precision ‐ reproducibility

• Accuracy – nearness to the truth
• Compare results from more than one 
analytical technique

• Analyze a blank spiked with known amounts 
of analyte.  



Method Validation‐ LOD and LOQ
• Detection limit (lower limit of detection – smallest quantity of analyte that is “statistically” 

different from the blank.  

• HOW TO:
• Measure signal from n replicate samples (n > 7)
• Compute the standard deviation of the measurments
• Signal detection limit:  ydl = yblank + 3s
• ysample ‐ yblank = m . sample concentration

• Detection limit:  3s/m
• Lower limit of quantitation (LOQ) : 10s/m

Example: sample concentrations: 5.0, 5.0, 5.2, 4.2, 4.6, 6.0, 4.9 nA
Blanks: 1.4, 2.2, 1.7, 0.9, 0.4, 1.5, 0.7 nA
The slope of the calibration curve for high conc. m= 0.229 nA/M
What is the signal detection limit and the minimum detectable concentration?
What is the lower limit of quantitation?



Standard Addition
• Standard addition is a method to determine the 
amount of analyte in an unknown.

– In standard addition, known quantities of analyte are added 
to an unknown.

– We determine the analyte concentration from the increase 
in signal.

• Standard addition is often used when the sample is 
unknown or complex and when species other than the 
analyte affect the signal.

– The matrix is everything in the sample other than the 
analyte and its affect on the response is called the matrix 
effect



The Matrix Effect

• The matrix effect problem occurs when 
the unknown sample contains many 
impurities.

• If impurities present in the unknown 
interact with the analyte to change the 
instrumental response or themselves 
produce an instrumental response, 
then a calibration curve based on pure 
analyte samples will give an incorrect 
determination



Calibration Curve for Perchlorate with 
Different Matrices

Perchlorate (ClO4
-) in 

drinking water affects 
production of thyroid 
hormone.  ClO4

- is usually 
detected by mass 
spectrometry (Ch. 22), but 
the response of the analyte 
is affected by other 
species, so you can see 
the response of calibration 
standards is very different 
from real samples.



Calculation of Standard Addition
• The formula for a standard addition is:

[X] is the concentration of analyte in the initial (i) and final (f) 
solutions, [S] is the concentration of standard in the final solution, 
and I is the response of the detector to each solution.

• But,

If we express the diluted concentration of analyte in terms of the 
original concentration, we can solve the problem because we know 
everything else.
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Standard Addition Example
• Serum containing Na+ gave a signal of 4.27 mv in an 
atomic emission analysis.  5.00 mL of 2.08 M NaCl were 
added to 95.0 mL of serum.  The spiked serum gave a 
signal of 7.98 mV.  How much Na+ was in the original 
sample?

 
  mV 7.98

mV 27.4
Na950.0M 104.0

Na

f

i 
 



     iif X950.0 
mL 100.0
mL 95.0XX 








    M104.0
mL 100.0
mL 5.00M) (2.08

V
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s
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






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Standard Additions Graphically



Internal Standards
• An internal standard is a known amount of a compound, 
different from the analyte, added to the unknown sample.

• Internal standards are used when the detector response varies 
slightly from run to run because of hard to control parameters.

– e.g. Flow rate in a chromatograph

• But even if absolute response varies, as long as the relative
response of analyte and standard is the same, we can find the 
analyte concentration.



Response Factors

For an internal standard, we prepare a mixture 
with a known amount of analyte and standard.  
The detector usually has a different response 
for each species, so we determine a response 
factor for the analyte:

[X] and [S] are the concentrations of analyte 
and standard after they have been mixed 
together.









standard ofion Concentrat
signal standard of area

analyte ofion Concentrat
signal analyte of Area F

    








S
A

X
A SX F



Internal Standard Example
• In an experiment, a solution containing 0.0837 M Na+ and 0.0666 M 
K+ gave chromatographic peaks of 423 and 347 (arbitrary units) 
respectively.  To analyze the unknown, 10.0 mL of 0.146 M K+ were 
added to 10.0 mL of unknown, and diluted to 25.0 mL with a 
volumetric flask.  The peaks measured 553 and 582 units 
respectively.  What is [Na+] in the unknown?

• First find the response factor, F

   






  K

A
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
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Internal Standard Example (Cont.)
• Now, what is the concentration of K+ in the mixture of 
unknown and standard?

• Now, you know the response factor, F, and you know how 
much standard, K+ is in the mixture, so we can find the 
concentration of Na+ in the mixture.

• Na+ unknown was diluted in the mixture by K+, so the Na+
concentration in the unknown was:

   






  K

A
Na
A KNa F
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
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  


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mL 25 M) (0.0572Na 






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The course is split in 4 units

UNIT 1: Univariate analysis
Data, information, models, data types, analytical representation 
of data

Calibration and regression, Introduction to Statistics

Average & Variance

The Normal distribution, theory of measurement errors, the 
central limit theorem and the theorem of Gauss

Maximum likelihood, method of least squares, Generalization of 
the method of least squares

Polynomial regression, non-linear regression, the χ2 method, 
Validation of the model

UNIT 3: Design of Experiments
Basic design of experiments and analysis of the resulting 
data

Analysis of variance, blocking and nuisance variables

Factorial designs

Fractional factorial designs

Overview of other types of experimental designs (Plackett–
Burman designs, D-optimal designs, Supersaturated designs, 
Asymmetrical designs)

Response surface methods and designs

Applications of designed experiments from various fields of 
food science 

UNIT 2: Multivariate analysis
 Correlation

Multiple linear regression

Principal component analysis (PCA)

Principal component regression (PCR) and Partial least squares 
regression - (PLS)

UNIT 4: Elements of Pattern recognition
cluster analysis

Normalization

The space representation (PCA) Examples of PCA

Discriminant analysis (DA) PLS-DA

Examples of PLS-DA



UNIT 2: Multivariate Analysis

Correlation
Multiple linear regression
Principal component analysis (PCA)
Principal component regression (PCR) and 
Partial least squares regression - (PLS)



selective and non-selective measurements

• The measurements can be selective or non-selective
– Selective: the observation is driven by one variable
– Non Selective: The observation is driven by many variables

• The non selective measurements are the objects of the multivariate 
analysis

variables
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Non selective measurements

• Example:
– Spectroscopy

• At a given frequency the absorbance is influenced by more 
than one molecule

– Gas chromatography
• Compounds with similar elution time can contribute to 

chromatographic peak
– Sensors 

• The sensor response is given by the combination of different 
compounds that interfere with the sensors depending on 
concentration and affinity
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Variables and observations space :
selective measurements

  

Y1  aX1  bX2

Y2  cX1  dX2

variable1
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ri
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le
 2

Correlation =1-det(K)=0
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
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ba

K

X1

X
2

Observations space
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Variables and observations space :
selective measurements
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Partial correlation

X1
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c d

a d  b  c  0

Total correlation
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Multiple Linear Regression

• Multiple linear regression is the most common form of linear regression 
analysis.  As a predictive analysis, the multiple linear regression is used 
to explain the relationship between one continuous dependent variable 
from two or more independent variables.  The independent variables 
can be continuous or categorical .

• Multiple linear regression analysis makes several key assumptions:
• Linear relationship.
• Multivariate normality.
• No or little multicollinearity.
• No auto-correlation.
• Homoscedasticity (The variance around the regression line is the same 

for all values of the predictor variable (X)).
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Multiple Linear Regression

Y = X

k

n

* B

q

k

q

n

k = n° observations
n =n° measurements 
q= n° variables

E

q

+

n

Y=XB+E
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Multiple Linear Regression

• as for the univariate event we use two steps :
– Calibration: using known Y and X we determine the matrix B (the slope) B
– Procedure: known the matrix B we can have an optimized estimation of X 

by measuring Y

• Calibration:
– Known X and Y the best estimation of B is given by the Gauss-Markov 

theorem :

– If the matrix X has the maximum rank we can calculate the pseudoinverse 
in this way :

• It means that every observation is independent from each other

 BMLR  X  Y

 
BMLR  X T  X 1

 X T Y



MLR meaning 

• In practice BMLR maximize the correlation between X and Y
• Geometrically the Y orthogonal projection In a subspace of X
•  is a matrix in a subspace of X

  
YMLR  X  BMLR  X  X T  X 1

 X T Y  Y

YLS

Y

e

In a linear regression model in which the errors have expectation zero and 
are uncorrelated and have equal variances, the best linear unbiased 
estimator (BLUE) of the coefficients is given by the ordinary least squares 
(OLS) estimator. 



MLR Limitations

• IF the observations of the dependent variable 
are correlated we have to find a method to 
transform them in uncorrelated observations

Regression analysis is concerned with developing the linear regression equation by 
which the value of a dependent variable Y can be estimated given a value of an 
independent variable X. If simple regression analysis is used, the assumptions for this 
technique should be satisfied. The assumption required to develop the linear regression 
equation and to estimate the value of dependent variable by point estimation is: 1. The 
relationship between the two variables is linear. 2. The value of the independent 
variable is a set at various values, while the dependent variable is a random variable. 3. 
The conditional distributions of the dependent variable have equal variances. 
If any interval estimation or hypothesis testing is done, additional required assumptions 
are: 1. Successive observations of the dependent variable are uncorrelated.
2. The conditional distributions of the dependent variable are normal distributions. 



Example
Chlorophyll and anthocyanins in peaches 

using Vis-NIR

• sptectra(Y)
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results

• Matrix coefficient B
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results

• YLS and Y comparison
– Scatter plot: x Axis: true value; y Axis : estimated value
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Principal components analysis (PCA)

Analysis of Variance
PCA and diagonalization of the covariance matrix

Scores and loadings
residual matrix

Applications to image analysis
Applying the multivariate regression: Principal Components Regression (PCR)



Observations space

• Each multivariate measurement is represented 
by a vector in a space to N dimensions

• N is equal to the size of the vector that 
expresses the observation

• The statistical distribution of points (vectors) 
defines the properties of the entire data set.

• For each multivariate data we can define a PDF 
multivariate.

• Important: observations that describe similar 
samples are represented by closest points then 
mutual relation between distance and similarity 
between samples (Hypothesis of pattern 
recognition)

variable 1

va
ria

bl
er

2 S={S1,…,Sn}
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Multivariate statistics

• the fundamental descriptors for Univariate distribution :
– Average scalar vector
– Variance scalar matrix (covariance matrix)
– ….

• The normal distribution defined in univariate approach it keeps its 
importance in multivariate approach



Covariance matrix

• n probability theory and statistics, a covariance matrix (also known as
dispersion matrix or variance–covariance matrix) is a matrix whose element
in the i, j position is the covariance between the i th and j th elements of a
random vector. A random vector is a random variable with multiple
dimensions. Each element of the vector is a scalar random variable. Each
element has either a finite number of observed empirical values or a finite
or infinite number of potential values. The potential values are specified by
a theoretical joint probability distribution. Because the covariance of the i th
random variable with itself is simply that random variable's variance, each
element on the principal diagonal of the covariance matrix is just the
variance of each of the elements in the vector. Every covariance matrix is
symmetric. In addition, every covariance matrix is positive semi-definite.

• The covariance matrix can be done by : cov(xy)=xTy



Multicollinearity
• Multicollinearity (also co-linearity) is a phenomenon in which two or 

more predictor variables in a multiple regression model are highly 
correlated, meaning that one can be linearly predicted from the others 
with a substantial degree of accuracy. In this situation the coefficient 
estimates of the multiple regression may change erratically in response 
to small changes in the model or the data. Multicollinearity does not 
reduce the predictive power or reliability of the model as a whole, at 
least within the sample data set; it only affects calculations regarding 
individual predictors. That is, a multiple regression model with 
correlated predictors can indicate how well the entire bundle of 
predictors predicts the outcome variable, but it may not give valid 
results about any individual predictor, or about which predictors are 
redundant with respect to others.

• In case of perfect multicollinearity the design matrix  X has less than 
full rank, and therefore the moment matrix  X^(T)*X cannot be 
inverted. Under these circumstances, for a general linear model Y=cX
+ Er, the ordinary least-squares estimator does not exist.



Co-linearity example 
• In an optical spectrum the spectral lines cover a range of wavelengths, this 

interval is generally covered by more spectral channels, so that more 
variables combine to form a spectral line.

• If the line is proportional to a characteristic of the sample (eg. Glucose 
concentration) all the spectral channels related to the line will be 
proportional to the sample characteristic, and then the relative variables 
(columns in the data matrix) will become collinear.

• co-linear variables depend quantitatively by the sample characteristics
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Covariance matrix and co-linearity 

• The co-linearity is expressed by the covariance matrix.
• In case of co-linearity the non-diagonal terms of the covariance matrix 

are nonzero.
• Remove the co-linearity it means manipulating the covariance matrix in 

diagonal form by introducing new latent variables.
• The principal component analysis technique allows, among other 

things, to obtain this result!!



Example of covariance matrix  and points 
probability

– Example of bivariate distribution 

  
 

 0
0 2





  
 

 0
0 





  
 

 x  xy

 xy  y











No correlated variables
Different variance

No correlated variables
Same variance

Correlated variables
Different variance



Multivariate PDF and covariance matrix

• The multivariate distribution only makes sense if the covariance matrix 
describes the parameters correlated with each other, that is, if the 
matrix is not diagonal.

• In fact, for two quantities (x and y) unrelated and independent the 
probability to observe simultaneously the value of x and y is simply the 
product of the two univariate distributions:

 P x,y  P x  P y 
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The covariance matrix in canonical form
• The covariance matrix can be written in diagonal form with an 

appropriate change of the reference system.
• Such a reference system corresponds to the eigenvectors of the 

covariance matrix, ie the main ellipse constructed as quadratic form 
from the covariance matrix itself.

• This operation makes variables uncorrelated  and the PDF as a product 
of the univariate PDF .

• On the other hand the new variables are no longer physical 
observables (object of measurement) but are linear combinations of 
these.

• The new variables are called Principal Components and the set of 
calculation procedures and interpretation of the main components is 
called principal component analysis (PCA)

  

a  x2  2b  xy  c  y2  x y  a b
b c











x
y








 

                                    1  u2  2  w2  u w  1 0
o 2











u
w









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Dimension of the data set

• If the variables of a multivariate phenomena have a certain degree of 
correlation then the representative vectors of the phenomenon will 
occupy only a portion of the observation space .

• So a variable of size N will lie in a space of smaller dimension
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en
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2

Sensor 1
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Sensor 1
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2

Gas 1

G
as

 2

  

s1  k11  g1  k12  g2

s2  k21  g1  k22  g2





Example: linear sensors

C=0 Dim=2 C>0 and <1 Dim
C=1 Dim=1

Specific sensors
k12=k21=0

No specific sensors but
K11; k12; k22; k22 different No specific but equal k

Independent variables



Principal Component Analysis

• The purpose of the PCA is the representation of a data set having 
covariance matrix not diagonal and with a space of smaller dimension 
in which the same data are represented by a diagonal covariance 
matrix.

• The diagonalization is achieved with a coordinate rotation in the base 
of the eigenvectors (principal components)

• For each eigenvector it is associated an eigenvalue which corresponds 
to the variance of the associated component. If the original variables 
were partially correlated some eigenvalues have a negligible value.

• In practice the corresponding eigenvectors can be ignored by limiting 
the representation only to eigenvectors with the largest eigenvalues.

• Since the covariance matrix in the base of the main components is 
diagonal, the total variance is the sum of the variances of the individual 
components.



PCA procedure
• Principal component analysis (PCA) is a statistical 

procedure that uses an orthogonal 
transformation to convert a set of observations of 
possibly correlated variables into a set of values 
of linearly uncorrelated variables called principal 
components. The number of principal 
components is less than or equal to the number 
of original variables. This transformation is 
defined in such a way that the first principal 
component has the largest possible variance 
(that is, accounts for as much of the variability in 
the data as possible), and each succeeding 
component in turn has the highest variance 
possible under the constraint that it is orthogonal 
to the preceding components. The resulting 
vectors are an uncorrelated orthogonal basis set. 
PCA is sensitive to the relative scaling of the 
original variables.
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PCA 
• PCA is mostly used as a tool in exploratory data analysis and for making 

predictive models. PCA can be done by eigenvalue decomposition of a data 
covariance (or correlation) matrix or singular value decomposition of a data 
matrix, usually after mean centering (and normalizing or using Z-scores) the 
data matrix for each attribute. The results of a PCA are usually discussed in 
terms of component scores, sometimes called factor scores (the transformed 
variable values corresponding to a particular data point), and loadings (the 
weight by which each standardized original variable should be multiplied to get 
the component score).
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PCA

• PCA is the simplest of the true eigenvector-based multivariate analyses. 
Often, its operation can be thought of as revealing the internal 
structure of the data in a way that best explains the variance in the 
data. If a multivariate dataset is visualized as a set of coordinates in a 
high-dimensional data space (1 axis per variable), PCA can supply the 
user with a lower-dimensional picture, a projection or "shadow" of this 
object when viewed from its (in some sense; see below) most 
informative viewpoint. This is done by using only the first few principal 
components so that the dimensionality of the transformed data is 
reduced.

• PCA is closely related to factor analysis. Factor analysis typically 
incorporates more domain specific assumptions about the underlying 
structure and solves eigenvectors of a slightly different matrix.

• PCA is also related to canonical correlation analysis (CCA). CCA defines 
coordinate systems that optimally describe the cross-covariance 
between two datasets while PCA defines a new orthogonal coordinate 
system that optimally describes variance in a single dataset.
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PCA

PCA

Dimensions 
reduction

2 1

Observation space

variable 1
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2Ellipse of  
covariance 
matrix

  
  X T  X 

 x  xy

 xy  y











pc 1

pc 2

PCA space

 
  T T  T 

1 0
o 2











pc1
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pc2

eigenvalues: a PC 
has a greater 
information content 
than an other

1

2

 

  X T  X   PT

T  X  P ; X  T  PT

pc 1

Reduced space

  T1  X  P1  E
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PCA: scores e loadings
• The new coordinates of the vectors corresponding to the observations (the rows 

of the matrix x) in the base of the principal components are called scores
• The coefficients of the linear combinations that define the principal components 

are called loadings
• The loading therefore provides a measure of the contribution of each observable 

to the principal components
• The loadings are also represented as scores as they are the projection of the 

original axes in the subspace identified the principal components, and scores 
and loadings can be plotted together
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PCA matrix Decomposition

  Xnm  Snp  L pm
T  Residual

X =
N

M

N

*
Mscore loading

1st PC 2nd PC Mth PC

*

Mscore loading

*

Mscore loading

+ +…+



34

PCA, correlation and noise

• Noise is an additional stochastic term that belongs to every 
observation.

• The noise is the term that makes the measurement a statistical 
operation.

• The principal components describe the directions of maximum 
correlation between the data, for which the higher-order PC are 
oriented towards the directions of maximum correlation and those of 
lower order towards the poor correlation directions

• Decomposing the major components of higher order means holding the 
maximum correlation directions and remove those that are no-
correlated. In no-correlated directions where there is the noise

• The PCA therefore is a method for reducing the noise in a set of 
multivariate data.

• example: spectroscopy, GC, ...
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removing noise :
Reflectance Anisotropy Spectroscopy

Original 
Spectra X

PC1 PC1-3

residues
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3 SnO2 sensors for 2 gas
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PCA score plot
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PCA bi-plot
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Sensor 1 vs sensor 2
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PCR procedure

X Y

Xcal

Xvall

Ycal

Yvall

Xcal PC YcalPCA

MLR

B

Yest = Xval * BYval - YestError=

&DATA

calibration

validation



PCR algorithm 

X T

PT

E= * +

XY B= *

Y = T

PT

* B*

PCA

Original problem

PCR



Example: NMR fruits spectra

• We carried out 36 NIR spectra of fruits and we want to create a model 
for humidity and total acidity.

• Each spectrum is formed by 88 variables corresponding to the spectral 
channels in the range of 1.1-2.5 microns.

• For each fruit was measured humidity and acidity with other methods.
• We want the  two parameters of Y from the spectrum X .Therefore is 

necessary to estimate the parameter K

 Y1x 2  X1x 88  K88x 2



X matrix and covariance matrix

Wavelenght [nm]

sa
m

pl
es

TextEnd

10 20 30 40 50 60 70 80

5

10

15

20

25

30

35 -0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

absorbance

Spectral Channels

Sp
ec

tra
l C

ha
nn

el
s

TextEnd

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80 -0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

covariance

• high collinearity
• The high correlation of blocks (+ 

and -) correspond to the spectral 
lines represented by colored 
columns in absorbance matrix



PCA computation

• The spectra average  is reduced to zero therefore if the normal distribution 
assumption is satisfied, the whole information is in the covariance matrix.

• Eigenvectors and eigenvalues calculation 

• The first 3 eigenvalues have values significantly different to zero.
• The 88 spectra, vectors in a dimensional space of 88, are largely limited to a 

subspace dimension of 3.
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Eigenvalue and variance
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Scores e loadings
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Scores plot
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Decomposition and residues
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Principal Components Regression (PCR)

• We divide the dataset into two:
• 26 for the calculation of PCcal model, Ycal
• 10 for the error evaluation PCval, Yval
• The model calculates the regression matrix B pcr

• We calculate an estimation of the validation set (and for comparison 
also of the calibration)

• RMSEC and RMSECV

 

stimaYcal  X cal  BT

stimaYval  X val  BT

 Ycal  X cal  BT  BT  P  1 T T Ycal



results
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0.064
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0.072

calibration test

RMSEC acidity=3.1 10-4

RMSEC humidity=0.0013
RMSECV acidity=5.9 10-4

RMSECV humdity=0.0019



Application to the analysis of the images

• A scanned image can be see as an NxM matrix in the case of gray 
scale (black to white scale image) or NxMx3 (in the case of color 
image)

• A picture can consider as a matrix and we can apply the PCA
• The PCA decomposition may bring out some peculiar structures of 

the image allowing to study the characteristics of the image.
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PCA: Application to Image Analysis (example 1: I)
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• STM image of 
Sapphyrin molecules 
growth as a 
Langmuir-Blodgett 
film onto a gold 
substrate.

Au grains Sapphyrins



PCA: Application to Image Analysis 
(example 1: II)
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  X  S1
T L1  X  S1:10

T  L1:10  X  S1:15
T  L1:15
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PCA: Application to Image Analysis 
(example 1: III)
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• The residuals of the 
expansion at the 
tenth PC put in 
evidence the 
sapphyrine film only.

  X  S1:10
T L1:10
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PCA: Application to Image Analysis 
(example 2: I)

• Caravaggio Deposition
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PCA: Application to Image Analysis 
(example 2: II)
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The normalization problem 

• The normalization is an operation that reduces the matrix  columns (features) to 
zero average (zero average and variance equal to one).

• The autoscaling gives the same weight to every feature, this procedure is good 
if if we are sure that every feature has the same importance in the problem.

• The autoscaling becomes dangerous when one or more features are noisy or 
when the numerical relationships between features are important

• Typical case is the spectroscopy where autoscaling completely destroys the 
information

0 20 40 60 80 100 120-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120-2

-1

0

1

2

3

4

5

6

7 raw autoscaled



Normalization and Pattern Recognition

  X  G = X - 
 
Z = X - 



raw centered autoscaled
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Original data
scaling

(autoscale)
Scaled and 

rotated



PCA and pattern recognition

• The principal component analysis is a method that allow:
• To define features of a new set (linear combination of the original) that 

are uncorrelated between them
• To decompose the variance of the data in the sum of the variance of 

the new axes (principal components)
• To reduce the representation of the pattern to a subspace identified by 

the main components of greatest variance
• To study the contribution of the original features to the core 

components by identifying the most significant higher contribution 
features.



Example: Fruits parameters

• Suppose we have measured the following quantities in peaches: pH, sucrose, glucose, 
fructose, malic acid and citric acid, and we want to study the classification and the 
relationship using these parameters.

pH sucrose glucose fructose malic acid citric acid
baby gold 4.10 8.80 0.80 1.20 0.60 0.20
grezzano 4.0 7.0 0.60 0.80 0.50 0.10
iris rosso 3.50 4.30 0.90 1.0 0.40 0.60
maria aurelia 4.10 7.30 0.80 1.10 0.40 0.60
snow queen 3.90 5.70 0.80 1.30 0.50 0.50
spring star 3.60 9.40 1.40 1.90 1.0 0.50
super crimson 3.70 8.20 1.0 1.10 0.90 0.60
venus 4.10 7.40 1.60 2.20 0.70 0.40
argento roma 3.60 4.40 0.90 1.10 0.40 0.50
beauty lady 3.90 8.30 0.50 0.70 0.60 0.30
big top 4.50 8.60 0.90 1.30 0.50 0.40
doucer 4.40 9.80 0.70 0.80 0.40 0.10
felicia 4.60 9.30 0.50 0.50 0.20 0.20
kurakata 4.40 6.90 0.60 0.80 0.20 0.20
lucie 3.90 6.40 0.80 1.0 0.70 0.20
morsinai 4.10 5.80 1.60 1.90 0.50 0.60
oro 3.80 7.70 0.40 0.40 0.60 0.20
royal glory 4.0 6.70 0.80 0.90 0.40 0.10
sensation 4.70 4.60 2.0 3.40 0.30 0.20
sweet lady 4.20 5.50 1.30 2.10 0.50 0.40
youyeong 4.90 8.80 1.80 2.50 0.20 0.10
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PCA: peaches data
eigenvalues  vs. PC
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Scores Plot
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xi  a s1 bs2  n sn

xi
pca  a  pc1 b  pc2  residual

Residuals representation
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PCA example: peaches data
bi-plot: scores+loadings
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citric ac. • The sugars are orthogonal 
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• We identify the direction of 
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sweetness

• The sucrose is 
anticorrelated to glucose 
and fructose

• The pH is obviously 
anticorrelated to acids
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PCA example: mineral waters
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Mineral waters:
PCA biplot raw data 

• Only features numerically 
significant are important (HCO 
and Ca)

• The other features are around 
the origin and don’t contribute to 
the classification

• HCO and Ca are orthogonal
• Orthogonal means uncorrelated
• Only RES and APP are different 

from others
• in this plot has 98% of the 

variance
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Scree plot 
variance
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• The features contribute 
homogeneously

• The following are groups of 
waters:

• SAN, TER, VER, SAB
• minerals oligo
• PAN
• Oligo but with increase of NO3
• NEP, FER, APP
• Intensification of Mg, HCO, Ca, K
• ULI
• Increasing in Cl, SO4
• For ULI, NEP, FER, APP
• Common increasing of F, Na
• 60% of the variance in this plot
• And the other 40%?
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Mineral waters:
loadings and scores analysis
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PCA: mineral waters 

• The 2D representation is not sufficient because the distribution of 
eigenvalues. 2D representations capture only different aspects of the 
problem.

Score plot 3D
76% di variance
SAN is separated showing 
specific characteristics 
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4 sensors for 2 gas
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PCA scores
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PCA scores normalization 
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Welfare of Italian regions
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PCA bi-plot
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PCA limitations

• The PCA representation is driven by the data characteristics in 
covariance matrix

• If the data are not normally distributed the covariance matrix does not 
satisfy the statistics of data, so the PCA representation is formally 
incorrect

• The score plot of the PCA is a linear projection from one to N 
dimension space to one dimension in the space 2 or 3. We can have 
false projection effects involving classification errors



Partial Least Squares (PLS)
Partial Least Squares

PLS toolbox di MATLAB



From PCR to PLS
geometric approach 

• The PCR solution is through the decomposition of the data matrix in the matrix 
of the principal components

• The principal components are the directions, in the space of the variables X, 
maximizing the variance and generate a base in which the X data are not 
correlated

• PCR in the principal components  has new variables (not correlated) so becomes 
more easily solved.

• In PLS algorithm  also the Y matrix is decomposed into principal components 
and principal components of X are rotated in the direction of maximum 
correlation to the principal components of Y

• PLS has latent variables, similar to the principal components maximizing the 
variance of both Y and X



Partial least squares regression (PLS regression) is a statistical method that bears 
some relation to principal components regression; instead of finding hyperplanes of 
maximum variance between the response and independent variables, it finds a linear 
regression model by projecting the predicted variables and the observable variables 
to a new space. Because both the X and Y data are projected to new spaces, the 
PLS family of methods are known as bilinear factor models. Partial least squares 
Discriminant Analysis (PLS-DA) is a variant used when the Y is categorical.

PLS is used to find the fundamental relations between two matrices (X and Y), i.e. a 
latent variable approach to modeling the covariance structures in these two spaces. 
A PLS model will try to find the multidimensional direction in the X space that 
explains the maximum multidimensional variance direction in the Y space. PLS
regression is particularly suited when the matrix of predictors has more variables 
than observations, and when there is multicollinearity among X values. By contrast, 
standard regression will fail in these cases (unless it is regularized).

The PLS algorithm is employed in partial least squares path modeling, a method of 
modeling a "causal" network of latent variables (causes cannot be determined 
without experimental or quasi-experimental methods, but one typically bases a 
latent variable model on the prior theoretical assumption that latent variables cause 
manifestations in their measured indicators). 

PLS importance



PLS latent variables computation

X = T * PT + E

Y = U * QT + F

The principal components are calculated maximising the correlation between T and 
U and their variance

 
max corr 2 U ,T ,var U  var T  
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PLS Overfitting

• PLS has overfitting
• The number of latent variables must be optimized in a cross-validation process
• The overfitting is given by the fact that the latent variable k is obtained by fitting 

the subspace of dimension k + 1. The latent variables are not orthogonal to 
each other, there is no limit to the possibility of fitting the data in calibration.

• The cross-validation sets the number latent variables accuracy estimated on the 
validation set. Normally this value is larger than the error obtained from the 
model on the calibration data

• Such errors are quantified by variables:
-RMSEC Root Mean Square Error in Calibration
-RMSECV Root Mean Square Error of Calibration in Validation



Linear or no-linear model
The validation problem 

• Which is the best function that describes the experimental data?
• The One that allows you to predict with minimal error variables that 

have not been used to build the model.
• The operation that allows us to estimate this error is called cross-

validation.

• Example: Consider the following information: y=f(x)+e
– What is the best function that describes the relationship between x and y?

x

y
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solutions

linear No-linear

No-linear



test method

• The data set is divided into two
• The model is determined on a subset of the data (calibration with 

training set)
• The error is evaluated on the subset (test set)
• The prediction of the test set gives significance to the model. The data 

were not used for calibration. So the model can be used in the real 
world to estimate unknown data.



Regression predictors 

• PRESS- Predicted Sum of Squares

• RMSEC - Root Mean Square error of calibration

• RMSECV - Root Mean Square error of Cross-Validation

 
PRESS  yi

LS  yi 2
i


 
RMSEC 

PRESS
N

 
RMSECVk 

PRESSk
N
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Test methods application

The data marked inred are the test set. The model is calculated on the 
remaining data (blue dots).
The error on the test data is evaluated as RMSECV

RMSECV=2.4 RMSECV=0.9 RMSECV=2.2



Discussion

• The best method is moderately non-linear (quadratic)
• The linear method has mistakes both in calibration and testing
• The highly non-linear method has a calibration error null but a high 

testing error. Such a model is "too specialized" in describing the 
calibration data and is not able to generalize.

• This effect is called overfitting and is typical in the case of highly non-
linear models.



Some consideration on the test-set
• The method is very simple but requires several sets of data.
• The selection of the data is not easy in general should be done 

randomly but you have to avoid the two sets unbalancing 
• You should check that the two sets have the same variance and the 

same average
• If the two sets are uncorrelated there may be apparent overfitting 

phenomena
• Apart from simple cases, usually the models fail in the prediction of 

measurements outside the range for calibration.



Leave-One-Out cross-validation
• When the number of data becomes small it is necessary to use other 

strategies for the selection of the feature and the error estimation.
• The most used method is the leave-one-out
• Leave-one-out cross-validation (LOOCV) is a particular case of leave-p-

out cross-validation with p = 1. The process looks similar, however with 
cross-validation you compute a statistic on the left-out sample(s), while 
in the other case you compute a statistic from the kept samples only.

• LOO cross-validation does not have the problem of excessive compute 
time as general LpO cross-validation



LOO linear model

RMSECV=2.12



LOO no linear model

RMSECV=0.96



LOO highly no linear model

RMSECV=3.33
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test – LOO Comparison 

• LOO provides a better estimation of the prediction error than the test 
set whose error estimate is unreliable.

• LOO takes full advantage of the entire data set.
• Obviously LOO is the method with minimum validation.
• For sets of large dimensions LOO is expensive from the points of view 

of the calculation.
• It can be "softened" considering more than k data sets.
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Matlab PLS toolbox
modlgui

• data: 4 sensors TSMR for the measurement of octane and toluene



99

modlgui

octane toluene



Principal components and  significant 
directions

• The principal components are the principal axes of the ellipsoid on the 
covariance matrix, nothing assures the fact that these directions are 
important for the problem under consideration

• The "important“ direction can be found using a "supervised" view ie
highlighting some properties of the data set

Principal 
directionSignificant 

direction



Linear discriminant analysis (LDA)

• a linear combination of features that characterizes or separates two or more 
classes of objects or events. The resulting combination may be used as a linear 
classifier, or, more commonly, for dimensionality reduction before later 
classification

• There is a class of basic vectors 
(other than the PC) where the 
separation between classes is 
maximum

• If there are more classes you can 
introduce more directions

• Discriminatory directions are linear 
combination of real variables, you 
can study the contribution of each 
variable to the discriminant direction.



PLS-Discriminant Analysis (PLS-DA)

• PLS is the ideal tool for the solution of linear classification problems.
• Minimizing the classification error, through the score and loading plots 

you can study what are the patterns of the variables that mostly 
contribute to the classification.



PLS-DA
fertilizers methods for apples

• Three fertilizer methods for apples
• 1-Urea, 2-calcium nitrate and potassium, 3- ammonium sulphates 4-

One control
• four classes
• Each apple is characterized by a pattern of seven features:
• Total nitrogen, seed nitrogen, phosphorus, potassium, calcium, 

magnesium, weight

Y X



PLS-DA
fertilizers methods for apples



0.7839 0.4456   -0.0168   -0.2128
1.1728 -0.3482    0.1035    0.0718
0.8882 0.1623    0.0387   -0.0892
0.8729 0.0584   -0.2114    0.2801
0.0515    0.9332 0.0552   -0.0398
0.0116    0.9322 -0.0086    0.0648
0.0748    0.7485 0.0089    0.1678
0.1801    0.7226 0.0919    0.0053
0.0482   -0.1203    0.9887 0.0835
0.0820    0.2404    0.8671 -0.1895

-0.0390   -0.0669    1.0746 0.0313
-0.1771    0.0942    0.9599 0.1230
0.1673   -0.0846    0.1036    0.8137

-0.2136    0.1390   -0.0245    1.0990
0.1372   -0.0736    0.0300    0.9064

-0.0410    0.2174   -0.0608    0.8844 

1     0     0     0
1     0     0     0
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0     1     0     0
0     1     0     0
0     1     0     0
0     1     0     0
0     0     1     0
0     0     1     0
0     0     1     0
0     0     1     0
0     0     0     1
0     0     0     1
0     0     0     1
0     0     0     1

PLS-DA
fertilizers methods for apples

Y true Y estimated



PLS-DA
fertilizers methods for apples

control

urea

Ca-K

N-S

The Scores show:
• The separation between the 

four groups
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Abstract 
Principal Component Analysis (PCA) is a data-driven modeling technique that transforms a set of 
correlated variables into a smaller set of new variables (principal components) that are uncorrelated and 
retain most of the original information.  Thus, a reduced dimension PC model can be used to detect and 
diagnose abnormalities in the original system in a robust way. This paper presents an application of using 
the PCA modeling technique to detect abnormalities in temperature sensors used to monitor the primary 
loop of a 2MW research pool reactor. The PCA model maps the temperature variables into a lower 
dimensional space and tracks their behavior using T2 and Q statistics. The Hotelling's T2 statistic measures 
the variation within the PCA model while the Q statistic measures the variation outside of the PCA 
model. Five temperature sensors are considered in the model. Three sensors are located inside the pool 
and two sensors are located at the primary loop piping. The reduced dimension PCA model has well 
behaved T2 and Q statistics. To test the functionality of the model, a drift was imposed sequentially to 
each temperature sensor, and the PCA model was able to detect and identify the faulty sensors at very low 
thresholds. 

 

Introduction 
Many researchers have addressed the use of Principal Component Analysis (PCA) modeling in the 
monitoring and fault detection of process sensors [1, 2, 3]. The objective of this work is to construct a 
PCA model that best maps a research reactor's primary loop temperature sensors into a lower dimensional 
space, in order to characterize the behavior of these variables through the use of T2 and Q statistics.  

Five sensors have been chosen to be monitored.  Three sensors are located inside the pool: T1 is located 
near the surface of the pool, T2 is located at the midway down into the pool and T3 is located just above 
of the reactor core. Temperature sensor T4 is located in the outlet pipe that takes the water from the core 
to the decay tank. At the outlet of the decay tank we have the sensor T6. The schematic diagram of the 
pool research reactor is shown in the Appendix. 

 

Principal Component Analysis  
PCA is a method used to transform a set of correlated variables into a smaller set of new variables that are 
uncorrelated and retain most of the original information, where the variation in the signals is considered 

mailto:hines@utkux.utk.edu
mailto:hines@utkux.utk.edu


to be the information.  PCA takes advantage of redundant information existent in highly correlated 
variables to reduce the dimensionality. After developing a model using good (training) data, the reduced 
dimension PC model can be use to detect and diagnose process abnormalities in a robust way [4]. For a 
basic reference book on PCA see Joliffe [5]. 
PCA decomposes the data matrix X (m samples, n variables) as the sum of the outer product of vectors ti 
and pi plus a residual matrix E [1]: 

X = t1p1
T

  +  t2p2
T

  +... +  tkpk
T

  +  E    =   TkPk
T + E (1) 

The vectors pi  are orthonormal, and the vectors  ti are orthogonal, that is: 

pi
Tpj  = 1,        if i = j             and  pi

Tpj  = 0,      if i ≠ j;  and  (2) 

ti Ttj  = 0      if i ≠ j (3) 

Also we can note that ti is the linear combination of the original X data defined by the transformation 
vector pi: 

Xpi = ti (4) 

The vectors ti are known as the principal component scores and contain information on how the samples 
are related to each other. The pi vectors are the eigenvectors of the covariance of matrix X.  They are 
known as the principal component loadings and contain information on how variables are related to each 
other. In fact, the PCA splits the data matrix X in two parts: one describes the system variation (the 
process model TkPT

k) and the other captures the noise or unmodeled information (residual variance E). 
This division is not always perfect, but it routinely provides good results [1].  It is very important to 
distinguish the number of components (dimension) that are to be kept in the model. 

The number of principal components k, to retain in the model must be less than or equal to the smaller 
dimension of X, i.e., k ≤ min{m, n} [2]. The goodness of the model depends on a good choice of how 
many PCs to keep. 

There are different criteria to choose the number of PCs [6]. The eigenvalues associated with each 
eigenvector or principal component: pi, tell us how much information (variation) each PC explains. Then 
we can look at the cumulative percent variance captured by the first few PCs and choose a number of PCs 
that accounts for most of the variability of the data (i.e. 90% to 99%). 

Alternatively, we can look for a knee point in the residual percent variance plotted against the number of 
principal components.  This is thought to be the natural break between the useful PCs and residual noise. 

Another criterion is to accept the PCs whose eigenvalues are above the average eigenvalue. In correlated-
based PCA, the average eigenvalue is 1. It is advisable to investigate more than one criterion since there is 
no universally accepted methodology. 

 

PCA Model 
The concept of principal components is shown graphically in Figure 1. The figure shows a PCA model 
constructed for a data set of three variables. We can see that the samples lie mainly on a plane, thus the 
data is well described by a two principal component model (2 PCs). The first PC aligns with the greatest 
variation in the data while the second PC aligns with the greatest remaining variance that is orthogonal to 
the first PC. 



 

There are two statistics commonly employed in evaluating new data using a previously developed PCA 
model: Q statistic and Hotteling's T2 statistic.  

The Q statistic measures the lack of model fit for each sample. It indicates how well each sample 
conforms to the PCA model by measuring the distance a data point falls from the PC model. It is 
calculated as the difference between the data point and its projection on the PC model. It gives the lack of 
fit to the model [1]. 

Qi = eiei
T = xi( I - Pk Pk

T) xi
T (5) 

The Hotteling's T² measures the variation within the PCA model. T² is the sum of the normalized squared 
scores defined as [1]: 

T²i = ti(Tk
TTk)-

1tiT (6) 

Statistical limits can be developed for sample scores, T² and Q, and individual residuals. If some point 
falls outside the limits for a specific confidence interval (95%, for example), this point may be considered 
to be an outlier and may be not representative of the data used to develop the PCA model.  

The PCA model of a data matrix includes mean and variance scaling vectors, eigenvalues, loadings, 
statistics limits on the scores, Q and T2. The model can be used with new process data to detect changes in 
the system that generated the original data. After detecting a probable outlier due to extreme T² or Q 
values, we can investigate the inputs that contribute to the extreme statistical value.  

 

Methodology 
A PCA model was developed to describe correlations of the primary loop temperature variables of the 
IPEN research reactor located in Sao Paulo, Brazil (see Appendix). The reactor data acquisition system 
records a snapshot of data once a minute for a complete fuel cycle that usually lasts a couple of days. A 
representative data set that corresponds to 25 hours of reactor operation was used to construct the model. 
A second data set, corresponding to 15 hours of another cycle operation, is used to validate the PCA 
model. Lastly, an artificial drift is imposed on each sensor to test the sensitivity of the model. 

The input data used to develop the model was arranged in a matrix with 1501 rows (samples) and 5 
columns (temperature variables).  The time plot of these variables is shown in Figure 2. 

Figure 1 - Principal Component Model Staying on a Plane, Showing T² and Q Outliers 
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Figure 2 - Temperature Model Development Data 

 

As shown in Table 1; T1, T2, T3, T4 and T6 are highly correlated, meaning that they vary together. This 
redundancy in the measurements allows us to build a PCA model that will retain the most of information 
in a few principal components.  

 
corr. coef. T1 T2 T3 T4 T6 

T1 1.0000 0.9963 0.9960 0.9918 0.9903 
T2 0.9963 1.0000 0.9945 0.9887 0.9862 
T3 0.9960 0.9945 1.0000 0.9939 0.9927 
T4 0.9918 0.9887 0.9939 1.0000 0.9975 
T6 0.9903 0.9862 0.9927 0.9975 1.0000  

 
Table 1 - Correlation Coefficients 

 

To construct the PCA model, the input matrix was divided into a training set (to develop the model) and a 
test set in an odd-even manner. The input matrix was mean centered and scaled to a unit variance.  This is 
necessary for PCA model development. PCA functions in MATLAB were used to calculate the principal 
components, the eigenvalues, and the amount of variance explained by each PC component. 

Figure3 is a plot of the eigenvalues versus the PC number and is used to help to choose the number of 
PCs to keep in the model.  The size of the eigenvalue equals the amount of variance explained in the 
corresponding PC. We use the log plot that can show the break when the eigenvalues cover several orders 
of magnitude, as in this case. This plot is used to identify a knee point where the PCs above the knee 
contain information and the PCs below the knee represent noise. The knee occurs between 1 and 2 PCs. 
The second PC does contribute useful information. We will keep 2 PCs that explain 99.80% of the 
variance.  
 
 



 
 

Figure 3 - Eigenvalues versus Principal Components 

 

Next we plot and analyze the loadings on the retained principal components: PC1and PC2. 
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Figure 4 - Loadings on Principal Component 1 and 2 

 

The principal component loadings are the weightings of each input to the specific PC. They show the 
underlying relationship among the variables. PC1 weights all the variables positively, so it is a gross 
measurement of the temperature in the reactor. PC2 accounts for the differences between variables {T1, 
T2, T3} and {T4, T6}. This makes sense, since the three first variables are located physically near each 
other and are related to the temperature inside the pool while the last two sensors are located outside the 
pool.  Although PC2 accounts for a small amount of variation when compared to PC1, it is important to 
describe the differences between the two groups of variables. 

Figure 5 is a plot of PC1 versus PC2 and shows that PC1 and PC2 are uncorrelated. If there were a 
noticeable relationship in this plot, it would be attributed to non-linear relationships in the data.  The PC 
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technique removes all linear correlations and results in a scatter plot when the non-linear relationships are 
small or nonexistent. 
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Figure 5 - Scores on PC1 versus Scores on PC2 

 

The T² and Q statistics are shown in Figure 6. The dashed lines represent a 95% confidence interval used 
to identify possible outliers. The T² and Q residuals show the data fits the model well. 

 

Figure 6 - T² Statistic on 2 PC Model (left) and Q Statistic on 2 PC Model (right) 

 

Validation 

To validate the PCA model, another data set corresponding to another week operation was applied to the 
PCA model. The resultant T2 and Q residuals are shown in Figure 7. 
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Figure 7 - T2 Statistic on Validation Data (left) and Q Statistic on Validation Data (right) 

 

Since the T2 and Q statistics are within the confidence limits, the model represents the validation data set 
well. The PCA gives the best linear model in sense of minimum squared error. 

 

Drifted Sensor 
To verify the model ability to detect and identify the drifting sensors, an artificial drift (ramp) was applied 
separately to each input variable. The drift simulates a common problem that affects process sensors and 
may result from aging. The simulated drift is a ramp that grows to 0.05ºC (maximum value) for a 
temperature variable that originally varies from 28.87ºC to 30.22ºC.  This small drift corresponds to a 
0.17% change and is imperceptible in a time profile. Figure 8 shows the T2 and Q statistics for this case. 

 
Figure 8 - T2 Statistic on Drifted Data (left) and Q Statistic on Drifted Data (right)  
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The T2 statistic doesn't seem to be out of the ordinary but the Q statistic plot shows that its values are 
increasing over time. This indicates that something is going on that is not in the original data. We can 
look at the contribution of each input to the large Q statistic. Through this analysis, it is possible to 
determine which variable is responsible for the unusual Q behavior. Samples 829, 1238 and 1430 were 
investigated. The contributions to the Q statistics are plotted in Figures 9 and 10. 

 

 
Figure 9 - Contributions (T1, T2, T3, T4, T6)  to Q statistics of samples 829 (left) and 1238 (right)  

 

Figure 10 - Contributions (T1, T2, T3, T4, T6) to Q statistics of sample 1430 

 

From Figures 9 and 10, it is easy to see that the variable T1 is the responsible for the unusually large Q 
statistic. This agrees with the fact that the drift was added to variable T1.  Artificial drifts that were added 
to each of the other variables were detected and the drifted variable was identified using the Q statistic. 
When a ramp drift with 0.5ºC maximum value is added to the T1 variable, the deviation of the Q statistic 
is even more evident as shown in Figure 11. 
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Figure 11 - Q Statistic on Drifted Data 

 

The contributions of the variables to the Q residuals on the samples 379 and 1430 are shown in Figure 12. 

Figure 12 - Contributions of (T1, T2, T3, T4, and T6) to Q statistics of samples 379 and 1430 

 

Again we observe the large contribution of sensor T1 to the Q statistic. 

 

Conclusions 
A PCA model with two principal components was developed to describe five temperature sensors in a 
nuclear research reactor. The model fitted the data well, as shown by the T2 and Q statistics. The model 
was tested with a validation data set from a separate reactor fuel cycle and the model performed well. 
Artificial drifts were added to the variables and the model both detected and identifies the drifted 
variables.  The PCA model was determined to be a good method to monitor the temperature sensors in 
this plant.  This is due to the highly correlations in the data and to the insignificant non-linearities present.  
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If non-linearities or time delays were present in the system, other methods such as non-linear partial least 
squares or neural networks may be used. 
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Appendix - Schematic Diagram of the IEA-R1 Pool Research Reactor 
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The course is split in 4 units

UNIT 1: statistical regression
Data, information, models, data types, analytical representation 
of data

Calibration and regression, Introduction to Statistics

Average & Variance

The Normal distribution, theory of measurement errors, the 
central limit theorem and the theorem of Gauss

Maximum likelihood, method of least squares, Generalization of 
the method of least squares

Polynomial regression, non-linear regression, the χ2 method, 
Validation of the model

UNIT 2: Design of Experiments
Basic design of experiments and analysis of the resulting 
data

Analysis of variance, blocking and nuisance variables

Factorial designs

Fractional factorial designs

Overview of other types of experimental designs (Plackett–
Burman designs, D-optimal designs, Supersaturated designs, 
Asymmetrical designs)

Response surface methods and designs

Applications of designed experiments from various fields of 
food science 

UNIT 3: Data Matrices and sensor 
arrays
Correlation

Multiple linear regression

Principal component analysis (PCA)

Principal component regression (PCR) and Partial least squares 
regression - (PLS)

UNIT 4: Elements of Pattern recognition
cluster analysis

Normalization

The space representation (PCA) Examples of PCA

Discriminant analysis (DA) PLS-DA

Examples of PLS-DA



UNIT 4: Elements of Pattern 
recognition
cluster analysis
Normalization
The space representation (PCA) 
Examples of PCA
Discriminant analysis (DA) PLS-DA
Examples of PLS-DA



Definitions

• Pattern: set of features defining the properties of a complex object
• Class: a set of objects having some important properties in common
• Classifying: mathematical operation for which a sample, described by a number 

of features, is assigned to a particular class.
• The set of features is called Pattern, the classification operation is called Pattern 

Recognition.
• The relationship between the sample and the class is not explicit, it depends on 

the features chosen to describe the objects
• The pattern recognition problem is "interesting" when the individual features are 

not able to identify samples

• Fruits:
• Features: weight, shape, color, sugar, acid, ......
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Pattern analysis

• The pattern recognition is a method to have information on the sample 
described by patterns

• Mathematically, a pattern is a vector that corresponds to the feature 
describing some aspects of a sample

• The features are linked to the type of information you want to be 
described

• The last operation of the pattern recognition is to assign a sample to a 
class (membership class)



7

Membership class
• The membership class is a theoretical set of elements sharing a global 

feature
• Items can be grouped according to different classification schemes 

depending on the global feature
• Example:

– Wine classification

white red

Italy

France

Spain

toscana

piemonte

barolo

barbera

sparkling

dry

Gavi

frascati



Patterns and membership class

• If the features are appropriate for the classification then the elements 
belonging to a same class have similar patterns.

• The similarity between patterns can be detected with a visual 
inspection of suitable graph representation

• The simplest: column chart and radar-plot



Column chart and membership class
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Radar plot
• A simple way to visualize multidimensional patterns
• the pattern variables are the same of the directions (axes)
• The axes are organized to form a circle
• Along each axis is plotted the value of the variable
• Joining the points on the axes you get a figure that forms the "profile" 

of the pattern
• often used in sensory analysis to define the sensory profile of foods.



Radar plot and class membership

Oligo minerals

minerals



distance Criteria

• Each pattern is a point in N-dimensional space
• The space is defined by the features that describe the pattern
• For each feature is assigned an axis
• All axes define an Orto-normal basis
• "class-membership" – distance relation
• Two close points (patterns) probably belong to the same class two far 

points belong to different classes



• Criteria "unsupervised"
• Determining, on the basis of an a priori criterion, an internal 

classification scheme
• The criterion used is generally that of the distance

• Clusters of analysis
• hierarchical method used to form classes with more and more 

undefined.
• Exotic Methods
• Potential Method

Classification criteria



Cluster Analysis

• Cluster analysis groups in hierarchy set of points 
• Depending on the distance the points are grouped together to form more and 

more large groups. Eventually all data can be grouped together
• The basic instrument of the cluster analysis is the distance matrix
• Given a set of Xi pattern, the distances dij is the following matrix:

– The matrix is symmetric

 d ij  Xi  X j

Cluster analysis or clustering is the task of grouping a set of objects in such 
a way that objects in the same group (called a cluster) are more similar (in 
some sense or another) to each other than to those in other groups 
(clusters).



Distance matrix
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1 0    4.1231    2.0000    3.6056    4.1231
2 4.1231         0    2.2361    2.8284    4.2426
3 2.0000    2.2361         0    3.0000    4.1231
4 3.6056    2.8284    3.0000         0    1.4142
5 4.1231    4.2426    4.1231    1.4142         0

• Points 4 and 5 are the closest
• The pair 4-5 is isolated from 1-

2-3
• Probably there are two sets of 

data:
• 1-2-3
• 4-5
• The cluster analysis makes the 

analysis rational and it allows 
to operate on N-dimensional 
space



Cluster analysis

• The hierarchical cluster analysis is an iterative process by making a 
dendrogram that defines the classes depending on the distance.

• Step i
• distance matrix calculation
• Detecting points with smaller distance
• Formation of clusters by combining Points
• Replacement of the cluster with the average point
• Refining the procedure until there is only one point
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Dendrogram
• The result of the cluster analysis is depicted in a tree diagram 

(dendrogram) where all the points are joined to form clusters, as a 
function of distance.
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Cluster analysis
mineral waters
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“inverse” Pattern recognition
• To study the role of the features we can study the problem in a 

transposed manner where the features become samples and samples 
the features.

• Example: cluster analysis of mineral waters



Normalization of the tree diagram for 
mineral waters 
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Gravitational clustering

• An interesting "exotic" method of "unsupervised" classification is based 
on the analogy with the force fields.

• Suppose that each point possesses a mass M (equal for all). This mass 
will generate a potential V point in the space. Where The points are 
grouped (in a class) will generate a higher potential, and then studying 
the evolution of potential, and in particular Its top it is possible to 
identify the spatial regions of maximum densification (classes).

• The analogy with the masses is just an example you can use any 
potential function.

• If gravitational analogy, N data points xi the potential at the point r is 
given by:

 
V r   1

x i 
r i


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Template Matching

• This method is efficient when each class contains only a pattern. The measured 
patterns are affected by additive noise (no translation, rotation, deformation of 
pattern)

• Typical example: Image Recognition
• For each class, the pattern with low noise is taken as the class template
• Two methods to assign a pattern to a class:
• Count the number of agreements: maximum correlation
• Count the number of disagreements: lowest error

templates Measured Patterns



K-nearest neighbour

• mathematical calculation of template matching 

• The templates are represented by vectors mj
• For class K, the distance between a pattern (x) 

and the corresponding template (m) is :

• The pattern x is assigned to the class to which 
the distance from the corresponding template 
is minimum

• The transaction requires the definition of  a 
measurement system, a rule for the distances 
calculation

  
k   x  m k   

 

x 


m 1  

 
 

x 


m 2  

 
 

x 


m 3  

 
 

x 


m 4  

 

x 

 

m 1

 

m 2

  

m 3

 

m 4



Cluster analysis contours

• The discriminant functions divides he space into class regions
• The contours are points at the same distance from two or more template
• The Linear functions produce polygonal contours.
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Mahalanobis distance
• For a Gaussian distribution, the iso-probability 

points are given by the following quadratic form:

• The probability value is called the Mahalanobis 
distance, or statistical distance, 

• the probability that a vector x belonging to a 
Gaussian distribution is defined by  and 

• By evaluating the Mahalanobis distance of a 
pattern is possible to assign a pattern to each 
class to which the Mahalanobis distance is 
smaller, that is, towards which the probability is 
greater

  x   T  1 x   

...

x
1 1

M
in

im
al

 s
el
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n

class

2 2

c c

Mahalanobis 
distance

Mahalanobis
distance

Mahalanobis
distance



Nonparametric classification

• If the probability distribution of the patterns is not known or is not Gaussian, 
you should use a non-parametric statistical classification that is independent of 
the classes and in which you search for a combination of variables that allows 
the identification of classes.

• This operation is similar to the discriminant analysis
• The calculation is similar to multiple linear regression, using the linear relation 

between the matrix X (set of patterns of samples measured) and a Y matrix 
(numerical coding of class membership)

• to solve the problem it is necessary to find the regression matrix B

  
Y  X  BT  BT  X T  X 1

 X T Y



“one-of-many”

• The Y-matrix is constructed with a number of columns equal to the 
number of classes in the problem
Each Y column then identifies a class
Given a pattern Xi the corresponding Yi line is made by setting to 
zero all the elements except the one corresponding to the class of 
Xi which is set to 1
When identifying the regression model, we will have a finite accuracy, 
so the pattern is assigned to the class whose corresponding value is 
larger.



Soft Independent Modeling of Class 
Analogy (SIMCA)

• For each class of samples, a PCA model is 
constructed. The PC bases are different for 
each class and the number of meaningful 
components is also different

• Each class defines a proper hypervolume
• Unknown samples are identified applying them 

to each model and looking for the matching 
one.

• A probability of membership is obtained. 
Sensor 1

Se
ns

or
 2

Sensor n



A case of neural network paradigm
Self Organizing Map

Linear Vector Quantization



Self Organizing Map

• it is a neural network based on strong biological similarities . It aims at mimicking the
functionality of the cerebral cortex

– sensorial map
• Principal features:

– it learns from the experience; unsupervised:; adaptive
• It provides a powerful tool to map a phenomena (represented as a multidimensional

system) into a bidimensional grid discovering any intrinsic classification property
• The map is formed by a bidimensional grid of neurons (discrete space)
• Each neuron is identified with a codebook vector belonging to the sensor space and

representing the link between the SOM and the input space
• Learning algorithm (Kohonen algoritm) is structured in two step

– Response
– Adaptation



SOM: the Biological Paradigm

Brain areas

The somatotopic map



SOM: the Learning Algorithm





S

WS

WS

z

Z Space

L





1. Response

2. Adaptation

z ws  z wr

wr
new  wr

old   hrs z  wr
old 

hrs  exp  rs 2

22






h is the neighbour function defining 
the extension of SOM which participate 
to the adaptation process

 is a learning rate



SOM: Flow of Data

Phenomena
sampling of
selected cases
patterns

learning
algorithm

coded knowledge
codebook vectors

queries

information
extraction



SOM and Sensor Array
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SOM: Representation of Clustering

• Distance between neurons can be represented drawing lines, connecting adjacent neurons, in a 
color-scale proportional to the distance between the codebook vectors. Clusters can be formed fixing 
a threshold value to the distance.



SOM: Component Planes

• The components of the codebook vectors are related to the sensors composing 
the array. These components can plotted onto the SOM grid giving information 
about the behaviour of single sensors.



SOM: Component Planes



PCA - SOM comparison:
Array of QMB for the detection of VOC

Sensor responses have been measured, at different concentrations, for a number 
of different volatile compounds chosen as representatives of the following 
classes: alkanes, aldehydes, alcohols, aromatics and amines.

PCA

fi  Sij c jnot preprocessed data

score plot



PCA - SOM comparison:
Array of QMB for the detection of VOC
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fi
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k
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k
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Linear Normalization

PCA score plot
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short chain
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PCA - SOM comparison:
Array of QMB for the detection of VOC

amines

short chain
alcohols
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PCA - SOM comparison:
Array of QMB for the detection of VOC

• Study of the 
Component 
Planes

amines
short chain
alcohols

H2TPP

RP5CuP

CoTPP MnTPP MnEMC



Nonlinear classification methods:
Learning Vector Quantization

• Vector Quantization: an approximation of the probability density functions of 
vectorial variables by finite sets of codebook vectors.

• Basic LVQ algorithm:

mi codebook vectors assigned to each class
an input x is assigned to the class to which the closest mi belongs

    

mc t 1  mc t  t  x t mc t  
mc t 1  mc t  t x t mc t  
mi t 1  mi t 

If x belongs to the class of mc

If x does not belong to the class of mc

If i≠c



Nonlinear classification methods:
Learning Vector Quantization

Codebook vectorsExample with two classes with 2D vectors
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The course is split in 4 units

UNIT 1: Univariate analysis
Data, information, models, data types, analytical representation 
of data

Calibration and regression, Introduction to Statistics

Average & Variance

The Normal distribution, theory of measurement errors, the 
central limit theorem and the theorem of Gauss

Maximum likelihood, method of least squares, Generalization of 
the method of least squares

Polynomial regression, non-linear regression, the χ2 method, 
Validation of the model

UNIT 3: Design of Experiments
Basic design of experiments and analysis of the resulting 
data

Analysis of variance, blocking and nuisance variables

Factorial designs

Fractional factorial designs

Overview of other types of experimental designs (Plackett–
Burman designs, D-optimal designs, Supersaturated designs, 
Asymmetrical designs)

Response surface methods and designs

Applications of designed experiments from various fields of 
food science 

UNIT 2: Multivariate analysis
 Correlation

Multiple linear regression

Principal component analysis (PCA)

Principal component regression (PCR) and Partial least squares 
regression - (PLS)

UNIT 4: Elements of Pattern recognition
cluster analysis

Normalization

The space representation (PCA) Examples of PCA

Discriminant analysis (DA) PLS-DA

Examples of PLS-DA



UNIT 3: Design of Experiments
Basic design of experiments and analysis of the resulting 
data
Analysis of variance, blocking and nuisance variables
Factorial designs
Fractional factorial designs
Overview of other types of experimental designs 
(Plackett–Burman designs, D-optimal designs, 
Supersaturated designs, Asymmetrical designs)
Response surface methods and designs
Applications of designed experiments from various fields 
of food science 



Factors

Silver laydown, 
Finish time…

Time,
Catalyst…

Transport speed,
Capture lens...

Responses

Speed,
Contrast

Yield,
Purity

Image resolution,
Banding

Film
Building

Chemical
Process

Digital 
Imaging



Factors

Compensation plan, 
Sales training

Method of shipping, 
Order entry method

Product positioning,
Price

Responses

Sales revenue, 
Volume of new sales

Shipping cost, 
Inventory level

Trial purchase,
Share of market

Sales

Supply 
Chain

Product 
Develop.



Topics

• Review of Error Analysis

• Theory & Experimentation in 
Engineering 

• Some Considerations in 
Planning Experiments

• Review of Statistical 
formulas and theory

• Begin Statistical Design of 
experiments (“DOE” or 
“DOX”)



Review of Error Analysis

• Uncertainty or “random error” is inherent in all measurements 
• Statistical basis
• Unavoidable‐ seek to estimate and take into account
• Can minimize with better instruments, measurement techniques, etc.



Review of Error Analysis

• Systematic errors (or “method errors”) are mistakes in assumptions, 
techniques etc. that lead to non‐random bias

• Careful experimental planning and execution can minimize
• Difficult to characterize; can only look at evidence after the fact, troubleshoot 
process to find source and eliminate



Graphical Description of  Random and Systematic 
Error



Why do we need to estimate uncertainty and include in stated 
experimental values?

• Probability of being wrong will influence process 
and/or financial decisions

• Cost / benefit of accepting result as “fact”?
• What would be the effect downstream as the uncertainty 
propagates through the process?

• When comparing two values and determining if they 
are different 

• Overlap of uncertainty?  
• What is the probability that the difference is significant?



Stating Results +/‐ Uncertainty 

• Rule for Stating Uncertainties
• Experimental uncertainties should almost always be rounded to one 
significant figure.

• Rule for Stating Answers
• The last significant figure in any stated answer should usually be of the same 
order of magnitude (in the same decimal position) as the uncertainty.

• Express Uncertainty as error bars and confidence interval for graphical data 
and curve fits (regressions) respectively



Determining Propagated Error:
Non‐statistical Method

• Compute from total differential



Propagated error

• OR Can do sensitivity analysis in spreadsheet of other 
software program

• Compute possible uncertainty in calculated result based on 
varying values of inputs according to the uncertainty of each 
input

• Example: Use “Solver” optimization tool in Excel to find 
maximum and minimum  values of computed value in a cell 
by varying the value of each input cell 

• Set constraint that the input values lie in the range of uncertainty of 
that value



Or Can Use repeat measurements to estimate 
uncertainty in a result using probability and statistics 
for random errors:

• mean
• standard deviation of 
each measurement

• standard deviation of 
the mean of the 
measurements

• Confidence intervals on 
dependant variable

• Confidence intervals on 
regression parameters



Statistical Formulas from chapter 4 of Taylor



Relationship of standard deviation to 
confidence intervals



Confidence intervals on non‐linear regression 
coefficients

• Can be complex‐ use software but understand theory of how 
calculated for linear case



Error bars that represent uncertainty in the dependant 
variable



How measurements at a given x,y would be distributed for 
multiple measurements



Determining Slope and Intercept In Linear 
Regression



Confidence intervals (SD) on slope B and Intercept 
A



Regression Output in Excel

Simple 
ANOVA‐
we will 
be 
looking 
at more 
complex 
cases in 
DOE

Slope and 
intercept

Confidence 
limits (+/‐) 
om slope & 
intercept



Statistical Process Control
• Very Widely Used
• Used for quality control and in conjunction with DOE for process 
improvement

• Control Charts provide statistical evidence 
• That a process is behaving normally or if something wrong
• Serve as data output (dependant variable )from process in designed statistical 
experiments



Variation from expected behavior in control charts‐ similar to regression 
and point statistics

Upper and lower 
Control Limits 
represent 
confidence limit 
on mean of 
“well behaved” 
process ouptut

Control Limit is the 
mean of a well 
behaved process 
output (i.e. product)

Expect 
random
deviations 
form mean 
just like in 
regression



Theory and Experimentation

• Two fundamental approaches to problem solving problems in the 
discovery  of knowledge:

1. Theoretical (physical/mathematical modeling)
2. Experimental measurement

(Most  often a combination is used)



Example of combination of theory and experimentation to get semi‐
empirical correlation



Features of alternative methods

• Theoretical Models
• Simplifying assumptions needed
• General results
• Less facilities usually needed
• Can start study immediately

• Experimental approach
• Study the “real world”‐no 
simplifying assumptions needed

• Results specific to apparatus 
studied

• High accuracy measurements 
need complex instruments

• Extensive lab facilities maybe 
needed

• Time delays from building 
apparatus, debugging



Functional Types of Engineering Experiments

1. Determine material properties
2. Determine component or system performance indices
3. Evaluate/improve theoretical models
4. Product/process improvement by testing
5. Exploratory experimentation
6. Acceptance testing
7. Teaching/learning through experimentation



Some important classes of Experiments

1. Estimation of parameter mean value
2. Estimate of parameter variability
3. Comparison of mean values
4. Comparison of variability
5. Modeling the dependence of dependant Variable on several 

quantitative and/or qualitative variables



Practical Experimental Planning

Experimental design: 
• Consider goals
• Consider what data can be collected.  
• Difficulty of obtaining data
• What data is most important
• What measurements can be ignored
• Type of data: Categorical? Quantitative?
• Test to make sure that measurements/apparatus are reliable
• Collect data carefully and document fully in ink using bound notebooks. Make 
copies and keep separately



Preview of Uses for DOE

• Lab experiments for research

• Industrial process experiments



Four engineering problem classes to which DOE is 
applied in manufacturing

1. Comparison

2. Screening/ characterization

3. Modeling 

4. Optimization



Comparison

• Compares to see if a change in a single “factor” (variable) has resulted 
in a process change (ideally an improvement)



Screening/Characterization

• Used when you want to see the effect of a whole range of factors so 
as to know which one(s) are most important.

• Two factorial experiments usually used



Modeling

• Used when you want to be able to construct a mathematical model 
that will predict the effect on a process of manipulating a variables or 
multiple variables



Optimization

• When you want to determine the optimal settings for all factors to 
give an optimal process response.  



Introduction to experimental design



Contents

• planning experiments
• regression analysis
• types of experiments
• software
• literature



Example of Experiment : synthesis of T8‐POSS

• context: development of new synthesis route for polymer additive
• goal: optimize yield of reaction
• synthesis route consists of elements that are not uniquely determined 
(control variables):

• time to let reaction run
• concentration water
• concentration silane
• temperature
• …



Issues in example T8‐POSS synthesis

• how to measure yield
• what to measure (begin/end weight,…)
• when to measure (reaction requires at least one day)

• how to vary control variables
• which values of pH, concentrations, … (levels)
• which combinations of values
• equipment only allows 6 simultaneous reactions, all with 
the same temperature

• how many combinations can be tested 
• reaction requires at least one day
• only 4 experimentation days are available



Necessity of careful planning of experiment

• limited resources
• time to carry out experiment
• costs of required materials/equipment

• avoid reaching suboptimal settings
• avoid missing interesting parts of experimental region
• protection against external uncontrollable/undetectable influences
• getting precise estimates



Traditional approach to experimentation: 
T8‐POSS example

• set T = 40 C, H2O concentration = 10%; try cSi=0.1, 0.2, 0.3, 0.8,0.9,1.0 M
• set T = 60 C, cSi=0.5M, H2O concentration = 5, 10, 12.5, 15, 17.5, 20%
•…

This is called a One‐Factor‐At‐a‐Time (OFAT) or Change‐
One‐Separate‐factor‐at‐a‐Time (COST) strategy. 
Disadvantages:
• may lead to suboptimal settings (see next slide)
• requires too many runs to obtain good coverage of 
experimental region (see later)
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factor A has been optimised

factor B has been optimised



Statistical terminology for experiments: 
illustrated by T8‐POSS example

• response variable: yield
• factors: time, temperature, cSi, H2O concentration
• levels: actual values of factors (e.g., T=30 C, 40 C 
,50 C)

• runs: one combination of factor settings (e.g., T=30 
C, cSi=0.5M, H2O concentration = 15%)

• block: 6 simultaneous runs with same temperature 
in reaction station



Modern approach: DOE

• DOE = Design of Experiments
• key ideas: 

• change several factors simultaneously
• carefully choose which runs to perform
• use regression analysis to obtain effect estimates

• statistical software (Statgraphics, JMP, SAS,…) allows to
• choose or construct designs
• analyse experimental results



Example of analysis

simple experiment:
• response is conversion 
• goal is screening (are time and temperature influencing conversion?)
• 2 factors (time and temperature), each at two levels
• 5 centre points (both time and temperature at intermediate values)

Statgraphics demo with conversion.sfx. (choose Special ‐> Experimental 
Design etc. from menu)

More advanced (5 factors, not all 25 combinations): colour.sfx



Example of construction: T8‐POSS example

• 36 runs
• 2 reactors available each day (each reactor 6 places)
• 3 experimental days

• factors: 
• H2O concentration
• temperature
• cSi

• goal is optimization of response 
• choose in Statgraphics: Special ‐> Experimental Design ‐> Create 
Design ‐> Response Surface



Goals in experimentation

• there may be more than one goal, e.g.:
• yield
• required reaction time until equilibrium
• costs of required chemical substances
• impact on environment (waste)

• these goals may contradict each other
• goals must be converted to explicitly measurable quantities



Types of experimental designs

• “screening designs”
These designs are used to investigate  which factors 
are important (“significant”).
• “response surface designs”
These designs are used to determine the optimal
settings of the significant factors.



Interactions

Factors may influence each other. E.g, the optimal 
setting of a factor may depend on the settings of the 
other factors. 

When factors are optimised separately,  the overall 
result (as function of all factors) may be suboptimal
...



Interaction effects
Cross terms in linear regression models cause 
interaction effects:

Y = 3 + 2 xA + 4 xB + 7 xA xB

xA   xA +1 YY + 2 + 7 xB,

so increase depends on xB. Likewise for xB xB+1

This explains the notation AB for the interaction of 
factors A and B. 



No interaction

Factor A

O
ut
pu

t

low high

B low

B high

20

50
55

25



Interaction I

Factor A

O
ut
pu

t

low high

B low

B high

20

50
55

45



Interaction II

Factor A

O
ut
pu

t

low high

B low
55 50

B high

20

45



Interaction III

Factor A

O
ut
pu

t

low high

B low

55

20

B high

20

45



Centre points and Replications

If there are not enough measurements to obtain 
a good estimate of the variance, then one can 
perform replications. Another possibility is to add 
centre points . 

B

A
-1 +1

-1

+1

a

ab

(1)

bAdding centre points serves two purposes:
better variance estimate
allow to test curvature using
a lack‐of‐fit test

Centre point



Multi‐layered experiments
Experiments are not one‐shot adventures. Ideally one 
performs:
• an initial experiment

• check‐out experimental equipment
• get initial values for quantities of interest

•main experiment
• obtain results that support the goal of the experiment

•confirmation experiment
• verify results from main experiment
• use information from main experiment to conduct more 
focussed experiment (e.g., near computed optimum)



Example

• testing method for material hardness :
force

pressure pin/tip

strip testing material

practical problem: 4 types of pressure pins
 do these yield the same results?



Experimental design 1

1
2
3
4

5
6
7
8

9
10
11
12

13
14
15
16

pin 1 pin 2 pin 4pin 3

testing
strips

Problem: if the measurements of strips 5 through 8 differ, is this 
caused by the  strips or by pin 2?



Experimental design 2

•Take 4 strips on which you measure (in random order) 
each pressure pin once :

1
3
2
4

1
4
3
2

4
3
2
1

2
3
1
4

strip 1 strip 2 strip 4strip 3

pressure
pins



Blocking

• Advantage of blocked experimental design 2: 
differences between strips are filtered out

•Model: Yij =    +    i   +      j  +   ij

Primary goal: reduction error term

factor
pressure pin

block effect
strip error term



Short checklist for DOE (see protocol)
• clearly state objective of experiment
• check constraints on experiment

• constraints on factor combinations and/or changes
• constraints on size of experiment

• make sure that measurements are obtained under 
constant external conditions (if not, apply blocking!)

• include centre points to validate model assumptions
• check of constant variance 
• check of non‐linearity

• make clear protocol of execution of experiment 
(including randomised order of measurements)



Introduction: What is meant by DOE?
• Experiment ‐

• a test or a series of tests in which purposeful changes 
are made to the input variables or factors of a system 
so that we may observe and identify the reasons for 
changes in the output response(s).

• Question:  5 factors, and 2 response variables
• Want to know the effect of each factor on the response 
and how the factors may interact with each other

• Want to predict the responses for given levels of the 
factors

• Want to find the levels of the factors that optimizes the 
responses ‐ e.g. maximize Y1 but minimize Y2

• Time and budget allocated for 30 test runs only.



Strategy of Experimentation

• Strategy of experimentation
• Best guess approach (trial and error)

• can continue indefinitely
• cannot guarantee best solution has been found

• One‐factor‐at‐a‐time (OFAT) approach
• inefficient (requires many test runs)
• fails to consider any possible interaction between factors

• Factorial approach (invented in the 1920’s)
• Factors varied together
• Correct, modern, and most efficient approach
• Can determine how factors interact
• Used extensively in industrial R and D, and for process 
improvement.



• This course will focus on three very useful and 
important classes of factorial designs: 

• 2‐level full factorial (2k)
• fractional factorial (2k‐p), and 
• response surface methodology (RSM)

• I will also cover split plot designs, and design and analysis of computer 
experiments if time permits. 

• Dimensional analysis and how it can be combined with DOE will also be 
briefly covered.

• All DOE are based on the same statistical principles and 
method of analysis ‐ ANOVA and regression analysis.

• Answer to question: use a 25‐1 fractional factorial in a central 
composite design = 27 runs (min)



Statistical Design of Experiments

• All experiments should be designed experiments
• Unfortunately, some experiments are poorly 
designed ‐ valuable resources are used 
ineffectively and results inconclusive

• Statistically designed experiments permit 
efficiency and economy, and the use of statistical 
methods in examining the data result in scientific 
objectivity when drawing conclusions.



• DOE is a methodology for systematically applying 
statistics to experimentation.

• DOE lets experimenters develop a mathematical 
model that predicts how input variables interact to 
create output variables or responses in a process 
or system. 

• DOE can be used for a wide range of experiments 
for various purposes including nearly all fields of 
engineering and even in business marketing.

• Use of statistics is very important in DOE and the 
basics are covered in a first course in an 
engineering program. 



• In general, by using DOE, we can:
• Learn about the process we are investigating
• Screen important variables 
• Build a mathematical model
• Obtain prediction equations
• Optimize the response (if required)

• Statistical significance is tested using ANOVA, and 
the prediction model is obtained using regression 
analysis.



Applications of DOE in Engineering Design

• Experiments are conducted in the field of 
engineering to:

• evaluate and compare basic design configurations
• evaluate different materials
• select design parameters so that the design will work 
well under a wide variety of field conditions (robust 
design)

• determine key design parameters that impact 
performance



PROCESS:

A Blending of 
Inputs which 
Generates 

Corresponding 
Outputs

INPUTS
(Factors)

X variables

OUTPUTS
(Responses)
Y variables

People

Materials

Equipment

Policies

Procedures

Methods

Environment

responses related 
to performing a 

service

responses related 
to producing a 

produce

responses related 
to completing a task

Illustration of a Process



PROCESS:

Discovering 
Optimal 

Concrete 
Mixture

INPUTS
(Factors)

X variables

OUTPUTS
(Responses)
Y variables

Type of 
cement

Percent water

Type of 
Additives

Percent 
Additives

Mixing Time

Curing 
Conditions

% Plasticizer

compressive 
strength

modulus of elasticity

modulus of rupture

Optimum Concrete Mixture

Poisson's ratio



PROCESS:

Manufacturing 
Injection 

Molded Parts

INPUTS
(Factors)

X variables

OUTPUTS
(Responses)
Y variables

Type of Raw 
Material

Mold 
Temperature

Holding 
Pressure

Holding Time

Gate Size

Screw Speed

Moisture 
Content

thickness of molded 
part

% shrinkage from 
mold size

number of defective 
parts

Manufacturing Injection Molded 
Parts



PROCESS:

Rainfall-Runoff 
Model 

Calibration

INPUTS
(Factors)

X variables

OUTPUTS
(Responses)
Y variables

Initial storage 
(mm)

Coefficient of 
Infiltration

Coefficient of 
Recession

Soil Moisture 
Capacity 

(mm)

R-square:
Predicted vs 

Observed Fits

Model Calibration

Impermeable layer 
(mm)

Initial Soil Moisture
(mm)



PROCESS:

Making the 
Best 

Microwave 
popcorn

INPUTS
(Factors)

X variables

OUTPUTS
(Responses)
Y variables

Brand:
Cheap vs Costly

Time:
4 min vs 6 min

Power:
75% or 100%

Height:
On bottom or raised

Taste:
Scale of 1 to 10

Bullets:
Grams of unpopped 

corns

Making microwave popcorn



Examples of experiments from daily life
• Photography

• Factors:  speed of film, lighting, shutter speed
• Response: quality of slides made close up with flash attachment

• Boiling water
• Factors: Pan type, burner size, cover
• Response: Time to boil water

• D‐day
• Factors: Type of drink, number of drinks, rate of drinking, time 
after last meal

• Response: Time to get a steel ball through a maze

• Mailing 
• Factors: stamp, area code, time of day when letter mailed
• Response: Number of days required for letter to be delivered



More examples

• Cooking
• Factors: amount of cooking wine, oyster sauce, sesame oil
• Response: Taste of stewed chicken

• Sexual Pleasure
• Factors: marijuana, screech, sauna
• Response: Pleasure experienced in subsequent you know what

• Basketball
• Factors: Distance from basket, type of shot, location on floor
• Response: Number of shots made (out of 10) with basketball

• Skiing
• Factors: Ski type, temperature, type of wax
• Response: Time to go down ski slope



Basic Principles

• Statistical design of experiments (DOE)
• the process of planning experiments so that 
appropriate data can be analyzed by statistical methods 
that results in valid, objective, and meaningful 
conclusions from the data 

• involves two aspects: design and statistical analysis



• Every experiment involves a sequence of activities:
• Conjecture ‐ hypothesis that motivates the experiment
• Experiment ‐ the test performed to investigate the 
conjecture

• Analysis ‐ the statistical analysis of the data from the 
experiment

• Conclusion ‐ what has been learned about the original 
conjecture from the experiment.



Three basic principles of Statistical DOE
• Replication

• allows an estimate of experimental error
• allows for a more precise estimate of the sample mean 
value

• Randomization
• cornerstone of all statistical methods
• “average out” effects of extraneous factors
• reduce bias and systematic errors

• Blocking
• increases precision of experiment
• “factor out” variable not studied



Guidelines for Designing Experiments
• Recognition of and statement of the problem

• need to develop all ideas about the objectives of the 
experiment ‐ get input from everybody ‐ use team 
approach.

• Choice of factors, levels, ranges, and response 
variables.  

• Need to use engineering judgment or prior test results.

• Choice of experimental design
• sample size, replicates, run order, randomization, 
software to use, design of data collection forms.



• Performing the experiment
• vital to monitor the process carefully. Easy to 
underestimate logistical and planning aspects in a 
complex R and D environment.

• Statistical analysis of data
• provides objective conclusions ‐ use simple graphics 
whenever possible.

• Conclusion and recommendations
• follow‐up test runs and confirmation testing to validate 
the conclusions from the experiment.

• Do we need to add or drop factors, change ranges, 
levels, new responses, etc.. ???



Using Statistical Techniques in Experimentation ‐
things to keep in mind

• Use non‐statistical knowledge of the problem
• physical laws, background knowledge

• Keep the design and analysis as simple as possible
• Don’t use complex, sophisticated statistical techniques
• If design is good, analysis is relatively straightforward
• If design is bad ‐ even the most complex and elegant 
statistics cannot save the situation

• Recognize the difference between practical and 
statistical significance

• statistical significance  practically significance



• Experiments are usually iterative
• unwise to design a comprehensive experiment at the 
start of the study

• may need modification of factor levels, factors, 
responses, etc.. ‐ too early to know whether 
experiment would work

• use a sequential or iterative approach
• should not invest more than 25% of resources in the 
initial design.

• Use initial design as learning experiences to accomplish 
the final objectives of the experiment.



Factorial v.s. OFAT

• Factorial design ‐ experimental trials or runs are 
performed at all possible combinations of factor 
levels in contrast to OFAT experiments.

• Factorial and fractional factorial experiments are 
among the most useful multi‐factor experiments 
for engineering and scientific investigations. 



• The ability to gain competitive advantage requires 
extreme care in the design and conduct of 
experiments. Special attention must be paid to joint 
effects and estimates of variability that are provided 
by factorial experiments.

• Full and fractional experiments can be conducted 
using a variety of statistical designs. The design 
selected can be chosen according to specific 
requirements and restrictions of the investigation.



Factorial Designs

• In a factorial experiment, all
possible combinations of factor 
levels are tested

• The golf experiment:
• Type of driver (over or regular)
• Type of ball (balata or 3‐piece)
• Walking vs. riding a cart
• Type of beverage (Beer vs water)
• Time of round (am or pm)
• Weather 
• Type of golf spike
• Etc, etc, etc…



Factorial Design

DOE  Course



Factorial Designs with Several Factors



Erroneous Impressions About Factorial 
Experiments

• Wasteful and do not compensate the extra effort with 
additional useful information ‐ this folklore presumes that 
one knows  (not assumes) that factors independently 
influence the responses (i.e. there are no factor 
interactions) and that each factor has a linear effect on the 
response  ‐ almost any reasonable type of experimentation 
will identify optimum levels of the factors

• Information on the factor effects becomes available only 
after the entire experiment is completed.  Takes too long. 
Actually, factorial experiments can be blocked and 
conducted sequentially so that data from each block can be 
analyzed as they are obtained.



One‐factor‐at‐a‐time experiments (OFAT)

• OFAT is a prevalent, but potentially disastrous type of 
experimentation commonly used by many engineers and 
scientists in both industry and academia.

• Tests are conducted by systematically changing the levels 
of one factor while holding the levels of all other factors 
fixed. The “optimal” level of the first factor is then selected.

• Subsequently, each factor in turn is varied and its “optimal” 
level selected while the other factors are held fixed.



One‐factor‐at‐a‐time experiments (OFAT)

• OFAT experiments are regarded as easier to implement, 
more easily understood, and more economical than 
factorial experiments.  Better than trial and error.

• OFAT experiments are believed to provide the optimum 
combinations of the factor levels.  

• Unfortunately, each of these presumptions can generally 
be shown to be false except under very special 
circumstances.

• The key reasons why OFAT should not be conducted except 
under very special circumstances are:

• Do not provide adequate information on interactions
• Do not provide efficient estimates of the effects



Factorial vs OFAT ( 2‐levels only)

• 2 factors:  4 runs
• 3 effects

• 3 factors: 8 runs
• 7 effects

• 5 factors: 32 or 16 runs
• 31 or 15 effects

• 7 factors: 128 or 64 runs
• 127 or 63 effects

• 2 factors: 6 runs
• 2 effects

• 3 factors: 16 runs
• 3 effects

• 5 factors: 96 runs
• 5 effects

• 7 factors: 512 runs
• 7 effects

Factorial OFAT



Example: Factorial vs OFAT

Factor A

low high

low

Factor B 

high

E.g.  Factor A: Reynold’s number,    Factor B: k/D

B

high

low

low high

A

OFATFactorial



Example: Effect of Re and k/D on friction factor f

• Consider a 2‐level factorial design (22)
• Reynold’s number = Factor A; k/D = Factor B
• Levels for A:  104 (low) 106 (high)
• Levels for B:  0.0001 (low) 0.001 (high)
• Responses:  (1) = 0.0311, a = 0.0135,  b = 0.0327,                    
ab = 0.0200

• Effect (A) = ‐0.66,  Effect (B) = 0.22,  Effect (AB) = 0.17
• % contribution: A = 84.85%,  B = 9.48%,  AB = 5.67%
• The presence of interactions implies that one cannot 
satisfactorily describe the effects of each factor using main 
effects.



D E S IG N -E A S E  P l o t

L n (f )

X  =  A :  R e y n o l d 's #
Y  =  B :  k/D

D e si g n  P o i n ts

B - 0 .0 0 0
B +  0 .0 0 1

k /D
Inte ra c tio n G ra p h

Ln
(f)

R e yn o ld 's  #

4.000 4.500 5.000 5.500 6.000

- 4.30507

- 4.08389

- 3.86272

- 3.64155

- 3.42038
2
2

2

2

2

2

2

2



D E S IG N -E A S E  P l o t

L n (f )
X  =  A :  R e y n o l d 's #
Y  =  B :  k/D

D e si g n  P o i n ts

L n(f)

R e yn o ld 's  #

k/
D

4 .000 4.500 5.000 5.500 6.000

0.0001

0.0003

0.0006

0.0008

0.0010

-4 . 1 5 7 6 2

-4 . 0 1 0 1 7

-3 . 8 6 2 7 2
-3 . 7 1 5 2 8

-3 . 5 6 7 8 3



D E S IG N -E A S E  P l o t

L n (f )
X  =  A :  R e y n o l d 's #
Y  =  B :  k/D

-4 . 3 0 5 0 7   

-4 . 0 8 3 8 9   

-3 . 8 6 2 7 2   

-3 . 6 4 1 5 5   

-3 . 4 2 0 3 8   

  L
n(

f) 
 

  4 . 0 0 0
  4 . 5 0 0

  5 . 0 0 0
  5 . 5 0 0

  6 . 0 0 0

0 . 0 0 0 1   

0 . 0 0 0 3   

0 . 0 0 0 6   

0 . 0 0 0 8   

0 . 0 0 1 0   

  R e y n o l d 's #   

  k/D   



With the addition of a few more points
• Augmenting the basic 22 design with a center point 
and 5 axial points we get a central composite 
design (CCD) and a 2nd order model can be fit.

• The nonlinear nature of the relationship between 
Re, k/D and the friction factor f can be seen.

• If Nikuradse (1933) had used a factorial design in 
his pipe friction experiments, he would need far 
less experimental runs!! 

• If the number of factors can be reduced by 
dimensional analysis, the problem can be made 
simpler for experimentation.



D E S IG N -E X P E R T  P l o t

L o g 1 0 (f )

X  =  A :  R E
Y  =  B :  k/D

D e si g n  P o i n ts

B - 0 .0 0 0
B +  0 .0 0 1

B : k /D
Inte ra c tio n G ra p h

A: R E

Lo
g1

0(
f)

4 .293 4.646 5.000 5.354 5.707

- 1.784

- 1.712

- 1.639

- 1.567

- 1.495



D E S IG N -E X P E R T  P l o t
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D E S IG N -E X P E R T  P l o t

L o g 1 0 (f )
D e si g n  P o i n ts

X  =  A :  R E
Y  =  B :  k/D

L o g 1 0 (f)

A: R E

B:
 k

/D

4 .293 4.646 5.000 5 .354 5 .707

0.0003172

0.0004586

0.0006000

0.0007414

0.0008828

-1 . 7 4 4

-1 . 7 0 6-1 . 6 6 8
-1 . 6 3 0-1 . 5 9 2



D E S IG N -E X P E R T  P l o t
L o g 1 0 (f )

Ac tu a l
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d

P re d ic te d  vs . A c tua l

- 1.783

- 1.711

- 1.639

- 1.566

- 1.494

- 1.783 - 1.711 - 1 .639 - 1.566 - 1 .494
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FACTORIAL (2k) DESIGNS

• Experiments involving several factors ( k = # of 
factors) where it is necessary to study the joint 
effect of these factors on a specific response.

• Each of the factors are set at two levels (a “low” 
level and a “high” level) which may be qualitative 
(machine A/machine B, fan on/fan off) or 
quantitative (temperature 800/temperature 900, 
line speed 4000 per hour/line speed 5000 per 
hour).
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FACTORIAL (2k) DESIGNS

• Factors are assumed to be fixed (fixed effects 
model)

• Designs are completely randomized (experimental 
trials are run in a random order, etc.)

• The usual normality assumptions are satisfied.
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FACTORIAL (2k) DESIGNS

• Particularly useful in the early stages of 
experimental work when you are likely to have 
many factors being investigated and you want to 
minimize the number of treatment combinations 
(sample size) but, at the same time, study all k 
factors in a complete factorial arrangement (the 
experiment collects data at all possible 
combinations of factor levels).
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FACTORIAL (2k) DESIGNS

• As k gets large, the sample size will increase 
exponentially.  If experiment is replicated, the # 
runs again increases.

k #  o f  r u n s
2 4
3 8
4 1 6
5 3 2
6 6 4
7 1 2 8
8 2 5 6
9 5 1 2

1 0 1 0 2 4
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FACTORIAL (2k) DESIGNS (k = 2)
• Two factors set at two levels (normally referred to 
as low and high) would result in the following 
design where each level of factor A is paired with 
each level of factor B.

RUN Factor A Factor B RESPONSE RUN Factor A Factor B RESPONSE
1 low low y1 1 -1 -1 y1

2 high low y2 2 +1 -1 y2

3 low high y3 3 -1 +1 y3

4 high high y4 4 +1 +1 y4

Generalized Settings Orthogonal Settings
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FACTORIAL (2k) DESIGNS (k = 2)

• Estimating main effects associated with changing 
the level of each factor from low to high.  This is 
the estimated effect on the response variable 
associated with changing factor A or B from their 
low to high values.

2
)(

2
)( 3142 yyyyEffectAFactor 





2
)(

2
)( 2143 yyyyEffectBFactor 




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FACTORIAL (2k) DESIGNS (k = 2): GRAPHICAL OUTPUT

• Neither factor A nor Factor B have an effect on the response variable.
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FACTORIAL (2k) DESIGNS (k = 2): 
GRAPHICAL OUTPUT
• Factor A has an effect on the response variable, 
but Factor B does not.
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FACTORIAL (2k) DESIGNS (k = 2): 
GRAPHICAL OUTPUT
• Factor A and Factor B have an effect on the 
response variable.
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FACTORIAL (2k) DESIGNS (k = 2): 
GRAPHICAL OUTPUT
• Factor B has an effect on the response variable, but only if 
factor A is set at the “High” level.  This is called interaction
and it basically means that the effect one factor has on a 
response is dependent on the level you set other factors at.  
Interactions can be major problems in a DOE if you fail to 
account for the interaction when designing your 
experiment.
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EXAMPLE:
FACTORIAL (2k) DESIGNS (k = 2)

• A microbiologist is interested in the effect of two different culture 
mediums [medium 1 (low) and medium 2 (high)] and two different 
times [10 hours (low) and 20 hours (high)] on the growth rate of a 
particular CFU [Bugs]. 
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EXAMPLE:
FACTORIAL (2k) DESIGNS (k = 2)

• Since two factors are of interest, k =2, and we 
would need the following four runs resulting in

RUN Medium Time Growth Rate
1 low low 17
2 high low 15
3 low high 38
4 high high 39

Generalized Settings



115

EXAMPLE:
FACTORIAL (2k) DESIGNS (k = 2)

• Estimates for the medium and time 
effects are

• Medium effect = [(15+39)/2] – [(17 + 38)/2] =  ‐0.5

• Time effect = [(38+39)/2] – [(17 + 15)/2] = 22.5
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EXAMPLE:
FACTORIAL (2k) DESIGNS (k = 2)
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EXAMPLE:
FACTORIAL (2k) DESIGNS (k = 2)
• A statistical analysis using the appropriate 
statistical model would result in the following 
information. Factor A (medium) and Factor B 
(time)

Type III Sums of Squares
------------------------------------------------------------------------------------
Source                     Sum of Squares     Df   Mean Square    F-Ratio    P-Value
------------------------------------------------------------------------------------
FACTOR A                             0.25      1          0.25       0.11     0.7952
FACTOR B                           506.25      1        506.25     225.00     0.0424
Residual                             2.25      1          2.25
------------------------------------------------------------------------------------
Total (corrected)                  508.75      3
All F-ratios are based on the residual mean square error.
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EXAMPLE:
CONCLUSIONS
• In statistical language, one would conclude that 
factor A (medium) is not statistically significant at a 
5% level of significance since the p‐value is greater 
than 5% (0.05), but factor B (time) is statistically 
significant at a 5 % level of significance since this 
p‐value is less than 5%. 
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EXAMPLE:
CONCLUSIONS
• In layman terms, this means that we have no 
evidence that would allow us to conclude that the 
medium used has an effect on the growth rate, 
although it may well have an effect (our conclusion 
was incorrect). 
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EXAMPLE:
CONCLUSIONS

• Additionally, we have evidence that would allow us to conclude that 
time does have an effect on the growth rate, although it may well not 
have an effect (our conclusion was incorrect). 
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EXAMPLE:
CONCLUSIONS

• In general we control the likelihood of reaching these incorrect 
conclusions by the selection of the level of significance for the test 
and the amount of data collected (sample size).
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2k DESIGNS (k > 2)

• As the number of factors increase, the number of 
runs needed to complete a complete factorial 
experiment will increase dramatically. The 
following 2k  design layout depict the number of 
runs needed for values of k from 2 to 5.  For 
example, when k = 5, it will take 25 = 32 
experimental runs for the complete factorial 
experiment. 
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Interactions for 2k Designs (k = 3)

• Interactions between various factors can be 
estimated for different designs above by 
multiplying the appropriate columns together 
and then subtracting the average response for 
the lows from the average response for the 
highs.
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Interactions for 2k Designs (k = 3)

a b c ab ac bc abc
-1 -1 -1 1 1 1 -1
+1 -1 -1 -1 -1 1 1
-1 +1 -1 -1 1 -1 1
+1 +1 -1 1 -1 -1 -1
-1 -1 +! 1 -1 -1 1
+1 -1 +1 -1 1 -1 -1
-1 +1 +1 -1 -1 1 -1
+1 +1 +1 1 1 1 1
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2k DESIGNS (k > 2)

• Once the effect for all factors and interactions are determined, you 
are able to develop a prediction model to estimate the response for 
specific values of the factors.  In general, we will do this with 
statistical software, but for these designs, you can do it by hand 
calculations if you wish. 
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2k DESIGNS (k > 2)

• For example, if there are no significant interactions 
present, you can estimate a response by the 
following formula. (for quantitative factors only)

Y  =  (average of all responses) + )](*)
2

[( LfactorLEVECTfactorEFFE  

     = BAY BA *)
2

(*)
2

( 



  
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ONE FACTOR EXAMPLE

Plot of Fitted Model

#HRS STUDY

G
R

A
D

E

10 12 14 16 18 20
55

65

75

85

95



128

ONE FACTOR EXAMPLE

• The output shows the results of fitting a general 
linear model to describe the relationship between 
GRADE and #HRS STUDY.  The equation of the 
fitted general model  is

• GRADE = 29.3 + 3.1* (#HRS STUDY)
• The fitted orthogonal model is
• GRADE = 75 + 15 * (SCALED # HRS)
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Two Level Screening Designs
• Suppose that your brainstorming session resulted 
in 7 factors that various people think “might” have 
an effect on a response.  A full factorial design 
would require 27 = 128 experimental runs without 
replication.  The purpose of screening designs is to 
reduce (identify) the number of factors down to 
the “major” role players with a minimal number of 
experimental runs. One way to do this is to use the 
23 full factorial design and use interaction columns 
for factors.
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Note that 
* Any factor d effect is now confounded with the a*b 
interaction
* Any factor e effect is now confounded with the a*c 
interaction
* etc.
* What is the d*e interaction confounded with????????

a b c d = ab e = ac f = bc g = abc
-1 -1 -1 1 1 1 -1
+1 -1 -1 -1 -1 1 1
-1 +1 -1 -1 1 -1 1
+1 +1 -1 1 -1 -1 -1
-1 -1 +! 1 -1 -1 1
+1 -1 +1 -1 1 -1 -1
-1 +1 +1 -1 -1 1 -1
+1 +1 +1 1 1 1 1
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Problems that Interactions Cause!

• Interactions – If interactions exist and you fail to 
account for this, you may reach erroneous 
conclusions.  Suppose that you plan an 
experiment with four runs and three factors 
resulting in the following data:

Run Factor A Factor B Results
1 +1 +1 10
2 +1 -1 5
3 -1 +1 5
4 -1 -1 10
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Problems that Interactions Cause!
• Factor A Effect = 0
• Factor B Effect = 0
• In this example, if you were assuming that “smaller 
is better” then it appears to make no difference 
where you set factors A and B. If you were to set 
factor A at the low value and factor B at the low 
value, your response variable would be larger than 
desired. In this case there is a factor A interaction 
with factor B. 
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Problems that Interactions Cause!

Interaction Plot
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Resolution of a Design 
• Resolution III Designs – No main effects are 

aliased with any other main effect BUT some (or 
all) main effects are aliased with two way 
interactions

• Resolution IV Designs – No main effects are 
aliased with any other main effect OR two factor 
interaction, BUT two factor interactions may be 
aliased with other two factor interactions

• Resolution V Designs – No main effect OR two 
factor interaction is aliased with any other main 
effect or two factor interaction, BUT two factor 
interactions are aliased with three factor 
interactions.
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Common Screening Designs

• Fractional Factorial Designs – the total number 
of experimental runs must be a power of 2 (4, 8, 
16, 32, 64, …).  If you believe first order 
interactions are small compared to main effects, 
then you could choose a resolution III design.  
Just remember that if you have major 
interactions, it can mess up your screening 
experiment.
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Common Screening Designs

• Plackett‐Burman Designs – Two level, resolution 
III designs used to study up to n‐1 factors in n 
experimental runs, where n is a multiple of 4 ( # 
of runs will be 4, 8, 12, 16, …).   Since n may be 
quite large, you can study a large number of 
factors with moderately small sample sizes.  (n = 
100 means you can study 99 factors with 100 
runs)
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Other Design Issues

• May want to collect data at center points to 
estimate non‐linear responses

• More than two levels of a factor – no problem 
(multi‐level factorial)

• What do you do if you want to build a non‐linear 
model to “optimize” the response. (hit a target, 
maximize, or minimize) – called response surface 
modeling
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Response Surface Designs – Box‐Behnken

RUN F1 F2 F3 Y100

1 10 45 60 11825

2 30 45 40 8781

3 20 30 40 8413

4 10 30 50 9216

5 20 45 50 9288

6 30 60 50 8261

7 20 45 50 9329

8 30 45 60 10855

9 20 45 50 9205

10 20 60 40 8538

11 10 45 40 9718

12 30 30 50 11308

13 20 60 60 10316

14 10 60 50 12056

15 20 30 60 10378
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Response Surface Designs – Box‐Behnken

Regression coeffs. for Var_3
--------------------------------------------------------------
constant    = 2312.5
A:Factor_A  = 36.575
B:Factor_B  = 200.067
C:Factor_C  = 3.85
AA          = 9.09875
AB          = -9.81167
AC          = -0.0825
BB          = 0.117222
BC          = -0.311667
CC          = 1.10875
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Response Surface Designs – Box‐Behnken

Contours of Estimated Response Surface
Factor_C=60.0

Factor_A

Fa
ct

or
_B

Var_3
9300.0
9500.0
9700.0
9900.0
10100.0
10300.0
10500.0
10700.0
10900.0
11100.0
11300.0
11500.0
11700.0

10 14 18 22 26 30
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35

40
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55

60
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