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OReal-time PCR is themethod of choice inmany laboratories for diagnostic and food applications. This technology

merges the polymerase chain reaction chemistry with the use of fluorescent reporter molecules in order to
monitor the production of amplification products during each cycle of the PCR reaction. Thus, the combination
of excellent sensitivity and specificity, reproducible data, low contamination risk and reduced hand-on time,
which make it a post-PCR analysis unnecessary, has made real-time PCR technology an appealing alternative
to conventional PCR. The present paper attempts to provide a rigorous overview of fluorescent-based methods
for nucleic acid analysis in real-time PCR described in the literature so far. Herein, different real-time PCR chem-
istries have been classified into two main groups; the first group comprises double-stranded DNA intercalating
molecules, such as SYBR Green I and EvaGreen, whereas the second includes fluorophore-labeled oligonucleo-
tides. The latter, in turn, has been divided into three subgroups according to the type of fluorescent molecules
used in the PCR reaction: (i) primer-probes (Scorpions, Amplifluor®, LUX™, Cyclicons, Angler®); (ii) probes;
hydrolysis (TaqMan, MGB-TaqMan, Snake assay) and hybridization (Hybprobe or FRET, Molecular Beacons,
HyBeacon™, MGB-Pleiades, MGB-Eclipse, ResonSense®, Yin-Yang or displacing); and (iii) analogues of nucleic
acids (PNA, LNA®, ZNA™, non-natural bases: Plexor™ primer, Tiny-Molecular Beacon). In addition, structures,
mechanisms of action, advantages and applications of such real-time PCR probes and analogues are depicted in
this review.

© 2014 Published by Elsevier B.V.
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1. Introduction

Higuchi et al. [1,2] pioneered the analysis of Polymerase Chain
Reaction (PCR) kinetics by constructing a system that detected amplifi-
cation products as they accumulated. This “real-time” system included
intercalating ethidium bromide in each amplification reaction, an
adapted thermal cycler to irradiate the samples with ultraviolet
light and detection of the resulting fluorescence with a computer-
controlled cooled CCD camera. The increase in fluorescence was due
to the intercalation of ethidium bromide into the increasing amounts
of double-stranded DNA (dsDNA) produced during each amplification
cycle. By plotting this fluorescence increment versus cycle number,
the system produced a graph that provided a more complete picture
of the PCR process than analyzing the accumulation of products by
electrophoresis after the reaction.

Very quickly, this technology matured into a competitive market,
becoming commercially widespread and scientifically influential.
This is evidenced by the large number of companies offering real-time
PCR instrumentation as well as the rapid growth rate of scientific publi-
cations pertaining to quantitative real-time PCR (qPCR). Such instru-
mentation was first made available by Applied Biosystems in 1996 [3].
At present, Applied Biosystems and other companies such as BioGene,
Bioneer, Bio-Rad, Cepheid, Corbett Research, Idaho Technology, MJ
Research, Roche Applied Science, and Stratagene all offer devices for
qPCR [4–6].

The deployment of this interesting methodology is growing expo-
nentially in many molecular biology and clinical laboratories and,
hence, it is replacing conventional PCR. The main advantage of qPCR
over the traditional PCR assays is that the starting DNA concentration
is determined with accuracy and high sensitivity. Thus, the obtained re-
sults can be either qualitative (showing the presence or absence of the
DNA sequence of interest) or quantitative. In contrast, conventional
PCR is, at best, semiquantitative. Moreover, the amplification reactions
are run and data are analyzed in a closed-tube system, eliminating the
need for post-amplification manipulation and therefore reducing
opportunities for contamination [7–9]. Real-time PCR technology
has proven its versatility and usefulness in different research areas in-
cluding biomedicine, microbiology, veterinary science, agriculture,
pharmacology, biotechnology and toxicology. It also offers interesting
new applications, such as for the quantification and genotyping of
pathogens, gene expression, methylated DNA and microRNA analysis,
validation of microarray data, allelic discrimination and genotyping
(detection of mutations, analysis of SNPs andmicrosatellites, identifica-
tion of chromosomal alterations), validation of drug therapy efficacy,
forensic studies and quantification of genetically modified organisms
(GMOs).

Basically, the qPCR instrument consists of a thermal cycler with an
integrated excitation light source (a lamp, a laser or LED: light emitting
diode), a fluorescence detection system or fluorimeter and software
that displays the recorded fluorescence data as a DNA amplification
curve, it being necessary to add a dsDNA intercalating dye or
fluorophore-labeled probe to the reaction mixture.

In the last 15 years, a large number of methods for DNA detection in
qPCR have been described. This review offers a useful classification as
well as a detailed description of such detection methods. They have
been classified into two principal groups based on the fluorescent
agent used and the specificity of the PCR detection. The first group
uses dsDNA intercalating agents such as SYBRGreen I and EvaGreen,
leading to the detection of both specific and non-specific amplification
products. On the other hand, the other group employs fluorophores at-
tached to oligonucleotides and only detects specific PCR products. It has
been further divided into three subgroups according to the type of fluo-
rescent molecules added to the reaction: (i) probes acting as primers,
called primer-probes; (ii) hydrolysis probes emitting fluorescent light
upon degradation during the extension phase, and hybridization probes
that give a fluorescent signal when binding to theDNA target during the
Please cite this article as: Navarro E, et al, Real-time PCR detection chemist
amplification reaction; and (iii) analogues of nucleic acids. In addition to
their structures andmechanisms of action, advantages and applications
of each DNA detection method are described in this review.
2. PCR chemistries for the detection and quantitation of nucleic acids

There are two main proceedings of DNA analysis in qPCR: methods
enabling both specific and non-specific detection of amplified products
using dsDNA binding dyes, and those that only detect specific PCR prod-
ucts via employing fluorophore-linked oligonucleotides (primer-probes
or probes). Table 1 summarizes the structures, mechanisms of action
and advantages of the different fluorescent molecules used in qPCR.
O
O

F2.1. DNA binding dyes

There is a wide variety of commercially available fluorescent DNA
dyes, including ethidium bromide [1], YO-PRO-1 [10,11], SYBR® Green
I [12], SYBR® Gold [13], SYTO [14,15], BEBO and BOXTO [16], and
EvaGreen [17]. The use of DNA binding dyes allows the detection of
specific products, nonspecific products and primer-dimers produced
during the qPCR reaction.
E
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2.1.1. Structure
The most commonly used is SYBR® Green I [18], an asymmetrical

cyanine dye (2-[N-(3-dimethylaminopropyl)-N-propylamino]-4-[2,3-
dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene]-1-phenyl-
quinolinium) with two positive charges under standard PCR reaction
conditions contributing to its high dsDNA binding affinity [18–21]. The
resulting DNA-dye complex absorbs blue light (λmax = 497 nm) and
emits green light (λmax = 520 nm). More recently, several authors
have described that EvaGreen and certain SYTO dyes (−9,−13
and −82) are more stable and sensitive than SYBR Green I for DNA
quantification by qPCR [14,15,17,22,23].
2.1.2. Mechanism of action
When such a dye binds to the minor groove of dsDNA, its fluores-

cence is increased and can be measured in the extension phase of
each cycle of qPCR [19]. Given that nonspecific products and primer-
dimers can be formed during the PCR process [24], amelting curve anal-
ysis is highly recommended to check the specificity of the amplified
fragments. This analysis consists of applying heat to the sample
(from 50 °C to 95 °C) and monitoring the fluorescence emission during
the process. The temperature of DNA denaturation is shown as a
sharp drop in the fluorescence signal due to dissociation of the dye.
Nonspecific products and primer-dimers are denatured at lower
temperatures than the specific products [12]. In fact, PCR products of
different length and/or nucleotide content show distinct peaks
when the derivative of fluorescence is plotted with respect to tempera-
ture (−dT/dF), due to the fact that they are denatured at different
temperatures.
2.1.3. Advantages
The costs of employing DNA binding dyes in qPCR are much lower

than those ofmethods requiringfluorescent probes. However, amelting
curve analysis is necessary after the completion of each qPCR assay for
selective detection of amplicons of multiplex PCRs. Themost commonly
used is SYBR® Green I but, despite its popularity, it presents some
limitations, including limited dye stability and dye-dependent PCR
inhibition [14,22]. EvaGreen is a third generation dsDNA binding dye
that offers several advantages such as being less inhibitory to PCR
than SYBR® Green I, and it can be used under saturating conditions to
generate greater fluorescent signals. EvaGreen is also well suited for
HRM [high resolution melt] analysis [22].
ry, Clin Chim Acta (2014), http://dx.doi.org/10.1016/j.cca.2014.10.017
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2.1.4. Applications
These dyes can be used to detect either single or two ormore different

DNA sequences in a single PCR reaction (multiplex assays). SYBR®Green I
is mainly employed for pathogen detection [25], gene expression [26],
mutation detection, SNP detection and GMO (genetically modified
organismos) detection [27]. Furthermore, EvaGreen is being used for
pathogen detection [28,29], gene expression [26], mutation detection
[30], genotyping [31], SNP detection [32,33] and GMO detection [34].

2.2. Fluorophore-labeled oligonucleotides

Fluorophores are small fluorescentmolecules that are attached to ol-
igonucleotides in order to function as probes in qPCR technology. These
fluorescent oligonucleotides are classified as either: (i) primer-probes,
(ii) probes or (iii) analogues of nucleic acids.

There are two types of fluorophores: donor or reporter and acceptor
or quencher. When a donor fluorophore absorbs energy from light, it
rises to an excited state. The process of returning to the ground state
is driven by the emission of energy as fluorescence. This emitted light
from the donor has a lower energy and frequency and a longer wave-
length than the absorbed light and can be transferred to an acceptor
fluorophore. If both fluorophores are within a specific distance, usually
10 to 100 Å [35–37], the transfer of excited-state energy from a reporter
to a quencher is denoted as Fluorescence Resonance Energy Transfer
(FRET) [38,39]. There are two different FRET mechanisms, based on
how the energy transferred to the acceptor fluorophore is dissipated;
(i) FRET-quenching [40] in which the electronic energy of the quencher
(a non-fluorescent molecule) is dissipated as heat, and (ii) FRET in
which the transferred energy is emitted as fluorescence because the
acceptor molecule is fluorescent.

At present, there are a wide variety of donors and acceptors with
different excitation and emission spectra that can be used in qPCR [5].

2.2.1. Primer-probes
Primer-probes are oligonucleotides that combine a primer and

probe in a single molecule. They can be classified into three groups:
Harpins, Cyclicons and Angler® primer-probes. Fluorescence emitted
from primer-probes is detected and measured during the denaturation
or extension phase of the qPCR, depending on the type of primer-probe
used. The use of these primer-probes can lead to amplification of unspe-
cific products or dimer-primers during the PCR reaction; therefore,
melting curve analysis to determine the efficiency of the reaction is
recommended.

2.2.1.1. Hairpin primer-probes. Hairpin primer-probes are single-
stranded (ss) oligonucleotides that contain: (i) a hairpin secondary
structure, in which the loop of the structure specifically binds to the tar-
get DNA [7]; (ii) a short tail sequence of 6 nucleotides (CG) at the 5′-end
of the probe complementary to the 3′-end region; (iii) one or two
fluorophores attached at the ends [41]; and (iv) in some cases, the
probe also contains a primer linked to the hairpin structure. Hairpin
primer-probes include Scorpions, Amplifluor® and LUX™.

2.2.1.1.1. Scorpion primer-probes
2.2.1.1.1.1. Structure. Described in 1999 by Whitcombe et al. [42], the
hairpin structure has a reporter at the 5′-end and an internal quencher
at the 3′-end. The 3′-end of the hairpin is attached to the 5′-end of the
primer by a HEG (hexathylene glycol) blocker, which prevents primer
extension by the polymerase [42] (Fig. 1A).
2.2.1.1.1.2. Mechanism of action. In solution, the reporter and quencher
are in close proximity and energy transfer via FRET-quenching is
produced. After binding of the primer-probe to the target DNA, the
polymerase copies the sequence of nucleotides from the 3′-end of the
primer. In the next denaturation step, the specific sequence of the
probe binds to the complementary region within the same strand of
newly amplified DNA. This hybridization opens the hairpin structure
and, as a result, the reporter is separated from the quencher leading to
Please cite this article as: Navarro E, et al, Real-time PCR detection chemist
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a fluorescent signal proportional to the amount of amplified PCR
product [42].
2.2.1.1.1.3. Advantages. The primer-probe combines the binding and de-
tection mechanisms in the same molecule, making it an inexpensive
system. Oligonucleotides with hairpin structures prevent the formation
of primer-dimers and non-specific PCR amplification products [43]
because the intramolecular binding of such structures is kinetically fa-
vorable and highly effective. The use of stems offers additional benefits,
such as minimal background signals as the unincorporated primer-
probes are switched off [42]. Furthermore, in this system enzymatic
breakdown of the primer-probe is not necessary and the fluorescent
signals are stronger than those produced when other probes are used
[44,45].
2.2.1.1.1.4. Applications. Scorpion primer-probes can be used in single
and multiplex formats for pathogen detection [46], viral/bacterial load
quantitation, genotyping, SNP allelic discrimination [47,48] and muta-
tion detection [49,50]. It is important to note that the addition of a
nucleic acid analogue (LNA) to a Scorpion primer-probe containing
reaction is recommended in order to obtain greater accuracy in SNP
detection and allele discrimination, given that the thermal stability
and hybridization specificity of such probes are increased.

2.2.1.1.2. Amplifluor™ primer-probes
2.2.1.1.2.1. Structure.Described byNazarenko et al. [41]. This systemwas
later reported as the Sunrise system [51] and commercialized under the
name Amplifluor™ by Oncor/Intergen (Gaithersburg, MD; USA) [52].
The reporter is located at the 5′-end and the internal quencher is linked
at the 3′-end of the hairpin. The 3′-end acts as a PCR primer [41]
(Fig. 1B).
2.2.1.1.2.2. Mechanism of action. It is similar to that described for Scorpion
primer-probes. When the primer-probe is not bound, the hairpin struc-
ture is intact and the reporter transfers energy to the quencher via
FRET-quenching. DNA amplification occurs after binding of the
primer-probe to the target sequence. In the next step of denaturation,
reporter and quencher are separated and, as a result, the emitted fluo-
rescence of the donor is measured by the fluorimeter [41,53].
2.2.1.1.2.3. Advantages. These probes display the same advantages as
those described previously for Scorpion primer-probes.
2.2.1.1.2.4. Applications. Amplifluor™ primer-probes can be used in
single and multiplex formats for pathogen detection, viral/bacterial
load quantitation [54], genotyping, allelic discrimination, mutation
detection, SNP detection [55] and GMO detection [27].

2.2.1.1.3. LUX™ primer-probes
2.2.1.1.3.1. Structure. LUX™ (Light-Upon-eXtension) primer-probes
were first described by Nazarenko et al. [43]. The 3′-end acts as a primer
and contains a single reporter located in the guanosine rich region of the
primary sequence [56]. Unlike Scorpion and Amplifluor primer-probes,
they do not require the presence of an internal quencher [43] (Fig. 1C).
2.2.1.1.3.2. Mechanism of action. The hairpin structure confers the ability
to decrease the fluorescence signal when the primer-probe is free and
increases the signal exponentially when it binds to its target sequence.
The maximum fluorescence emission is generated after the incorpora-
tion of LUX™ primer-probes into dsDNA [43] (Fig. 1C). Fluorescence is
measured during the extension phase.
2.2.1.1.3.3. Advantages. The advantages of this system are similar to
those methods that rely on Scorpions and Amplifluor primer-probes.
The employment of these primer-probes offers high sensitivity and
specificity despite their containing only a single fluorescent molecule
[57].
2.2.1.1.3.4. Applications. They can be used in single andmultiplex formats
for pathogen detection [58,59], viral/bacterial load quantitation [57],
genotyping, allelic discrimination, mutation detection, SNP detection
[43] and gene expression analysis [56] and GMO detection [27].

2.2.1.2. Cyclicon primer-probes
2.2.1.2.1. Structure. Described by Kandimalla and Agrawal in 2000

[60], cyclicons contain a long primer-probe (complementary to the
ry, Clin Chim Acta (2014), http://dx.doi.org/10.1016/j.cca.2014.10.017
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t3:1 Q1Table 1
t3:2 Detection systems for DNA amplified in qPCR.

t3:3 Structure Mechanism of action Advantages

t3:4 Q2Detection of specific and non-specific PCR products
t3:5 Ethidium bromide [1], YO-PRO-1 [10,11],
t3:6 SYBR® Green I [12], SYBR® Gold [13],
t3:7 SYTO [14,15], BEBO and BOXTO [16], and
t3:8 EvaGreen [17]

Intercalating dye Its binding to the minor groove of the amplified DNA sequences leads to
fluorescence emission.
Extension phasea

The costs of its employ are much lower than that of probes, but melting
curve analysis is necessary to check the specificity of amplified fragments.

t3:9 Detection of specific PCR products
t3:10 Primer-probes
t3:11 Hairpin primer-probes
t3:12 Scorpions [42] 5′RΩ3′Q_HEG_Primer After probe binding to target, DNA polymerase copies the target sequence. In the

next denaturation step, the specific sequence of the probe binds to the
complementary region within the same strand of newly amplified DNA, leading to
fluorescence emission.
Denaturation phasea

This technology combines the primer and the probe in the same
molecule, making it a cheap system.
Its use prevents the formation of primer-dimers and non-specific PCR
products.
In solution, minimal fluorescence background is registered as primer-
probes are switched off in solution.

t3:13 Amplifluor® or Sunrise [41] 5′RΩ 3′Q _Primer

t3:14 LUX™ [43] 5′ΩR3′ Its incorporation into dsDNA leads to fluorescence emission.
Extension phasea

This system allows melting curve analysis to be performed.
Its use offers high sensitivity and specificity without using a fluorescent
acceptor molecule.

t3:15 Cyclicons [60]

••• Modifier oligo
\ Primer-probe

When it binds to the complementary sequence, the cyclic structure is opened up
and the fluorophores are separated far enough to disrupt FRET-quenching,
resulting in fluorescence emission.
Extension phasea

This system allows short oligonucleotides to be employed, reducing the
costs of qPCR assays.

t3:16 Angler® [62] 5′Cy5_HEG_3′Rvprimer
Acceptor moiety (Cy5)

SYBR® Gold DNA intercalating dye is employed as the donor fluorescent moiety.
When the probe binds to its target sequence, the SYBR®Gold intercalates in the
newly amplified DNA and emits fluorescence, behaving as a donor moiety in a
FRET pair with the acceptor moiety of the probe.
Denaturation phasea

This system allows melting curve analysis to be performed.
Its use in qPCR assays leads to the detection of both non-specific
(SYBR®Gold) and specific (Angler® primer-probe) amplification
products.

t3:17 Probes
t3:18 Hydrolysis probes
t3:19 TaqMan [44] 5′R—Q3′ In solution, the fluorescent signal is quenched due to the fact that the two

fluorophores of the probe are in close proximity.
In the extension phase, the bound hydrolysis probe is degraded by the 5′-3′-
exonuclease activity of DNA polymerase, generating fluorescence from the
reporter.
Extension phasea

Easy design and synthesis of the probe.
t3:20 TaqMan-MGB [88] 5′R—Q3′-MGB Easy design and synthesis of the probe. The presence of MGB increases

the DNA specificity of the probe, allowing the use of short
oligonucleotides

t3:21 Snake assay [72] Forward Snake primer
5′ Flap sequence———3′
+ Hydrolysis probe

In this system, target amplification and the detection of fluorescence are two
processes separated in time and space.
The hydrolysis of the probe leads to fluorescence emission.
The Snake assay needs an asymmetric PCR format (reverse N forward primer),
since one of the strands is preferentially amplified (sense amplicon).
Extension phasea

Specialized software is required for designing the 5′-flap sequences of the
Snake primers.
This system favors the use of short probes, which reduces fluorescence
background. The cost-effectiveness ratio of this type of assay is lower
than that of TaqMan systems.
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t3:22 Hybridization probes
t3:23 Hyprobe o FRET [75,77] 5′—R3′ + 5′Q—3′-Ph During hybridization, the binding of the probe to the target sequence brings the

fluorophores into close proximity, producing energy transfer by FRET.
Annealing phasea

This system allows melting curve analysis to be performed.
The designing and synthesis of the probes, as well as, the optimization of
PCR reaction is quick and easy.

t3:24 Molecular Beacon probes [45] 5′RΩQ3′ During the annealing phase, the Beacon probe unfolds and binds to the target DNA
sequence, leading to fluorescence emission.
Annealing phasea

The system allows Q3performing a melting curve analysis.
The binding specificity of these probes is higher than that of hairpin
probes. Their use allows d Q4iscriminating between sequences which differ
in a single nucleotide.

t3:25 HyBeacon™ [84] 5′—FlUb—————3′Ph The amount of fluorescence emitted from hybridized HyBeacons is considerably
greater than that of ss-probes, permitting the detection of target sequences.
Extension phasea

This system allows Q5performing a melting curve analysis.

t3:26 MGB Probes
t3:27 MGB-Pleiades [89] MGB-5′R—Q3′ The probe is straightened out when binding to the target, leading to fluorescence

emission.
Annealing phasea

This system allows melting curve analysis to be performed.
The MGB-probe forms a highly stable duplex, increasing the DNA
specificity of the probe.
The presence of a non-fluorescent quencher (NFQ) greatly reduces
background fluorescence.

t3:28 MGB-Eclipse [90] MGB-5′Q—R3′

t3:29 ResonSense® [62] 5′Cy5.5———3′Ph
Acceptor moiety (Cy5.5)

SYBR® Gold DNA intercalating dye is employed as the donor fluorescent moiety.
During the PCR reaction, the binding of the probe to the target and the
simultaneous intercalation of SYBR®Gold results in energy transfer by FRET.
Annealing phasea

This system allows melting curve analysis to be performed.
Its use in qPCR assay is cost effective.

t3:30 Yin-Yang [107] 5′R———————————3′
Ph
3′Q————5′

During the annealing phase, the shorter strand is displaced by the target, leading to
fluorescence emission.
Annealing phasea

This system allows melting curve analysis to be performed.
Its binding to the target is highly specific and the design is much easier
than that of dual-dye labeled probes.

t3:31 Analogues of nucleic acids
t3:32 PNAs [113] PNA + either

intercalating dye, primer-
probes or probes

The mechanism of action of primer-probes or probes in which PNA/LNA have been
introduced is identical to that of the conventional oligonucleotides.

PNA containing probes are more resistant to nucleases and proteases and
can interact with DNA at lower salt concentrations than standard probes/
primer-probes.

t3:33 LNAs [142] LNA are inserted in
primer-probes or probes

LNA containing probes are resistant to degradation by nucleases.
LNA molecules increase the DNA specificity of the probe.

t3:34 ZNAs [119,120] ZNA™ are inserted in
primer-probes or probes

ZNAs are cationic moieties and are able to increase the affinity of primers or probes
for their targets by decreasing the electrostatic repulsion between the two nucleic
acids.
Hybridization occurs when the ZNA™ oligonucleotide meets its complementary
sequence.

ZNA containing oligonucleotides exhibit an exceptionally high affinity for
their target DNA sequences.

t3:35 Plexor primers [121] Only one primer labeled
5′R-idCTP————————3′
Add into reaction mix:
Q-idGTP

Fluorescence emission is produced when they are in solution.
The incorporation of Iso-dG into DNA brings the quencher and reporter into close
proximity, producing quenching of the initial fluorescent signal.
Extension phasea

This system allows melting curve analysis to be performed.
These primers are easy to design.

t3:36 Tiny-Molecular Beacon probes
t3:37 [167]

Molecular Beacon probe
synthesized from 2′-O-
methyl RNA/LNA chimeric
nucleic acids

They display the same mode of action as Molecular Beacon probes.
Annealing phasea

These probes are very resistant to nucleases, remain stable within a
cellular environment and have a high affinity and specificity for RNA
sequences.

t3:38 ds: double stranded; 5′: 5′end;Ω:Hairpin probe;R: reporter; 3′: 3′-end;Q: quencher;HEG:HEG (hexathylene glycol) blocker PCR; LUX: Light Upon Extension; FRET: Fluorescence Resonance Energy Transfer; Cy5:Acceptormoiety (Cy5);MGB:Minor
t3:39 Groove Binders; Tm:melting temperature; FlUb: fluorophore-labeled uracil base; Ph: phosphate group; Cy5.5: Acceptor moiety (Cy5.5); PNAs: Peptide Nucleic Acids; ss: single stranded; NAs: Nucleic Acids; LNAs: Locked Nucleic Acids; ZNAs: Zip
t3:40 Nucleic Acids; idCTP: non-natural nucleotide; idGTP: non-natural nucleotide; MB: Molecular Beacon.
t3:41 a qPCR phase in which the fluorescence is measured.
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target DNA sequence) and a shortmodified oligo attached through 5′–5′
ends, which binds to six-eight nucleotides at the 3′-end of the primer-
probe forming a cyclic structure with two 3′-ends [61] (Fig. 1D).
Cyclicons have a reporter at the free 3′-end of the modified oligo and
a quencher placed on a thymine base at the 5′-position in the primer-
probe sequence [60].

2.2.1.2.2. Mechanism of action. In the absence of the target sequence,
reporter and quencher molecules are in close proximity and energy
transfer occurs via FRET-quenching (Fig. 1D). The binding of Cyclicon
probes to DNA opens up the cyclic structure and leads to extension of
the 3′-end primer-probe by DNA polymerase without any interference
from the quencher. The 3′-end of the modified oligo is not extendible
since it does not bind to the target DNAand because its 3′-end is blocked
by a reporter. The separation between donor and acceptor molecules
results in emission offluorescence,which ismeasured during the exten-
sion phase [60].

2.2.1.2.3. Advantages. The integrated primer-probe structure of
cyclicons is an important benefit for DNA detection in qPCR systems. It
allows the use of shorter oligonucleotides, reducing the costs of the
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assay, simplifies the reaction set up and avoids unnecessary carry-over
contaminations (Kandimalla and Agrawal, 2000) [60]. On the other
hand, the linkage between the long primer-probe and the short oligo
can also be through their 3′–3′-ends. In this case, Cyclicons would func-
tion as probes similar to TaqMan probes [44] and Molecular Beacons
[45] (see Section 2.2.2 Probes). Interestingly, it has been reported that
Cyclicons with a 5′–5′-attached structure give less fluorescence back-
ground in reactions with polymerases devoid of nuclease activity [60].

2.2.1.2.4. Applications. They can be used in single andmultiplex qPCR
for pathogen detection, viral/bacterial load quantitation, genotyping,
allelic discrimination, mutation detection and SNP detection. Cyclicons
can also be directly fixed to solid supports on chips for high-throughput
screening in solid-phase PCR [60].

2.2.1.3. Angler® primer-probes
2.2.1.3.1. Structure. Described in 2002 by Lee et al. [62]. The probe

component is a DNA sequence identical to that of the target, which is
bound to a reverse primer through a hex-ethylene glycol (HEG) linker
[63]. It has an acceptor fluorescent moiety at its 5′-end. SYBR® Gold
E
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D
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DNA intercalating dye is employed in the assay as the donor fluorescent
moiety [62] (Fig. 1E).

2.2.1.3.2. Mechanism of action. In solution, the primer-probe does not
emit fluorescence since there is no donor fluorescent moiety close
enough for FRET. When the Angler® primer-probe binds to its target
DNA during the annealing step, DNA polymerase starts the extension
of the 3′-end reverse primer. Subsequently, during the denaturation
phase, the specific sequence of the probe binds to the complementary
region of newly amplified DNA, producing a dsDNA fragment in which
SYBR®Gold dye can be intercalated to generate fluorescence [39,64,
65]. Hence, the emitted fluorescence is measured during the denatur-
ation step in each cycle.

2.2.1.3.3. Advantages. The combination of a dsDNA intercalating
agent and a primer-probe in qPCR allows non-specific (SYBR® Gold)
and specific (Angler® primer-probe) amplified products to be distin-
guished without performing melting curves. In the PCR instrument,
the 520 channel of the optical detector is used to detect the fluorescent
signal from non-specific intercalation of the SYBR® Gold dye while the
705 nm channel recognizes the signal generated by the specific binding
of the Angler® primer-probe. This faster system offers better cost effec-
tiveness than other methods [62].

2.2.1.3.4. Applications. They can be used in single or multiplex
formats for rapid detection of DNA, in studies of gene expression, allelic
discrimination, genotyping, SNP detection, identification and quantita-
tion of infectious organisms, and screening of environmental and
biological samples.

2.2.2. Probes
The probes are oligonucleotides with an attached-donor and/or

-acceptor fluorophore. There are two types: hydrolysis and hybridiza-
tion probes.

2.2.2.1. Hydrolysis probes. Their mechanism of action relies on the 5′–3′
exonuclease activity of Taq polymerase, which degrades the bound
probe during amplification. This also prevents performing a melting
curve analysis. In this system, the fluorescence is measured at the end
of the extension phase and is proportional to the amount of amplified
specific product [66].

2.2.2.1.1. TaqMan probes
2.2.2.1.1.1. Structure. Described in 1991 by Holland et al. [44]. These
probes are oligonucleotides containing a donor fluorescent moiety
at the 5′-end and an acceptor fluorescent moiety at the 3′-end that
quenches the fluorescence emitted from the donor molecule due to
their close proximity [67]. The hydrolysis probe is designed to bind to
a specific region of the target DNA [44] (Fig. 2A).
2.2.2.1.1.2. Mechanism of action. In solution, the fluorescent signal from
the donor fluorophore is suppressed by the acceptor fluorophore,
although a residual fluorescence can be detected [68]. During the
extension phase, the bound hydrolysis probe is degraded by the 5′–3′-
exonuclease activity of DNA polymerase, generating fluorescence
from the donor [67,69]. This process is repeated in each cycle without
interfering with the exponential synthesis of the PCR products [67].
2.2.2.1.1.3. Advantages. The design and synthesis of TaqMan probes are
easy but if they are not well designed, primer-dimers might be formed
during qPCR assay.
2.2.2.1.1.4. Applications. They can beused in single andmultiplex formats
for virus detection [70], viral/bacterial load quantitation, gene expres-
sion, microarray validation, allelic discrimination, mutation detection
[71], SNP detection and GMO detection [27].

2.2.2.1.2. MGB-TaqMan probes.Minor Groove Binding-TaqMan probes
are described in: MGB-conjugated DNA probes (see Section 2.2.2.2.4).

2.2.2.1.3. Snake assays
2.2.2.1.3.1. Structure. This assay, described in 2010 by Kutyavin et al.
[72], combines Snake primers and TaqMan probes in order to amplify
DNA regions with a high percentage of secondary structures [72]
(Fig. 2B).
Please cite this article as: Navarro E, et al, Real-time PCR detection chemist
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2.2.2.1.3.2. Mechanism of action. Given that snake assays employ hydro-
lysis probes, the fluorescence signals are generated by the 5′-nuclease
activity of DNA polymerase over the probe [73]. In this system, target
DNA amplification and detection of fluorescence are two processes sep-
arated in time and space [72]. Fig. 2B illustrates themechanismof Snake
systems [72]. A forward primer containing a 5′-flap sequence binds to
the target DNA sequence site located downstream from the primer
binding site. Extension of this primer results in the synthesis of an anti-
sense strand, which provides a double stranded amplicon (stage A).
After strand separation (95 °C), a reverse primer hybridizes to the
antisense strand and DNA polymerase extends the complex (stage B),
resulting in another double stranded amplicon. Since the 5′-flap of
the forward primer functions as a template for DNA synthesis, a comple-
mentary sequence appears at the 3′-end of the sense amplicon strand
(stage C, linear form). After another round of strand separation, the
sense amplicon (synthesized in stage B) folds into a secondary structure
in which the 3′-terminal nucleotide remains mismatched (stage C,
folded form). The hydrolysis probe binds to the sense strand of the
amplicon creating an optimal cleavage structure for 5′-nuclease
(stageD). Then, this structure is subsequently cleaved in stage E, releasing
a detectable fluorescent signal, stage E [72].

The Snake assay needs an asymmetric PCR format (reverse N forward
primer) because one DNA strand is preferentially amplified (sense
amplicon) [72,73].

Fig. 2B also shows an alternative pathway which could be taken by
the sense amplicon during the PCR assay [72]. Briefly, there is a small
fraction of linear form (C) amplicon that might be accessible to a for-
ward 5′-flapprimer (stage F). In this context, the strandDNA replication
would be accomplished through a passive hybridization (pathway
C→ F). In addition, the active hybridization of the forward Snakeprimer
in stage Gmight be followed by a strand displacement in stage H,which
substantially accelerates the replication process [73].
2.2.2.1.3.3. Advantages. The Snake assay favors the use of short probes
with reduced fluorescence background [72]. Thus, the cost-effectiveness
ratio of such assays is less than that of TaqMan systems. However, special-
ized software is required for the primer design since the length and base
composition of the 5′-flap sequences in Snake primers determine the
stability of the secondary structures in the folded PCR amplicons [73].
2.2.2.1.3.4. Applications. The assays can be used in single and multiplex
formats for pathogen detection, viral/bacterial load quantitation, gene
expression, microarray validation, allelic discrimination, mutation
detection and SNP detection [72].

2.2.2.2. Hybridization probes. The fluorescence emitted by binding
hybridization probes can be measured either during the annealing or
the extensionphase. The use of these probes allows amplified fragments
to be analyzed by performing melting curves, this being the main
advantage over hydrolysis probes. The amount of fluorescent signal
detected is directly proportional to the amount of the target amplified
during the qPCR reaction [66].

2.2.2.2.1. Hybprobes or FRET probes
2.2.2.2.1.1. Structure. Hybprobes, also known as FRET probes, were first
described in 1985 by Heller and Morrison [74]. This system consists of
a pair of oligonucleotides binding to adjacent target DNA sequences
[75]. The first probe carries a reporter fluorophore at its 3′-end and
the second probe contains a quencher at its 5′-end and a phosphate
group attached to its 3′-end to prevent DNA amplification [39,75]
(Fig. 3A).
2.2.2.2.1.2. Mechanism of action. The sequences of the probes are designed
to hybridize to the target DNA sequences in a head-to-tail orientation so
that the two fluorophores are in close proximity [76,77]. During the an-
nealing phase, in which the probes are adjacently bound, the quencher
emits fluorescence due to the fact that it has been previously excited by
the energy released from the reporter [78] (Fig. 3A).
2.2.2.2.1.3. Advantages. It has been reported that the design and synthesis
of these probes aswell as the optimization of the PCR reaction conditions
ry, Clin Chim Acta (2014), http://dx.doi.org/10.1016/j.cca.2014.10.017

http://dx.doi.org/10.1016/j.cca.2014.10.017


R
E
C
T
E
D
 P

R
O

O
F

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

A 
5´

Taq DNA polimerase3´

Forward 
Snake primer

3´

5´

Sense strand

5´ Antisense amplicon B 3´

3´ 5´

3´
5´

Sense amplicon

Linear form
C C

Folded form

3´

5´

5´

D

E

Reporter Quencher

R
Q

Hydrolysis 
probe

Optimal cleavage structure

5´

F

Passive 
hybridization

PCR

Snake primer
5´
3´

5´

Forward Snake 
primer

3´
3´

5´ Active 
hybridization

G

3´
3´

5´

H

Strand 
displacement

Sense amplicon

Snake assay

A

B

Reporter Quencher

5´ 3´

Reporter

Quencher

Taq DNA polimerase Amplified target DNA
TaqMan probe

Fig. 2. Structure and mechanism of action of hydrolysis probes. TaqMan probe (A) and scheme of Snake system (B).

8 E. Navarro et al. / Clinica Chimica Acta xxx (2014) xxx–xxx
U
N
C
O

Ris quick and easy (http://www.fluoresentric.com/documents/HybProbe.
pdf).
2.2.2.2.1.4. Applications. They can be used in the multiplex format for
pathogen detection [79,80], viral/bacterial load quantitation,microarray
validation, genotyping [81], allelic discrimination, mutation detection
and SNP detection.

2.2.2.2.2. Hairpin probes: Molecular Beacon Probes
2.2.2.2.2.1. Structure. Molecular beacons were first described by Tyagi
and Kramer [45]. They are single stranded hairpin shaped oligonucleo-
tide probes divided into four parts: (i) a loop, a fragment of 18–30 bp
complementary to the target DNA sequence; (ii) a stem, which is
formed by two complementary sequences of 5–7 bp located at each
end of the probe; (iii) a fluorescent reporter attached to the 5′-end
and (iv) a non-fluorescent quencher attached to the 3′-end, which ab-
sorbs the emitted fluorescence from the reporter when the Molecular
Beacon probe is in closed form [82] (Fig. 3B).
2.2.2.2.2.2. Mechanism of action. During the annealing phase, this probe
unfolds and binds to the target, emitting fluorescence since the reporter
is not quenched any longer. This fluorescent signal is proportional to the
amount of amplified PCR product. If the Molecular Beacon probe and
target DNA sequences are not perfectly complementary, there will be
no emission of fluorescence because the hairpin structure prevails
over the hybridization [82].
Please cite this article as: Navarro E, et al, Real-time PCR detection chemist
2.2.2.2.2.3. Advantages. The binding specificity of Molecular Beacon
probes is higher than that of fluorescent oligonucleotides because they
are able to form a hairpin stem. Hence, the use of such probes allows
discrimination between target DNA sequences which differ in a single
nucleotide [82]. However, employingMolecular Beacon probes requires
a thermodynamic study to ensure that the binding energy of the loop-
target is more stable than that of hairpin formation.
2.2.2.2.2.4. Applications. They can be used in single andmultiplex formats
for pathogen detection, viral/bacterial load quantitation, genotyping,
allelic discrimination, mutation detection [83], SNP detection, mRNA
analysis in living cells and GMO detection [27].

2.2.2.2.3. Hybridization Beacon probes or HyBeacon™ probes
2.2.2.2.3.1. Structure. HyBeacon™ probes, described by French et al. [84],
consist of ss-oligonucleotide sequences containing fluorophore moie-
ties attached to internal nucleotides, and a 3′-end blocker (3′-phosphate
or octanediol), which prevents their PCR extension [84] (Fig. 3C).
2.2.2.2.3.2. Mechanismof action. The amount offluorescence emitted from
hybridized HyBeacons when they bind to their target is considerably
greater than the emission of ss-probes in solution [84]. The fluorescence
is measured during the extension phase.
2.2.2.2.3.3. Advantages. This system allows melting curve analysis to be
carried out to address the specificity of the amplified product and the
efficiency of the reaction. Other benefits displayed by the HyBeacon
ry, Clin Chim Acta (2014), http://dx.doi.org/10.1016/j.cca.2014.10.017
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technology derive from their simple mode of action, ease of design and
relatively inexpensive synthesis [84].
2.2.2.2.3.4. Applications. They can be used in single and multiplex analy-
sis sequence for detection, DNA quantification, genotyping [85], SNP
detection [86] and allelic discrimination [87].

2.2.2.2.4. MGB-conjugated DNA probes. In the last years, several types
of probes including TaqMan [88], Pleiades [89] and Eclipse [90] have
been attached through their 3′ or 5′ ends to Minor groove binding
(MGB) ligands in order to improve target DNA-binding specificity and
sensitivity.
2.2.2.2.4.1. Structure. MGB ligands are small molecule tripeptides,
including dihydrocyclopyrroloindole tripeptide (DIP) or 1, 2-dihydro-
(3H)-pyrrolo [3.2-e] indole-7-carboxylate (CDPI) that form a non-
covalent union with the minor groove of dsDNA [91–94]. This type of
ligand selectively binds to AT-rich sequences, favoring the inclusion of
aromatic rings by van der Waals and electrostatic interactions. This
interaction produces very minimal distortion in the phosphodiester
backbone but greatly stabilizes the DNA structure [92,95]. Some
features of these MGB-probes are listed in Table 2.
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2.2.2.2.4.2. Mechanism of action. As shown in Fig. 4, FRET-quenching
occurs when the random coiling form of the probe brings the non-
fluorescent quencher and the fluorophore reporter together. The
probe is straightened outwhen it binds to its target, causing an increase
in the fluorescent signal [90].
2.2.2.2.4.3. Advantages. The highly stable interaction between the
MGB-probe and the target increases the Tm of the probe [96] and pre-
vents the amplification of non-specific products [88]. Moreover, the
use of a non-fluorescent or dark quencher (NFQ) in the MGB-probe
greatly reduces the background fluorescence. This method enables
the use of shorter probes capable of detecting short conserved geno-
mic sequences. In addition, post-amplification melt-curve analysis
can be performed when MGB-Pleiades and MGB-Eclipse probes are
used.
2.2.2.2.4.4. Applications. They can be used in single andmultiplex formats
for pathogen detection [97,98], viral/bacterial load quantitation [99,
100], gene expression, microarray validation, allelic discrimination, mu-
tation detection [101], SNP detection [72,102], GMO detection [27] and
forensic analysis [103].
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t1:3 MGB-probes Reporter NFQa MGB Probe type Log fluorescence

t1:4 MGB-TaqMan 5′ end 3′ end 3′ end Hydrolysis Extension phase
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t1:7 MGB: Minor Groove Binding.
t1:8 a NFQ: non-fluorescent quencher.
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2.2.2.2.5. ResonSense® probes
2.2.2.2.5.1. Structure. ResonSense® probes and Angler® primer-probes
have similar features. These probes, described by Lee et al. in 2002
[62], have a Cy5.5 fluorescent-Fluor at the 5′-end as an acceptor fluores-
cent moiety and a phosphate group at the 3′-end to prevent DNA
polymeration. The real-time PCR reaction also contains the binding
dye SYBR®Gold as fluorescence donor, which intercalates into the
DNA duplex formed by the probe and its target [62,104] (Fig. 5A).
2.2.2.2.5.2. Mechanism of action. In solution, fluorescence is not emitted
from the probe due to the absence of a fluorescent donor close enough
to the acceptor. During the annealing phase, energy transfer by FRET is
produced as a result of simultaneous binding of the probe to the target
and intercalation of the DNA dye into the probe-target duplex [39,64,
65]. The fluorescence signal is proportional to the concentration of
target DNA sequences.
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Fig. 4. Structure andmechanism of action of hybridization probes:MGB-probes. (A)MGB-
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2.2.2.2.5.3. Advantages. The use of a DNA binding dye and a probe in the
same reaction allows the signal coming from both non-specific and spe-
cific amplified products to be monitored [46]. In addition, the synthesis
of this type of probe,which contains a uniquefluor, significantly reduces
the assay costs [62].
2.2.2.2.5.4. Applications. They can be use in single and multiplex formats
for rapid detection, gene expression, allelic discrimination, genotyping
[105], SNP detection,mutation detection [106], identification and quan-
titation of infectious organisms (bacteria and viruses) and for analysis of
environmental and biological samples.

2.2.2.2.6. Yin-Yang probes or ‘displacing probes’
2.2.2.2.6.1. Structure. These double-stranded probes are composed of
two complementary oligonucleotides of different lengths. The 5′-end
of the longer positive strand is labeled with a fluorophore reporter
and blocked with a phosphate group at its 3′-end, whereas the 3′-end
of the shorter negative strand contains a fluorophore quencher [107]
(Fig. 5B).
2.2.2.2.6.2. Mechanism of action. In solution, the shorter negative oligo-
nucleotide, which acts as a competitor, forms a stable DNA duplex
with the longer probe. This interaction prevents the fluorescent
emission due to the fact that the reporter and quencher remain in
close proximity. During the annealing phase, the shorter strand is
displaced by the target leading to the emission of fluorescence. These
so-called ‘displacing probes’ were first reported in 2002 by Li et al.
[107]. In such a system, an ideal competitor must be competitive
enough to prevent non-specific hybridizations but not too much so, in
order to favor the formation of perfectly matched probe-target du-
plexes. The authors proposed that a single-stranded oligonucleotide
with the same nucleotide sequence but shorter than that of the target
would be a suitable competitor [107].
2.2.2.2.6.3. Advantages. The binding of Yin-Yang probes to the target is
highly specific and their design is much easier than that of dual-dye-
labeled probes. In addition, their synthesis is cost effective because it
only involves a single-dye modification [107].
2.2.2.2.6.4. Applications. They can be used in single andmultiplex formats
for a wide-range of applications including pathogen detection or viral/
bacterial load quantitation as well as mutations detection [108],
analysis and genotyping SNPs [109], in which discrimination single
nucleotide substitutes are required. Furthermore, the use of these
probes has been proposed for tracing mRNAs in living cells or for the
construction of biosensors and biochip detection devices [107].

2.2.3. Nucleic acid analogues
Nucleic acid analogues are compounds that are analogous (structur-

ally similar) to naturally occurringRNA andDNA. An analoguemayhave
alterations in its phosphate backbone, pentose sugar (either ribose or
deoxyribose) or nucleobases [110]. Normally, the analogues incorporate
all of the advantages of native DNA but are more stable in biological
fluids and have increased affinity for complementary nucleic acid
targets [111].

A variety of nucleic acid analogues have been described in the last
years (Fig. 6):

• 2′-O-methyl oligodeoxyribonucleotides or 2′-O-methyl RNA [112],
• Peptide Nucleic Acids (PNAs) [113],
• 2′-Fluoro N3-P5′-phosphoramidites [114],
• 1,5-anhydrohexitol nucleotides (HNAs) [115,116],
• Phosphorodiamidate Morpholino Oligomer (PMO) [117],
• Locked Nucleic Acids (LNAs) [118],
• Zip nucleic acids (ZNAs) [119,120],
• Non-natural bases: isoguanine (iG) and 5′-methylisocytosine (iC)
[121].

Some of these analogues, including PNAs, LNAs, ZNAs and non-
natural bases (iG and iC) are currently used for different real-time PCR
applications.
ry, Clin Chim Acta (2014), http://dx.doi.org/10.1016/j.cca.2014.10.017
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2.2.3.1. PNAs
2.2.3.1.1. Structure. Peptide nucleic acids were first described by

Nielsen et al. [113]. They are achiral and electrically neutral DNA ana-
logues in which the sugar-phosphate backbone has been replaced by a
peptide of N-(2-aminoethyl)-glycine units linked to the nitrogenous
bases bymetilencarbonilo [113,122]. PNA hybridizes to complementary
oligonucleotides obeying the Watson–Crick hydrogen-bonding rules
[123] (Fig. 6A).

PNAs are able to interact with either dsDNA or RNA with higher
affinity and greater specificity than conventional oligonucleotides. This
is due to its electrically neutral character, which prevents the phenom-
enon of repulsion between chains [113,124]. This binding takes place by
strand displacement rather than by triple helix formation [125]. This
nucleic acid analogue is attached to a molecule of thiazole orange or a
fluorophore for qPCR reactions [126].

2.2.3.1.2. Mechanism of action. The mechanism of primer-probes or
probes in which PNA molecules have been introduced is identical to
the method of action of conventional probes. Noteworthy, the binding
of PNAs to double-stranded DNA does not interfere with their proper-
ties as probes.

2.2.3.1.3. Advantages. PNA containing probes are more resistant to
nucleases andproteases and can interactwithDNA at lower salt concen-
tration than standard probes/ primer-probes [123,127,128].

2.2.3.1.4. Applications. Their high affinity for DNA allows such probes
to interact easily with target dsDNA sequences by strand invasion
[129–131]. It is highly recommended to employ these nucleic acid ana-
logues in order to induce DNA recombination or block PCR amplification
Please cite this article as: Navarro E, et al, Real-time PCR detection chemist
of specific genes [132]. Uniquely, allelic discrimination of single nucleo-
tide polymorphisms can be accomplished by using PNA-molecular
beacons [133]. Furthermore, they can also beused inmutationdetection
[134,135], pathogen mutation [136] and for discriminating between
DNA and cDNA sequences in prokaryotes [137].

2.2.3.2. LNA®
2.2.3.2.1. Structure. Locked Nucleic Acids, first described by Wengel

and co-workers in 1998 [118,138,139], are DNA or RNA sequences in
A conformation that contain one or more modified nucleotides [139].
Specifically, they have a methylene bridge between atoms 2′-O and
4′-C in the ribose ring to form a bicyclic ring [139] (Fig. 6B).

2.2.3.2.2. Mechanism of action. LNA containing primer-probes
or probes exhibit the same mode of action as that of conventional
primer-probes or probes.

2.2.3.2.3. Advantages. Like the PNA system, LNA probes are resistant
to degradation by nucleases [140]. LNA® nucleotides are often used in
combination with non-modified DNA/RNA nucleotides to increase the
thermal stability of the probe [141,142], resulting in a high specificity
for their target sequences [143,144]. Table 3 shows an example of the
increment in Tm values based on the number of LNA®nucleotides intro-
duced into the oligonucleotide.
2.2.3.2.3.1. Applications. LNA® nucleotides can be introduced into most
primer-probes and probes described in this review [145]. For instance,
the use of LNA-Molecular Beacon and LNA TaqMan probes has been
reported for SNP detection of Mycobacterium tuberculosis [146,147],
GMOdetection [27], determination of the presence ofHelicobacter pylori
ry, Clin Chim Acta (2014), http://dx.doi.org/10.1016/j.cca.2014.10.017
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[148], allele specific mutational analysis of KRAS and BRAF [149] as well
as quantifying hepatitis B virus DNA in serum [150].

2.2.3.3. ZNA™
2.2.3.3.1. Structure. Zip nucleic acids, developed by the Polyplus-

transfection company, are a novel type of synthetic modified oligo-
nucleotide [119,120]. The introduction of ZNA™ molecules into
oligonucleotides increases their affinity for the target by decreasing
the electrostatic repulsion between the two nucleic acids [151,152].
This is achieved by conjugating cationic moieties (Z units), such as
derivatives of spermine, to an oligonucleotide (Fig. 6D).
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A number of Z units can be placed at the 5′ or 3′-ends or in the mid-
dle of primer-probes and probes [153]. The melting temperature of
ZNA-containing oligonucleotides is linearly dependent on the number
of cationic units grafted on this structure, providing a convenient
means to fine tune hybridization temperatures [151]. The Tm and global
charge of the ZNA™ are easily predictable using a simple mathematical
relation [119,153].

2.2.3.3.2. Mechanism of action. During the annealing phase, ZNA™
oligonucleotides are attracted towards the nucleic acid strands due to
their polycationic nature, starting their scanning of DNA sequences.
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t2:1 Table 3
t2:2 Increase in Tm with oligonucleotides carrying LNA® monomers.

t2:3 Probe sequence (5′–3′) LNA® base Tmelting ΔTmelting

t2:4 dG dG dT dA dA dT dG dT dC – 29 °C –

t2:5 dG +G dT dA +A dT +G dT dC 3 44 °C 15 °C
t2:6 +G +G +T +A +A +T +G +T +C 9 64 °C 35 °C

t2:7 + symbol denotes the LNA® base.
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Next, hybridization takes place by zipping up when the ZNA™ oligonu-
cleotide meet its complementary sequence [119] (Fig. 7A).

2.2.3.3.3. Advantages. ZNA™oligonucleotides display an exceptionally
high affinity for their targets, mainly due to the presence of the Z units,
which enhance the interaction with the DNA target.

2.2.3.3.4. Applications. ZNA™ represent a potent new tool for numer-
ous nucleic-acid-based applications, including: real-time PCR, capture
probes, Northern/Southern Blotting, microarrays and in situ hybridiza-
tion. In PCR assays, these oligonucleotides can be used in single
and multiplex formats for pathogen detection [154], gene expression,
microarray validation, allelic discrimination, mutation/SNP detection,
and viral/bacterial load quantitation [155]. In particular, LNA-based
methods have been described to efficiently detect Hepatitis B virus re-
sistance to drugs in patients [156]. Interestingly, it has been reported
that the use of ZNA™ primers improves the synthesis of cDNA
from total RNA, making them the best choice for the quantification of
low-abundant transcripts [151].

2.2.3.4. Non-natural bases: Plexor™ primers. The development of organic
chemistry hasmade it possible to enlarge thenumber of standard nucle-
otides beyond those known in nature [121,157,158]. Two modified
bases, isoguanine (Iso-dG) and 5′-methylisocytosine (Iso-dC), which
generate novel base pairings, have been successfully designed to
allow protein recognition and site-specific enzymatic incorporation
[158–161].

2.2.3.4.1. Structure. Plexor™ primers, described by Sherrill et al. in
2004 [121], take advantage of the highly specific interaction between
two modified nucleotides: Iso-dG and Iso-dC. In Plexor™ reactions,
one PCR primer contains an Iso-dC residue and a fluorescent reporter
label at the 5′-end, whereas the second one is an unlabeled oligonucleo-
tide that carries standard nucleotides. In this system, Iso-dG nucleotides,
covalently coupled to a quencher, are added into the qPCR reaction [121]
(Fig. 7B).

2.2.3.4.2. Mechanism of action. During the amplification phase, the
incorporation of Iso-dG nucleotides brings the quencher and reporter
into close proximity, producing the quenching of the fluorescent signal
released from the labeled primer [121]. In this system, the decrease in
initial fluorescence is proportional to the starting amount of target
(Fig. 7B).

2.2.3.4.3. Advantages. Plexor-primer based-technology takes advan-
tage of the highly specific interaction between Iso-dG and Iso-dC. These
two modified nucleotides are not recognized either by nucleases nor
proteases.

2.2.3.4.4. Applications. Plexor™ primers can be used in single and
multiplex formats for pathogen detection [162], viral/bacterial load
quantitation, gene expression, genotyping, SNP detection [163] and
GMO detection [27].

2.2.3.5. Tiny-Molecular Beacon probes
2.2.3.5.1. Structure. Molecular Beacon probes, described by Bratu

et al. in 2011 [164], are redesigned as small hairpins and synthesized
from 2′-O-methyl RNA/LNA chimeric nucleic acid analogues [164,165].

2.2.3.5.2. Mechanism of action. They display the same mode of action
as that of Molecular Beacon probes (see Section 2.2.2.2.2).

2.2.3.5.3. Advantages. These probes have been reported to be very
resistant to nucleases and stablewithin a cellular environment. Further-
more, they have high affinity and specificity for RNA sequences, due
Please cite this article as: Navarro E, et al, Real-time PCR detection chemist
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to the incorporation of LNA into RNA oligonucleotides in the probe
structure [165].

2.2.3.5.4. Applications. The user-friendly synthesis protocol of these
probes as well as their ability to couple to a variety of fluorophores
make Tiny-Molecular Beacons the optimal technology to detect less
abundant, highly structuredmRNAs and small RNAs such asmicroRNAs,
small nucleolar RNAs and nuclear RNAs. Recently, this technology has
also been used to visualize native mRNAs in living cells [164,165].

3. Primer and probe design

The design of primers and probes is a very important requirement
for most applications of qPCR [166]. The choice of specificity, length,
GC content, 3′ end stability, sequence complexity, melting temperature,
and location in the target sequence of the primers determines amplicon
length, melting temperature and amplification efficiency [166,111]. The
choice of chemistry and probe design are a very personal matter and
there are, as always, numerous options that need to be considered
prior to sitting down and designing the probes [111]. We should con-
sider, (i) if we want to quantity DNA, profile mRNA or perform allelic
discrimination assays; (ii) which chemistry is most appropriate for
our experiment; (iii) if we wish to detect DNA, RNA or both; (iv) if it
is necessary to distinguish between closely related sequences, e.g., to
detect and quantify a determined pathogen that belongs to a family
with several species; (v) which fluorescent reporter/ quencher combi-
nations should be used; (vi) if our probe should contain DNA analogues,
MGB factors or any other modifications; and finally (vii) if the assay is
multiplex [111].

Nowadays, numerous in silico tools have been developed to guide
the design of qPCR assays and analyze any resulting quantitative data
[167]. Many tools are freely available online, while others are bundled
with qPCR instruments or available from various software houses
[167]. Some in silico tools are Primer3 [168,169], FastPCR software
[170,171], Java web tools [172], PerlPrimer [173], IDTSciTools [174],
UniPrime [175], and Primer-BLAST [176]; in addition, it is important to
analyze the secondary structure of primers using an additional software
program like mFold (http://www.idtdna.com/Scitools/Applications/
mFold/). MPprimer is a program for multiplex PCR primer design
[177]. This program employs the program Primer3 [168] for the primer
design and the program MFEprimer for assessing primer specificity
[178]. Recently, several authors have presented detailed descriptions,
step by step, of a qPCR assay design [167,179]. The MIQE guidelines
also provide clear guidance on the steps that are important for assay
design [180,181].

Several research companies offer useful guidelines on their websites
for designing primers and probes:

- Qiagen's website: “Critical factors for successful real-time PCR”
(http://www.qiagen.com/resources/resourcedetail?id=f7efb4f4-
fbcf-4b25-9315-c4702414e8d6&lang=en).

- Cepheid's website http://www.cepheid.com/us/component/
phocadownload/…/2-support?…). “Designing Real-Time Assays”
(SmartNote 6.1), “Optimizing and Analysing Real-Time Assays”
(SmartNote 6.2), “Dye-Quencher Considerations” (SmartNote 6.3)
and “Guidelines for the “Advance to Next Stage”” (SmartNote 6.5)
on the SmartCycler® II System.

- Applied Biosystems' website: “Getting started guide: Designing
primers and probes for quantification assays and allelic discrim-
ination” (http://www3.appliedbiosystems.com/cms/groups/
mcb_support/documents/generaldocuments/cms_041902.pdf),
Designing MGB-TaqMan® probes design for allelic discrimina-
tion (http://www3.appliedbiosystems.com/cms/groups/mcb_
support/documents/general documents/cms_042997.pdf) or
Designing MGB-TaqMan® probe and primers sets for gene expres-
sion (http://www6.appliedbiosystems.com/support/tutorials/pdf/
taqman_mgb_primersprobes_for_gene_expression.pdf).
ry, Clin Chim Acta (2014), http://dx.doi.org/10.1016/j.cca.2014.10.017
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- Roche Applied Science's website: “Designing Primers and Probes”
(https://www.roche-applied-science.com/wcsstore/RASCatalog
AssetStore/Articles/Fast_and_Convenient_Primer_Probe_Design_
for_Multiplex_Assays_with_the_LightCycler_Probe_Design_
Software%202.0.pdf)

- Invitrogen has developed the software called LUX™ Designer
(http://tools.lifetechnologies.com/content/sfs/manuals/luxprimers_
man.pdf) for designing LUX™ primer-probes.

It is noteworthy that, for DNA analysis of higher organisms, primers
and probes should be designed to avoid complex regions contained in
their genomes, such as repeat elements (LINEs, SINEs, alu), pseudogenes,
and large duplications.
U
N
C
O

R
R
E
C
T

--
--
- --

---+
+
+
+

z
z

z
--

-
-

-
-

ZNATM

Cationic unit

Oligonucleotide

ZNATM

dsDNA

ZNATM

Ta
se

Reporter 5´

idCTP

PlexorTM pri

Reporter
5´

idCTP

Reporter
5´

idCTP

Quencher
idGTP

A

B

z
+
+
+

z

z

Fig. 7.Mode of action of nucleic acid analog

Please cite this article as: Navarro E, et al, Real-time PCR detection chemist
4. Real-time PCR instruments

qPCR instruments basically consist of a thermal cycler with an
integrated excitation light source, a fluorescence detection system and
software, which performs the quantitative analysis of the detected fluo-
rescence during the assay. These instruments are able to simultaneously
detect different wavelengths [4].

There are three basic devices: lamps, light emitting diodes (LED) and
lasers, which emit excitation energy. The lamps are instruments of the
emission spectrum, while LEDs and lasers are more restricted. These
devices containing lamps (usually tungsten halogen or quartz tungsten
halogen) include filters to limit excess excitation. Some examples
are the ABIPrism 7000 from Applied Biosystems, the MX4000 and
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Mx3000P fromStratagene, and the iCycler iQ Bio-Rad. The LED system is
represented by the Roche LightCycler, the Cepheid SmartCycler, the
Corbett Rotor-Gene and DNA Engine Opticon 2 from MJ Research. The
ABI Prism 7900HT is the only device using a laser that excites in the
range of 350–750 nm (Valasek and Repa, 2005) [4].

The number of channels available for readingfluorescence is also im-
portant in qPCR experiments, given that it allows researchers to identify
different targets in the same reaction (Multiplex PCR) and the presence
of PCR inhibitors (Costa J, 2004) [8].

To record data, the energy emitted at discrete wavelengths by
fluorophores is monitored in detectors, including chambers loaded
with coupled devices, photomultiplier tubes or other photodetectors.
Generally, filters or channels are used to detect short wavelength
ranges.

On the one hand, a common and unaccounted for source of error in
qPCR data is the PCR instrument itself. PCR instruments are subjected to
vast and sudden changes in temperature (cycles of expansion and con-
traction), leading tomaterial fatigue. Thus, the devicemust be in perfect
operating condition to guarantee temperature homogeneity for every
well position [182–184]. So, there is a dispute aboutwhether the PCR ef-
ficiency is constant [185], which has led to the development of different
methods to analyze amplification curves. For example, Ruijter et al. have
evaluated the bias, resolution and precision as well as implications of
qPCR curve analysis methods for reliable biomarker discovery [185].

The instrumentation of qPCR is not complete without hardware and
software for data analysis. The software simplifies analysis of the data
and presents the results in graphs. In particular, amplification curves
allow one to quantify the starting DNA, whereas dissociation curves
show the purity of the final DNA product.

The first qPCR thermocycler, the ABI 7700, was produced and
marketed by Applied Biosystems in 1996 [3]. At present, large companies
(Applied Biosystems, Roche, Stratagene, Cepheid, Corbett, Eppendorf
and BioRad) are offering different models of qPCR platforms. Logan and
Edwards have accurately described the device features of numerous
brands of PCR apparatus, including company, model, laser/lamp, detec-
tor, thermocycling, filters/detection channels, format (96-well plates,
0.2 ml tubes, 8-strips tubes among others), time (40 cycles), reaction
volume, fluorescence chemistry, supports multiplexing, passive refer-
ence, dimensions (H × W × D), weight and also software for primer
and probes design [6,186].
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Currently, a lack of consensus exists on how best to perform and
interpret qPCR experiments. The problem is exacerbated by the lack of
information that characterizes most reports of studies that have used
this technology, with many publications not providing sufficient exper-
imental detail to permit the reader to critically evaluate the quality of
the results presented or to repeat the experiments [180], which makes
it very difficult to compare results between several studies.

To promote consistency between laboratories, increase experimen-
tal transparency, and ensure the integrity of the scientific literature,
guidelines for the Minimum Information required for the publication
of qPCR Experiments (MIQE) were formulated by Bustin et al. in 2009
[180,181]. MIQE is a set of guidelines that describe the minimum infor-
mation necessary for evaluating qPCR experiments [187], which are sep-
arated into nine major components (Experimental design, Sample,
Nucleic acid extraction, Reverse transcription, qPCR target information,
qPCRoligonucleotides, qPCRprotocol, qPCRvalidation andData analysis)
that contain detailed information on pre- and post-assay parameters as
well as comprehensive documentation of the experimental protocol
[180].

Byproviding all relevant experimental conditions andassay character-
istics, reviewers can assess the validity of the protocols used; in addition,
it can enable other investigators to reproduce the results [180]. MIQE
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details should be published either in abbreviated form or as an online
supplement [180,188].

Today, the rationale underlying the MIQE guidelines has become
widely accepted [180] and used [189–193], with more than 2200 cita-
tions by March 2014 and editorials in Nature and related publications
acknowledging the enormity of the problem [187]. However, it will be
some time before the many contradictions apparent in every area of
the life sciences are corrected [187].

6. Concluding remarks

The aim of the current review is to bring together, classify and
display available information and knowledge published on detection
chemistries for qPCR in the last years, approaching PCR-based DNA
analysis in a comprehensive way. Although several authors have also
described this information previously [194–198], this review offers a
useful classification aswell as a detailed description of all such detection
methods. They have been classified into two groups based on the fluo-
rescent agent used and the specificity of PCR detection: dsDNA interca-
lating agents and fluorophores attached to oligonucleotides. The latter
have been further divided into three subgroups according to the type
of fluorescent molecules added to the reaction: primer-probes, probes
and analogues of nucleic acids. In addition to their structure and mech-
anism of action, advantages and applications of each DNA detection
method are described in this review.

Several novel methods for DNA detection in real-time PCR have
recently been described, but the tendency in this field has been to intro-
duce new molecules such as MGB ligands or to combine distinct PCR
systems in order to improve target DNA-binding specificity and sensi-
tivity. As shown in the paper, the incorporation of MGB ligands
increases the melting curve of the primer/probe in order to enhance
its specificity of interaction with the target DNA sequence. This makes
MGB probes quite attractive for use in SNP detection and allelic discrim-
ination. Interestingly, combinations of dsDNA intercalating agents
(SYBR® Gold) with fluorescent primer-probes (Angler®) or fluorescent
probes (ResonSense®) in the same real-time PCR reaction are rapidly
becoming popular within studies to detect non-specific and specific
amplified products. On the other hand, nucleic acid analogues (PNA,
LNA, ZNAs) exhibit very high affinity and excellent DNA and RNA bind-
ing specificity. Furthermore, primers and probes containing modified
nucleotides display novel attractive features, such as resistance to the
action of nucleases or proteases and to changes in pH or ionic strength.

When we design a qPCR assay, it must take into account the MIQE
guidelines [180] for correct design, implementation and publication of
our study. Therefore, this study will provide sufficient experimental
detail to permit the reader to critically evaluate the quality of the results
presented or to repeat such experiments [180]. Since 2009,when Bustin
described the MIQE guidelines, many authors have applied these MIQE
guidelines [180] in their qPCR assays [189–193]. In addition, new arti-
cles have been published on how to improve the design, qPCR protocol,
qPCR validation and data analysis of qPCR assays. For example, Tuomi
et al. observed a bias in the threshold cycle (Ct) or quantification cycle
(Cq) with hydrolysis probes that can be corrected with the estimated
PCR efficiency value [199], and Ruijter et al. evaluated this bias in differ-
ent chemistries (DNA-binding dyes, hybridization probes, hydrolysis
probes, LUX primers, hairpin primers and the QZyme system) and
have described how it requires a correction of the observed Cq [200]. Al-
though it will be some time before themany contradictions apparent in
every area of the life sciences are corrected [187], we must be aware
that adherence to the MIQE guidelines by the scientific community
is vital, because basic studies may be reversed in subsequent clinical
studies. Also, it is useless to simply publish studies if they cannot be
compared due to not having followed the MIQE guidelines.

The experience of our group on the use of real-time PCR is focused
on molecular diagnosis of human brucellosis. We developed a Taqman
probe-PCR method to detect and quantify Brucella melitensis DNA in
ry, Clin Chim Acta (2014), http://dx.doi.org/10.1016/j.cca.2014.10.017
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the blood and serum of patients with acute brucellosis [201]. Despite
this PCR assay being highly reproducible, sensitive and specific in
acute patients, it failed to detect and quantifyB. melitensisDNA in chron-
ic patients [202]. This failure is likely due to lower DNA concentrations
in blood and sera from chronic patients. At present time, we are testing
other probes (TaqMan-MGB, probeswith PNAs, LNA®, ZNA™ and Plexor
primers™) in order to increase the detection efficiency of Brucella DNA
in such patients, which will extremely be useful for setting up a new
qPCR-based diagnostic tool for chronic brucellosis.

Thus, given our prior knowledge of such technology and that reported
by other authors [27,72], we highly recommend prior evaluation, includ-
ing determinations of sensitivity, cost-effectiveness and simplicity of
probe-design, of different PCR chemistries and conditions to determine
the most appropriate qPCR assay for a particular scientific/clinical appli-
cation, as well as to follow the MIQE guidelines [180,181] for each qPCR
assay.
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