**RESEARCH ARTICLE** 



### Multi-gene panel testing improves diagnosis and management of patients with hereditary anemias

Roberta Russo<sup>1,2</sup> | Immacolata Andolfo<sup>1,2</sup> | Francesco Manna<sup>1,2</sup> | Antonella Gambale<sup>1,2</sup> | Roberta Marra<sup>1,2</sup> | Barbara Eleni Rosato<sup>1,2</sup> | Paola Caforio<sup>1,2</sup> | Valeria Pinto<sup>3</sup> | Piero Pignataro<sup>2</sup> | Kottayam Radhakrishnan<sup>4,5</sup> | Sule Unal<sup>6</sup> | Giovanna Tomaiuolo<sup>7</sup> | Gian Luca Forni<sup>3</sup> | Achille Iolascon<sup>1,2</sup>

<sup>1</sup>Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy; <sup>2</sup>CEINGE Biotecnologie Avanzate, Napoli, Italy; <sup>3</sup>Centro della Microcitemia e Anemie Congenite, Ospedale Galliera, Genova, Italy; <sup>4</sup>Paediatric Haematology/Oncology, Children's Cancer Centre, Monash Children's Hospital, Melbourne, Victoria 3168, Australia; <sup>5</sup>Department of Haematology, Monash Medical Centre, Melbourne, Victoria 3168, Australia; <sup>6</sup>Division of Pediatric Hematology, Hacettepe University, Ankara, Turkey; <sup>7</sup>Dipartimento di Ingegneria Chimica, dei Materiali e della Prod. Indus., Federico II, Napoli, Italy

#### Correspondence

Roberta Russo, CEINGE – Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145 Naples, Italy. Email: roberta.russo@unina.it

#### **Funding information**

Italian Ministry of University and Research, by PRIN to AI (20128PNX83), by SIR to RR, Grant/Award Number: RBSI144KXC; Regione Campania, Grant/Award Number: DGRC2362/07

### 1 | INTRODUCTION

Hereditary anemias (HA) embrace a highly heterogeneous group of rare/low frequency disorders characterized by anemia of variable degree and by complex and often unexplained genotype-phenotype correlations. HA are genetic disorders caused by mutations in more than 70 genes controlling red blood cell (RBC) production and structure. Mutations in these genes can lead to alterations in hemoglobin (Hb) levels, RBC differentiation and proliferation, cell membrane

Roberta Russo and Immacolata Andolfo equally contributed to the study.

#### Abstract

Mutations in more than 70 genes cause hereditary anemias (HA), a highly heterogeneous group of rare/low frequency disorders in which we included: hyporegenerative anemias, as congenital dyserythropoietic anemia (CDA) and Diamond-Blackfan anemia; hemolytic anemias due to erythrocyte membrane defects, as hereditary spherocytosis and stomatocytosis; hemolytic anemias due to enzymatic defects. The study describes the diagnostic workflow for HA, based on the development of two consecutive versions of a targeted-NGS panel, including 34 and 71 genes, respectively. Seventy-four probands from 62 unrelated families were investigated. Our study includes the most comprehensive gene set for these anemias and the largest cohort of patients described so far. We obtained an overall diagnostic yield of 64.9%. Despite 54.2% of cases showed conclusive diagnosis fitting well to the clinical suspicion, the multi-gene analysis modified the original clinical diagnosis in 45.8% of patients (nonmatched phenotype-genotype). Of note, 81.8% of nonmatched patients were clinically suspected to suffer from CDA. Particularly, 45.5% of the probands originally classified as CDA exhibited a conclusive diagnosis of chronic anemia due to enzymatic defects, mainly due to mutations in PKLR gene. Interestingly, we also identified a syndromic CDA patient with mild anemia and epilepsy, showing a homozygous mutation in CAD gene, recently associated to early infantile epileptic encephalopathy-50 and CDA-like anemia. Finally, we described a patient showing marked iron overload due to the coinheritance of PIEZO1 and SEC23B mutations, demonstrating that the multi-gene approach is valuable not only for achieving a correct and definitive diagnosis, but also for guiding treatment.

> structure, defective activity of erythrocyte enzymes. Within this large group of diseases, we included: (1) hyporegenerative anemias, as congenital dyserythropoietic anemias (CDA) and Diamond-Blackfan anemia (DBA); (2) erythrocyte membrane defects, as hereditary spherocytosis (HS) and hereditary stomatocytosis (HST); hemolytic anemias due to enzymatic defects, as glucose-6-phosphate dehydrogenase (G6PD) and pyruvate kinase (PK) deficiency.<sup>1-6</sup>

> Differential diagnosis, classification, and patient stratification among HA are often very difficult. Indeed, the variety of unspecific and overlapping phenotypes often hampers a correct clinical management of the patients. Particularly, the diagnosis of these conditions may

require several lines of investigation.<sup>1–4</sup> The first is based on clinical features (evaluation of complete blood count), positive familial history, and the observation of a peripheral blood smear. The second line comprises biochemical tests and highly specialized analyzes, as the ektacy-tometry for the diagnosis of erythrocytes membrane defects, which are available only in few laboratories in the world. The last line includes the molecular analysis of the causative gene by direct sequencing. Unfortunately, in several cases these investigations fail to achieve the correct diagnosis, especially when the family history is uninformative or when routine laboratory tests produce unclear data.

Due to the failure of the current diagnostic workflow to find a definitive and correct diagnosis of HA, next-generation sequencing (NGS) is making its way on this field. The major current application of NGS in diagnostics is through disease-targeted tests for which multiple causal genes are known. Some studies have already demonstrated the usefulness of targeted-NGS (t-NGS) approach in the investigation of specific subtypes of HA patients. The multi-gene panels described so far include a gene set ranging from 28 to 40 loci causative of CDA, DBA, hemolytic anemias due to enzymatic defects, HS, and sideroblastic anemia.<sup>7–9</sup>

We herein described the diagnostic workflow that we established for molecular diagnosis of hereditary hemolytic anemias, based on the development of two consecutive versions of a t-NGS panel, comprising 34 and 71 causative/candidate genes, respectively. We showed the results obtained by the analysis of 74 probands from 62 unrelated families. This is the largest cohort of patients and the most comprehensive gene set for this subset of anemias described so far.

#### 2 | METHODS

#### 2.1 | Patients and genomic DNA preparation

Seventy-four patients with clinical suspicion of different types of HA were included in the study. Particularly, 15 patients were originally suspected of erythrocyte membrane defects, comprising HS, hereditary elliptocytosis (HE), and hereditary pyropoikilocytosis (HPP); 20 probands were clinically suspected of HST, comprising dehydrated hereditary stomatocytosis (DHS), overhydrated hereditary stomatocytosis (OHS), sitosterolemia (STL), and familial pseudohyperkalemia (FP); 4 patients had clinical suspicion of DBA; finally, 35 cases were clinically classified as CDA, comprising CDA type I (CDAI), type II (CDAII), and unspecific CDA.

Diagnosis was based on history, clinical findings, laboratory data, morphological analysis of peripheral blood and/or aspirated bone marrow, whenever available.<sup>1-4</sup> For HS/HST patients, diagnosis was also based on indirect tests (osmotic fragility of erythrocyte, AGLT50, EMA binding test), as well as on ektacytometry. Local university ethical committees approved collection of patient's data from Medical Genetics Ambulatory in Naples (University Federico II, DAIMedLab).

DNA samples from the patients were obtained after signed informed consent and according to the Declaration of Helsinki. Whenever possible, affected and unaffected relatives were also enrolled to correctly assess the pathogenicity of each variant by the analysis of family segregation.

Genomic DNA (gDNA) preparation was performed as previously described.<sup>10</sup> To evaluate the quality of the extracted gDNA before the

fragmentation, samples were quantified by NanoDrop 2000 (Thermo Scientific, Italy). Then, gDNA was loaded on 0.8% DNA agarose gel electrophoresis.

# 2.2 | In silico design of the custom gene panels, sample preparation

We created two custom gene panels: (1) the first, named RedPlex\_rev.0, including 34 causative/candidate genes of CDA and erythrocyte membrane defects (Supporting Information Table S1a)<sup>11</sup>; (2) the second, named RedPlex\_rev.1, composed by 71 genes causative or candidates of CDA, RBC membrane defects, DBD, hemolytic anemia due to enzymatic defects (Supporting Information Table S1b).

For the probe design, coding regions, 5'UTR, 3'UTR, 50 bp flanking splice junctions were selected as regions of interest. The probe design was performed by web-based tool SureDesign (https://earray.chem. agilent.com/suredesign.htm, Agilent Technologies, USA). Sequence length was set at  $150 \times 2$  nucleotides. For RedPlex\_rev.0, the target size was 239.764 kbp, with average target coverage of 99.9%. For RedPlex\_rev.1, the target size was 324.879 kbp, with target coverage of 99.8%.

Sample preparation was performed following the instruction's manufacturer for HaloPlex Target Enrichment kit for Illumina Sequencing - Custom Design from 1 to 500 kb (Agilent Technologies).

#### 2.3 | Sequencing and data analysis

High-throughput sequencing was performed by Illumina NextSeq 500. Agilent SureCall software (v 3.0.3.1, Agilent Technologies) was used for bioinformatic and computational analyzes.

According to the guidelines of American College of Medical Genetics and Genomics (ACMG), we evaluated the pathogenicity of each variant by gathering evidence from various sources: population data, computational and predictive data, functional data, and segregation data.<sup>12</sup> In agreement with the criteria of moderate evidence of pathogenicity, annotated variants were firstly filtered on the basis of their minor allele frequency (MAF). Due to the large range of prevalence in the population of these heterogeneous disorders, we selected both rare and low frequency variants (MAF < 0.01 and 0.05, respectively), as reported by 1000 Genomes (http://browser.1000genomes.org/index. html), ExAC (http://exac.broadinstitute.org/), and Exome Variant Server (EVS, http://evs.gs.washington.edu/EVS/). Computational and predictive data were obtained by using several in silico prediction programs. Particularly, coding variants were analyzed by the prediction tools Poly-Phen2, SIFT, and the recently introduced classifier for rare missense variants, M-CAP. This latter is a clinical pathogenicity classifier that outperforms existing methods at all thresholds and correctly dismisses 60% of rare, missense variants of uncertain significance in a typical genome at 95% sensitivity.<sup>13</sup> Prediction analysis for splice sites mutations was also performed by web server tool Human Splicing Finder (http://www.umd.be/HSF/), as previously described.<sup>14</sup> Regarding the functional data for the new variants, we did not perform in vitro functional studies supportive of a damaging effect on the gene or gene product, as requested to obtain strong evidence of pathogenicity. However, we selected and reported those variants with moderate pathogenic evidence, i.e., variants located in a mutational hot spot and/or critical and well-established functional domain.<sup>12</sup> All the prioritized variants were confirmed by Sanger sequencing and by the analysis of inheritance pattern. The validations were performed using 50 ng of genomic DNA. Custom primers were designed by Primer3 program (Primer3 v. 0.4.0, freeware online). Sequence primers are available on request (roberta.russo@unina.it). Nucleotide numbering reflects cDNA numbering with +1 corresponding to the A of ATG translation initiation codon in the reference sequence, according to the nomenclature for the description of sequence variants of Human Genome Variation Society (www.hgvs.org/mutnomen). The initiation codon is codon 1.

#### 3 | RESULTS

#### 3.1 Diagnostic workflow of RedPlex study

The diagnostic workflow used in the present study was depicted in Figure 1A. We analyzed 80 NGS libraries from 74 HA patients with different clinical suspicion. Both panels, RedPlex\_rev.0 and its updated version RedPlex \_rev.1, showed high sensitivity and specificity. Indeed, approximately 97% and 93% of analyzable target bases were covered by at least 20 reads in RedPlex\_rev.0 and RedPlex\_rev.1 respectively (Supporting Information Table S2).

Overall clinical features and diagnostic suspicion of the 74 HA patients included in the study were summarized in Supporting Information Table S3. Particularly, 27.0% of the enrolled patients (20/74) were clinically suspected to suffer from HST, while 20.3% of probands (15/74) exhibited a clinical diagnosis of red cell membrane defects. However, the majority of patients was originally classified as hyporegenerative anemias, mainly CDAs (35/74, 47.3%) (Supporting Information Table S3).

Twenty-nine patients from 25 unrelated families were analyzed by RedPlex\_rev.0: 55.2% (16/29) of them were conclusively diagnosed, but 44.8% (13/29) received no diagnosis. During the second-round of t-NGS analysis, we analyzed 51 patients from 42 different families: 62.7% (32/51) of probands obtained a diagnosis, while 37.3% (19/51) of them were undiagnosed (Figure 1A). Overall, 64.9% (48/74) of analyzed patients were successfully diagnosed.

Among the 13 undiagnosed patients included in the first-round analysis, six of them underwent the second-round by RedPlex\_rev.1: two patients obtained a conclusive diagnosis, while the remaining four probands resulted negative again. Of note, among the 19 undiagnosed patients analyzed by RedPlex\_rev.1 we also counted the four undiagnosed patients previously analyzed. Overall, 35.1% (26/74) of investigated patients resulted undiagnosed. All the nondiagnosed patients were recommended for whole exome sequencing (WES) analysis (Figure 1A).

#### 3.2 | Phenotype-genotype matching

Tables 1 and 2 summarize pathogenic/likely pathogenic variants we identified in HA diagnosed patients by both multi-gene panels, showing moderate/strong evidence of pathogenicity as established by the ACMG

guidelines. The molecular data obtained by our t-NGS analysis confirmed the clinical suspicion in 54.2% of patients (26/48) (matched phenotypegenotype). Nevertheless, the multi-gene approach modified the original diagnosis in 45.8% of patients (22/48) (nonmatched phenotype-genotype) (Figure 1B). Of note, the majority of patients with matched phenotype-genotype are included in the subgroup of erythrocyte membrane defects. Indeed, 84.6% (22/26) of them were originally suspected of HST or HS. Conversely, 81.8% (18/22) of nonmatched patients were clinically suspected to suffer from CDA. Accordingly, among 22 patients originally classified as CDA, only 18.2% (4/22) of them showed matched phenotype-genotype (Figure 1B). Particularly, two probands originally suspected of CDAII, RP0\_36, and RP0\_39, were conclusively diagnosed as CDAIa and CDAIb, respectively; while, RP0\_59 and RP1\_41, both initially suspected of CDAI, were diagnosed as CDAIV and CDA variant due to a heterozygous mutation in ALAS2, as recently described (Tables 1 and 2; Supporting Information Tables S3).<sup>17</sup>

Interestingly, four patients originally classified as CDA exhibited mutations in PIEZO1, the causative gene of DHS1. The first case was RP0\_38, a 13-year-old boy showing mild anemia (Hb 11.7 g/dL) with macrocytosis (MCV 94 fl) and reticulocytosis (164 220/ $\mu\text{L})$  . The second, RP1\_63, was a 0.8-year-old girl with normocytic severe anemia (MCV 80.0 fl, Hb 6.2 g/dL), increased MCHC, and transfusion-dependency (Supporting Information Table S3). Both patients exhibited heterozygous missense mutations in the C-terminal intracellular domain of PIEZO1 protein that forms the pore of the channel, mediating the ion conduction and the cation selectivity.<sup>18,19</sup> Of note, RP1\_63 patient also coinherited a heterozygous G6PD mutation, namely the G6PD Sierra Leone, that was categorized with enzymatic activity of class III (Tables 1 and 2).<sup>20</sup> The remaining cases, RP1\_16 and RP1\_17, were two siblings carrying a missense variant in homozygous state that falls in one of the last transmembrane domains of the protein (Table 2). Both probands exhibited similar clinical features most resembling those of DHS1 patients: mild anemia (Hb 11.7-12.8 g/dL) with macrocytosis (MCV 91 fl) and reticulocytosis (145 920-266  $880/\mu L)$  (Supporting Information Table S3).

# 3.3 Congenital hemolytic anemias misdiagnosed as CDAs

Among 22 patients originally classified as CDA, 45.5% (10/22) of them exhibited a final diagnosis of chronic anemia due to enzymatic defects (Figure 1B). The first case was a patient originally suspected of CDAI, RP1\_71, showing macrocytic anemia (Hb 8.9 g/dL, MCV 111.0 fl) with slight reticulocytosis (112 000/ $\mu$ L) (Supporting Information Table S3), carrying two recently described pathogenic missense mutations in *GPI*, the causative gene of hemolytic nonspherocytic anemia due to glucose phosphate isomerase deficiency (Table 2).<sup>16</sup> The second case, RP1\_85, was a 29-year-old girl with severe normocytic anemia (Hb 6.6 g/dL, MCV 86.0 fl) and reticulocytosis (218 000/ $\mu$ L) (Supporting Information Table S3), exhibiting a nonsense mutation in *AK1* gene, the causative locus of hemolytic anemia due to adenylate kinase deficiency (Table 2).

Interestingly, 36.4% (8/22) of patients clinically referred as CDA showed mutations in *PKLR*, the causative gene of PK deficiency. Of





FIGURE 1 RedPlex study on HA patients. (A) Diagnostic workflow used in RedPlex study. WES, whole exome sequencing. (B) Schematic representation of the 48 HA patients with conclusive diagnosis. In the column the causative genes divided according to different HA phenotypes; in the row the investigated patients divided according to their clinical suspicion (indicated on the left). On the right, the conclusive diagnosis of each patient is shown. Dark gray squares highlight the mutated genes in each proband. AKD, adenylate kinase deficiency; CDAIa, congenital dyserythropoietic anemia Ia; CDAIb, congenital dyserythropoietic anemia Ib; CDAII, congenital dyserythropoietic anemia II; CDAIV, congenital dyserythropoietic anemia IV; CHC, cryohydrocytosis; DHS1, dehydrated hereditary stomatocytosis 1; EIEE50, Epileptic encephalopathy, early infantile, 50; FP, familial pseudohyperkalemia; GPI-D, glucose phosphate isomerase deficiency; HPP, hereditary pyropoikilocytosis; HS, hereditary spherocytosis; PKD, pyruvate kinase deficiency; SAO, Southeast Asian ovalocytosis; STSL, sitosterolemia; XLSA, X-linked sideroblastic anemia [Color figure can be viewed at wileyonlinelibrary.com]

| rev.0      |
|------------|
| RedPlex_   |
| þγ         |
| identified |
| variants   |
| Genetic    |
| TABLE 1    |

| Family<br>ID    | Patient<br>ID      | Gene     | HGVS<br>(Coding)         | HGVS<br>(Protein) | Status       | Inheritance | SIFT<br>(score) | PolyPhen2<br>(score) | M-CAP<br>(score) | RefSeq ID   | MAF<br>(1000G) | MAF<br>(ExAC) | HGMD        |
|-----------------|--------------------|----------|--------------------------|-------------------|--------------|-------------|-----------------|----------------------|------------------|-------------|----------------|---------------|-------------|
| F2              | RP0_4 <sup>b</sup> | PIEZO1   | c.6796G>A                | p.Val2266lle      | Het          | M allele    | T (0.11)        | B (0.369)            | P (0.291)        | rs546338962 | 0.0004         | 0.0003        | New variant |
| F2              | RP0_5 <sup>b</sup> | PIEZO1   | c.6796G>A                | p.Val2266lle      | Het          |             |                 |                      |                  |             |                |               |             |
| F3 <sup>a</sup> | RP0_6 <sup>℃</sup> | SPTA1    | c.5029G>A                | p.Gly1677Arg      | Het          | M allele    | T (0.32)        | P (0.935)            | P (0.084)        | rs771033064 | ı              | 0.00003       | New variant |
|                 |                    | SPTB     | c.6175G>C                | p.Ala2059Pro      | Hom          | Het parents | D (0.01)        | P (0.673)            | P (0.059)        |             | ı              |               | New variant |
|                 | RP0_9 <sup>℃</sup> | SPTB     | c.6175G>C                | p.Ala2059Pro      | Hom          | Het parents |                 |                      |                  |             |                |               |             |
| F5              | RP0_11             | SPTA1    | c.2542C>T                | p.Arg848Cys       | Het          | P allele    | D (0.00)        | D (0.967)            | P (0.046)        | rs781647129 | ı              | 0.00007       | New variant |
|                 |                    | SPTB     | c.2639T>A                | p.Leu880Gln       | Het          | M allele    | D (0.00)        | D (0.996)            | P (0.140)        | rs770698912 | ı              | 0.00005       | New variant |
| F12             | RP0_36             | CDAN1    | c.1945C>T                | p.Arg649Trp       | Comp het     | M allele    | D (0.00)        | D (0.999)            | P (0.135)        | rs751778010 | ı              | 0.00003       | New variant |
|                 |                    | CDAN1    | c.1189C>T                | p.Arg397Trp       | Comp het     | P allele    | D (0.00)        | D (0.999)            | P (0.411)        | rs756376237 | ı              | 0.00003       | New variant |
| F13             | RP0_38             | PIEZO1   | c.7180G>A                | p.Gly2394Ser      | Het          | P allele    | T (0.24)        | B (0.218)            | P (0.551)        | rs201950081 | 0.0002         | 0.0007        | New variant |
| F14             | RP0_39             | C15orf41 | c.689A>C                 | p.His230Pro       | Hom          | Het parents | D (0.11)        | B (0.058)            | B (0.009)        |             |                |               | New variant |
| F16             | RP0_41             | PIEZO1   | c.7367G>A                | p.Arg2456His      | Het          |             | D (0.00)        | D (0.998)            | P (0.945)        | rs587776988 | ı              | ,             | CM127746    |
| F17             | RP0_42             | PIEZO1   | c.5694G>C                | p.Glu1898Asp      | Het          |             | T (0.63)        | B (0.000)            | P (0.028)        | rs201829917 | 0.004          | 0.003         | New variant |
| F18             | RP0_43             | SPTB     | c.1606G>A                | p.Asp536Asn       | Het          | ı           | D (0.00)        | D (0.969)            | P (0.025)        | rs145675502 | 0.0005         | 0.0006        | New variant |
| F19             | RP0_45             | ABCB6    | c.826C>T                 | p.Arg276Trp       | Het          | ,           | D (0.00)        | D (1.000)            |                  | rs57467915  | 0.004          | 0.02          | CM128904    |
| F22             | RP0_53             | SPTA1    | c.1703G>C                | p.Arg568Pro       | Het          | ,           | T (0.13)        | P (0.926)            | P (0.035)        | rs200829664 | 0.0004         | 0.001         | New variant |
| F23             | RP0_55             | SPTA1    | c.33G>C                  | p.Glu11Asp        | Het          | ,           | T (0.72)        | B (0.000)            | B (0.013)        | rs41273533  | 0.001          | 0.004         | New variant |
| F24             | RP0_59             | KLF1     | c.973G>A                 | p.Glu325Lys       | Het          | de novo     | D (0.00)        | D (1.000)            | ,                | rs267607201 | ı              | ,             | CM099513    |
| F25             | RP0_60             | SPTA1    | c.5029G>A                | p.Gly1677Arg      | Het          | P allele    | T (0.32)        | P (0.996)            |                  |             | ı              |               | New variant |
|                 |                    | SPTA1    | c.2319C>A                | p.Cys773Ter       | Het          | M allele    |                 |                      |                  |             | ı.             |               | New variant |
|                 |                    | SPTA1    | c.6531-12C>T             | ı                 | Het          | M allele    |                 |                      |                  | rs28525570  | 0.23           | 0.26          | Alpha LELY  |
|                 |                    | SEC23B   | c.1254T>G                | p.lle418Met       | Het          | M allele    | D (0.00)        | B (0.262)            | P (0.078)        | rs772896622 | I              | ı             | CM108329    |
|                 |                    |          | the second second second |                   | mented barre | I-II- IV    | delle leanetee  | oten olelle O        | مامالم امعس      |             |                |               |             |

Het, heterozygous; Hom, homozygous; Hem, hemizygous; Comp het, compound heterozygous; M allele, maternal allele; P allele, paternal allele. PolyPhen2 (B, benign; P, possibly damaging; D, probably damaging). SIFT (D, damaging; T, tolerated).

M-CAP (P, possibly pathogenic; B, likely benign). <sup>a</sup>Family described by Al-Riyami AZ et al. Am J Hematol. 2017 Oct;92(10):E607-E609 [Ref. 11]. <sup>b</sup>RP0\_5 is the affected mother of RP0\_4. <sup>c</sup>RP0\_6 and 9 are two affected siblings.

WILEY AJH

| 2 Genetic variants identified by                     | identified by                        | vd ba                           | redPlex_rev       | 1  |          |             |                 |                      |                  |             |                |               |                         |
|------------------------------------------------------|--------------------------------------|---------------------------------|-------------------|----|----------|-------------|-----------------|----------------------|------------------|-------------|----------------|---------------|-------------------------|
| Patient HGVS HGVS<br>ID Gene (Coding) (Protein)      | HGVS HGVS<br>iene (Coding) (Protein) | HGVS HGVS<br>(Coding) (Protein) | HGVS<br>(Protein) |    | Status   | Inheritance | SIFT<br>(score) | PolyPhen2<br>(score) | M-CAP<br>(score) | RefSeq ID   | MAF<br>(1000G) | MAF<br>(ExAC) | HGMD                    |
| RP1_1 ANK1 c.856C>T p.Arg286Ter                      | NK1 c.856C>T p.Arg286Ter h           | c.856C>T p.Arg286Ter h          | p.Arg286Ter       | -  | Het      | de novo     |                 |                      | ı                |             | ı              | ı             | New varian              |
| RP1_4 PIEZO1 c.1369C>T p.Arg457Cys H                 | IEZO1 c.1369C>T p.Arg457Cys H        | c.1369C>T p.Arg457Cys H         | p.Arg457Cys H     | -  | let      |             | D (0.01)        | D (0.997)            | P (0.489)        |             | ı              |               | New variar              |
| RP1_5 SEC23B c.325G>A p.Glu109Lys H                  | EC23B c.325G>A p.Glu109Lys H         | c.325G>A p.Glu109Lys H          | p.Glu109Lys H     | Ĩ  | шо       |             | D (0.00)        | D (1.000)            | P (0.149)        | rs121918221 | 0.0002         | 0.0003        | CM094612                |
| ABCB6 c.575G>A p.Arg192GIn H                         | BCB6 c.575G>A p.Arg192Gln H          | c.575G>A p.Arg192Gln H          | p.Arg192Gln H     | 1  | lom      |             | D (0.00)        | D (0.775)            | P (0.205)        | rs150221689 | 0.001          | 0.003         | New varian              |
| PIEZO1 c.7505A>G p.Lys2502Arg H                      | IEZO1 c.7505A>G p.Lys2502Arg H       | c.7505A>G p.Lys2502Arg H        | p.Lys2502Arg H    | T  | let      |             | D (0.05)        | D (0.999)            | ı                | rs34830861  | 0.002          | 0.005         | Pathogenic <sup>a</sup> |
| RP1_13 PKLR c.1349A>G p.Asp450Gly h                  | KLR c.1349A>G p.Asp450Gly l          | c.1349A>G p.Asp450Gly h         | p.Asp450Gly H     | -  | Hom      | het parents | D (0.05)        | B (0.072)            | P (0.269)        | 1           | ı              |               | New varian              |
| RP1_16/17 <sup>b</sup> PIEZO1 c.5389C>T p.Arg1797Cys | IEZO1 c.5389C>T p.Arg1797Cys         | c.5389C>T p.Arg1797Cys          | p.Arg1797Cys      |    | Hom      | Het parents | D (0.00)        | D (0.995)            | P (0.929)        | rs561936787 | 0.0001         | 0.0008        | New variant             |
| PKLR c.257G>T p.Arg86Leu                             | KLR c.257G>T p.Arg86Leu              | c.257G>T p.Arg86Leu             | p.Arg86Leu        |    | Het      | M allele    | D (0.01)        | P (0.877)            | P (0.440)        | rs375471342 | ı              | 0.00004       | CM981550                |
| GBA c.1223C>T p.Thr408Met                            | BA c.1223C>T p.Thr408Met             | c.1223C>T p.Thr408Met           | p.Thr408Met       | _  | Het      | M allele    | Τ (0.11)        | B (0.089)            | ,                | rs75548401  | 0.007          | 0.002         | CM960697                |
| RP1_23 PKLR c.1117-1G>C -                            | KLR c.1117-1G>C -                    | c.1117-1G>C -                   | 1                 |    | Hom      | het parents | ı               | ,                    | ı                |             | ı              | ı             | New varian              |
| RP1_41 ALAS2 c.1306C>T p.Arg436Trp h                 | LAS2 c.1306C>T p.Arg436Trp h         | c.1306C>T p.Arg436Trp h         | p.Arg436Trp       | -  | let      |             | D (0.00)        | B (0.260)            | P (0.729)        |             | ı              |               | CM062420                |
| RP1_48 ABCG5 c.161G>A p.Trp54Ter H                   | BCG5 c.161G>A p.Trp54Ter H           | c.161G>A p.Trp54Ter H           | p.Trp54Ter H      | -  | łom      | het parents | ī               | ,                    | ı                | ı           | ı              |               | New varian              |
| RP1_49 SPTB c.5651C>T p.Ala1884Val H                 | PTB c.5651C>T p.Ala1884Val H         | c.5651C>T p.Ala1884Val H        | p.Ala1884Val H    | T  | et       | P allele    | D (0.00)        | P (0.674)            | B (0.015)        | rs148337824 | 0.001          | 0.002         | CM984610                |
| RP1_58 PKLR c.1116 + 2T>G - H                        | KLR c.1116+2T>G - Ho                 | c.1116 + 2T>G - Ho              | Ť                 | ĭ  | ш        | het parents | ı               | ı                    | ı                | rs768823171 | ı              | 0.000008      | CS991485                |
| RP1_59 PKLR c.67_68deITA p.Leu23Cysfs*55 C           | KLR c.67_68delTA p.Leu23Cysfs*55 C   | c.67_68delTA p.Leu23Cysfs*55 C  | p.Leu23Cysfs*55 C | 0  | omp het  | P allele    |                 |                      |                  |             | ı              |               | New varian              |
| PKLR c.287C>A p.Pro96GIn C                           | KLR c.287C>A p.Pro96Gln C            | c.287C>A p.Pro96Gln C           | p.Pro96Gln C      | Ŭ  | omp het  | M allele    | D (0.00)        | D (0.999)            | P (0.441)        |             | ī              | ı             | New varian              |
| RP1_60 SLC4A1 c.1334C>T p.Ala445Val H                | LC4A1 c.1334C>T p.Ala445Val H        | c.1334C>T p.Ala445Val H         | p.Ala445Val H     | Ξ  | et       |             | D (0.00)        | D (0.731)            | P (0.162)        |             | ı              |               | New varian              |
| RP1_63 G6PD c.311G>A p.Arg104His H                   | idPD c.311G>A p.Arg104His H          | c.311G>A p.Arg104His H          | p.Arg104His H     | T  | let      |             | T (0.62)        | B (0.016)            |                  | rs181277621 | 0.002          | 0.0012        | CM082725                |
| PIEZO1 c.7558A>G p.Lys2520Glu H                      | IEZO1 c.7558A>G p.Lys2520Glu H       | c.7558A>G p.Lys2520Glu H        | p.Lys2520Glu H    | T  | let      |             | D (0.00)        | B (0.158)            | P (0.160)        | rs570744198 | 0.0002         | 0.0007        | New variar              |
| RP1_67 ANK1 c.4385C>T p.Ala1462Val H                 | NK1 c.4385C>T p.Ala1462Val H         | c.4385C>T p.Ala1462Val H        | p.Ala1462Val H    | T  | et       | ı           | T (0.08)        | B (0.017)            | P (0.356)        | rs34664882  | 0.0098         | 0.02          | New varian              |
| RP1_68 SLC4A1 c.2386G>C p.Gly796Arg H                | LC4A1 c.2386G>C p.Gly796Arg H        | c.2386G>C p.Gly796Arg H         | p.Gly796Arg H     | Ĩ  | et       | de novo     | D (0.00)        | D (1.000)            | P (0.271)        |             | ı              |               | CM094498                |
| GBA c.1448T>C p.Leu483Pro H                          | BA c.1448T>C p.Leu483Pro H           | c.1448T>C p.Leu483Pro He        | p.Leu483Pro Ho    | Ĭ  | et       | P allele    | D (0.00)        | D (1.000)            |                  | rs421016    | 0.0034         | 0.0031        | CM870010                |
| RP1_71 GPI c.478T>C p.Ser160Pro He                   | pl c.478T>C p.Ser160Pro He           | c.478T>C p.Ser160Pro He         | p.Ser160Pro He    | Не | t        |             | D (0.00)        | D (0.997)            | P (0.453)        |             | ı              |               | Pathogenic <sup>c</sup> |
| GPI c.1414C>T p.Arg472Cys He                         | pl c.1414C>T p.Arg472Cys He          | c.1414C>T p.Arg472Cys He        | p.Arg472Cys He    | Не | ÷        | ı           | D (0.01)        | P (0.583)            | P (0.424)        | ı           | ı              |               | Pathogenic <sup>6</sup> |
| RP1_72 PKLR c.1492C>T p.Arg498Cys H                  | KLR c.1492C>T p.Arg498Cys H          | c.1492C>T p.Arg498Cys H         | p.Arg498Cys Hi    | Ĭ  | st       |             | D (0.03)        | P (0.560)            | P (0.128)        | rs551883218 | 0.0002         | 0.000008      | CM981579                |
| PKLR c.994G>A p.Gly332Ser H                          | KLR c.994G>A p.Gly332Ser H           | c.994G>A p.Gly332Ser H          | p.Gly332Ser H     | -  | łet      | ı           | D (0.00)        | D (0.998)            | P (0.408)        | rs773626254 | ı              | 0.00006       | CM941163                |
| RP1_73 PKLR c.353A>G p.Asn118Ser                     | KLR c.353A>G p.Asn118Ser             | c.353A>G p.Asn118Ser            | p.Asn118Ser       | _  | Hom      | Het parents | D (0.00)        | D (1.000)            | P (0.549)        |             | ı              |               | New varian              |
| RP1_75 PKLR c.1594C>T p.Arg532Trp C                  | KLR c.1594C>T p.Arg532Trp C          | c.1594C>T p.Arg532Trp C         | p.Arg532Trp 0     | 0  | Comp het | M allele    | D (0.02)        | D (0.911)            | P (0.211)        | rs201255024 |                | 0.00002       | CM941171                |
|                                                      |                                      |                                 |                   |    |          |             |                 |                      |                  |             |                |               | (Continues              |

- AJH WILEY 677

TABLE 2 (Continued)

| Family<br>ID | Patient<br>ID       | Gene        | HGVS<br>(Coding)   | HGVS<br>(Protein)   | Status        | Inheritance       | SIFT<br>(score) | PolyPhen2<br>(score) | M-CAP<br>(score) | RefSeq ID   | MAF<br>(1000G) | MAF<br>(ExAC) | HGMD        |
|--------------|---------------------|-------------|--------------------|---------------------|---------------|-------------------|-----------------|----------------------|------------------|-------------|----------------|---------------|-------------|
|              |                     | PKLR        | c.1529G>A          | p.Arg510Gln         | Comp het      | P allele          | D (0.01)        | D (0.990)            | P (0.177)        | rs113403872 | 0.0002         | 0.0004        | CM941170    |
| F54          | RP1_77 <sup>d</sup> | SLC4A1      | c.166A>G           | p.Lys56Glu          | Het           | ,                 | Τ (1.00)        | B (0.000)            | ,                | rs5036      | 0.06           | 0.04          | CM921015    |
|              |                     | ABCB6       | c.574C>T           | p.Arg192Trp         | Het           |                   | D (0.00)        | D (0.940)            | P (0.304)        | rs149202834 | 0.001          | 0.002         | CM128903    |
| F54          | RP1_78 <sup>d</sup> | SLC4A1      | c.166A>G           | p.Lys56Glu          | Het           | M allele          |                 |                      |                  |             |                |               |             |
|              |                     | ABCB6       | c.574C>T           | p.Arg192Trp         | Het           | M allele          |                 |                      |                  |             |                |               |             |
| F54          | RP1_79 <sup>d</sup> | SLC4A1      | c.166A>G           | p.Lys56Glu          | Het           | ,                 |                 |                      |                  |             |                |               |             |
|              |                     | ABCB6       | c.574C>T           | p.Arg192Trp         | Het           |                   |                 |                      |                  |             |                |               |             |
| F55          | RP1_80              | PKLR        | c.1528C>T          | p.Arg510Ter         | Hom           | Het parents       | ı               | ı                    | ı                | ,           | ı              | ı             | CM981581    |
| F56          | RP1_85              | AK1         | c.319C>T           | p.Arg107Ter         | Hom           | Het parents       |                 |                      |                  | rs104894102 |                |               | CM990133    |
| F57          | RP1_86              | PIEZ01      | c.6328C>T          | p.Arg2110Trp        | Het           |                   | D (0.00)        | D (0.990)            | P (0.847)        | rs776531529 |                | ı             | New variant |
|              |                     | G6PD        | c.988C>T           | p.Arg330Cys         | Hem           |                   | D (0.01)        | P (0.480)            | P (0.476)        | rs782699946 |                | 0.00002       | New variant |
| F59          | RP1_94 <sup>e</sup> | SPTB        | c.4208G>A          | p.Arg1403Gln        | Het           | P allele          | Τ (1.00)        | B (0.001)            | ,                | rs17180350  | 0.03           | 0.06          | New variant |
|              |                     | SPTA1       | c.6531-12C>T       |                     | Het           | P allele          | ı               |                      |                  | rs28525570  | 0.23           | 0.26          | Alpha LELY  |
| F59          | $RP1_115^{e}$       | SPTA1       | c.4490G>A          | p.Gly1497Glu        | Het           | P allele          | Τ (1.00)        | B (0.440)            | ,                | rs41273523  | 0.006          | 0.015         | New variant |
|              |                     | SPTA1       | c.6531-12C>T       |                     | Het           | P allele          |                 |                      |                  |             |                |               |             |
| F59          | $RP1_116^{e}$       | SPTA1       | c.4490G>A          | p.Gly1497Glu        | Het           | ,                 |                 |                      |                  |             |                |               |             |
|              |                     | SPTB        | c.4208G>A          | p.Arg1403GIn        | Het           |                   |                 |                      |                  |             |                |               |             |
|              |                     | SPTA1       | c.6531-12C>T       | 1                   | Hom           | ,                 |                 |                      |                  |             |                |               |             |
| F60          | RP1_109             | SPTB        | c.26A>C            | p.Asn9Thr           | Comp het      | P allele          | D (0.04)        | B (0.202)            |                  | rs138437526 | 0.002          | 0.001         | New variant |
|              |                     | SPTB        | c.1606G>A          | p.Asp536Asn         | Comp het      | M allele          | D (0.01)        | P (0.765)            | P (0.025)        | rs145675502 | 0.0004         | 0.0006        | New variant |
| F9           | RP1_112             | CAD         | c.5366G>A          | p.Arg1789Gln        | Hom           | Het parents       | Τ (0.33)        | D (0.988)            | P (0.200)        |             |                |               | New variant |
| F62          | RP1_119             | EPB42       | c.1369C>T          | p.Arg457Cys         | Het           | ı                 | D (0.03)        | B (0.081)            | B (0.015)        | rs45594632  | 0.002          | 0.003         | New variant |
|              |                     | PKLR        | c.1456C>T          | p.Arg486Trp         | Het           |                   | D (0.01)        | D (0.995)            | P (0.187)        | rs116100695 | 0.002          | 0.003         | CM950958    |
|              |                     | SPTA1       | c.1958A>G          | p.Tyr653Cys         | Het           | I                 | Τ (0.05)        | B (0.414)            | ı                | rs148912436 | 0.005          | 0.008         | New variant |
| let. heter   | ozveous: Hom.       | . homozveou | s: Hem. hemizvgous | : Comp het. compour | nd heterozveo | us: M allele. mat | ernal allele:   | P allele, naterr     | al allele.       |             |                |               |             |

ົ້ Het, heterozygous; Hom, homozygous; Hem, hemizygous; Comp het, con PolyPhen2 (B, benign; P, possibly damaging; D, probably damaging). SIFT (D, damaging; T, tolerated). M-CAP (P, possibly pathogenic; B, likely benign). <sup>a</sup>Del Orbe Barreto R et al. Ann Hematol. 2016;95:1545-1546 [Ref. 15]. <sup>b</sup>Mojzikova R et al. Blood Cells Mol Dis. 2017 [Ref. 16].

<sup>c</sup>RP1\_16/17 are siblings. <sup>d</sup>RP1\_77 is the mother of RP1\_78; RP1\_79 is the affected brother of RP1\_77. <sup>e</sup>RP1\_116 is the father of both siblings RP1\_94 and RP1\_115.

<sup>678</sup> WILEY AJH

note, these patients presented clinical data and morphological features of the bone marrow mostly resembling those of both CDAI and CDAII (Table 3). It is important to underline that almost all the patients originally classified as CDA and subsequently diagnosed as chronic hemolytic anemia due to enzyme defects were transfusion-dependent, with subsequent reduced reliability of the enzyme assays.

Finally, we also identified a case of syndromic CDA due the homozygous mutation p.Arg1789Gln in *CAD* gene, encoding a trifunctional protein involved in the pathway of pyrimidine biosynthesis (Table 2). The proband, RP1\_112, was a 6.5-year-old boy with mild macrocytic anemia (Hb 11.3 g/dL, MCV 90.0 fl) and increased RDW (19.0%), suffering also from epilepsy (Supporting Information Table S3).

## 3.4 Additive effect of multiple disease-causing genotypes

Among the patients originally diagnosed as DHS we identified a 35year-old male, RP1\_5, showing a causative *PIEZO1* mutation in heterozygous state, thus confirming the clinical suspicion of DHS1.<sup>4</sup> Interestingly, the patient exhibited also homozygosity for the most common causative mutation of CDAII, the Glu109Lys-*SEC23B* (Table 2).<sup>1</sup> His clinical picture was suggestive of DHS1; indeed, he presented mild anemia (Hb 13.5 g/dL) with macrocytosis (MCV 97.9 fL) and reticulocytosis (117 000/ $\mu$ L) (Supporting Information Table S3). Nevertheless, ektacytometry analysis highlighted a peculiar bell shape curve with reduced DImax and right shift of the Omin point. Interestingly, the coinheritance of *PIEZO1* and *SEC23B* causative mutations resulted in marked iron overload, with very high ferritin levels (1938 ng/mL) and increased transferrin saturation (TSAT 88%).

#### 4 DISCUSSION

Clinical and molecular definition of patients with HA may be very hard to obtain. For some conditions, the great phenotypic variability is partially explained either with high genetic heterogeneity or with reduced penetrance and variable expressivity.<sup>1-4</sup> In the last decade, remarkable progresses have been made in discovering new disease genes involved in red blood disorders. This increasing genetic heterogeneity underlines the problem of a very complex differential diagnosis.<sup>3</sup> It is proper in this context that the multi-gene panel testing takes place. Some t-NGS panels for the diagnosis of HA have been already described. These studies analyzed a cohort of patients ranging from 19 to 57 cases by means of custom panels comprising a smaller gene set of 28–40 loci causative of some RBC membrane defects, CDA, DBA, hemolytic anemias due to enzymatic defects, sideroblastic anemia.<sup>7-9</sup> We herein described the largest cohort of patients and the most comprehensive gene set for this subset of anemias described so far.

Clinical diagnosis of hereditary hemolytic anemias is often inaccurate due to overlapping phenotypes. Of note, our multi-gene panel analysis modified the original clinical diagnosis in 45.8% of patients. Our data demonstrated that CDAs are the most difficult to diagnose at clinical level. This is not surprising if we consider that dyserythropoiesis appears to be a common morphologic feature in several conditions.<sup>1</sup> Indeed, 45.5% of patients classified as CDA showed a conclusive diagnosis of chronic anemia due to enzymatic defects. This observation is in agreement with a recently reported case of CDA conclusively diagnosed as PK deficiency.<sup>7</sup> Nevertheless, our data pointed out even more clearly the problem of overlapping phenotypes among these disorders, since 36.4% of CDA patients within our cohort exhibited mutations in *PKLR* gene. Of note, one of these patients, the case RP1\_23, was recently transplanted for a myelodysplastic syndrome due to transfusion dependency. Despite no target therapies are available for PK deficiency, it has been recently demonstrated that an allosteric activator of both wild type and mutant PK enzymes, AG-348, is able to increase the enzymatic activity in patient erythrocytes treated *ex vivo*, thus opened a new way for clinical management of PK deficient-patients.<sup>21</sup>

Interestingly, in our cohort of patients we identified a case classified as CDA carrying a homozygous mutation in CAD gene, which encodes a multifunctional enzyme complex that catalyzes the first steps of de novo pyrimidine biosynthesis. We originally included CAD in the list of candidate loci for CDA in RedPlex rev.1 panel, since it was reported to be a candidate gene for congenital disorders of glycosylation.<sup>22</sup> Of note, biallelic mutations in this gene have been recently associated to early infantile epileptic encephalopathy-50 in five patients, a severe neurodegenerative disease which can be lethal in childhood. Interestingly, all patients showed also mild CDA-like anemia with marked anisopoikolocytosis.<sup>22,23</sup> Similarly, our patient showed mild macrocytic anemia with increased RDW. A careful revaluation of the case showed that the proband suffered also from epilepsy. Importantly, a supplementation with oral uridine has been recently suggested as treatment for CAD-deficient patients.<sup>23</sup> Thus, we suggest including molecular analysis of CAD gene in the diagnostic workflow of CDA patients with syndromic phenotype. These paradigmatic cases pointed out even more that molecular diagnosis is pivotal in the diagnostic workflow of these disorders. Thus, beyond achieving a definitive diagnosis, knowing the genetic basis of these patients is valuable also for guiding treatment.

Among patients clinically classified as CDA, we identified also four cases with new variants in PIEZO1 gene. Despite PIEZO1 is a large and highly polymorphic gene and has a very large tolerance for missense variants,<sup>24</sup> all the variants we identified were likely pathogenic, since they were located in the C-terminal region of the protein that represents a mutational hot spot, as well as a critical and well-established functional domain.<sup>12,18,19</sup> Additionally, a careful revaluation of the cases showed clinical features most resembling those of DHS1 patients. Interestingly, we identified also two siblings with a homozygous variant in PIEZO1. Although DHS1 is an autosomal dominant disorder, biallelic mutations in dominantly inherited disorders have been already reported, for example in familial pseudohyperkalemia.<sup>25</sup> Nevertheless, the two siblings were from Turkey, a geographical region with high percentage of inbreeding. Unfortunately, we were not able to establish if the homozygous variant in PIEZO1 accounted for a codominant phenotype or a recessive one, since clinical data of the parents of the two siblings were not available. Our data were in agreement with previous ones demonstrating the frequent misdiagnosis among CDA and other hereditary hemolytic anemias, particularly between CDAII

| TABLE 3 Clinical features of (                                                                                                                                                                                                                       | CDA patients conclu                                                                                                                                                                                                                                                                                                                           | usively diagnosed as PH                                                                                                                                                                                                                                              | < deficiency                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                     |                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                      | RP1_13                                                                                                                                                                                                                                                                                                                                        | RP1_23                                                                                                                                                                                                                                                               | RP1_58                                                                     | RP1_59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RP1_72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RP1_73                                                                                                                                                               | RP1_75                                                                                                                                                                                                                                                                                              | RP1_80                                                                                                                             |
| Age (years)                                                                                                                                                                                                                                          | 1.4                                                                                                                                                                                                                                                                                                                                           | 5.2                                                                                                                                                                                                                                                                  | 2.0                                                                        | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.8                                                                                                                                                                  | 1.6                                                                                                                                                                                                                                                                                                 | 14                                                                                                                                 |
| Onset symptoms (years)                                                                                                                                                                                                                               | At birth                                                                                                                                                                                                                                                                                                                                      | Neonatal                                                                                                                                                                                                                                                             | Neonatal                                                                   | At birth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | At birth                                                                                                                                                             | At birth                                                                                                                                                                                                                                                                                            | At birth                                                                                                                           |
| Gender                                                                                                                                                                                                                                               | Male                                                                                                                                                                                                                                                                                                                                          | Female                                                                                                                                                                                                                                                               | Male                                                                       | Male                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Female                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Female                                                                                                                                                               | Male                                                                                                                                                                                                                                                                                                | Male                                                                                                                               |
| Ethnicity                                                                                                                                                                                                                                            | Turkish                                                                                                                                                                                                                                                                                                                                       | Turkish                                                                                                                                                                                                                                                              | Colombian                                                                  | Turkish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Italian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Turkish                                                                                                                                                              | Hungarian                                                                                                                                                                                                                                                                                           | Venezuelan                                                                                                                         |
| Complete blood count RBC ( $10^{6}\mu$ L) Hb (g/dL) Hb (g/dL) Ht (%) MCV (fL) MCH (pg) MCH (pg) MCH (pg) MCHC (g/dL) RDW (%) PLT ( $10^{3}\mu$ L) Retics % Retics % Retics % Retics abs count (x10^{3}\mu). Transfusion rate Bone marrow examination | <ul> <li>2.1</li> <li>6.8</li> <li>6.8</li> <li>18.0</li> <li>104.9</li> <li>32.5</li> <li>32.5</li> <li>387.0</li> <li>0.6</li> <li>387.0</li> <li>387.0</li> <li>12.8</li> <li>8/year</li> <li>12.8</li> <li>8/year</li> <li>12.8</li> <li>10.4 double</li> <li>nucleated</li> <li>nucleated</li> <li>nucleated</li> <li>nuclei)</li> </ul> | <ul> <li>2.9</li> <li>7.7</li> <li>23.4</li> <li>80.6</li> <li>26.1</li> <li>32.4</li> <li>13.7</li> <li>287.0</li> <li>0.1</li> <li>3.8</li> <li>0.1</li> <li>3.8</li> <li>7-8/year</li> <li>Hypercellular with megaloblastic changes in erythroid cells</li> </ul> | 2.6<br>7.6<br>82.0<br>82.0<br>35.0<br>361.0<br>3.2<br>83.5<br>25/year<br>- | <ul> <li>2.9</li> <li>7.9</li> <li>2.3.3</li> <li>81.2</li> <li>28.1</li> <li>34.4</li> <li>13.2</li> <li>276.0</li> <li>1.8</li> <li>34.4</li> <li>13.2</li> <li>276.0</li> <li>2</li></ul> | <ul> <li>3.2</li> <li>9.6</li> <li>29</li> <li>89.6</li> <li>33</li> <li>36.8</li> <li>-</li> <li>295</li> <li>7.2</li> <li>295</li> <li>7.2</li> <li>295</li> <li>7.2</li> <li>295</li> <li>7.2</li> <li>295</li> <li>7.2</li> <li>295</li> <li>33.3</li> <li>36.8</li> <li>33.3</li> <li>33.3</li> <li>49.5</li> <li>57.4</li> <li>57.5</li> <li< td=""><td>1.7<br/>5.5<br/>1.5.8<br/>90.1<br/>31.4<br/>34.9<br/>14.9<br/>14.9<br/>14.9<br/>2.0<br/>35.2<br/>6/year<br/>Normoblasts<br/>with double<br/>with double<br/>internuclear<br/>bridges</td><td><ol> <li>1.7</li> <li>6.1</li> <li>17.5</li> <li>103.6</li> <li>35.3</li> <li>34.3</li> <li>16.7</li> <li>36.2</li> <li>8.56</li> <li>144.7</li> <li>10/year</li> <li>Hypercellular</li> <li>with</li> <li>megaloblastic</li> <li>changes and</li> <li>bi-nucleated</li> <li>normoblasts</li> </ol></td><td>2.7<br/>9.5<br/>32<br/>117.8<br/>35.2<br/>29.9<br/>18.2<br/>1010<br/>18.2<br/>18.2<br/>12/year<br/>hyperactivity<br/>with<br/>dyserythropoiesis</td></li<></ul> | 1.7<br>5.5<br>1.5.8<br>90.1<br>31.4<br>34.9<br>14.9<br>14.9<br>14.9<br>2.0<br>35.2<br>6/year<br>Normoblasts<br>with double<br>with double<br>internuclear<br>bridges | <ol> <li>1.7</li> <li>6.1</li> <li>17.5</li> <li>103.6</li> <li>35.3</li> <li>34.3</li> <li>16.7</li> <li>36.2</li> <li>8.56</li> <li>144.7</li> <li>10/year</li> <li>Hypercellular</li> <li>with</li> <li>megaloblastic</li> <li>changes and</li> <li>bi-nucleated</li> <li>normoblasts</li> </ol> | 2.7<br>9.5<br>32<br>117.8<br>35.2<br>29.9<br>18.2<br>1010<br>18.2<br>18.2<br>12/year<br>hyperactivity<br>with<br>dyserythropoiesis |
| Laboratory data<br>Total bilirubin (mg/dL)<br>Unconjugated<br>bilirubin (mg/dL)<br>Ferritin (ng/mL)                                                                                                                                                  | 1.7<br>0.5<br>554                                                                                                                                                                                                                                                                                                                             | 1.9<br>1.5<br>2554                                                                                                                                                                                                                                                   | 3.7<br>3.1<br>1042                                                         | 6.1<br>5.4<br>389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.6<br>5<br>132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.5<br>3.1                                                                                                                                                           | 2.2<br>2.1<br>198                                                                                                                                                                                                                                                                                   | 7<br>6.3<br>238                                                                                                                    |
| PKLR molecular analysis<br>HGVS<br>(coding <sup>a</sup> ; protein; status)                                                                                                                                                                           | c.1349A>G;<br>p.Asp450Gly;<br>Hom                                                                                                                                                                                                                                                                                                             | c.1117-1G>C;<br>Hom                                                                                                                                                                                                                                                  | c.1116 +<br>2T>G;<br>Hom                                                   | c.67_68deITA;<br>p.Leu23Cysfs*<br>55c.287C>A;<br>p.Pr096GIn;<br>Comp het                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c.1492C>T;<br>p.Arg498Cysc.<br>994G>A;p.<br>Gly332Ser<br>Comp het                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c.353A>G;<br>p.Asn118Ser;<br>Hom                                                                                                                                     | c.1594C>T;<br>p.Arg532Trpc.<br>1529G>A;<br>p.Arg510Gln;<br>Comp het                                                                                                                                                                                                                                 | c.1528C>T;<br>p.Arg510Ter;<br>Hom                                                                                                  |
|                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                      |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                     |                                                                                                                                    |

680 WILEY AJH

Hom, homozygous; Comp het, compound heterozygous. <sup>a</sup>Reference Transcript ID: NM\_000298.



and HS, and between CDAI and DHS.<sup>1,3</sup> Of note, a subtype of HST with overlapping features of CDA was already associated to a specific de novo mutation, p.Gly796Arg, in *SLC4A1* gene, encoding band 3.<sup>3</sup> In our cohort of patients we identified a second case, RP1\_68, carrying the same mutation, although with a different nucleotide replacement (Table 2).

Contrary to CDAs, most of the patients (84.6%) originally classified as erythrocyte membrane defects showed conclusive diagnosis fitting well to the clinical suspicion. This could be explained by the availability of well-defined lines of investigations, as well as of reliable laboratory assays.<sup>3,4</sup>

Finally, the multigenic approach also allowed us identifying patients showing multiple disease-associated variants, suggesting complex inheritance. This was the case of a DHS1 patient that resulted also affected by CDAII. Interestingly, the coinheritance of *PIEZO1* and *SEC23B* causative genotypes accounted for marked iron overload in this patient. Indeed, both DHS1 and CDAII presented iron loading anemia even in absence of transfusion regimen, although with different pathomechanisms.<sup>4,26</sup>

NGS studies have identified a greater-than-expected number of genetic variations in the human genome, suggesting that existing monogenic testing systematically miss relevant information. Our analyzes demonstrated that multigenic approach represent a reliable diagnostic tool for HA patients, overcoming for sensitivity and specificity the gene-by-gene strategy. One of the most important aspects of the use of custom gene panels in clinical practice is their ability to be easily upgradable in view of novel discoveries. This aspect is important not only for the chance to extend the diagnostic spectrum, as described in the present study, but also for the possibility to incorporate noncoding regulatory regions that may harbor pathogenic mutations, as described for GATA1 *cis* elements disrupted in human erythroid disorders.<sup>27,28</sup>

Our paradigmatic cases highlighted how the multi-target sequencing diagnosis may be valuable not only for achieving a correct and definitive diagnosis, but also for guiding treatment. Moreover, it allowed the identification of polygenic conditions, in which the phenotypic variability could be explained by the coinheritance of multiple disease genotypes.

#### ACKNOWLEDGMENTS

This work was supported by grants from the Italian Ministry of University and Research, by PRIN to AI (20128PNX83), by SIR to RR (RBSI144KXC), by grants from Regione Campania (DGRC2362/07). The authors thank Tigem NGS Facility; CEINGE Service Facility platforms of Sequencing Core, Oligonucleotide synthesis and Rheology. They also thank S.L. Alper (Boston, USA), S. Beshara (Stockholm, Sweden), L. Da Costa (Paris, France), E. Unal (Ankara, Turkey), D.J. Erdelyi (Budapest, Hungary), Ü. Koçak (Ankara, Turkey), for referring their patients to us or helping us in the diagnosis in one way or another.

#### CONFLICT OF INTERESTS

The authors have declared that no conflict of interest exists.

#### AUTHOR CONTRIBUTIONS

RR, IA, and AI designed and conducted the study, and prepared the manuscript; RR and IA performed in silico design of the NGS panels; FM and PP performed libraries enrichment; AG, PC, and VP performed clinical evaluation of the patients; RM and BER performed Sanger sequencing analysis; GT performed ektacytometry analysis; KR, SU and GLF provided samples and cared for the patients.

#### ORCID

Roberta Russo D http://orcid.org/0000-0002-3624-7721 Immacolata Andolfo D http://orcid.org/0000-0003-0493-812X Gian Luca Forni D http://orcid.org/0000-0001-9833-1016

#### REFERENCES

- Gambale A, Iolascon A, Andolfo I, Russo R. Diagnosis and management of congenital dyserythropoietic anemias. *Expert Rev Hematol.* 2016;9(3):283–296.
- [2] Da Costa L, O'Donohue MF, van Dooijeweert B, et al. Molecular approaches to diagnose Diamond-Blackfan anemia: the EuroDBA experience. *Eur J Med Genet*. 2017; https://doi.org/10.1016/j.ejmg. 2017.10.017
- [3] Andolfo I, Russo R, Gambale A, Iolascon A. New insights on hereditary erythrocyte membrane defects. *Haematologica*. 2016;101(11): 1284–1294.
- [4] Andolfo I, Russo R, Gambale A, Iolascon A. Hereditary stomatocytosis: an underdiagnosed condition. Am J Hematol. 2018;93(1):107– 121.
- [5] Luzzatto L, Nannelli C, Notaro R. Glucose-6-phosphate dehydrogenase deficiency. *Hematol Oncol Clin North Am.* 2016;30(2):373–393.
- [6] Canu G, De Bonis M, Minucci A, Capoluongo E. Red blood cell PK deficiency: an update of PK-LR gene mutation database. *Blood Cells Mol Dis.* 2016;57:100–109.
- [7] Roy NB, Wilson E, Henderson S, Wray K, et al. A novel 33-Gene targeted resequencing panel provides accurate, clinical-grade diagnosis and improves patient management for rare inherited anaemias. *Br J Haematol.* 2016;175(2):318–330.
- [8] Del Orbe Barreto R, Arrizabalaga B, De la Hoz AB, et al. Detection of new pathogenic mutations in patients with congenital haemolytic anaemia using next-generation sequencing. Int J Lab Hematol. 2016; 38(6):629–638.
- [9] Agarwal AM, Nussenzveig RH, Reading NS, et al. Clinical utility of next-generation sequencing in the diagnosis of hereditary haemolytic anaemias. Br J Haematol. 2016;174(5):806–814.
- [10] Russo R, Esposito MR, Asci R, et al. Mutational spectrum in congenital dyserythropoietic anemia type II: identification of 19 novel variants in SEC23B gene. Am J Hematol. 2010;85(12):915–920.
- [11] Al-Riyami AZ, Iolascon A, Al-Zadjali S, et al. Targeted next generation sequencing identifies a novel β-spectrin gene mutation A2059P in two Omani children with hereditary pyropoikilocytosis. *Am J Hematol.* 2017;92(10):E607–E609.
- [12] Richards S, Aziz N, Bale S, ACMG Laboratory Quality Assurance Committee, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med.* 2015;17(5):405–424.

### 682 WILEY AJH [13] Jagadeesh K, Wenger A, Berger M, et al. M-CAP eliminates a major-

- ity of variants with uncertain significance in clinical exomes at high sensitivity. *Nat Genet.* 2016;48(12):1581–1586.
- [14] Russo R, Langella C, Esposito MR, et al. Hypomorphic mutations of SEC23B gene account for mild phenotypes of congenital dyserythropoietic anemia type II. *Blood Cells Mol Dis.* 2013;51(1):17– 21.
- [15] Del Orbe Barreto R, Arrizabalaga B, De la Hoz Rastrollo AB, et al. Hereditary xerocytosis, a misleading anemia. Ann Hematol. 2016;95 (9):1545–1546.
- [16] Mojzikova R, Koralkova P, Holub D, et al. Two novel mutations (p. (Ser160Pro) and p.(Arg472Cys)) causing glucose-6-phosphate isomerase deficiency are associated with erythroid dysplasia and inappropriately suppressed hepcidin. *Blood Cells Mol Dis.* 2018;69:23– 29.
- [17] Sankaran VG, Ulirsch JC, Tchaikovskii V, et al. X-linked macrocytic dyserythropoietic anemia in females with an ALAS2 mutation. J Clin Invest. 2015;125(4):1665–1669.
- [18] Ge J, Li W, Zhao Q, et al. Architecture of the mammalian mechanosensitive Piezo1 channel. *Nature*. 2015;527(7576):64–69.
- [19] Zhao Q, Wu K, Geng J, et al. Ion permeation and mechanotransduction mechanisms of mechanosensitive piezo channels. *Neuron*. 2016;89(6):1248–1263.
- [20] Jalloh A, Jalloh M, Gamanga I, et al. G6PD deficiency assessment in Freetown, Sierra Leone, reveals further insight into the molecular heterogeneity of G6PD A. J Hum Genet. 2008;53(7):675–679.
- [21] Kung C, Hixon J, Kosinski PA, et al. AG-348 enhances pyruvate kinase activity in red blood cells from patients with pyruvate kinase deficiency. *Blood*. 2017;130(11):1347–1356.
- [22] Ng BG, Wolfe LA, Ichikawa M, et al. Biallelic mutations in CAD, impair de novo pyrimidine biosynthesis and decrease glycosylation precursors. *Hum Mol Genet*. 2015;24(11):3050–3057.

- [23] Koch J, Mayr JA, Alhaddad B, et al. CAD mutations and uridineresponsive epileptic encephalopathy. Brain. 2017;140(2):279–286.
- [24] Andolfo I, Manna F, De Rosa G, et al. PIEZO1-R1864H rare variant accounts for a genetic phenotype-modifier role in dehydrated hereditary stomatocytosis. *Haematologica*. 2017. https://doi.org/10. 3324/haematol.2017.
- [25] Andolfo I, Russo R, Manna F, et al. Functional characterization of novel ABCB6 mutations and their clinical implications in familial pseudohyperkalemia. *Haematologica*. 2016;101(8):909–917.
- [26] Russo R, Andolfo I, Manna F, et al. Increased levels of ERFEencoding FAM132B in patients with congenital dyserythropoietic anemia type II. *Blood.* 2016;128(14):1899–1902.
- [27] Wakabayashi A, Ulirsch JC, Ludwig LS, et al. Insight into GATA1 transcriptional activity through interrogation of cis elements disrupted in human erythroid disorders. Proc Natl Acad Sci U S A. 2016;113(16):4434–4439.
- [28] Russo R, Andolfo I, Gambale A, et al. GATA1 erythroid-specific regulation of SEC23B expression and its implication in the pathogenesis of congenital dyserythropoietic anemia type II. *Haematologica*. 2017;102(9):e371-e374.

#### SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

How to cite this article: Russo R, Andolfo I, Manna F, et al. Multi-gene panel testing improves diagnosis and management of patients with hereditary anemias. *Am J Hematol.* 2018;93:672–682. https://doi.org/10.1002/ajh.25058