Corso: Chimica delle Trasformazioni Alimentari

Docente: Prof. Marcello Mascini mmascini@unite.it

Unità didattica 1 (1CFU=8 ore)
Struttura della materia. Orbitali ed elettroni. Legami. Passaggi di stato.
Sistemi omogenei e eterogenei

DIP. DI IGIENE, MEDICINA PREVENTIVA E SANITÀ PUBBLICA DELL'UNIVERSITÀ DI MESSINA ANALISI CHIMICA E CHIMICO FISICA

TEMPERATUR	A DELL'	ACQUA	ALLA SORGENTE	.c	7,8	
IONI IDROGEN	IO ALLA	SORGE	NTE	PH	7,65	
RESIDUO FIS	SO A 18	0°C		mg/l	105	
CONDUCIBILI	TÀ ELETT	TRICA SE	PECIFICA A 20°C	μS/cm	135	
AZOTO AMM	ONIACA	ALE (NH	(₄ +)	mg/I AS	SENTE	
NITRITI (NO	·)			mg/l A	SSENTI	
ANIDRIDE CA	RBONICA	A LIBERA	ALLA SORGENTE	mg/l	2,50	
ARSENICO				mg/I AS	SENTE	
ELEMENTI CONTENUTI IN UN LITRO D'ACQUA (mg/l)						
CALCIO	Ca**	16,8	CLORURI	CI	7,3	
SODIO	Na+	6,1	FLUORURI	F	0,2	
MAGNESIO	Mg++	4,9	SILICE	SIO2	16,0	
POTASSIO	K+	1,7	BICARBONA	TI HCO ₃	83,6	
SOLFATI	504	8,2	NITRATI	NO ₃	2,0	
Messina 17/11/2014			Prof. O. C	Grillo		

BATTERIOLOGICAMENTE PURA ALLA SORGENTE
L'acqua FONTENOCE è conforme al D.L. n°176 del 08/10/11
INDICATA PER LE DIETE POVERE DI SODIO

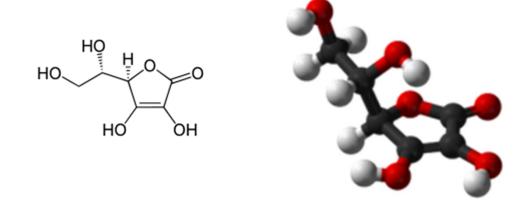
VALORI MEDI	per 100g	per biscotto (13g)	%AR* per biscotto	
ENERGIA	2024 kJ 482 kcal	263 kJ 63 kcal	3% 3%	
GRASSI di cui: acidi grassi saturi	20 g 3,9 g	2,6 g 0,5 g	4% 3%	
CARBOIDRATI di cui: zuccheri	68,2 g 19 g	8,9 g 2,5 g	3% 3%	
FIBRE**	2,8 g	0,4 g	-	
PROTEINE	6,0 g	0,8 g	2%	
SALE	0,825 g	0,107 g	2%	

^{*}AR = assunzione di riferimento di un adulto medio (8400 kJ / 2000kcal).

^{**} Determinate con metodo AOAC 2009.01.

 $C_{12}H_{22}O_{11}$

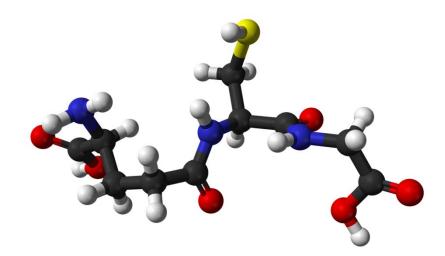
Lattosio (Disaccaride)


NUMERI DI ATOMI PRESENTI NELLA MOLECOLA

$$C_{12}H_{22}O_{11} + H_{2}O \longrightarrow C_{6}H_{12}O_{6} + C_{6}H_{12}O_{6}$$

$$C_{11}H_{22}O_{11} + H_{21}O_{11}O$$

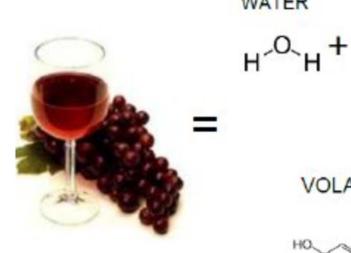
 $C_6H_8O_6$


acido ascorbico Composto organico con proprietà antiossidanti NUMERI DI ATOMI PRESENTI NELLA MOLECOLA

 $C_{10}H_{17}N_3O_6S$

NUMERI DI ATOMI PRESENTI NELLA MOLECOLA

Il glutatione o GSH è un tripeptide con proprietà antiossidanti, costituito da cisteina e glicina, legate da un normale legame peptidico, e glutammato, che invece è legato alla cisteina con un legame isopeptidico tra il gruppo carbossilico della catena laterale del glutammato e il gruppo amminico della cisteina.


 $CH_3(CH_2)_7CHCH(CH_2)_7COOH$

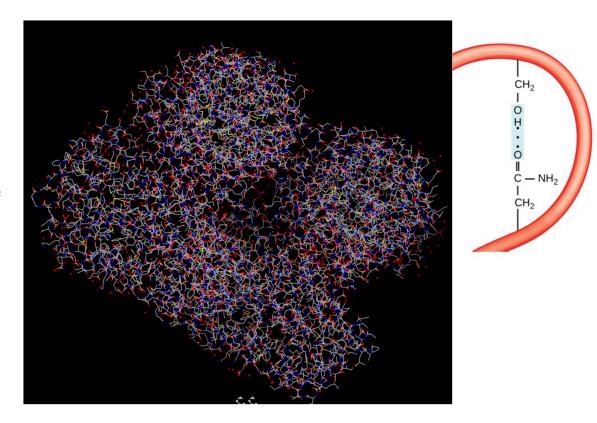
L'acido oleico o acido cis-9-ottadecenoico è un acido carbossilico monoinsaturo a 18 atomi di carbonio della serie omega-9.

NUMERI DI ATOMI PRESENTI NELLA MOLECOLA

NONVOLATILE COMPOUNDS

VOLATILE COMPOUNDS

Macro-MOLECOLE

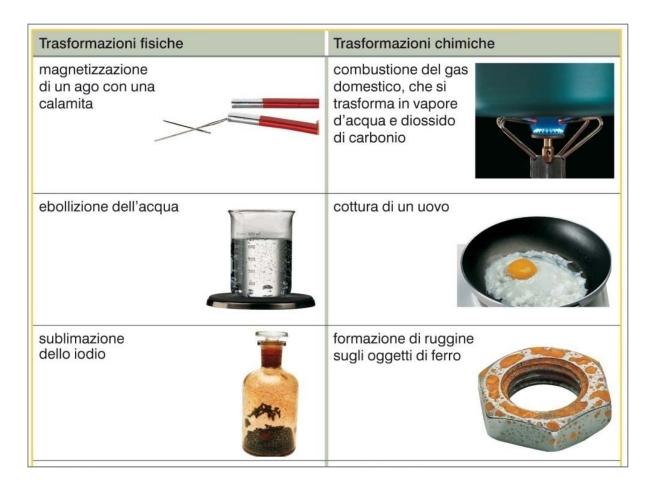

385 residui di amminoacidi

Peso molecolare: 42.7 kDa (Teorico)

NUMERI DI ATOMI PRESENTI NELLA MOLECOLA

Ovoalbumina

una delle principali proteine dell'albume dell'uovo

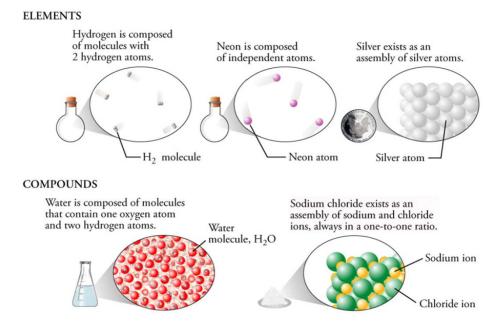

PROPRIETÀ DELLA MATERIA

PROPRIETÀ FISICHE: SONO CARATTERISTICHE CHE POSSONO ESSERE OSSERVATE SENZA MODIFICARE L'IDENTITÀ CHIMICA

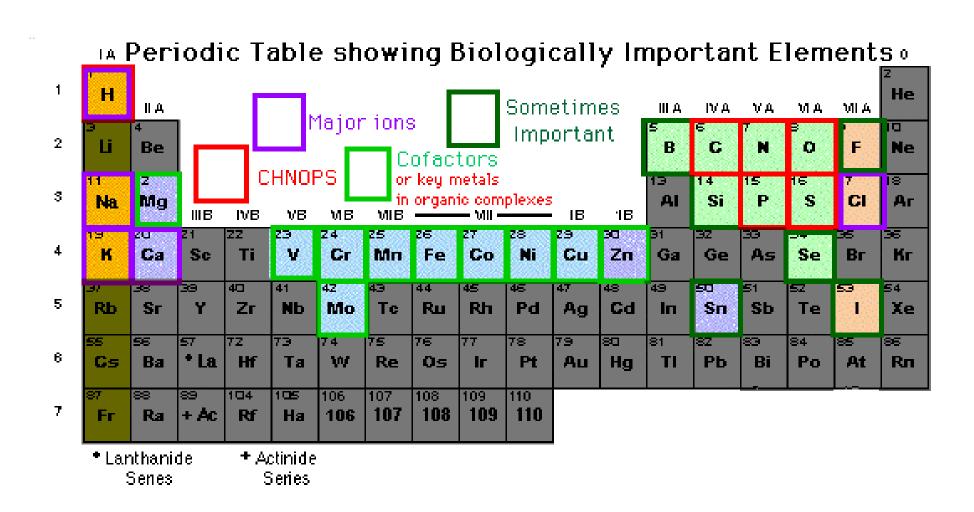
PROPRIETÀ CHIMICHE: CAPACITÀ A DAR LUOGO A REAZIONI CHIMICHE

REAZIONE CHIMICA: PROCESSO IN CUI UNA O PIÙ SOSTANZE MODIFICANO L'IDENTITÀ CHIMICA

trasformazioni fisiche e trasformazioni chimiche



- Trasformazione fisica: le sostanze modificano il loro stato di aggregazione (solido, liquido, gassoso) ma non cambiano le proprietà chimico-fisiche
- Trasformazione chimica: un materiale è trasformato in un nuovo tipo di materiale, con proprietà chimiche diverse


COMPOSTI E ELEMENTI

COMPOSTO: SOSTANZA PURA CHE SOTTOPOSTA A PROCESSI CHIMICI SI DECOMPONE IN ALTRE SOSTANZE PIÙ SEMPLICI (sale da cucina, zucchero, anidride carbonica, metano)

ELEMENTI: SOSTANZA PURA CHE NON PUÒ ESSERE TRASFORMATA CHIMICAMENTE IN ALTRE SOSTANZE PIÙ SEMPLICI (azoto, carbonio, idrogeno, ossigeno)

Questa visione della tavola periodica evidenzia i 26 elementi importanti per gli esseri viventi. Questi includono i sei grandi: carbonio, idrogeno, azoto, ossigeno, fosforo (CHNOPS). Gli altri sono generalmente considerati oligoelementi. Sono spesso molto importanti ma necessari in quantità molto minori.

SIMBOLI CHIMICI

AD OGNI ELEMENTO VIENE ASSEGNATO UN SIMBOLO

IDROGENO H

SODIO Na

POTASSIO K

FERRO Fe

PIOMBO Pb

La Mole

Una MOLE e' la quantità di sostanza che contiene tante unità elementari quanti sono gli atomi contenuti in 12 g esatti dell'isotopo 12 del carbonio.

Gli atomi contenuti in 12 g esatti di ¹²C sono:

 $6.022 \times 10^{+23} = \text{Numero di Avogadro}$

Quanto è grande 10⁺²³?

- Se vinceste una mole di euro il giorno della vostra nascita, spendendo un miliardo al secondo per il resto della vostra vita, il giorno del 90° compleanno avreste ancora il 99,999% della somma iniziale.
- Se rovesciate un bicchiere d'acqua sulla costa tirrenica, immaginando un perfetto mescolamento degli oceani, un bicchiere d'acqua raccolto nel mare della Polinesia conterrebbe almeno 100 molecole d'acqua originali.

Multipli delle Unità SI

Fattore	Prefisso	Simbolo
10 ¹⁸	Exa	E
10 ¹⁵	Peta	P
1012	Tera	T
109	Giga	G
106	Mega	M
10 ³	Chilo	K
10-3	milli	m
10-6	micro	μ
10^{-9}	nano	n
10-12	pico	р
10 -15	femto	f

Misure e grandezze

Secondo il Sistema Internazionale di Unità ci sono sette grandezze fondamentali.

Grandezza fisica	Simbolo della grandezza	Nome dell'unità di misura	Simbolo dell'unità di misura
lunghezza	1	metro	m
massa	m	kilogrammo	kg
tempo	t	secondo	s
corrente elettrica	1	ampère	Α
temperatura	Т	kelvin	К
quantità di sostanza	n	mole	mol
intensità luminosa	i _v	candela	cd

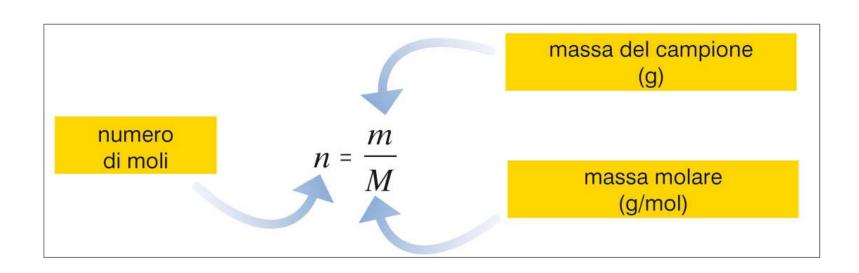
Quanto pesa una mole di H?

Un atomo di H pesa 1 UMA (Dalton):
 1/12 di un atomo di ¹²C.

 Una mole di H peserà pertanto 1/12 di una mole di ¹²C: 1g.

Ed una mole di O?

• Un atomo di O pesa 16: i 16/12 di un atomo di ¹²C.


• Una mole di atomi di O pesa pertanto i 16/12 di una mole di atomi di ¹²C: 16 g!!

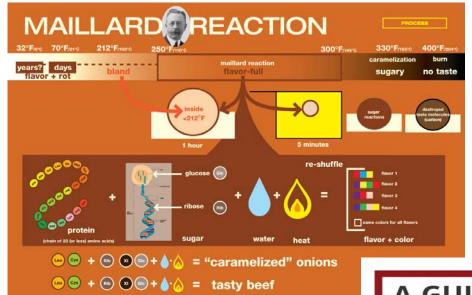
Peso Atomico e Mole

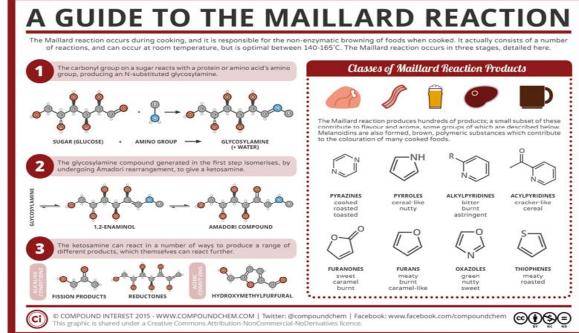
- Il peso di una mole di qualunque elemento è pari al suo peso atomico espresso in grammi.
- Analogamente il peso di una mole di molecole di qualunque sostanza è pari al peso in grammi corrispondente al peso molecolare.

Una mole di	corrisponde a	e contiene
Н	1 g	6,022 · 10 ²³ atomi di H
H ₂	2 g	$6,022\cdot 10^{23} \text{molecole di H}_2$
0	16 g	6,022 · 10 ²³ atomi di O
O ₂	32 g	$6,022\cdot 10^{23} \text{molecole di O}_2$
¹² C	12 g	6,022 · 10 ²³ atomi di ¹² C
H ₂ O	18 g	6,022 · 10 ²³ molecole di H₂O

In pratica, per calcolare il numero di moli di una sostanza si usa la formula

Formula	Fonte	Nome tradizionale	Nome IUPAC	
НСООН	formiche	acido formico	acido metanoico	
СН₃СООН	aceto	acido acetico	acido etanoico	
CH ₃ CH ₂ COOH	latte	acido propionico*	acido propanoico	
CH3(CH2)2COOH	burro	acido butirrico	acido butanoico	
CH3(CH2)3COOH	radice della valeriana	acido valerianico	acido pentanoico	
CH3(CH2)4COOH	capre	acido capronico	acido esanoico	
CH3(CH2)5COOH	fiore della vite	acido enantico	acido eptanoico	
CH3(CH2)6COOH	capre	acido caprilico	acido ottanoico	
CH3(CH2)7COOH	pelargonio	acido pelargonico	acido nonanoico	
CH3(CH2)8COOH	capre	acido caprinico	acido decanoico	


FORMULE CHIMICHE


COEFFICIENTE DI REAZIONE O STECHIOMETRICO

$$2H_2 + O_2 \longrightarrow 2H_2O$$

REAGENTI PRODOTTI

REAZIONI CHIMICHE

LA CUCINA: UN LABORATORIO CHIMICO

Nella cottura di un alimento, così come nella preparazione di una conserva o di una marmellata avvengono a nostra insaputa delle reazioni chimiche!!

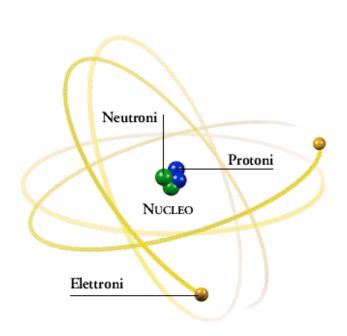
Il succo di limone o l'aceto sul pesce lesso neutralizzano le ammine (con odore non attraente) per dare sali di ammonio che risultano inodori!!

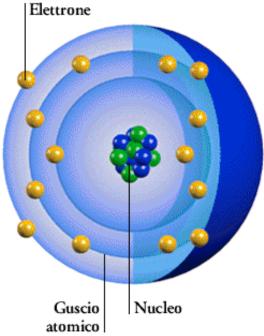
I lieviti chimici che vengono utilizzati per rendere soffici le torte sono costituiti da un sale basico come il carbonato acido di sodio e da uno o più sali acidi che, in determinate condizioni, reagiscono tra loro portando alla formazione di anidride carbonica che forma le cosiddette bollicine e consente all'impasto di rigonfiarsi.

SIMBOLI

```
s SOLIDO
```

- g GAS
- aq SOLUZIONE ACQUOSA
- **∆** CALORE
- → REAZIONE IRREVERSIBILE
- **→ REAZIONE REVERSIBILE**
- **↑ SVILUPPO DI GAS**
- **↓** PRECIPITATO


$$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$$


Struttura dell'atomo

Il cuore di un atomo è formato da un nucleo che ne contiene quasi tutta

la massa. Le particelle che lo compongono sono i protoni e i neutroni.

Gli elettroni, che sono esterni al nucleo, sono numericamente uguali ai protoni, ma hanno una massa molto più piccola

Atomi e particelle subatomiche

ELETTRONE

PROTONE

 $MASSA = 9,11 \square 10^{-31} kg$

 $MASSA = 1,67 \square 10^{-27} kg$

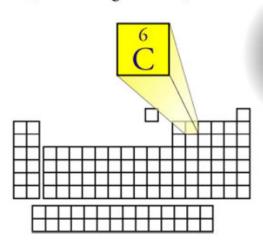
CARICA = -1,60 \Box **10**⁻¹⁹**C**

CARICA = $+1,60 \square 10^{-19}$ **C**

MASSA PROTONE = 1836 MASSA ELETTRONE!

VALORE DELLA MASSA DI UN ATOMO È MAGGIORE DELLA SOMMA DELLE MASSE DEI PROTONI E DELL'ELETTRONE

ATOMO DI OSSIGENO HA MASSA 16, 17, 18 uma


J. CHADWICK (1932) SCOPRE IL NEUTRONE:


PARTICELLA PRIVA DI CARICA E MASSA PARI AD 1,67x10⁻²⁷kg (1 uma)

6 protons
6 neutrons
(in most carbon atoms)
6 electrons

(in uncharged atom)

Struttura dell'atomo

Struttura atomica: le particelle fondamentali

Particella	Massa		Carica	
<u>simbolo</u>	<u>SI (g)</u>	<u>atomica</u>	<u>SI (C)</u>	<u>atomica</u>
e-	9.109·10-28	5.486 ·10 ⁻⁴	-1.602·10 ⁻¹⁹	-1
p ⁺	1.673·10-24	1.0073	+1.602·10 ⁻¹⁹	+1
n	1.675·10 ⁻²⁴	1.0087	0	0

unità di carica atomica: $1.602\cdot 10^{-19}~C$ unità di massa atomica: $1.6606\cdot 10^{-24}~g$

massa elettrone 1836 volte < massa protone

Nel NUCLEO è concentrata la MASSA dell'atomo

La struttura dell'atomo

Numero atomico (Z) = numero di elettroni (corrisponde anche al numero di protoni essendo gli atomi neutri).

Atomi con uguale nuniero atoniico Z hanno uguali proprieta chimiche, sono classificati come atohi dello stesso elemento e identificati dallo stesso simbolo chilnico

Numero di massa (A) = numero protoni + numero neutroni = numero nucleoni

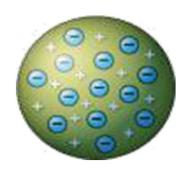
Carica nucleare (+Z)

 $\mathbf{A} - \mathbf{Z} = \text{numero dei neutroni}$

ATOMI DELLO STESSO ELEMENTO, IN CONDIZIONI NORMALI, POSSIEDONO LO STESSO NUMERO DI PROTONI E DI ELETTRONI

NUMERO ATOMICO (Z)=NUMERO DI PROTONI PRESENTI NEL NUCLEO DI UN ATOMO

NUMERO DI MASSA (A)=NUMERO DI PROTONI+NUMERO DI NEUTRONI

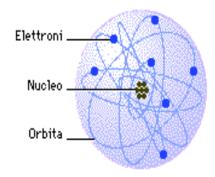

UNITÀ DI MASSA ATOMICA (uma)

si può chiamare anche DaltonIl Dalton non appartiene al sistema internazionale, ma visto che è molto usata in chimica e biologia, è stata riconosciuta e accettata

$$1uma = \frac{1}{12}M_{12}_{C}$$


MASSA PROTONE = 1 uma
MASSA ELETTRONE = 1/1836 uma
MASSA NEUTRONE = 1 uma

RIEPILOGO DEI MODELLI ATOMICI


MODELLI ATOMICO DI THOMSON DETTO "A PUDDING"

1897

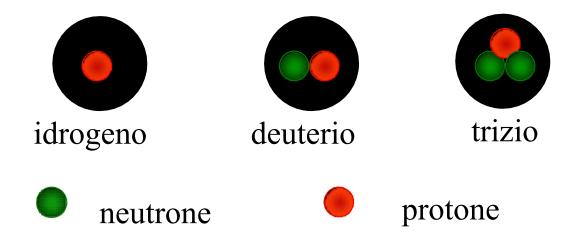
1911

Il modello di Rutherford descrive l'atomo come un sistema solare in miniatura in cui gli elettroni ruotano come pianeti attorno al nucleo.

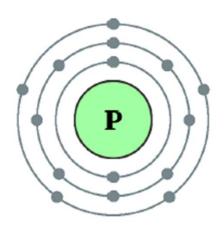
1913

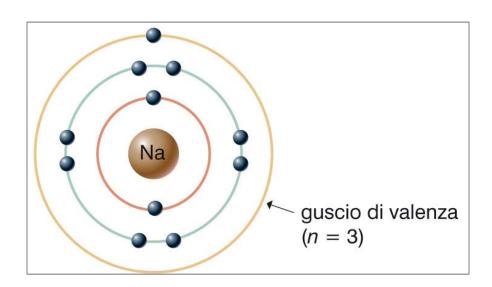
Il modello di Bohr "quantizza" le orbite per dare una spiegazione della stabilità dell'atomo. diversi valori del momento angolare occupano regioni dello spazio di questo tipo.
Le zone ombreggiate sono quelle in cui è più probabile trovare l'elettrone.

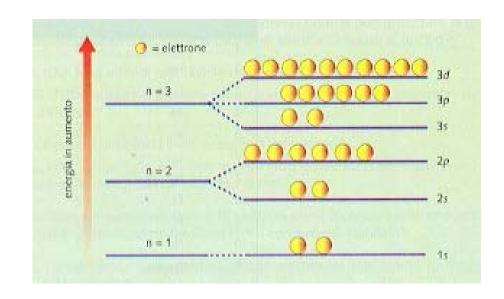
Orbitali: gli elettroni con


Il modello di Schrödinger abbandona l'idea di orbite precise

e introduce una descrizione delle regioni dello spazio (orbitali) basata sulla probabilità di trovare gli elettroni.


Microsoft Corporation. Tutti i diritti riservati.


Gli isotopi


Tutti gli atomi che contengono lo *stesso numero* di protoni appartengono allo stesso elemento. Lo stesso elemento può presentare atomi con *diverso numero* di neutroni. Atomi con diverso numero di neutroni, ma stesso numero di protoni, si chiamano *isotopi*.

- •Gli elettroni del livello più esterno sono detti elettroni di valenza.
- •Gli elementi che appartengono allo stesso periodo presentano gli elettroni di valenza allo stesso livello energetico.

Gli elettroni, negli atomi, sono legati al nucleo dall'attrazione elettrostatica che si instaura tra cariche positive (protoni) e negative (elettroni).

Gli elettroni si trovano all'esterno del nucleo disposti su livelli di energia, detti anche strati o gusci elettronici.

Orbitali e numeri quantici

Un orbitale atomico viene approssimato con quella regione di spazio attorno al nucleo atomico in cui la probabilità di trovare un elettrone è massima (massima densità di probabilità) ed è delimitata da una superficie sulla quale il modulo dell'ampiezza della funzione d'onda è costante.

In altre parole, una regione di spazio attorno ad un nucleo atomico in cui la probabilità di trovarvi un elettrone è massima (di solito superiore ad un limite convenzionalmente fissato nel 90%) è usata per rappresentare graficamente un orbitale atomico di quell'elettrone.

I numeri quantici

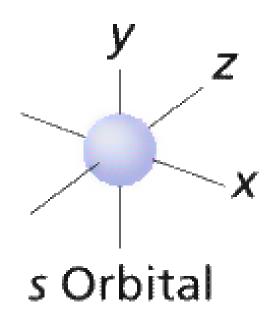
Numero quantico principale (n), specifica il livello energetico di un elettrone nell'atomo; Numero quantico secondario (1) o angolare o azimutale, indica la forma dell'orbitale in cui si trova un elettrone (s, p, d, f); Numero quantico magnetico (m), specifica l'orientamento dell'orbitale; numero orbitali per tipo. Numero quantico magnetico di spin (ms), indica il verso di rotazione dell'elettrone in un orbitale. Tutte le caratteristiche degli orbitali sono definite da quattro numeri quantici

VALORI ASSUNTI DAI NUMERI QUANTICI

 $(1 \div 7)$ n $(0 \div n-1)$ $(-/\div+/)$ m (-1/2; +1/2) m_s

Numero quantico del momento magnetico \mathbf{m}_l : determina l'orientamento spaziale di orbitali con \mathbf{n} e \mathbf{l} definiti, cioè con dimensione e forma definite.

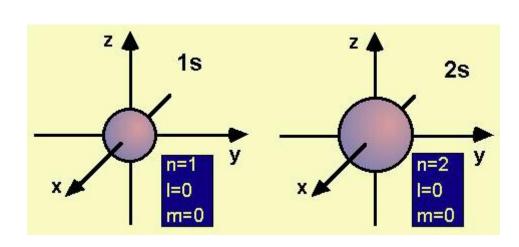
Per ogni dato l m_l può assumere tutti i valori interi compresi tra -l e +l, cioè

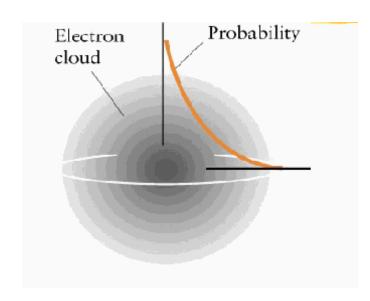

$$m_l = -l, -l+1, ..., 0, 1, ..., l-1, l$$

Ad esempio

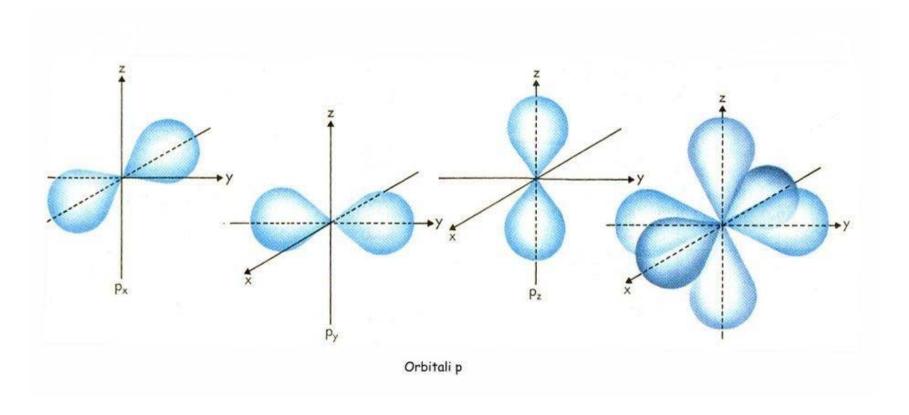
I =0	S	$m_1=0$	1 orbitale s
I =1	p	$m_1 = -1, 0, +1$	3 orbitali p
 =2	d	$m_1 = -2, -1, 0, +1, +2$	5 orbitali d
I =3	f	$m_1 = -3, -2, -1, 0, +1, +2, +3$	7 orbitali f

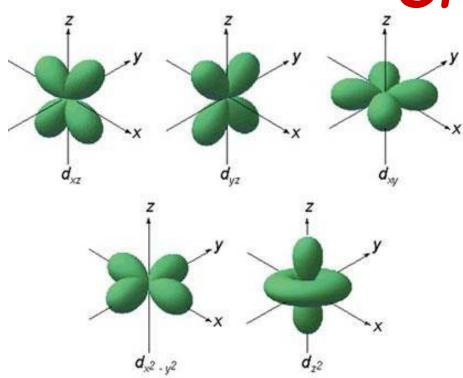
Orbitali con lo stesso \mathbf{l} ma diverso \mathbf{m}_{l} hanno la stessa forma ma diversa orientazione nello spazio.


Per un dato l sono possibili 2l+1 orientazioni diverse

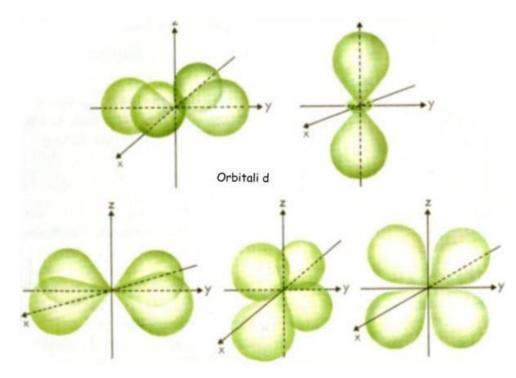


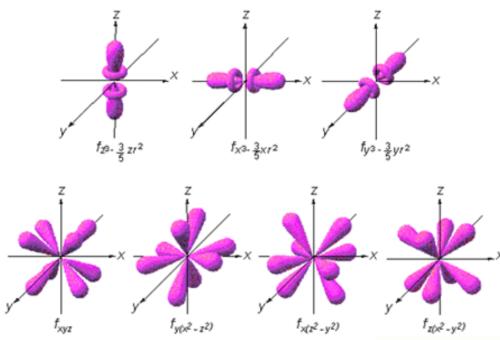
Orbitale s

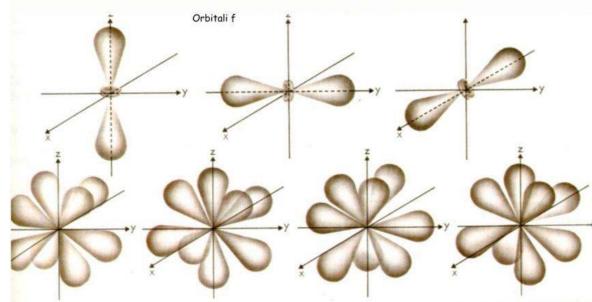

- ·ha una forma sferica;
- ·la nuvola elettronica diviene meno densa man mano che la distanza dal nucleo aumenta;
- · maggiore è l'energia dell'orbitale s, maggiore è il diametro della sfera.



Orbitale p


- ·sono presenti tre orbitali p per ogni livello energetico, orientati lungo 3 assi perpendicolari;
- · la forma è data da due lobi posti ai lati opposti del nucleo;
- · i due lobi sono separati da un piano, detto nodale;
- · gli elettroni non si trovano mai sul piano nodale.


Orbitale d

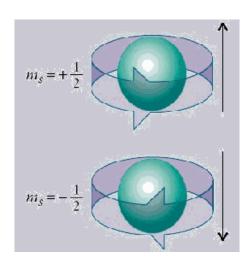

- ·la forma è più complicata degli orbitali s e p;
- · sono presenti cinque orbitali d per ogni livello energetico;
- ·quattro di essi hanno 4 lobi, il quinto è differente;
- ·gli elettroni non si trovano mai sui 2 piani nodali.

Orbitale f

- ·la forma è più complicata degli orbitali s, p e d;
- · sono presenti sette orbitali f per ogni livello energetico;
- ·quattro di essi hanno 8 lobi, gli altri tre hanno 2 lobi e 1 anello;
- ·gli elettroni non si trovano mai sui 3 ·piani nodali.

Configurazione elettronica

Ogni atomo è caratterizzato da una specifica disposizione degli elettroni nei suoi livelli e sottolivelli energetici(ORBITALI). Tale distribuzione prende il nome di configurazione elettronica dell'atomo.

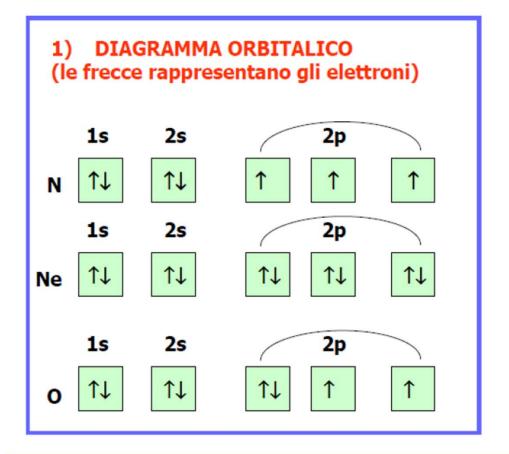

Il procedimento ideale di riempimento degli orbitali avviene seguendo tre principi o criteri operativi:

1) l'"aufbau prinzip" (il principio della costruzione a strati o principio di minima energia): ogni elettrone occupa l'orbitale disponibile a energia più bassa.

Il principio di esclusione di Pauli

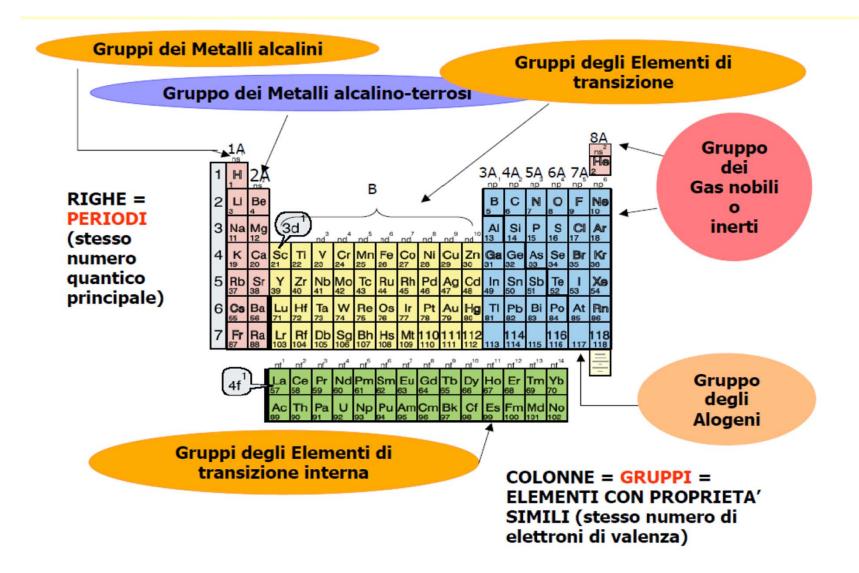
Considerando che un orbitale è definito da tre numeri quantici, mentre il quarto è il numero quantico di spin (che può assumere sono due valori) il principio di Pauli può anche essere enunciato:

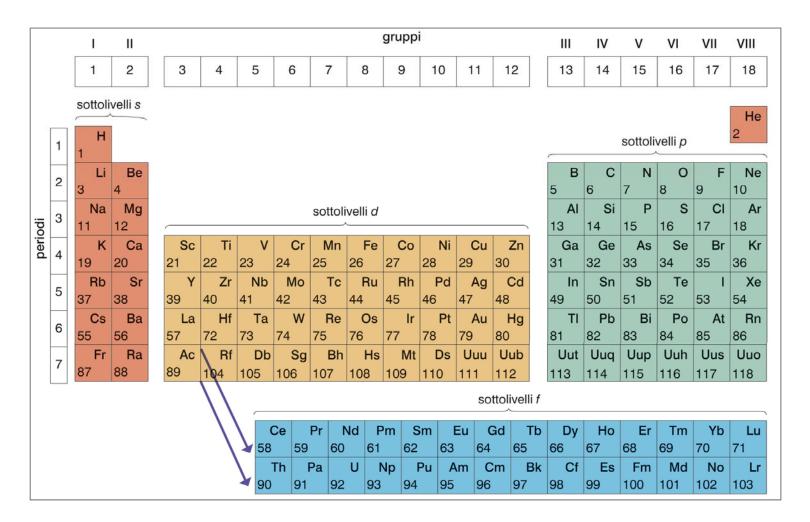
ogni orbitale può essere occupato al massimo da due elettroni, che devono avere spin opposti.


La Regola di Hund:

Quando vi sono uno o più orbitali disponibili appartenenti allo stesso sottolivello (cioè che hanno la stessa l ma m differente), gli elettroni si dispongono in modo da occuparli, per quanto possibile, singolarmente.

Gli e nell'atomo si possono rappresentare in due modi:

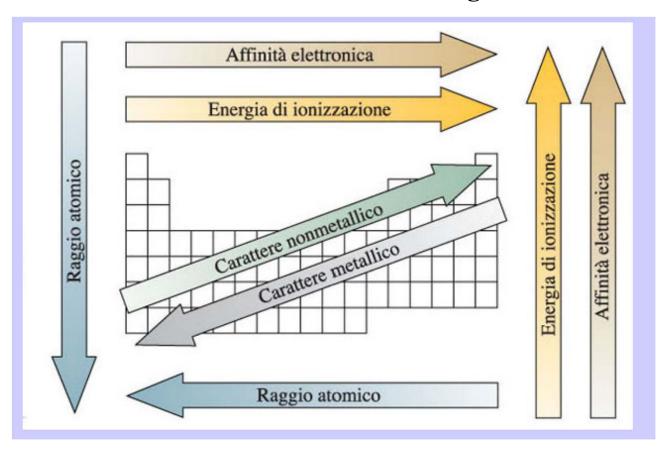

- secondo il IL DIAGRAMMA ORBITALICO;
- 2. Secondo la NOTAZIONE spdf



La sistemazione degli e nei livelli energetici viene realizzata nel seguente modo: nei riquadri vengono inserite due frecce, di verso opposto, che rappresentano due e . Ogni riquadro può ospitare al massimo 2 e . Negli esempi sotto riportati si possono vedere le rappresentazioni elettroniche dell'azoto (Z=7), del neon (Z=10) e dell'ossigeno (Z=8).

A parità di energia gli elettroni occupano gli orbitali in modo da trovarsi spaiati

(REGOLA DI HUND)



- Il **periodo** indica il livello di energia nel quale sono collocati gli elettroni di valenza
- Elementi di uno stesso **gruppo** hanno configurazione elettronica esterna di stesso tipo

Le proprietà periodiche degli elementi

Le proprietà degli elementi variano con regolarità lungo la tavola periodica in base alla variazione periodica della configurazione elettronica

Sono proprietà periodiche il **raggio atomico**, **l'energia di ionizzazione**, **l'affinità elettronica** e **l'elettronegatività**.

Metalli, non metalli e semimetalli

		4								cr	escen	te									(n
			1						р	roprie	tà me	talliche	Э							VIII	
		1	Н	II												IV	٧	VI	VII	Не	1
	che	2	Li	Ве											В	С	N	0	F	Ne	alliche
ente	proprietà metalliche	3	Na	Mg		ge e	×	·				N.			AI	Si	Р	S	CI	Ar	crescente proprietà non metalliche
crescente	prietà 1	4	K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	cresc età no
Ī	pro	5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe	propri
	(6	Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn	
		7	Fr	Ra																	_
										cr	escen	te									
									pro	prietà	non m	netallic	che								

- I metalli sono caratterizzati da: basse energie di ionizzazione affinità elettroniche piccole o positive bassa elettronegatività Come risultato tendono a perdere gli elettroni di valenza formando cationi

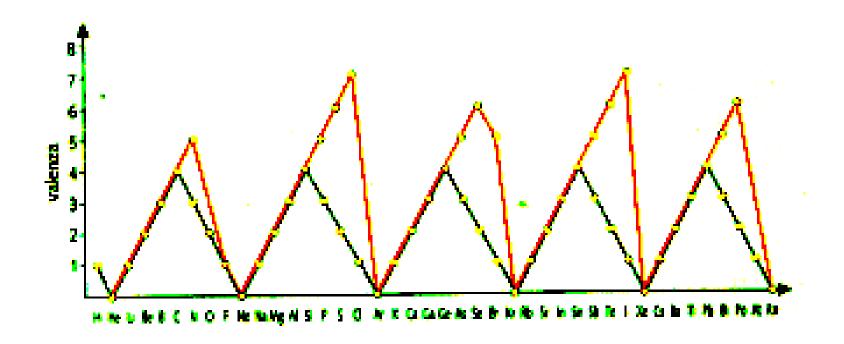
 Na⁺ Ca²⁺ Al³⁺
- I non-metalli sono caratterizzati da: elevate energie di ionizzazione affinità elettroniche negative e grandi elevata elettronegatività Come risultato tendono ad acquistare elettroni formando anioni monoatomici ed ossanioni.

Be ,6 // // // // // // // // // // // // //				elettr	onegat onegat	tività m	edia			III B 2,0	IV C 2,5	V N 3,0	VI O 3,5	VII F 4,0	He Ne				
,6 //g				,						100000					Ne				
/lg				elettr	onegat	tività ba	assa			2,0	2,5	3.0	3.5	4.0					
				Cicta	onegai	livita be		elettronegatività bassa											
,2					Al	Si	Р	S	CI	Ar									
	1,5												2,5	3,0					
Ca Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr				
,0 1,3	1,5	1,6	1,6	1,5	1,8	1,9	1,9	1,9	1,6	1,6	1,8	2,0	2,4	2,8					
Sr Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	- 1	Xe				
,0 1,2	1,4	1,6	1,8	1,9	2,2	2,2	2,2	1,9	1,7	1,7	1,8	1,9	2,1	2,5					
Ba La	Hf	Та	W	Re	Os	lr .	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn				
,9 1,0	1,3	1,5	1,7	1,6	2,2	2,2	2,2	2,4	1,9	1,8	1,9	1,9	2,0	2,1					
Ra																			
,9																			
,0 Sr ,0 Ba ,9	1,3 Y 1,2 La	1,3 1,5 Y Zr 1,2 1,4 La Hf	1,3 1,5 1,6 Y Zr Nb 1,2 1,4 1,6 La Hf Ta	1,3 1,5 1,6 1,6 Y Zr Nb Mo 1,2 1,4 1,6 1,8 La Hf Ta W	1,3 1,5 1,6 1,6 1,5 Y Zr Nb Mo Tc 1,2 1,4 1,6 1,8 1,9 La Hf Ta W Re	1,3 1,5 1,6 1,6 1,5 1,8 Y Zr Nb Mo Tc Ru 1,2 1,4 1,6 1,8 1,9 2,2 La Hf Ta W Re Os	1,3 1,5 1,6 1,6 1,5 1,8 1,9 Y Zr Nb Mo Tc Ru Rh 1,2 1,4 1,6 1,8 1,9 2,2 2,2 La Hf Ta W Re Os Ir	1,3 1,5 1,6 1,6 1,5 1,8 1,9 1,9 Y Zr Nb Mo Tc Ru Rh Pd 1,2 1,4 1,6 1,8 1,9 2,2 2,2 2,2 La Hf Ta W Re Os Ir Pt	1,3 1,5 1,6 1,6 1,5 1,8 1,9 1,9 1,9 Y Zr Nb Mo Tc Ru Rh Pd Ag 1,2 1,4 1,6 1,8 1,9 2,2 2,2 2,2 1,9 La Hf Ta W Re Os Ir Pt Au	1,3 1,5 1,6 1,6 1,5 1,8 1,9 1,9 1,9 1,6 Y Zr Nb Mo Tc Ru Rh Pd Ag Cd 1,2 1,4 1,6 1,8 1,9 2,2 2,2 2,2 1,9 1,7 La Hf Ta W Re Os Ir Pt Au Hg	1,3 1,5 1,6 1,6 1,5 1,8 1,9 1,9 1,9 1,6 1,6 Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In 1,2 1,4 1,6 1,8 1,9 2,2 2,2 2,2 1,9 1,7 1,7 La Hf Ta W Re Os Ir Pt Au Hg TI	1,3 1,5 1,6 1,6 1,5 1,8 1,9 1,9 1,9 1,6 1,6 1,8 Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn 1,2 1,4 1,6 1,8 1,9 2,2 2,2 2,2 1,9 1,7 1,7 1,8 La Hf Ta W Re Os Ir Pt Au Hg TI Pb	1,3 1,5 1,6 1,6 1,5 1,8 1,9 1,9 1,9 1,6 1,6 1,8 2,0 Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb 1,2 1,4 1,6 1,8 1,9 2,2 2,2 2,2 1,9 1,7 1,7 1,8 1,9 La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi	1,3 1,5 1,6 1,6 1,5 1,8 1,9 1,9 1,9 1,6 1,6 1,8 2,0 2,4 Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te 1,2 1,4 1,6 1,8 1,9 2,2 2,2 2,2 1,9 1,7 1,7 1,8 1,9 2,1 La Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po	1,3 1,5 1,6 1,6 1,5 1,8 1,9 1,9 1,9 1,6 1,6 1,8 2,0 2,4 2,8 Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 1,2 1,4 1,6 1,8 1,9 2,2 2,2 2,2 1,9 1,7 1,7 1,8 1,9 2,1 2,5 La Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po At				

- •L'elettronegatività di un elemento misura la sua tendenza ad attrarre gli elettroni di legame da un altro elemento.
- •L'elettronegatività aumenta lungo un periodo e diminuisce lungo un gruppo.

LEGAME CHIMICO

Le molecole sono aggregati stabili ed identici contenenti più atomi

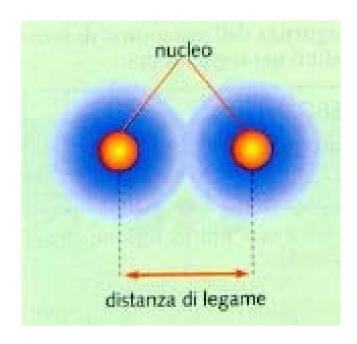

La loro geometria non cambia al cambiare dello stato di aggregazione

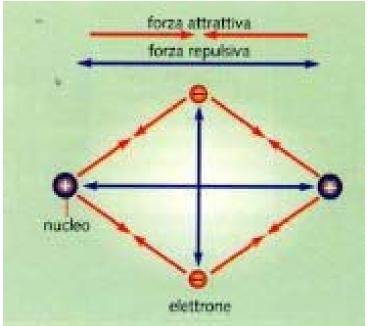
Deve esistere una forma di interazione tra gli atomi.

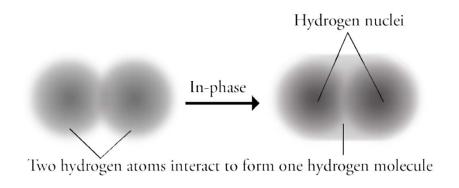
VALENZA

Gli elettroni di VALENZA, cioè quelli più esterni sono quelli coinvolti nei legami chimici, gli elettroni interni non vengono coinvolti

Il numero degli elettroni di valenza per gli elementi dei gruppi principali coincide con il numero del gruppo



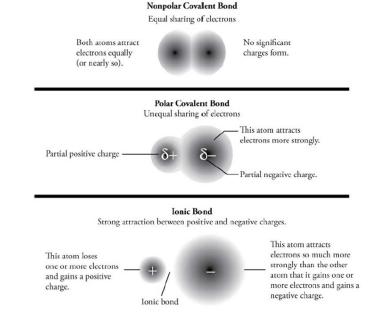

REGOLA DELL'OTTETTO

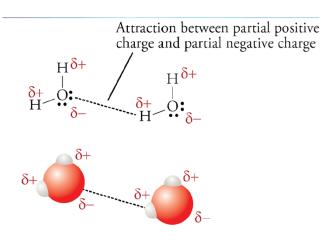

UN ATOMO, IN GENERE, TENDE A FORMARE LEGAMI FINO A RAGGIUNGERE UNA SUA CONFIGURAZIONE ELETTRONICA ESTERNA SIMILE A QUELLA DEI GAS NOBILI, CARATTERIZZATA CIOÈ DALLA PRESENZA DI OTTO ELETTRONI

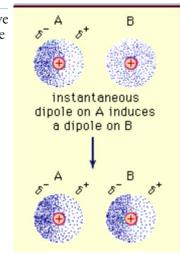
IONI CON TALE CONFIGURAZIONE SONO PIU'STABILI

$$F = k \cdot \frac{q_1 \cdot q_2}{q_1 \cdot q_2}$$

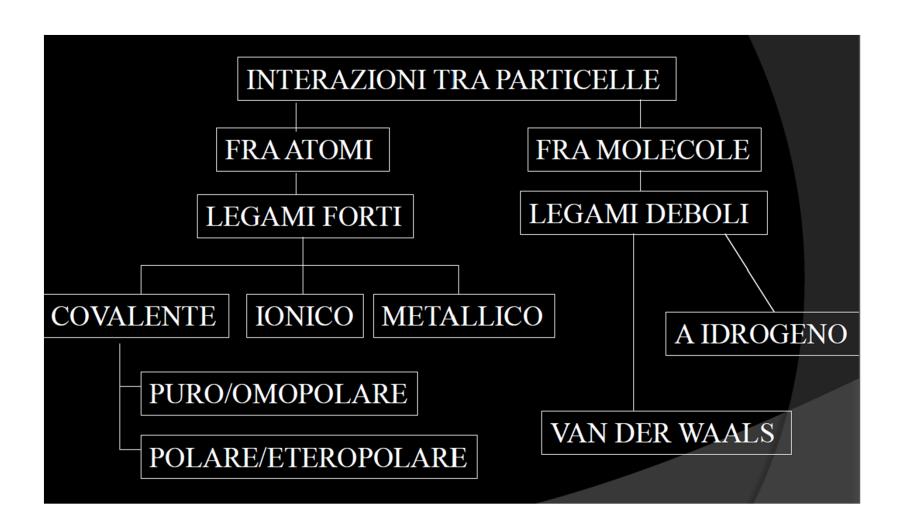
Electrons shift toward the chlorine atom, forming partial plus and minus charges.

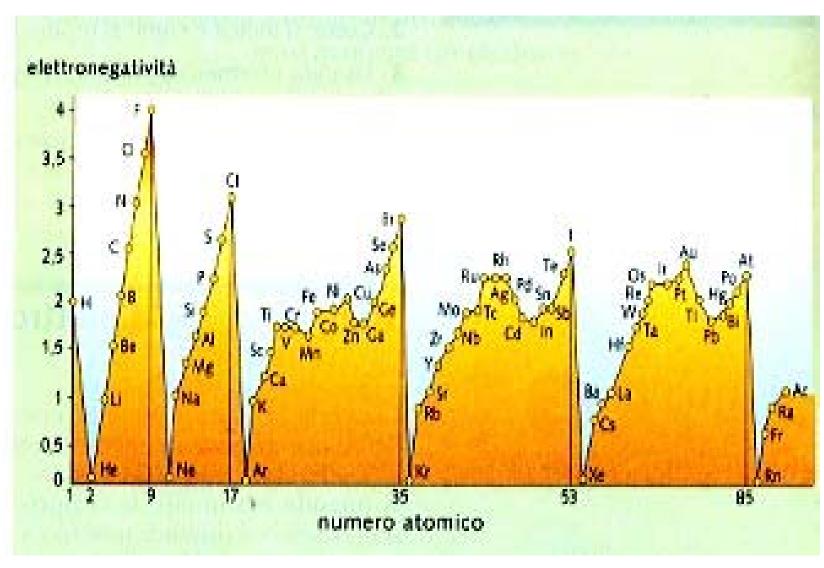

8
Hydrogen attracts electrons less.


TIPI DI LEGAMI

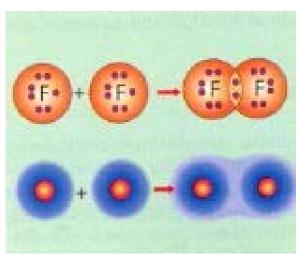

LEGAMI INTRAMOLECOLARI

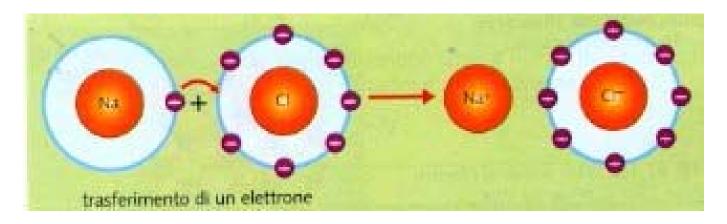
- LEGAME COVALENTE
- (omopolare eteropolare)
- LEGAME IONICO
- LEGAME METALLICO

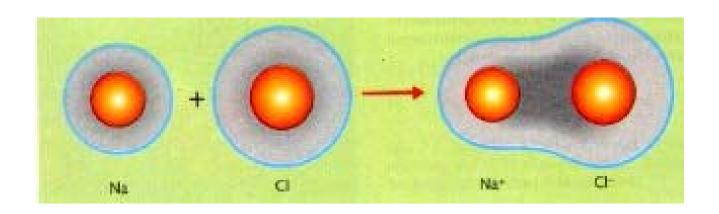

LEGAMI INTERMOLECOLARI -LEGAMI A IDROGENO -INTERAZIONI DI VAN DER WAALS

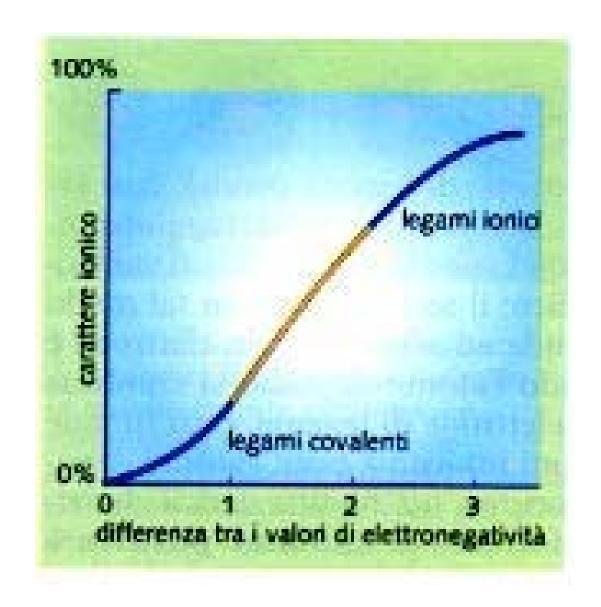


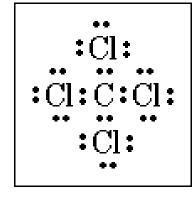
SCHEMA

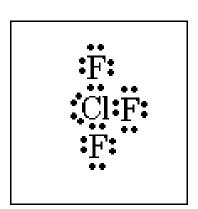

ELETTRONEGATIVITÀ

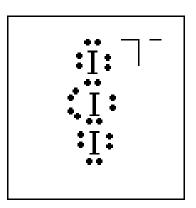

LEGAME COVALENTE

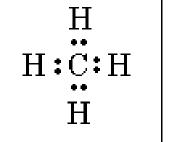

CONDIVISIONE DI UNA COPPIA DI ELETTRONI DA PARTE DI DUE ELEMENTI

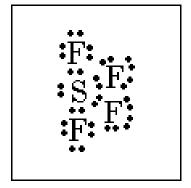


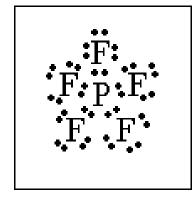


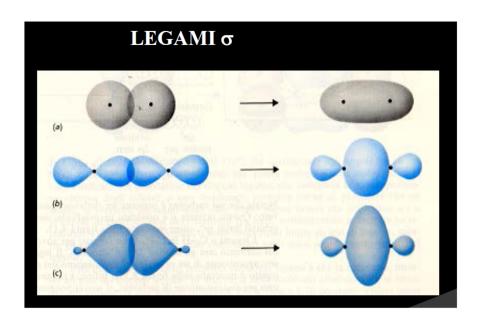

LEGAME IONICO

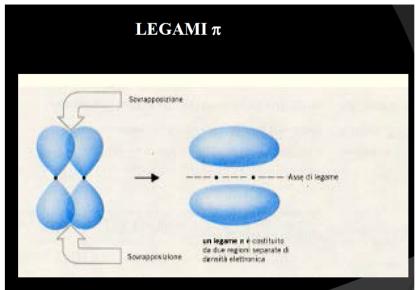


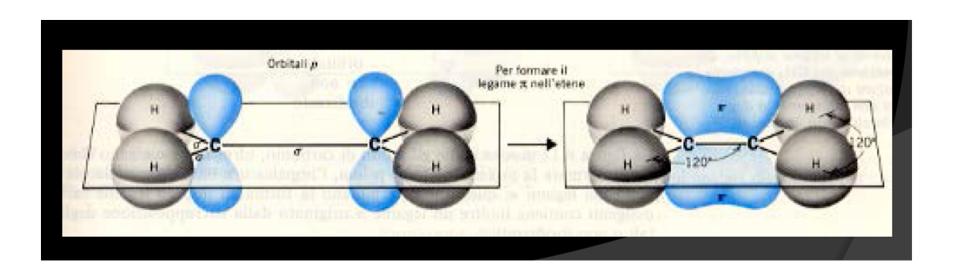






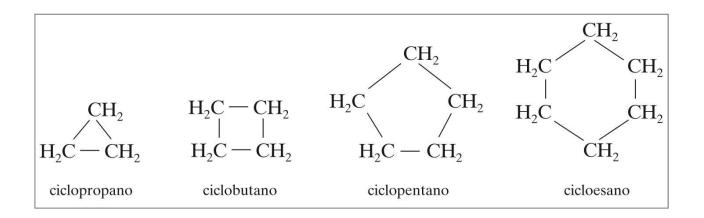


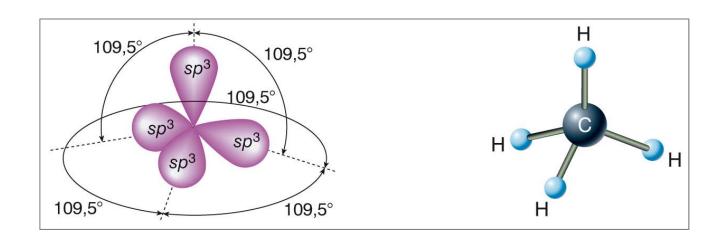



I composti organici contengono soprattutto atomi di carbonio, idrogeno, ossigeno e azoto; altri elementi presenti in tracce sono zolfo, magnesio e fosforo.

I composti organici possono formare lunghe catene grazie alla capacità del carbonio di dare luogo a quattro legami.

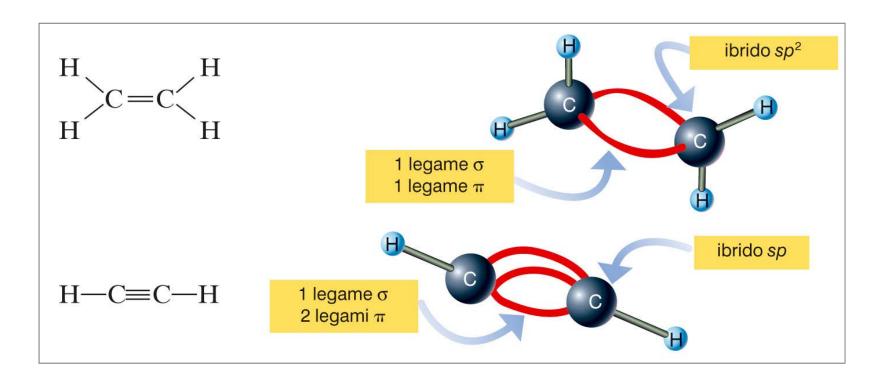
A seconda che le coppie di elettroni condivisi siano una, due o tre, si possono formare:

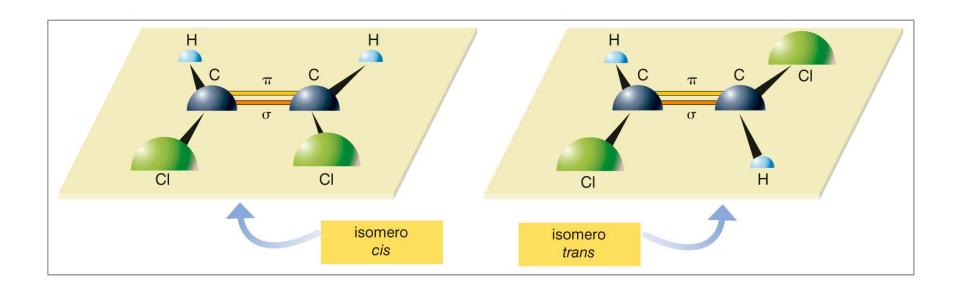




Gli idrocarburi saturi: alcani e cicloalcani

Gli idrocarburi saturi sono costituiti da catene di atomi di carbonio uniti soltanto da un legame semplice.

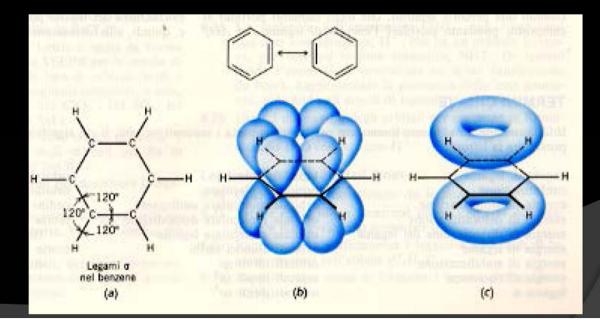

Il metano (CH₄) è l'esemplificazione dell'ibridazione sp^3 degli atomi di carbonio degli idrocarburi saturi; la molecola di metano presenta quindi geometria tetraedrica con angoli di legame di 109,5°.


Gli idrocarburi insaturi: alcheni e alchini

Gli **alcheni** sono idrocarburi che presentano almeno un doppio legame nella molecola, ibridazione sp^2 , geometria planare e angoli di legame di 120° .

Gli **alchini** sono idrocarburi con almeno un triplo legame nella molecola, ibridazione *sp*, geometria lineare e angoli di legame di 180°.

Gli isomeri cis-trans sono stereoisomeri.

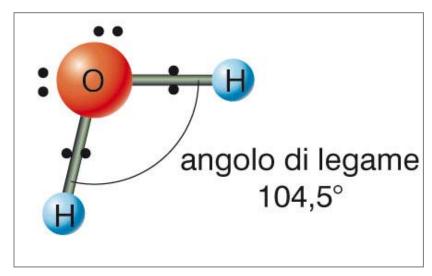


Gli idrocarburi aromatici

Il capostipite degli idrocarburi aromatici è il **benzene**, C₆H₆.

Il benzene viene rappresentato come ibrido di risonanza di due forme limite che differiscono per la posizione dei doppi legami.

II benzene



La forma delle molecole

Molte proprietà delle sostanze dipendono dalla forma delle loro molecole.

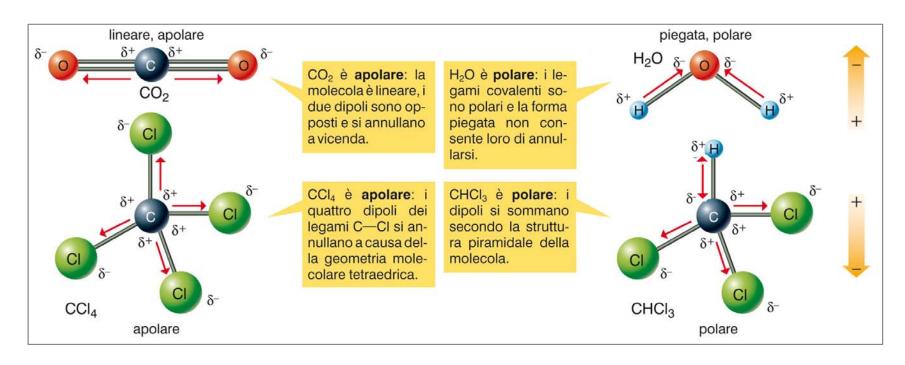
I moderni mezzi di indagine hanno messo in evidenza che in una molecola gli atomi sono disposti in rapporti geometrici particolari che conferiscono alle sostanze le loro proprietà peculiari.

Ciò che definisce la geometria di una molecola è l'**angolo di legame**, ovvero l'angolo formato dagli assi congiungenti i nuclei degli atomi che si legano.

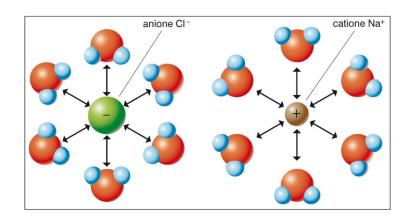
La teoria VSEPR (Valence Shell Electron-Pair Repulsion)

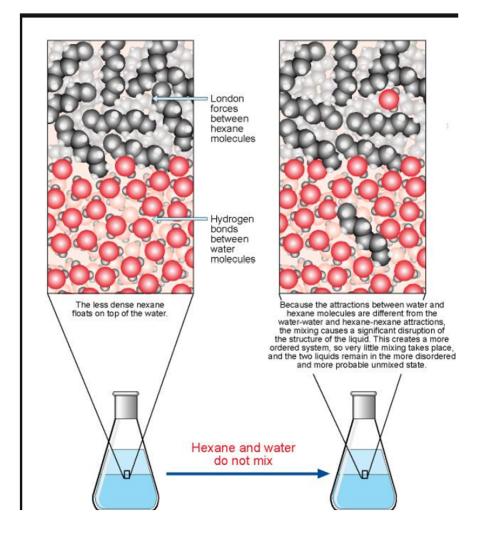
I principi fondamentali della teoria VSEPR sono

- la disposizione degli atomi in una molecola dipende dal numero totale di coppie elettroniche di valenza che circondano l'atomo centrale;
- le coppie elettroniche, avendo uguale segno, si respingono e si collocano alla maggiore distanza possibile le une dalle altre.


La teoria VSEPR

Molecola	Numero di gruppi elettronici	Struttura di Lewis	Forma	Struttura geometrica	Angolo di legame	Modello
BeH₂	2	H ° Be °H	lineare	Н — Ве — Н	180°	180° H
BH ₃	3	H°B°H °° H	triangolare planare	H B H	120°	120°
CH₄	4	H H . C . H • . H	tetraedrica	H C H	109,5°	H 109.5° H


Molecola	Numero di gruppi elettronici	Struttura di Lewis	Forma	Struttura geometrica	Angolo di lega- me	Modello
NH ₃	4	H ° N° H •° H	piramide triangolare	H H	107,3°	H 707,3°
H₂O	4	H : O: H	piegata	••• Н Н	105°	H 1050
CO ₂	2	: 0:0 C0:0:	lineare	:0=c=0:	180°	
HCN	2	H ° C ° ° N °	lineare	H — C ≡ N:	180°	H—C :


Molecole polari e apolari

- •La polarità di una molecola dipende anche dalla geometria della molecola, cioè dalla disposizione nello spazio dei suoi legami.
- •La polarità delle molecole determina la solubilità della sostanza nei diversi solventi.

•I solventi sciolgono le sostanze che hanno polarità simile: solventi polari sciolgono sostanze polari, solventi apolari solubilizzano sostanze apolari.

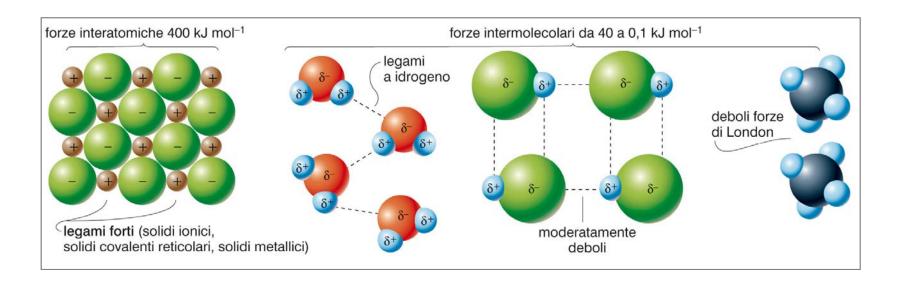
Le forze intermolecolari

- •Le **forze intermolecolari** sono forze di natura elettrostatica che mantengono le molecole vicine tra loro.
- •Si conoscono due tipi di legami intermolecolari
- 1. forze dipolo-dipolo e di London;
- 2. legame a idrogeno.

- •Le forze dipolo-dipolo sono forze di attrazione tra dipoli, in qualsiasi stato fisico si trovino.
- •I legami elettrostatici tra dipoli permanenti sono chiamati **forze** dipolo-dipolo.
- •Le **forze di London** sono dovute all'attrazione tra i dipoli temporanei di molecole vicine.
 - •Il **legame a idrogeno** è una forza attrattiva che si instaura tra molecole che contengono un atomo di idrogeno legato covalentemente a un atomo, molto elettronegativo e con una coppia elettronica libera (N, O, F).

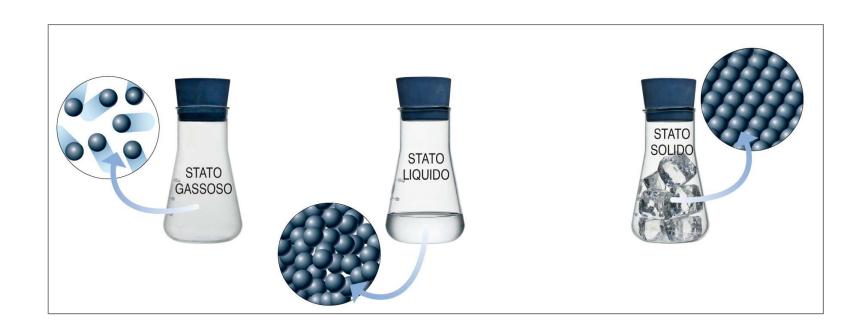
$$\delta^{-} \delta^{+} \delta^{-} \delta^{+}$$
 $\delta^{-} \delta^{+} \delta^{-} \delta^{+}$ $\delta^{-} \delta^{+} \delta^{-} \delta^{+}$

•Il legame a idrogeno è la più grande forza attrattiva intermolecolare ma è circa 10 volte più debole di un legame covalente.

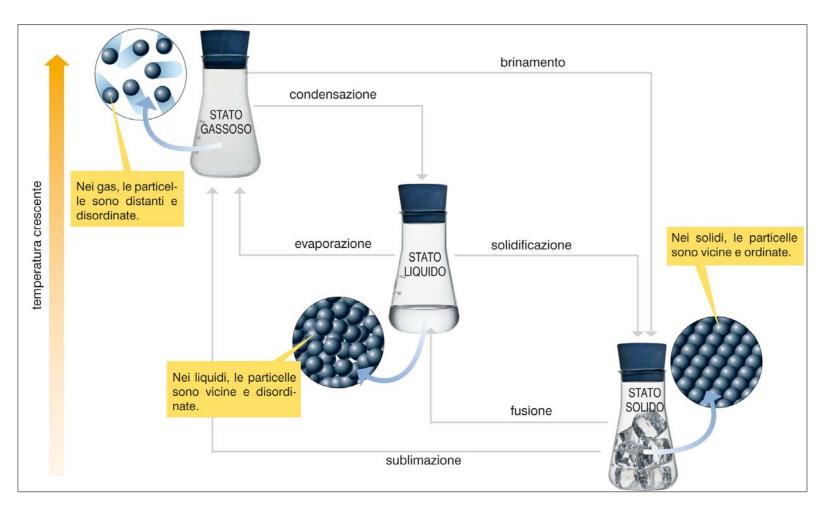

Legami a confronto

•La forza di legame è legata all'energia necessaria per allontanare particelle legate tra loro.

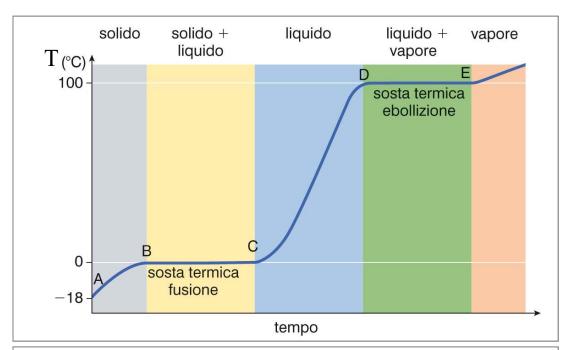
Tipo di legame	Energia necessaria per rompere un legame (eV)	Energia necessaria per rompere 1 mole di legami (kJ/mol)
covalente (a)	poco più di 4	(circa 4 · 96,5) ≈ 400
legame ionico (a)	circa 4	(circa 4 · 96,5) ≈ 400
legame metallico (a)	0,4 - 1,2	$[(0,4-1,2)\cdot 96,5] \approx 40-120$
legame a idrogeno (b)	0,2 - 0,4	$[(0.2-0.4)\cdot 96.5] \approx 20-40$
forze di Van der Waals (b)	0,01 - 0,1	$[(0,01-0,1)\cdot 96,5]\approxeq 1-10$

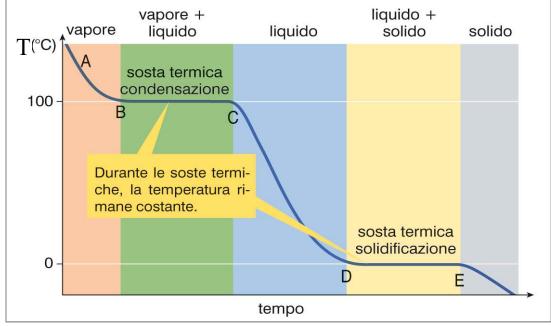

Legami a confronto

•La scala di energia dei legami atomici è assai diversa da quella delle forze intermolecolari.


- •Le proprietà dell'acqua dipendono dal legame a idrogeno.
- •Il legame a idrogeno influisce sulle proprietà fisiche delle sostanze che lo contengono.

Gli stati fisici della materia

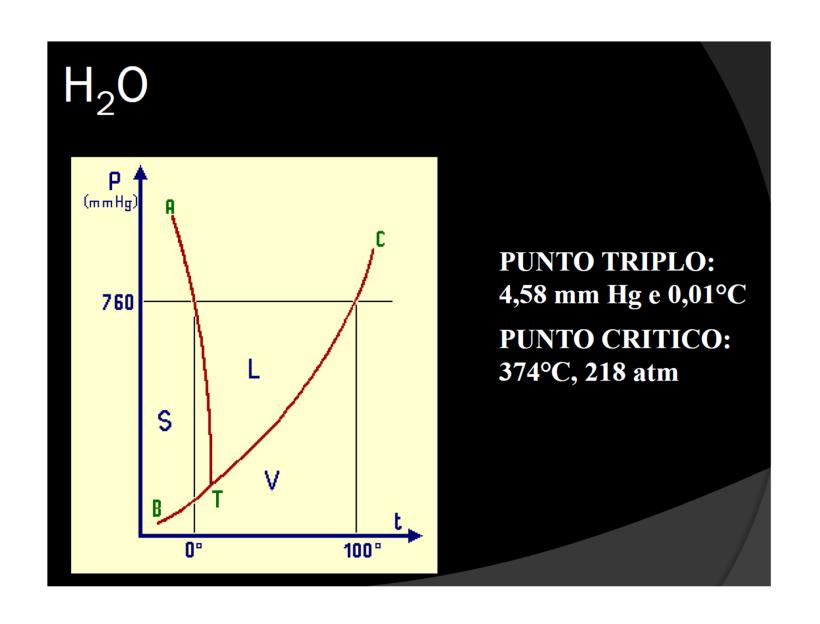

I passaggi di stato


•I passaggi di stato implicano la trasformazione della materia da uno stato fisico all'altro per variazioni di temperatura e pressione.

- •A parità di massa, nel passaggio di un materiale dallo stato liquido allo stato aeriforme, il volume aumenta e la densità diminuisce.
- •Nel passaggio allo stato solido la densità, di solito, aumenta.
- •Il ghiaccio è un'eccezione perché è meno denso dell'acqua.
 - •La fusione è il passaggio dallo stato solido allo stato liquido.
 - •L'evaporazione è il passaggio dallo stato liquido allo stato di vapore.
 - •La **sublimazione** è il passaggio diretto dallo stato solido allo stato di vapore.
 - •La **condensazione** è il passaggio dallo stato di vapore allo stato liquido.
 - •La solidificazione è il passaggio dallo stato liquido allo stato solido.
 - •Il **brinamento** è il passaggio diretto dallo stato di vapore allo stato solido.

•Ogni sostanza pura ha una curva di riscaldamento e temperature di fusione e di ebollizione caratteristiche in funzione della pressione a cui avviene il passaggio di stato.

MATERIA ALLO STATO GASSOSO


MOLECOLE AD ALTA ENERGIA CINETICA

GRANDE DISTANZA TRA LE MOLECOLE

LEGAMI INTERMOLECOLARI DEBOLI

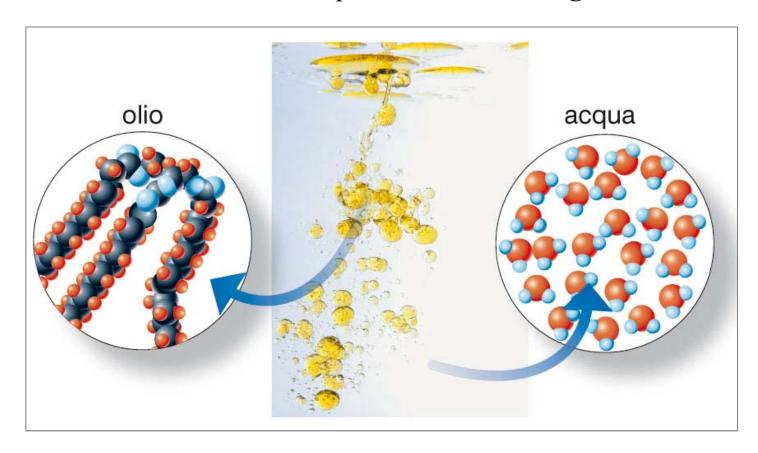

V, **T**, **P**, **n**

DIAGRAMMA DI STATO

I sistemi omogenei e i sistemi eterogenei

- •Si dice **fase** una porzione di materia fisicamente distinguibile e delimitata che ha proprietà intensive uniformi.
- •Un sistema costituito da una sola fase è detto omogeneo.
- •Un sistema costituito da due o più fasi è detto eterogeneo.

Le sostanze pure e i miscugli

- •La materia può essere suddivisa in **sostanze pure** e **miscugli.**
- •Un sistema è **puro** solo se è formato da una singola sostanza. Le sostanze pure hanno caratteristiche e composizione costanti.

- •Un sistema formato da due o più sostanze è un **miscuglio**.
- •Anche i miscugli possono essere omogenei o eterogenei.

- •Un miscuglio omogeneo di due o più sostanze è chiamato soluzione.
- •Il materiale più abbondante del miscuglio è il **solvente**, mentre i materiali meno abbondanti si chiamano **soluti**.

	Definizione	Sostanza	Miscuglio
Sistema omogeneo	è costituito da una sola fase	acqua pura,oro puro, cloruro di sodio puro	acqua di rubinetto, sale marino, acciaio, leghe metalliche
Sistema eterogeneo	è costituito da due o più fasi	acqua pura e ghiaccio	acqua e sabbia, legno, granito, latte, marmo, fumo, sabbia

•Un **miscuglio eterogeneo** è costituito da componenti chimicamente definiti e da fasi fisicamente distinguibili.

•I miscugli **eterogenei** possono presentare aspetti anche molto diversi al variare dello stato di aggregazione delle fasi che li costituiscono.

- •La **schiuma** è un tipico esempio di miscuglio costituito dalla dispersione di gas in un liquido.
- •L'emulsione è una miscela temporaneamente stabile di due fluidi immiscibili, una delle quali (fase dispersa) è dispersa nell'altra (fase disperdente) sotto forma di goccioline.

•I **colloidi** costituiscono una classe di materiali che ha caratteristiche intermedie tra quelle dei miscugli omogenei e quelle dei miscugli eterogenei.

Dimensione particella				
$< 10^{-9} \text{ m}$ $10^{-9} - 10^{-6} \text{ m}$ $> 10^{-6} \text{ m}$				
Soluzione	Colloide	Sospensione eterogenea		

Sostanze pure omogenee	Sostanze pure eterogenee	Miscugli omogenei	Miscugli eterogenei	Colloidi
alcol al 100%	acqua e ghiaccio	soluzione di acqua e sale	acqua e sabbia	albume
ossigeno	ossigeno liquido in pre- senza di ossigeno gas- soso	vino limpido	sabbia	gelatina
piombo	piombo solido immer- so in piombo fuso	aceto limpido	latte	budino