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The course is split in 4 units

UNIT 1: Univariate analysis

Data, information, models, data types, analytical representation
of data

Calibration and regression, Introduction to Statistics
Average & Variance

The Normal distribution, theory of measurement errors, the
central limit theorem and the theorem of Gauss

Maximum likelihood, method of least squares, Generalization of
the method of least squares

Polynomial regression, non-linear regression, the x2 method,
Validation of the model

UNIT 2: Multivariate analysis

Correlation

Multiple linear regression

Principal component analysis (PCA)

Principal component regression (PCR) and Partial least squares
regression - (PLS)

UNIT 3: Design of Experiments

Basic design of experiments and analysis of the resulting
data

Analysis of variance, blocking and nuisance variables
Factorial designs
Fractional factorial designs

Overview of other types of experimental designs (Plackett—
Burman designs, D-optimal designs, Supersaturated designs,
Asymmetrical designs)

Response surface methods and designs
Applications of designed experiments from various fields of

food science

UNIT 4: Elements of Pattern recognition

cluster analysis

Normalization

The space representation (PCA) Examples of PCA
Discriminant analysis (DA) PLS-DA

Examples of PLS-DA



UNIT 3: Design of Experiments
Basic design of experiments and analysis of the resulting
data

Analysis of variance, blocking and nuisance variables
Factorial designs
Fractional factorial designs

Overview of other types of experimental designs
(Plackett—Burman designs, D-optimal designs,
Supersaturated designs, Asymmetrical designs)

Response surface methods and designs

Applications of designed experiments from various fields
of food science



Factors

Silver laydown,
Finish time...

Time,
Catalyst...

Transport speed,
Capture lens...

<
<

Responses

Film
Building

Chemical
Process

Digital
Imaging

Speed,
Contrast

Yield,
Purity

Image resolution,
Banding



Factors Responses

Compensation plan, 4 Sales } Sales revenue,
Sales training Volume of new sales

Method of shipping, < Supply } Shipping cost,
Order entry method Chain Inventory level

Product positioning, < Product } Trial purchase,
Price Develop. Share of market




Topics
* Review of Error Analysis

* Theory & Experimentation in
Engineering

* Some Considerations in
Planning Experiments

* Review of Statistical
formulas and theory

* Begin Statistical Design of
experiments (“DOE” or
IIDOX}I)



Review of Error Analysis

e Uncertainty or “random error” is inherent in all measurements
* Statistical basis
* Unavoidable- seek to estimate and take into account
* Can minimize with better instruments, measurement techniques, etc.



Review of Error Analysis

e Systematic errors (or “method errors”) are mistakes in assumptions,
techniques etc. that lead to non-random bias
* Careful experimental planning and execution can minimize

* Difficult to characterize; can only look at evidence after the fact, troubleshoot
process to find source and eliminate



Graphical Description of Random and Systematic
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Why do we need to estimate uncertainty and include in stated
experimental values?

* Probability of being wrong will influence process
and/or financial decisions
* Cost / benefit of accepting result as “fact”?
* What would be the effect downstream as the uncertainty
propagates through the process?
* When comparing two values and determining if they
are different
e Overlap of uncertainty?
* What is the probability that the difference is significant?



Stating Results +/- Uncertainty

* Rule for Stating Uncertainties
e Experimental uncertainties should almost always be rounded to one
significant figure.
* Rule for Stating Answers

* The last significant figure in any stated answer should usually be of the same
order of magnitude (in the same decimal position) as the uncertainty.

* Express Uncertainty as error bars and confidence interval for graphical data
and curve fits (regressions) respectively



Determining Propagated Error:
Non-statistical Method

* Compute from total differential

DEFINITION 1-.‘JF TQTAL I.f z = f(x, y) and Ax and Ay are increments of x and Y, then the differen-
DIFFERENTIAL  tials of the independent variables x and y are

dx=A4x and dy= Ay

and the total differential of the dependent variable 7 is

> 0z
de==Z dy+ oy D =R ) de £ y) dy



Propagated error

* OR Can do sensitivity analysis in spreadsheet of other
software program

* Compute possible uncertainty in calculated result based on
varying values of inputs according to the uncertainty of each
input

* Example: Use “Solver” optimization tool in Excel to find
maximum and minimum values of computed value in a cell
by varying the value of each input cell

e Set constraint that the input values lie in the range of uncertainty of
that value



Or Can Use repeat measurements to estimate
uncertainty in a result using probability and statistics

for random errors:

e mean * Confidence intervals on

» standard deviation of dependant variable

each measurement * Confidence intervals on

. regression parameters
e standard deviation of & P

the mean of the
measurements



Statistical Formulas from chapter 4 of Taylor

THE STANDARD DEVIATION

The average uncertainty of the individual measurements x;, X3, .. - » Xy is given
by the standard deviation, or SD:

_—l
o = \F=72t P [See (4.9)]

This definition of the SD, often called the sample standard deviation, is the most
appropriate for our purposes. The population standard deviation is obtained by re-
placing the factor (N — 1) in the denominator by N. You will usually want to calcu-
late standard deviations using the built-in function on your calculator; be sure you
know which definition it uses.

The detailed significance of the standard deviation o is that approximately 68%
of the measurements of x (using the same method) should lie within a distance o,
of the true value. (This claim is justified in Section 5.4.) This result is what allows
us to identify o, as the wncertainty in any one measurement of x,

& = oy,

and, with this choice, we can be 68% confident that any one measurement will fall
within o, of the correct answer.

THE STANDARD DEVIATION OF THE MEAMN

As long as systematic uncertainties are negligible, the uncertainty in our best
estimate for x (namely ¥) is the standard deviation of the mean, or SDOM,

Ox

o5 = W [See (4.14)]

If there are appreciable systematic errors, then oz gives the random component of
the uncertainty in our best estimate for x:

a"'mn = O3

If you have some way to estimate the systematic component 8x,. a reasonable (but
not rigorously justified) expression for the total uncertainty is the quadratic sum of
8x,,, and Sx,,

an

a]'.l!‘il = \I(axmn]l + (axqﬂ;):' [SBE (4'26)]



Relationship of standard deviation to
confidence intervals
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Confidence intervals on non-linear regression
coefficients

e Can be complex- use software but understand theory of how
calculated for linear case



Error bars that represent uncertainty in the dependant
variable
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How measurements at a given x,y would be distributed for
multiple measurements

distribution of y when x =x,

regression curve

Figure 43 Regression curve. The locus of the mean values of the y-distributions



Determining Slope and Intercept In Linear
Regression

ASTRAIGHT LINE, y = A + Bx; EQUAL WEIGHTS

If y is expected to lie on a straight line ¥y =A + Bx, and if the measurements

of y all have the same uncertainties, then the best estimates for the constants A and
B are:

oo B T Tk Ny
A

A

|

!and

. B_Nny—Zny
. : :

where the denominator, A, is

A = NIx - (Zx2 [See (8.10) to (8.12)]

Based on the observed points, the best estimate for the uncertainty in the mea-
surements of y is

N S T
c N~2,-§I(y* it [See (8.15)]



Confidence intervals (SD) on slope B and Intercept
A

Chapter 8: Least-Squares Fitting

The uncertainties in A and B are:

and

e
BT MR [See (8.16) & (8.17)]



Regression Output in Excel
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Statistical Process Control

* Very Widely Used

e Used for quality control and for process
improvement

* Control Charts provide statistical evidence
e That a process is behaving normally or if something wrong



Variation from expected behavior in control charts- similar to regression

and point statistics
WARNING SIGNALS Control Limit is the
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Theory and Experimentation

« Two fundamental approaches to problem solving problems in the
discovery of knowledge:

1. Theoretical (physical/mathematical modeling)
2. Experimental measurement

(Most often a combination is used)




Example of combination of theory and experimentation to get semi-
empirical correlation
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Fig. 7.8.3 Heat transfer to gases flowing in packed beds.

© Wilke and Hougen, € = 0.34-0.44, cylinders with L /D ~ 1. A Taecker and Hougen, e = 0.60-0.74,
commercial packings. (] McConnachie and Thodos, € = 0.42, spheres. @ Glaser and Thodos, e = 0.44—
0.48, spheres and cylinders with L /D ~ 1. & Gamson, Thodos, and Hougen, € = 0.36-0.43, spheres and
cylinders with L /D ~ 1. M Gliddon and Cranfield, € = 0.43. A Littman, Barile, and Pulsifer, € ~ 0.4,
spheres.
Curve is given by

N N = 04ND + 02N



Features of alternative methods

* Experimental approach
e Study the “real world”-no

* Theoretical Models

* Simplifying assumptions needed simplifying assumptions needed
* General results * Results specific to apparatus

* Less facilities usually needed studied

e Can start study immediately * High accuracy measurements

need complex instruments

* Extensive lab facilities maybe
needed

* Time delays from building
apparatus, debugging



Functional Types of Engineering Experiments

Determine material properties

Determine component or system performance indices
Evaluate/improve theoretical models

Product/process improvement by testing

Exploratory experimentation

Acceptance testing

Teaching/learning through experimentation

N o U s WwWwhe



Some important classes of Experiments

Estimation of parameter mean value
Estimate of parameter variability
Comparison of mean values
Comparison of variability

A S A

Modeling the dependence of dependant Variable on several
quantitative and/or qualitative variables



Practical Experimental Planning

Experimental design:
e Consider goals
* Consider what data can be collected.
Difficulty of obtaining data
What data is most important
What measurements can be ignored
Type of data: Categorical? Quantitative?
* Test to make sure that measurements/apparatus are reliable

* Collect data carefully and document fully in ink using bound notebooks. Make
copies and keep separately



Preview of Uses for DOE

* Lab experiments for research

* Industrial process experiments



Four engineering problem classes to which DOE is
applied in manufacturing

1. Comparison
2. Screening/ characterization
3. Modeling

4. Optimization



Comparison

* Compares to see if a change in a single “factor” (variable) has resulted
in a process change (ideally an improvement)



Screening/Characterization

» Used when you want to see the effect of a whole range of factors so
as to know which one(s) are most important.

* Two factorial experiments usually used



Modeling

» Used when you want to be able to construct a mathematical model
that will predict the effect on a process of manipulating a variables or
multiple variables



Optimization

* When you want to determine the optimal settings for all factors to
give an optimal process response.



Introduction to experimental design



Contents

e planning experiments

* regression analysis

* types of experiments

* software A =mr?
e |literature



Example of Experiment : synthesis of T8-POSS

* context: development of new synthesis route for polymer additive
 goal: optimize yield of reaction

* synthesis route consists of elements that are not uniquely determined
(control variables):
* time to let reaction run
concentration water
concentration silane
temperature



Issues in example T8-POSS synthesis

* how to measure yield
* what to measure (begin/end weight,...)
* when to measure (reaction requires at least one day)

* how to vary control variables
* which values of pH, concentrations, ... (levels)
* which combinations of values
* equipment only allows 6 simultaneous reactions, all with
the same temperature
* how many combinations can be tested
* reaction requires at least one day
* only 4 experimentation days are available



Necessity of careful planning of experiment

* limited resources
* time to carry out experiment
* costs of required materials/equipment

* avoid reaching suboptimal settings
 avoid missing interesting parts of experimental region
e protection against external uncontrollable/undetectable influences

* getting precise estimates



Traditional approach to experimentation:
T8-POSS example

*set T =40 °C, H,O concentration = 10%,; try c;=0.1, 0.2,
0.3,0.8,0.9,1.0 M

*set T =60 °C, c;,=0.5M, H,0 concentration =5, 10,
12.5, 15, 17.5, 20%

This is called a One-Factor-At-a-Time SOFAT) or Change-
One-Separate-factor-at-a-Time (COST) strategy.
Disadvantages:

* may lead to suboptimal settings (see next slide)

* requires too many runs to obtain good coverage of
experimental region (see later)



30 The real maximum ]

40
50
60

actor B Qs been optimised

14

factor A has been optimised




Statistical terminology for experiments:
illustrated by T8-POSS example

* response variable: yield
* factors: time, temperature, c;, H,O concentration

* levels: actual values of factors (e.g., T=30 °C, 40 °C
,50 °C)

* runs: one combination of factor settings (e.g., T=30
°C, ¢;,=0.5M, H,0 concentration = 15%)

* block: 6 simultaneous runs with same temperature
in reaction station



Modern approach: DOE

* DOE = Design of Experiments

* key ideas:
* change several factors simultaneously
 carefully choose which runs to perform
* use regression analysis to obtain effect estimates

e statistical software (Statgraphics, JMP, SAS,...) allows to

* choose or construct designs
* analyse experimental results



Example of analysis

simple experiment:
* response is conversion
» goal is screening (are time and temperature influencing conversion?)
2 factors (time and temperature), each at two levels
* 5 centre points (both time and temperature at intermediate values)

Statgraphics demo with conversion.sfx. (choose Special -> Experimental
Design etc. from menu)

More advanced (5 factors, not all 2°> combinations): colour.sfx



Example of construction: T8-POSS example

* 36 runs
2 reactors available each day (each reactor 6 places)
* 3 experimental days

* factors:
* H,0 concentration
* temperature
* G
 goal is optimization of response

» choose in Statgraphics: Special -> Experimental Design -> Create
Design -> Response Surface



Goals in experimentation

* there may be more than one goal, e.g.:
* vield
* required reaction time until equilibrium
 costs of required chemical substances
* impact on environment (waste)

* these goals may contradict each other
* goals must be converted to explicitly measurable quantities



Types of experimental designs

* “screening designs”

These designs are used to investigate factors
are important (“significant”).

* “response surface designs”

These designs are used to determine the
settings of the significant factors.



Interactions

Factors may . E.g, the optimal
setting of a factor may depend on the settings of the

other factors.

When factors are optimised , the overall
result (as function of all factors) may be



Interaction effects

in linear regression models cause

Y=3+2x,+4x3+7 X, Xg
Xy, > X1l =YY+ 2+ 7 Xy,
so increase depends on x;. Likewise for x;— xz+1

This explains the notation AB for the interaction of
factors A and B.
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Centre points and Replications

If there are not enough measurements to obtain
a good estimate of the variance, then one can
perform replications. Another possibility is to add

Centre point

Adding centre points serves two purposes: +1 b ab
better variance estimate
allow to test curvature using B
a lack-of-fit test
T a
-1 +1



Multi-layered experiments

Experiments are not one-shot adventures. Ideally one
performs:

* an initial experiment
* check-out experimental equipment
e getinitial values for quantities of interest

*main experiment
e obtain results that support the goal of the experiment

econfirmation experiment
* verify results from main experiment

e use information from main experiment to conduct more
focussed experiment (e.g., near computed optimum)



Example

. testing method for material hardness :

force

pressure pin/tip

practical problem: 4 types of pressure pins
—> do these yield the same results?




Experimental design 1

1 5 9 13
tes.ting I 2 6 10 14
=1l -3 7 11 15
|4 3 12 16

pin 1 pin 2 pin 3 pin 4

Problem: if the measurements of strips 5 through 8 differ, is this
caused by the strips or by pin 27



Experimental design 2

*Take 4 strips on which you measure (in random order)

each pressure pin once :

_—1 1 4 2
presre | —— |3 4 3 3
2 3 2 1
|4 2 1 4

strip 1| |strip 2| |strip 3| |strip 4




Blocking

* Advantage of blocked experimental design 2:

differences between strips are filtered out

*Model: Y, = u+ 7,+ f;+ ¢

factor . block effect
pressure pin strip error term

Primary goal: reduction error term




Short checklist for DOE (see protocol)

clearly state objective of experiment

check constraints on experiment
 constraints on factor combinations and/or changes
* constraints on size of experiment

make sure that measurements are obtained under
constant external conditions (if not, apply blocking!)

include centre points to validate model assumptions
* check of constant variance
* check of non-linearity

make clear protocol of execution of experiment
(including randomised order of measurements)



Introduction: What is meant by DOE?

* Experiment -

* atest oraseries of tests in which purposeful changes
are made to the input variables or factors of a system
so that we may observe and identify the reasons for
changes in the output response(s).

 Question: 5 factors, and 2 response variables

* Want to know the effect of each factor on the response
and how the factors may interact with each other

* Want to predict the responses for given levels of the
factors

* Want to find the levels of the factors that optimizes the
responses - e.g. maximize Y, but minimize Y,

* Time and budget allocated for 30 test runs only.



Strategy of Experimentation

e Strategy of experimentation
* Best guess approach (trial and error)

can continue indefinitely
cannot guarantee best solution has been found

* One-factor-at-a-time (OFAT) approach

inefficient (requires many test runs)

* fails to consider any possible interaction between factors
* Factorial approach (invented in the 1920’s)

Factors varied together
Correct, modern, and most efficient approach
Can determine how factors interact

Used extensively in industrial R and D, and for process
improvement.



* This course will focus on three very useful and
important classes of factorial designs:
 2-level full factorial (2¥)
* fractional factorial (2%?), and
* response surface methodology (RSM)

* | will also cover split plot designs, and design and analysis of computer
experiments if time permits.

* Dimensional analysis and how it can be combined with DOE will also be
briefly covered.

* All DOE are based on the same statistical principles and
method of analysis - ANOVA and regression analysis.

* Answer to question: use a 2> fractional factorial in a central
composite design = 27 runs (min)



Statistical Design of Experiments

* All experiments should be designed experiments

* Unfortunately, some experiments are poorly
designed - valuable resources are used
ineffectively and results inconclusive

e Statistically designed experiments permit
efficiency and economy, and the use of statistical
methods in examining the data result in scientific
objectivity when drawing conclusions.



* DOE is a methodology for systematically applying
statistics to experimentation.

* DOE lets experimenters develop a mathematical
model that predicts how input variables interact to
create output variables or responses in a process
or system.

* DOE can be used for a wide range of experiments
for various purposes including nearly all fields of
engineering and even in business marketing.

e Use of statistics is very important in DOE and the
basics are covered in a first course in an
engineering program.



* In general, by using DOE, we can:
* Learn about the process we are investigating
e Screen important variables

Build a mathematical model

Obtain prediction equations

Optimize the response (if required)

e Statistical significance is tested using ANOVA, and
the prediction model is obtained using regression
analysis.



Applications of DOE in Engineering Design

* Experiments are conducted in the field of
engineering to:
e evaluate and compare basic design configurations
 evaluate different materials

* select design parameters so that the design will work
well under a wide variety of field conditions (robust
design)

* determine key design parameters that impact
performance



INPUTS
(Factors)
X variables

OUTPUTS
(Responses)
Y variables

lllustration of a Process

.@ ‘\/
PROCESS: responses related
= | to performing a
service
/ responses related
. - to producing a
A Blending of produce
Inputs which
Procedures Generates_ I responses related
Corresponding to completing a task
Outputs
S ‘
\
J




INPUTS
(Factors)
X variables

Percent water

i o
CE >

Type of
Additives

Percent
Additives

Conditions

% Plasticizer

\( -
PROCESS:
/
Discovering
Optimal
Concrete
Mixture
\\

Optimum Concrete Mixture

OUTPUTS
(Responses)
Y variables

compressive
strength

modulus of elasticity

modulus of rupture

Poisson's ratio




INPUTS
(Factors)
X variables

Type of Raw
Material

Mold

Temperature

Holding
Pressure

Holding Time

Screw Speed

Gttt
a2

Moisture
Content

PROCESS:

OUTPUTS
(Responses)
Y variables

thickness of molded
part

Manufacturing
Injection
Molded Parts

Manufacturing Injection Molded

% shrinkage from
mold size

number of defective
parts

N\
/

Parts




INPUTS
(Factors)
X variables

e N
Impermeable layer
(mm)

\§

4 )
Initial storage
(mm)

4 )
Coefficient of
Infiltration

N
e N
Coefficient of
Recession
g
4 )
Soil Moisture
Capacity
. (m)
4 )
Initial Soil Moisture
(mm)

PROCESS:

Rainfall-Runoff
Model
Calibration

Y

OUTPUTS
(Responses)
Y variables

N/

AN

odel Calibration

R-square:
Predicted vs
Observed Fits




INPUTS
(Factors)
X variables

~
Brand:
Cheap vs Costly
~
Time:

4 min vs 6 min

Power:
75% or 100%

~

Height:
On bottom or raised

PROCESS:

Making the
Best
Microwave
popcorn

\

/

OUTPUTS
(Responses)
Y variables

Taste:
Scale of 1 to 10

Bullets:
Grams of unpopped
corns

Makina microwave popcorn




Examples of experiments from daily life

* Photography
* Factors: speed of film, lighting, shutter speed
* Response: quality of slides made close up with flash attachment

* Boiling water
* Factors: Pan type, burner size, cover
* Response: Time to boil water

e D-day
* Factors: Type of drink, number of drinks, rate of drinking, time
after last meal
* Response: Time to get a steel ball through a maze

* Mailing
* Factors: stamp, area code, time of day when letter mailed
* Response: Number of days required for letter to be delivered



More examples

Cooking
* Factors: amount of cooking wine, oyster sauce, sesame oil
* Response: Taste of stewed chicken

Sexual Pleasure
* Factors: marijuana, screech, sauna
* Response: Pleasure experienced in subsequent you know what

Basketball

* Factors: Distance from basket, type of shot, location on floor
* Response: Number of shots made (out of 10) with basketball

Skiing
* Factors: Ski type, temperature, type of wax
* Response: Time to go down ski slope



Basic Principles

» Statistical design of experiments (DOE)

* the process of planning experiments so that
appropriate data can be analyzed by statistical methods
that results in valid, objective, and meaningful
conclusions from the data

* involves two aspects: design and statistical analysis



* Every experiment involves a sequence of activities:
e Conjecture - hypothesis that motivates the experiment

* Experiment - the test performed to investigate the
conjecture

* Analysis - the statistical analysis of the data from the
experiment

e Conclusion - what has been learned about the original
conjecture from the experiment.



Three basic principles of Statistical DOE

* Replication
* allows an estimate of experimental error
* allows for a more precise estimate of the sample mean
value
* Randomization

e cornerstone of all statistical methods
» “average out” effects of extraneous factors
* reduce bias and systematic errors

* Blocking

* increases precision of experiment
* “factor out” variable not studied



Guidelines for Designing Experiments

* Recognition of and statement of the problem

* need to develop all ideas about the objectives of the
experiment - get input from everybody - use team
approach.

* Choice of factors, levels, ranges, and response
variables.

* Need to use engineering judgment or prior test results.

* Choice of experimental design

* sample size, replicates, run order, randomization,
software to use, design of data collection forms.



* Performing the experiment
* vital to monitor the process carefully. Easy to
underestimate logistical and planning aspects in a
complex R and D environment.
e Statistical analysis of data
* provides objective conclusions - use simple graphics
whenever possible.
* Conclusion and recommendations
* follow-up test runs and confirmation testing to validate
the conclusions from the experiment.

* Do we need to add or drop factors, change ranges,
levels, new responses, etc.. ???



Using Statistical Techniques in Experimentation -
things to keep in mind

* Use non-statistical knowledge of the problem
* physical laws, background knowledge

* Keep the design and analysis as simple as possible
* Don’t use complex, sophisticated statistical techniques
* If design is good, analysis is relatively straightforward

* If design is bad - even the most complex and elegant
statistics cannot save the situation

* Recognize the difference between practical and
statistical significance
e statistical significance # practically significance



* Experiments are usually iterative

unwise to design a comprehensive experiment at the
start of the study

may need modification of factor levels, factors,
responses, etc.. - too early to know whether
experiment would work

use a sequential or iterative approach

should not invest more than 25% of resources in the
initial design.

Use initial design as learning experiences to accomplish
the final objectives of the experiment.



Factorial v.s. OFAT

* Factorial design - experimental trials or runs are
performed at all possible combinations of factor
levels in contrast to OFAT experiments.

 Factorial and fractional factorial experiments are
among the most useful multi-factor experiments
for engineering and scientific investigations.



* The ability to gain competitive advantage requires
extreme care in the design and conduct of
experiments. Special attention must be paid to joint
effects and estimates of variability that are provided
by factorial experiments.

 Full and fractional experiments can be conducted
using a variety of statistical designs. The design
selected can be chosen according to specific
requirements and restrictions of the investigation.



Factorial Designs

* In a factorial experiment, all
possible combinations of factor T
levels are tested

* The golf experiment:
* Type of driver (over or regular)
* Type of ball (balata or 3-piece) ™ N
* Walking vs. riding a cart I
* Type of beverage (Beer vs water) o) _ R
. Type of driver
* Time of round (am or pm)

Type of ball

A two-factor factorial exper-
* Weather iment involving type of driver and type of

* Type of golf spike ball.
* Etc, etc, etc...



Factorial Design
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{d) Comparison of scores

leading to the ball-driver
interaction effect

Figure 1-5 Scores from the golf experiment in Figure 1-4 and calculation of the factor effects.

(b) Comparison of scores leading
to the driver effect



Factorial Desiegns with Several Factors

Ball

Beverage

- ' Driver

Figure 1-6 A three-factor factorial experiment involving
type of driver, type of ball, and type of beverage.

Mode of travel

A,
/ \
Walk Ride
I I g B
| | e
I I e Ball
| L &
L.._._____ A |—
/// ) - /’/ I I
Driver

Figure 1-7 A four-factor factorial experiment involving type of driver, type of
ball, type of beverage, and mode of travel.



Erroneous Impressions About Factorial
Experiments

* Wasteful and do not compensate the extra effort with
additional useful information - this folklore presumes that
one knows (not assumes) that factors independently
influence the responses (i.e. there are no factor
interactions) and that each factor has a linear effect on the
response - almost any reasonable type of experimentation
will identify optimum levels of the factors

* Information on the factor effects becomes available only
after the entire experiment is completed. Takes too long.
Actually, factorial experiments can be blocked and
conducted sequentially so that data from each block can be
analyzed as they are obtained.



One-factor-at-a-time experiments (OFAT)

* OFAT is a prevalent, but potentially disastrous type of
experimentation commonly used by many engineers and
scientists in both industry and academia.

» Tests are conducted by systematically changing the levels
of one factor while holding the levels of all other factors
fixed. The “optimal” level of the first factor is then selected.

* Subsequently, each factor in turn is varied and its “optimal”
level selected while the other factors are held fixed.



One-factor-at-a-time experiments (OFAT)

* OFAT experiments are regarded as easier to implement,
more easily understood, and more economical than
factorial experiments. Better than trial and error.

* OFAT experiments are believed to provide the optimum
combinations of the factor levels.

e Unfortunately, each of these presumptions can generally
be shown to be false except under very special
circumstances.

* The key reasons why OFAT should not be conducted except
under very special circumstances are:
* Do not provide adequate information on interactions
* Do not provide efficient estimates of the effects



Factorial vs OFAT ( 2-levels only)

Factorial OFAT
2 factors: 4 runs e 2 factors: 6 runs
» 3 effects » 2 effects
3 factors: 8 runs * 3 factors: 16 runs
» 7 effects » 3 effects
e 5 factors: 32 or 16 runs e 5 factors: 96 runs
e 31 or 15 effects » 5 effects

e 7 factors: 128 or 64 runs ¢ 7 factors: 512 runs
e 127 or 63 effects e 7 effects



Example: Factorial vs OFAT

Factorial OFAT
high 1 o o high 0o
Factor B B
low 1 o o low - g g
low high low high
Factor A A

E.g. Factor A: Reynold’s number, Factor B: k/D



Example: Effect of Re and k/D on friction factor f

* Consider a 2-level factorial design (22)

* Reynold’s number = Factor A; k/D = Factor B
* Levels for A: 10* (low) 108 (high)

* Levels for B: 0.0001 (low) 0.001 (high)

* Responses: (1) =0.0311, a=0.0135, b=0.0327,
ab =0.0200

» Effect (A) =-0.66, Effect (B)=0.22, Effect (AB)=0.17
* % contribution: A =84.85%, B=9.48%, AB=5.67%

* The presence of interactions implies that one cannot
satisfactorily describe the effects of each factor using main
effects.



DESIGN-EASE Plot
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DESIGN-EASE Plot
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DESIGN-EASE Plot
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With the addition of a few more points

* Augmenting the basic 22 design with a center point
and 5 axial points we get a central composite
design (CCD) and a 2nd order model can be fit.

* The nonlinear nature of the relationship between
Re, k/D and the friction factor f can be seen.

* If Nikuradse (1933) had used a factorial design in
his pipe friction experiments, he would need far
less experimental runs!!

* If the number of factors can be reduced by
dimensional analysis, the problem can be made
simpler for experimentation.



DESIGN-EXPERT Plot Interaction Graph
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DESIGN-EXPERT Plot

Log10(f)
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DESIGN-EXPERT Plot LOg10(f)
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DESIGN-EXPERT Plot

Predicted vs. Actual
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FACTORIAL (2) DESIGNS

e Experiments involving several factors ( k = # of
factors) where it is necessary to study the joint
effect of these factors on a specific response.

* Each of the factors are set at two levels (a “low”
level and a “high” level) which may be qualitative
(machine A/machine B, fan on/fan off) or
quantitative (temperature 80°/temperature 90°,
line speed 4000 per hour/line speed 5000 per
hour).



FACTORIAL (2X) DESIGNS

* Factors are assumed to be fixed (fixed effects
model)

* Designs are completely randomized (experimental
trials are run in a random order, etc.)

* The usual normality assumptions are satisfied.



FACTORIAL (2X) DESIGNS

* Particularly useful in the early stages of
experimental work when you are likely to have
many factors being investigated and you want to
minimize the number of treatment combinations
(sample size) but, at the same time, study all k
factors in a complete factorial arrangement (the
experiment collects data at all possible
combinations of factor levels).



FACTORIAL (2X) DESIGNS

* As k gets large, the sample size will increase
exponentially. If experiment is replicated, the #
runs again increases.

# of runs

4

8

16
32
64
128
256
512
1024

OO0 N O |~ W IN|Ix
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FACTORIAL (2) DESIGNS (k = 2)

* Two factors set at two levels (normally referred to
as low and high) would result in the following
design where each level of factor A is paired with
each level of factor B.

Ot Seti
RUNI Factor A| Factor B] RESPONSE
1 -1 -1 Y1
2 +1 -1 Yo
3 -1 +1 Y3
4 +1 +1 Ya




FACTORIAL (2) DESIGNS (k = 2)

 Estimating main effects associated with changing
the level of each factor from low to high. This is
the estimated effect on the response variable

associated with changing factor A or B from their
low to high values.

Factor A Effect = 2 er Y. _ (Y ; Y5)

Factor B Effect = 3 er Yo _ (Y, ; Y)




FACTORIAL (2%) DESIGNS (k = 2): GRAPHICAL OUTPUT

* Neither factor A nor Factor B have an effect on the response variable.

Hizh B
Low B

RESPONSE

Low A High A



FACTORIAL (2) DESIGNS (k = 2):
GRAPHICAL OUTPUT

* Factor A has an effect on the response variable,
but Factor B does not.

Low B

/ e

Low A High A

RESPONSE




FACTORIAL (2%) DESIGNS (k = 2):
GRAPHICAL OUTPUT

e Factor A and Factor B have an effect on the
response variable.

RESPONSE
o ,
LER
o




FACTORIAL (2%) DESIGNS (k = 2):
GRAPHICAL OUTPUT

* Factor B has an effect on the response variable, but only if
factor A is set at the “High” level. This is called interaction
and it basically means that the effect one factor has on a
response is dependent on the level you set other factors at.
Interactions can be major problems in a DOE if you fail to
account for the interaction when designing your
experiment.

High B

RESPONSE

oem Low B

Low A High A



EXAMPLE:
FACTORIAL (2) DESIGNS (k = 2)

* A microbiologist is interested in the effect of two different culture
mediums [medium 1 (low) and medium 2 (high)] and two different
times [10 hours (low) and 20 hours (high)] on the growth rate of a
particular CFU [Bugs].



EXAMPLE:
FACTORIAL (25) DESIGNS (k = 2)

* Since two factors are of interest, k =2, and we
would need the following four runs resulting in

Generalized Settings
RUN | Medium Time Growth Rate

1 low low 17
2 high low 15
3 low high 38
4 high high 39




EXAMPLE:
FACTORIAL (25) DESIGNS (k = 2)

e Estimates for the medium and time
effects are

* Medium effect = [(15+39)/2] - [(17 + 38)/2] = -0.5

* Time effect = [(38+39)/2] — [(17 + 15)/2] = 22.5



EXAMPLE:
FACTORIAL (25) DESIGNS (k = 2)

FPlot of Effects
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EXAMPLE:
FACTORIAL (25) DESIGNS (k = 2)

* A statistical analysis using the appropriate
statistical model would result in the following
information. Factor A (medium) and Factor B
(time)

Type 111 Sums of Squares

Source Sum of Squares Df Mean Square F-Ratio P-Value
FACTOR A 0.25 1 0.25 0.11 0.7952
FACTOR B 506.25 1 506.25 225.00 0.0424
Residual 2.25 1 2.25

Total (corrected) 508.75 3

All F-ratios are based on the residual mean square error.



EXAMPLE:
CONCLUSIONS

* In statistical language, one would conclude that
factor A (medium) is not statistically significant at a
5% level of significance since the p-value is greater
than 5% (0.05), but factor B (time) is statistically
significant at a 5 % level of significance since this
p-value is less than 5%.



EXAMPLE:
CONCLUSIONS

* In layman terms, this means that we have no
evidence that would allow us to conclude that the
medium used has an effect on the growth rate,
although it may well have an effect (our conclusion
was incorrect).



EXAMPLE:
CONCLUSIONS

e Additionally, we have evidence that would allow us to conclude that
time does have an effect on the growth rate, although it may well not
have an effect (our conclusion was incorrect).



EXAMPLE:
CONCLUSIONS

* In general we control the likelihood of reaching these incorrect
conclusions by the selection of the level of significance for the test
and the amount of data collected (sample size).



2K DESIGNS (k > 2)

* As the number of factors increase, the number of
runs needed to complete a complete factorial
experiment will increase dramatically. The
following 2% design layout depict the number of
runs needed for values of k from 2 to 5. For
example, when k =5, it will take 2° =32
experimental runs for the complete factorial
experiment.



Interactions for 2k Designs (k = 3)

Interactions between various factors can be
estimated for different designs above by
multiplying the appropriate columns together
and then subtracting the average response for
the lows from the average response for the
highs.



3)

Interactions for 2k Designs (k =




25 DESIGNS (k > 2)

* Once the effect for all factors and interactions are determined, you
are able to develop a prediction model to estimate the response for
specific values of the factors. In general, we will do this with
statistical software, but for these designs, you can do it by hand
calculations if you wish.



2K DESIGNS (k > 2)

* For example, if there are no significant interactions
present, you can estimate a response by the
following formula. (for quantitative factors only)

Y = (average of all responses) + > [( faCtorEFFECT)*(factorLEVEL)]

2

<

A, A
+ ((D)*A+ (2)*B
(2) (2)



ONE FACTOR EXAMPLE

Plot of Fitted Model

GRADE

#HRS STUDY



ONE FACTOR EXAMPLE

* The output shows the results of fitting a general
linear model to describe the relationship between
GRADE and #HRS STUDY. The equation of the
fitted general model is

e GRADE =29.3 +3.1* (#HRS STUDY)
* The fitted orthogonal model is
e GRADE =75+ 15 * (SCALED # HRS)



Two Level Screening Designs

* Suppose that your brainstorming session resulted
in 7 factors that various people think “might” have
an effect on a response. A full factorial design
would require 27 = 128 experimental runs without
replication. The purpose of screening designs is to
reduce (identify) the number of factors down to
the “major” role players with a minimal number of
experimental runs. One way to do this is to use the
23 full factorial design and use interaction columns
for factors.



Note that

* Any factor d effect is now confounded with the a*b
interaction

* Any factor e effect is now confounded with the a*c
interaction

* etc.




Problems that Interactions Cause!

 |nteractions — If interactions exist and you fail to
account for this, you may reach erroneous
conclusions. Suppose that you plan an
experiment with four runs and three factors
resulting in the following data:

Factor A | Factor B | Results
+1 +1 10

alwln]|=]2
35

alallh
v+
alal—
(]




Problems that Interactions Cause!

e Factor A Effect=0
e Factor B Effect=0

* In this example, if you were assuming that “smaller
is better” then it appears to make no difference
where you set factors A and B. If you were to set
factor A at the low value and factor B at the low
value, your response variable would be larger than
desired. In this case there is a factor A interaction
with factor B.



Problems that Interactions Cause!

Interaction Plot
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Resolution of a Design

Resolution Ill Designs — No main effects are
aliased with any other main effect BUT some (or
all) main effects are aliased with two way
interactions

Resolution IV Designs — No main effects are
aliased with any other main effect OR two factor
interaction, BUT two factor interactions may be
aliased with other two factor interactions

Resolution V Designs — No main effect OR two
factor interaction is aliased with any other main
effect or two factor interaction, BUT two factor
interactions are aliased with three factor
interactions.



Common Screening Designs

 Fractional Factorial Designs — the total number
of experimental runs must be a power of 2 (4, 8,
16, 32, 64, ...). If you believe first order
interactions are small compared to main effects,
then you could choose a resolution Il design.
Just remember that if you have major
interactions, it can mess up your screening
experiment.



Common Screening Designs

Plackett-Burman Designs — Two level, resolution
IIl designs used to study up to n-1 factors in n
experimental runs, where n is a multiple of 4 ( #
of runs will be 4, 8, 12, 16, ...). Since n may be
quite large, you can study a large number of
factors with moderately small sample sizes. (n =
100 means you can study 99 factors with 100

runs)



Other Design Issues

* May want to collect data at center points to
estimate non-linear responses

* More than two levels of a factor — no problem
(multi-level factorial)

* What do you do if you want to build a non-linear
model to “optimize” the response. (hit a target,
maximize, or minimize) — called response surface
modeling



Response Surface Designs — Box-Behnken

RUN F1 F2 F3 \
1 10 45 60 11825
2 30 45 40 8781
3 20 30 40 8413
4 10 30 50 9216
5 20 45 50 9288
6 30 60 50 8261
7 20 45 50 9329
8 30 45 60 10855
9 20 45 50 9205
10 20 60 40 8538
11 10 45 40 9718
12 30 30 50 11308
13 20 60 60 10316
14 10 60 50 12056
15 20 30 60 10378




Response Surface Designs — Box-Behnken

Regression coeffs. for Var_3
constant = 2312.5
A:Factor A = 36.575

B:Factor B = 200.067
C:Factor C = 3.85

AA = 9.09875
AB = -9.81167
AC = -0.0825
BB = 0.117222
BC = -0.311667

CcC = 1.10875



Response Surface Designs — Box-Behnken
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