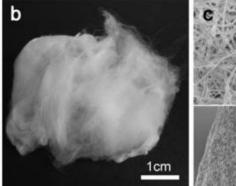
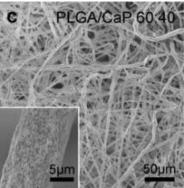

Biomimetic Scaffolds For Different Tissue Types in Tissue Engineering

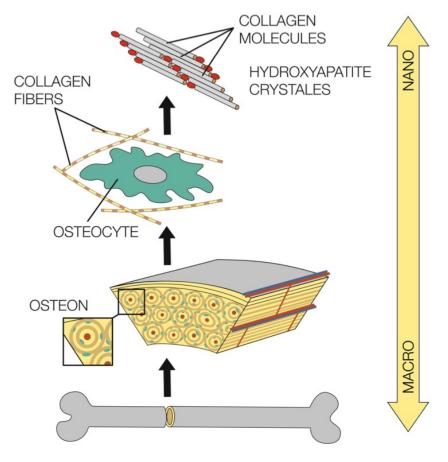
The hydrogel scaffolds have biochemical similarity with the highly hydrated GAG components of connective tissues. Examples of hydrogel-forming polymers of natural origin are collagen, gelatin, fibrin, HA, alginate, and chitosan. The synthetic polymers are PLA, PPF-derived Copolymers, PEG-derivatives, and PVA.





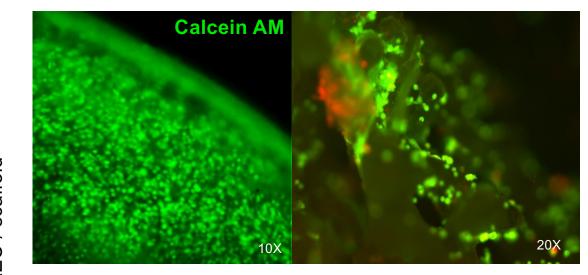
Foam porous scaffold have been used especially for growth of host tissue, bone regrowth, or organ vascularization. Synthetic biodegradable polymers such as PLLA, PGA, PLGA, PCL, PDLLA, PEE based on PEO, and PBT are used as porous scaffolding materials.

Fibrous Scaffold


Fibrous scaffolds are used for musculoskeletal tissue engineering (bone, cartilage, ligament, and skeletal muscle), skin, vascular, neural tissue engineering, and for controlled delivery of drugs, proteins, and DNA. Natural polymers and synthetic polymers are used such as collagen, gelatin, chitosan, HA, silk fibroin, PLA, PU, PCL, PLGA, PEVA, and PLLA-CL.

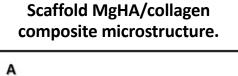
- The bone ECM consists of organic components (22 wt %), inorganic crystalline mineral components (69 wt %) and water (9 wt %).
- Organic components consist of type I, type III, type IV collagen, and fibrin. In addition, there are over 200 types of noncollagenous matrix proteins (glycoproteins, proteoglycans, sialoproteins, etc.)
- Inorganic crystalline mineral components are represented by hydroxyapatite and calcium phosphate.
- Organic components ensure flexibility, whereas inorganic components ensure strength and toughness.
- Two major types of bone structure can be distinguished: trabecular and compact bone. Trabecular bone is formed by a porous trabecular network and bone marrow filling a large inner space. Compact bone is made from inorganic crystalline mineral with a very low number of osteocytes, blood vessels, etc. Both types of bones are reinforced by collagen fibers.

Bone Tissue Engineering

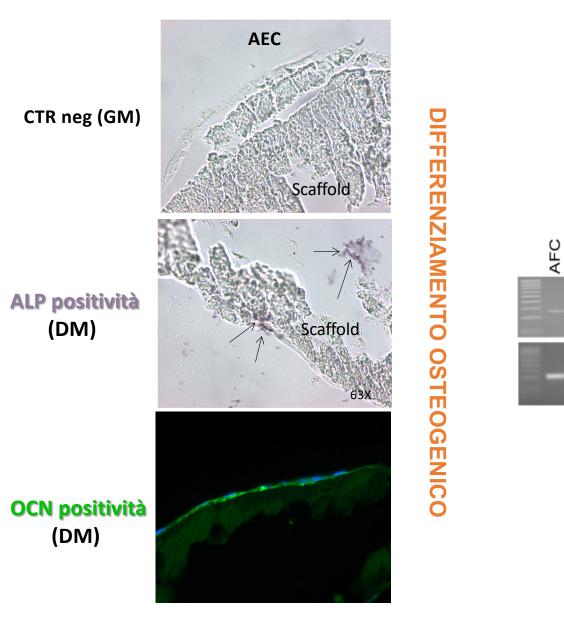


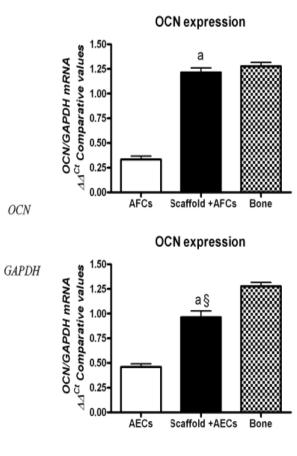
Chocholata et al., Materials 2019, 12, 568; doi:10.3390/ma12040568

LECTURE 5


Bone Tissue Engineering

Cell viability

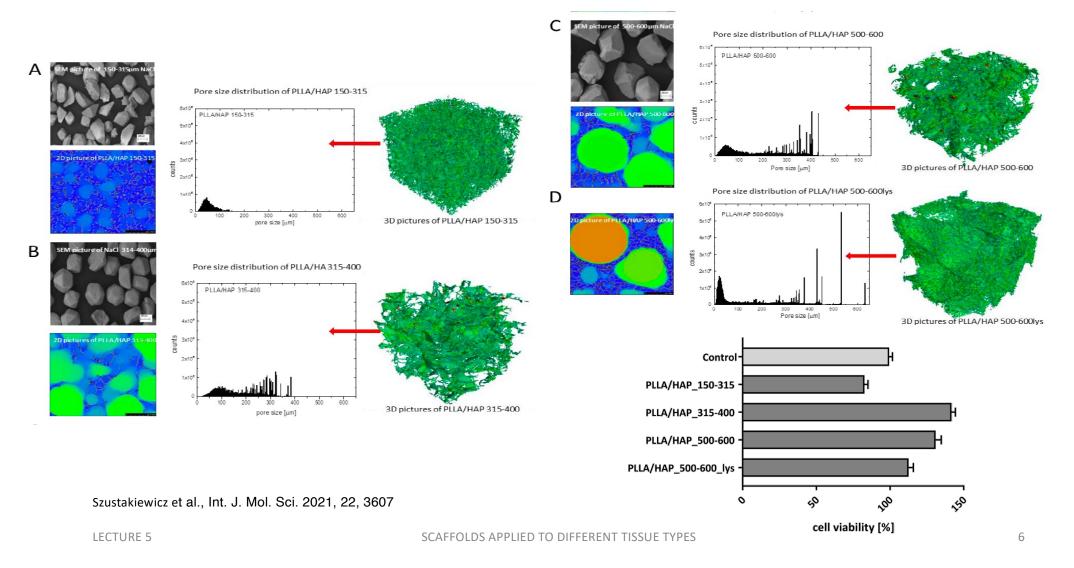



Calcein AM = alive cells Propidium iodide = dead cells

Cell viability (% live/total cells)		
AEC	88%	

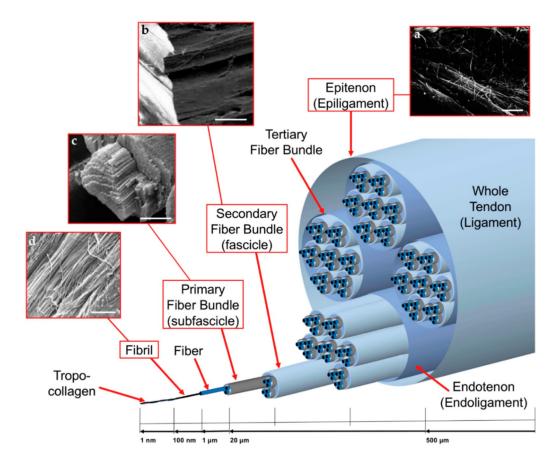
Scaffold+AEC

Bone

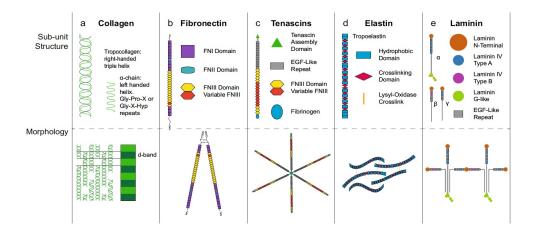

Scaffold+AFC

Bone

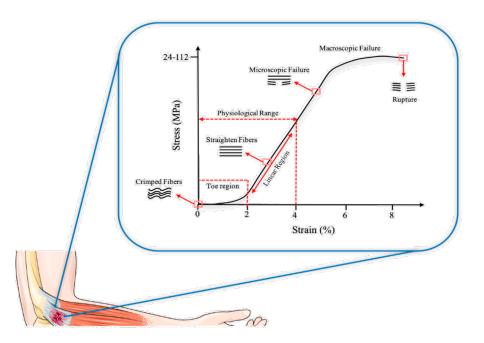
AEC


a *p*<0.05 § *p*<0.05

Bone Tissue Engineering

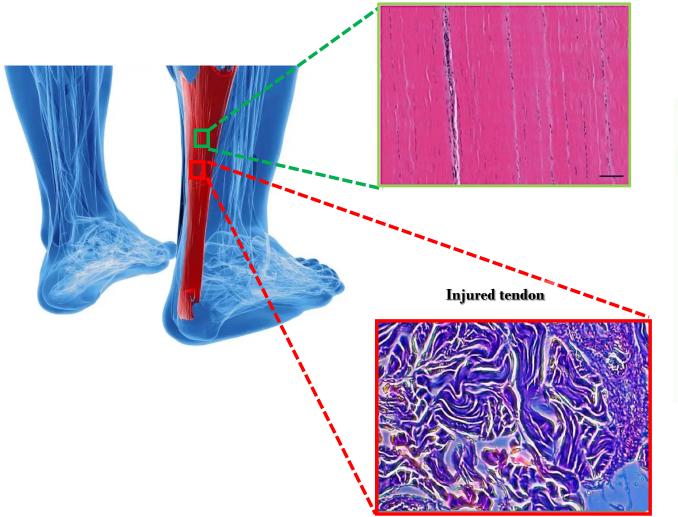

Tendon Tissue Engineering

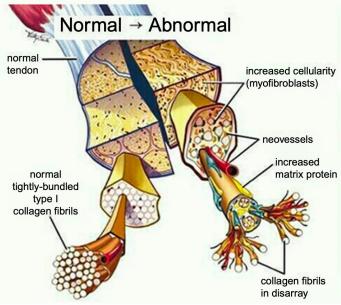
- Tendons are fibro-elastic structures that connect muscles to bones or other insertion structures.
- The structure of tendons is organized to provide resistance against longitudinal stresses generated by muscles. Microscopically, healthy tendons are dense connective tissues predominantly composed of parallel, closely packed collagen fibers and cells within a well-ordered extracellular matrix (ECM).
- Tendons are surrounded by a bed of loose areolar tissue called epitenon, or they may reside within a tunnel of dense fibrous tissue, the tendon sheath.
- They have a high resistance to mechanical loads, and allow the conduction, distribution, and modulation of the force exerted by the muscles to the structures to which they are connected.



Tendon Tissue Engineering

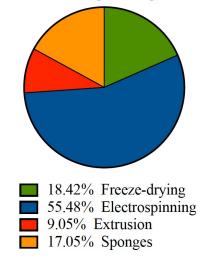
 Tendons are a fibrous connective tissue formed mainly by collagen fibers, which determine mechanical and physiological properties, and elastin fibers that give it elasticity. Collagen and elastin are immersed in a matrix of proteoglycans and water, where the collagen is 60% to 85% of the dry mass of the tendon, while the elastin is just 2%. Collagen type I is the predominant protein, with small amounts (about 5%) of collagen type III and type V.




 Healthy tendons have high strength and minimal elasticity to resist mechanical loads. Human tendons rupture happens at 8% strain, while 4% strain produces plastic deformation.

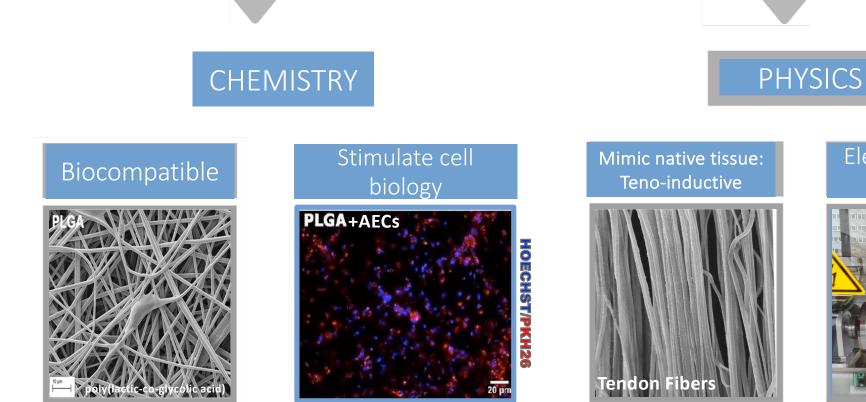
LECTURE 5

Healthy tendon

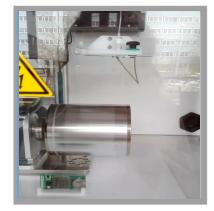


Tendon Tissue Engineering

Acronym	Extended Name	Application
P(LLA-CL)	Poly(L-lactide-co-ε-caprolactone)	Tendon/Ligament Ligament Tendon
PDLLA PLDLA	Poly(D,L-lactic acid) Poly(L-lactide-co-D,L-lactic acid)	Ligament Ligament
PLLA	Poly(L-lactic acid)	Tendon/Ligament Ligament Tendon Ligament-to-Bone Interface Tendon-to-Muscle Interface Tendon Anti-Adhesion
PELA	Poly(L-lactic acid)-poly(ethylene glycol)	Tendon Anti-Adhesion
PDLLGA	Poly(D,L-lactide-co-glycolic acid)	Ligament Tendon
PLGA	Poly(lactic-co-glycolic acid)	Tendon/Ligament Ligament Tendon Tendon-to-Bone Interface
PLLGA	Poly(L-lactic-co-glycolic acid)	Tendon/Ligament Tendon-to-Bone Interface Bone-Ligament-Bone
PCL	Poly(ε-caprolactone)	Tendon/Ligament Ligament Tendon Tendon/Ligament-to-Bone Interface Tendon-to-Bone Interface Tendon-to-Bone Interface Tendon-to-Muscle Interface Tendon Anti-Adhesion Bone-Ligament-Bone
PCLDLLA	Poly(ε-caprolactone-co-D,L-lactic acid)	Ligament
PU	Poly(urethane)	Ligament Tendon
PEUR	Poly(ester urethane)	Ligament
PEUUR	Poly(ester urethane urea)	Tendon/Ligament Ligament Ligament-to-Bone Interface


PEUUR2000	Poly(ester urethane urea) elastomer	Ligament-to-Bone Interface
BPUR10	Biodegradable Poly(urethane urea) 10	Tendon-to-Bone Interface
BPUR50	Biodegradable Poly(urethane urea) 50	Tendon-to-Bone Interface
DEO	Poly(ethylene oxide)	Tendon/Ligament
PEO	r ory(emytene oxide)	Tendon
PEGDA	Poly(ethylene glycol diacrylate)	Ligament
PEDOT	Poly(3,4-ethylenedioxythiophene)	Ligament
PDO	Poly(dioxanone)	Tendon
PAN	Poly(acrylonitrile)	Tendon
PVDF-TrFe	Poly(vinylidene fluoride-trifluoro ethylene)	Tendon
DP	Biodegradable Poly(ester urethane) block copolymer (DegraPol [®])	Tendon Anti-Adhesion
P3HB	Poly(3-hydroxybutyrate)	Tendon/Ligament
Nylon6.6	Nylon 6.6	Tendon/Ligament
SE	Silk	Ligament
		Tendon
		Tendon-to-Bone Interface
SF	Silk Fibroin	Tendon
Fibrinogen	Fibrinogen	Tendon/Ligament
Fibrinogen	Fibriliogen	Tendon/Ligament
Coll	Collagen	Tendon
Coll		Tendon-to-Muscle Interface
	Chitosan	Tendon/Ligament-to-Bone Interface
CTS		Tendon
		Tendon Anti-Adhesion
GT	Gelatin	Tendon
HA	Hyaluronic acid	Tendon Anti-Adhesion
mGLT	Methacrylated Gelatin	Tendon
Carbothane™	Poly(carbonate)-based thermoplastic	Tendon/Ligament
3575A	poly(urethane)	•

Number of publications on the techniques used for tissue engineering since 1990



LECTURE 5

Designing a tendon biomimetic scaffold

Electrospinning technique

