Informatica di base 6/ed

Autori: Dennis P. Curtin, Kim Foley, Kunal Sen e Cathleen Morin

A cura di: Agostino Marengo e Alessandro Pagano

Capitolo 1
L'informatica oggi: una panoramica

Informatica: definizione

Insieme dei **processi** e delle **tecnologie** che rendono possibile la creazione, la raccolta, l'elaborazione, l'immagazzinamento e la trasmissione dell'**informazione** con metodi automatici.

I dati non sono informazioni

Figura 1.1 La differenza tra dato e informazione.

Differenza tra dato e informazione

- Dato: elemento direttamente presente alla conoscenza. Non ha bisogno di essere spiegato.
- Informazione: rappresenta il dato all'interno di un contesto in modo da definirne un significato.

Hardware e Software

- Hardware
 - Struttura fisica
- Sofware
 - –Livello logico, insieme delle istruzioni

L'hardware
è la parte
del computer che
puoi prendere a calci;
il software quella
contro cui puoi
solo imprecare.

Elaborare le informazioni: un ciclo

informatica di base

Input La fase di input consiste nell'immissione di dati nel computer. I dispositivi di input più comuni sono la tastiera, lo scanner, il mouse, il microfono e la telecamera. I dati da inserire possono essere testi, numeri, immagini o suoni.

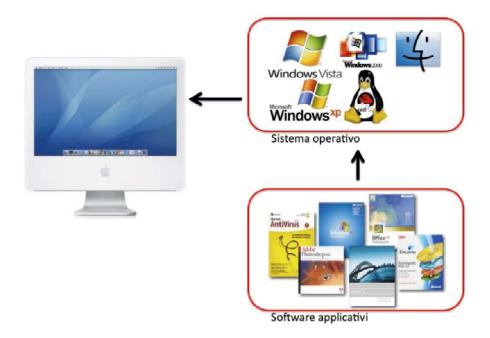
Distribuzione I dati possono essere stampati e distribuiti, oppure trasmessi direttamente da un computer all'altro; un esempio è l'invio di documenti come allegati della posta elettronica o attraverso un sito Web.

Elaborazione Una volta inseriti nel computer i dati possono essere elaborati; per esempio, si può paragonare, classificare o sommare numeri, formattare un testo o creare immagini e suoni.

Memorizzazione I dati e i programmi al momento non utilizzati vengono memorizzati su appositi nastri o dischi in modo da poter essere recuperati in gualsiasi momento. Output Per vedere (o ascoltare) il risultato dell'elaborazione sono necessari dei dispositivi di output, come lo schermo, la stampante e gli altoparlanti. Le informazioni ottenute possono anche essere sottoposte a un'ulteriore elaborazione, per esempio per integrare i suoni e le immagini in una presentazione multimediale.

Cos'è un Computer

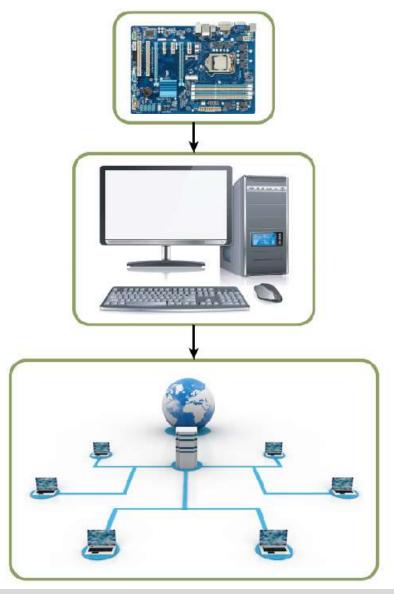
Elaboratore Elettronico Digitale


- Rappresenta ed elabora dati in base ad una serie di istruzioni.
- Utilizza componenti elettronici per elaborare le informazioni.
- -Le informazioni sono rappresentate mediante I due simboli (*digit*) della numerazione binaria.

Sistema operativo e applicazioni

- (1) Il sistema operativo gestisce l'hardware.
- (2) I programmi applicativi svolgono le operazioni.

Cos'è un sistema

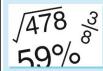


- Insieme di parti correlate tra loro che operano in maniera congiunta per svolgere una specifica funzione.
- Esempio: l'organismo umano.

Sistemi e sottosistemi

Tipo di dati

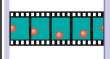
Descrizione


347 537 345 974 5 455 719 476 345 9 711 368 484 476 8 362 476 926 347 9 974 484 347 455 3 345 926 455 711 3 476 362 711 362 4 484 974 362 462 1

I dati numerici sono stati i primi a essere elaborati dai computer, prima per le organizzazioni militari e poi per le grandi aziende; ancora oggi, il trattamento dei dati nella gestione degli inventari e dei libri paga e nella registrazione delle vendite avviene più o meno allo stesso modo.

Le parole possono essere elaborate in promemoria, lettere, relazioni, articoli, libri ecc. Inoltre, grazie a un processo noto come desktop publishing, è possibile dare al testo un formato tipografico.

L'elaborazione di numeri può consistere in operazioni relativamente semplici, come la stima delle spese annuali per l'università, o in operazioni più complesse, come la redazione del bilancio dello Stato.


I diversi tipi di dati

I grafici servono per illustrare e rendere più comprensibile il significato di una tabella di dati numerici.

Le fotografie e altri elementi grafici possono essere memorizzati, elaborati e inseriti in documenti o presentazioni multimediali.

Personaggi e oggetti animati si muovono sullo schermo per divertire e informare l'utente.

I suoni, come la musica, la voce e gli effetti sonori possono essere memorizzati, elaborati e riascoltati.

I video, come interviste e film, vengono memorizzati come dati in modo da poter essere modificati o rivisti in qualsiasi momento.

Il sistema di elaborazione dei dati

- Il computer come automa:
 - capace di eseguire istruzioni;
 - che rappresentano comandi;
 - in modo sequenziale e logico.

Il computer come sistema

Il computer è un sistema perché costituito da un insieme di componenti che opportunamente integrate perseguono obiettivi comuni.

Il sistema informativo

- Insieme di dati e informazioni strutturati per soddisfare le esigenze conoscitive interne ed esterne all'azienda.
- Complesso di procedure, metodologie e procedimenti, per la realizzazione e la trasmissione dei flussi informativi.
- Insieme dei mezzi tecnici, risorse umane ecc.

Le risorse del sistema informativo

- Elaboratori elettronici
 - –ed altre attrezzature di ausilio per il trattamento dei dati.
- Risorse metodologiche
 - -e strumenti software.
- Risorse umane
 - -conoscenze-esperienze;
 - -ruoli;
 - -relazioni;
 - -bisogni;
 - -aspettative.

Verso il sistema informatico

- Prima dell'introduzione degli elaboratori elettronici, le attività venivano gestite con metodi manuali e supporti cartacei.
- L'introduzione delle ICT ha permesso:
 - di accelerare l'esecuzione delle operazioni attraverso procedure automatiche;
 - –di pensare ad una razionalizzazione interna all'azienda.

La rappresentazione

- Una rappresentazione è una relazione tra entità.
- Un oggetto (rappresentante) rappresenta un altro oggetto (rappresentato), se il primo viene usato al posto del secondo in un determinato contesto.
- Motivazioni
 - -Finalità: si usa una rappresentazione perché si ha uno scopo.
 - Vincoli: si usa una rappresentazione perché occorre soddisfare dei vincoli.
- Uno stesso oggetto può essere rappresentato da più rappresentanti, che si diversificano per lo scopo e i vincoli da soddisfare.

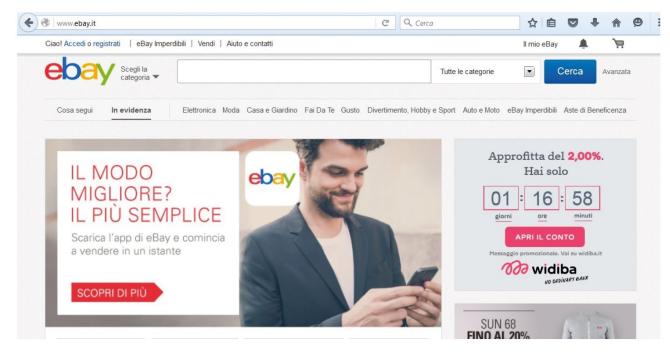
Livelli di rappresentazione

- L'informazione può essere rappresentata a diversi livelli.
- Un livello di rappresentazione *alto* è più vicino all'interpretazione umana.
- Un livello di rappresentazione basso è più vicino al sistema di elaborazione.
 - Esempio (in linguaggio macchina): 01000110

Concetto di Algoritmo

- Un algoritmo è un insieme di regole volte a risolvere un determinato problema in un numero finito di attività (passi, step)
- Un algoritmo aiuta a prendere le giuste decisioni in relazione ad un obiettivo

Caratteristiche di un algoritmo


- Descrizione inequivocabile
- Input preciso
- Output preciso
- Termina e produce un risultato
- Sempre il risultato corretto
- Rispetta i requisiti di ingresso, sempre

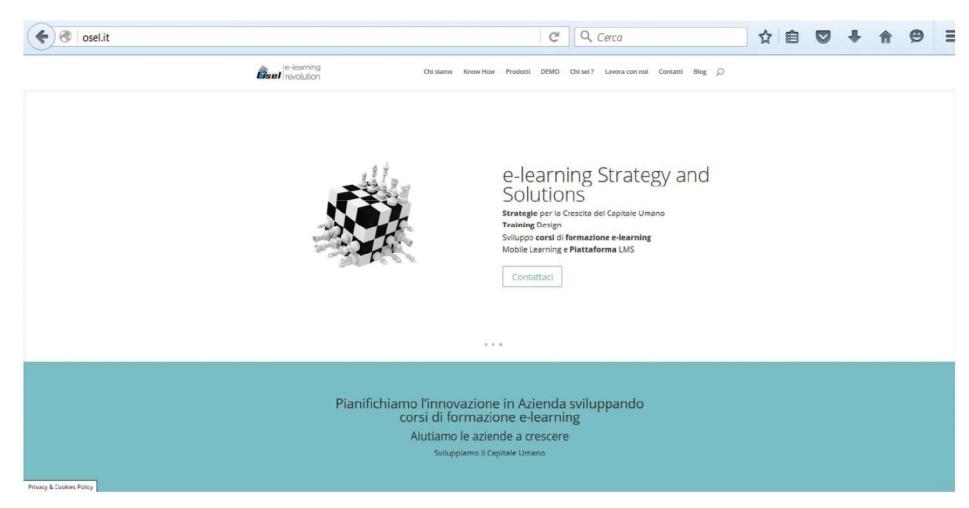
L'informatica nel commercio e nell'industria

- Elaborazione delle transazioni
- Telelavoro
- Analisi Finanziarie
- Gestione della conoscenza
- Editoria elettronica
- Commercio elettronico
- Progettazione (CAD)
- Fabbricazione (CAM)

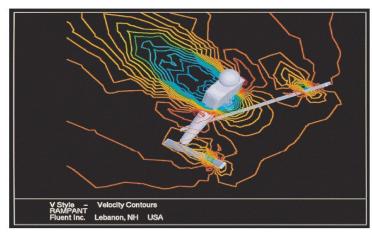
L' informatica in casa e nel tempo libero

Cataloghi per la vendita

Materiali di consultazione


- Acquisti a domicilio
- Operazioni bancarie
- Giochi

L'informatica nella scuola e nella formazione



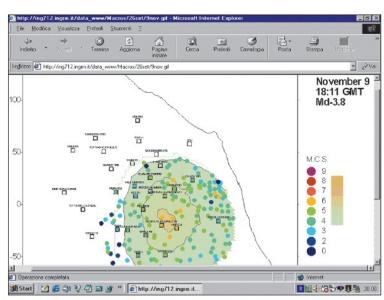
L'informatica nel mondo dello spettacolo e dell'arte

L'analisi al computer dei movimenti di un saltatore con gli sci – per gentile concessione della Cray

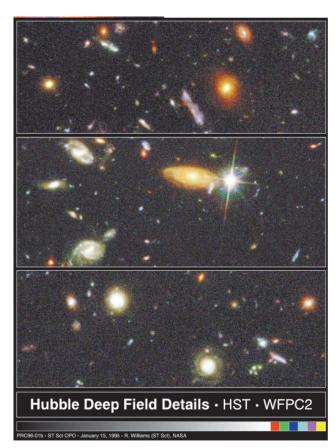
- Cinema
- Musica
- Sport

- Danza e *motion capture*
- Pittura e fotografia
- Stereogrammi 3D

Foto di passi di danza – per gentile concessione della Adaptive Optics Associates



L'informatica e la scienza



- Chimica
- Medicina
- Satelliti

- Sismologia
- Astronomia
- Matematica

Il rilevamento sismico del terremoto del 9 novembre 1997 in Umbria

La più profonda prospettiva dell'Universo mai ottenuta, trasmessa dal telescopio Hubble

Computer "invisibili"

Nelle automobili, numerose funzioni sono computerizzate

Il sito del progetto Wearable Computing del MIT

Copyrright e Copyleft

- Copyright: equivalente del diritto di autore nei paesi del Common law (USA e UK). Uno dei modi in cui si può gestire e difendere il diritto d'autore
- Copyleft: strategia di utilizzo della legge sul copyright per promuovere ed incoraggiare il diritto di condividere

Creative Commons

- Creative Commons: Esempio di Best Practice del copyleft.
- Diversi tipi di licenze:
 - -Attribuzione
 - -Attribuzione, no derivati
 - -Attribuzione, no commerciale, no derivati
 - -Attribuzione, no commerciale
 - -Attribuzione, no commerciale, condividi allo stesso modo
 - -Attribuzione, condividi allo stesso modo

Innovazione

- L'innovazione accade entro i confini attuali della conoscenza umana, non scaturisce da qualcosa che non è stata ancora concepita
- Non esistono salti nel processo di innovazione
- È più probabile che ci sia innovazione quando le idee di diverse persone, anche in campi diversi, collidono, producendo una combinazione radicalmente nuova