Informatica di base 6/ed

Autori: Dennis P. Curtin, Kim Foley, Kunal Sen e Cathleen Morin A cura di: Agostino Marengo e Alessandro Pagano

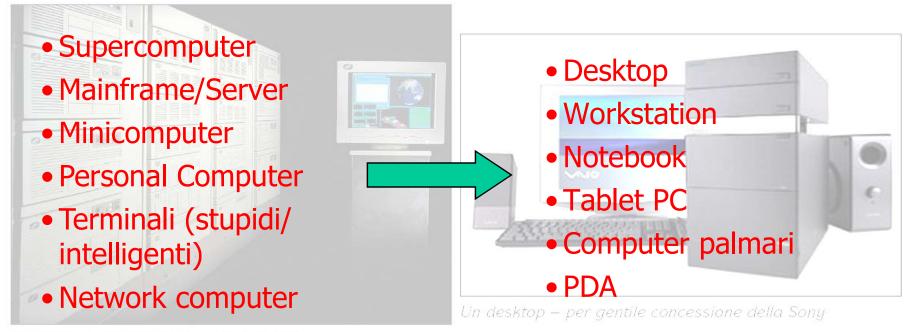
Capitolo 2
L'architettura
del computer e la CPU

McGray

Un po' di storia

Primi elaboratori

- -50 anni fa circa
- -Grandi ambienti con aria condizionata
- -Raffreddati ad acqua


CPU (Central Processing Unit)

–1969: Hoff, ingegnere Intel, progetta il primo microprocessore grande quanto un'unghia

Tipi di elaboratori

Un server - per gentile concessione della IBM

Il linguaggio dell'informatica è mutevole.

Supercomputer

- I più potenti elaboratori disponibili
- Applicazioni in campo tecnico e scientifico
 - -Previsioni metereologiche
 - -Simulazione fusione nucleare
 - -Progettazione automobili
 - -Effetti speciali cinematografici

—...

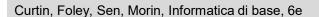
Mainframe e minicomputer (server)

Mainframe

- Utilizzati dalle grandi aziende per funzioni centralizzate
- -Occupano una stanza
- Gestiti da personale altamente specializzato

Minicomputer

- -Meno potenti dei mainframe
- -Diverse dimensioni
- Utilizzati da grandi aziende



Personal Computer (PC)

- Elaboratori in grado di lavorare autonomamente.
- Possono elaborare dati proveniente da altri PC.
- Possono essere connessi ad altri PC.
- 1981: IBM realizza il primo personal computer (PC

IBM).

Workstation

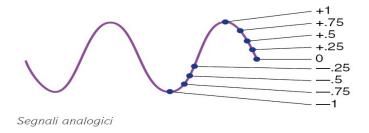
- Computer personali ad alto rendimento e piccole dimensioni
- Utilizzo tecnico e scientifico

Notebook

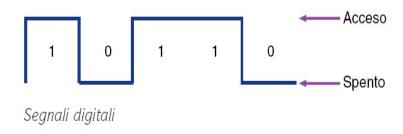
- Computer portatili
 - -Leggeri
 - -Maneggevoli
 - -Funzionamento a batteria
 - -A casa e in ufficio
 - Docking station

I più piccoli

- Tablet PC
 - -Computer portatili privi di tastiera fissa
 - -Touch-screen
- Computer palmari
 - –I più piccoli
 - -Hanno tastiere piccole
- PDA (Personal Digital Assistar
 - -Privi di tastiera



Analogico/Digitale


Segnale analogico

- come un onda che trasporta informazioni, massimi, minimi e tutti i valori intermedi
- i segnali analogici sono molto sensibili alle interferenze

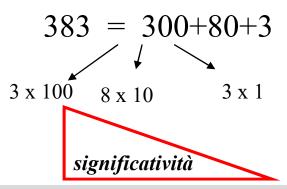
Segnale digitale

- assume solo due stati: acceso/spento, sì/no, vero/falso
- il segnale digitale è più facile da distinguere, quindi risente meno delle interferenze

I sistemi di numerazione

- Molte informazioni sono quantitative, quindi esprimibili in forma numerica.
- Le informazioni numeriche possono essere elaborate attraverso l'applicazione di operazioni.
- Un sistema di numerazione è una struttura matematica che permette di rappresentare i numeri attraverso dei simboli.

Num eni	Num eri			
decimali	bir	nari		
0				0
1				1
2		•••••	1	0
3			1	1
4		1	0	0
5		1	0	1
6		1	1	0
7		1	1	1
8	1	0	0	0
9	1	0	0	1
	1	0	1	0


I sistemi di numerazione

- ai diversi simboli dell'alfabeto (cifre), viene associato un valore crescente in modo lineare da destra verso sinistra;
- il significato di un simbolo (il suo valore) dipende ordinatamente dalla sua posizione nella stringa

ESEMPIO:

 il sistema di numerazione decimale arabo: 10 simboli (0, 1, 2, ...9)

- Il significato dei simboli non dipende dalla loro posizione
- ma è stabilito in base ad una legge additiva dei valori dei singoli simboli (se posti in ordine crescente)

ESEMPIO:

. . .

il sistema di numerazione romano

$$I = 1$$

$$V = 5$$

$$X = 10$$

$$LXIV = 50 + 10 - 1 + 5$$

$$= 64$$

$$10 \quad -1 \quad 5$$

$$L = 50$$

Sistemi di numerazione non posizionali

- Un simbolo rappresenta un numero.
 - -Esempio (numeri romani)
 - L rappresenta il numero 50
 - X rappresenta il numero 10
 - V rappresenta il numero 5
 - I rappresenta il numero 1
- Il numero rappresentato da una stringa di simboli si ottiene attraverso regole operazionali applicate ai simboli della stringa.
 - –Esempio (numeri romani): LXXIV rappresenta 50+10+10-1+5 = 74
- Difficile effettuare operazioni.
- Rappresentazione non compatta.

Sistemi di numerazione posizionali

Base = numero di simboli o di cifre numeriche richieste dal sistema per rappresentare la serie infinita dei numeri.

Dato un alfabeto ordinato di b simboli distinti $(c_1, c_2, ... c_b)$ che rappresentano rispettivamente i naturali 0,1,2,...b-1, si rappresenti nel modo più semplice e compatto ogni altro

numero $x \ge b$ mediante una stringa di simboli dell'alfabeto.

b = base del sistema di numerazione

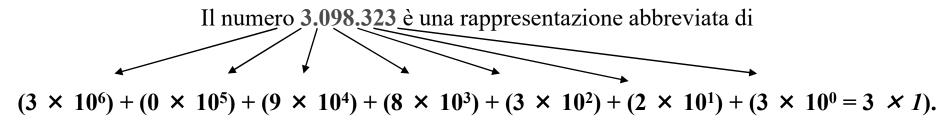
$$b = 60$$
 babilonesi

$$\mathbf{b} = 20 \vee 18$$
 maya

$$b = 10$$
 arabi (0,1,2,3,4,5,6,7,8,9)

$$b = 2 \vee 8 \vee 16$$
 informatici (0,1)

(0,1,2,3,4,5,6,7) (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)


Valore della posizione

La posizione di un simbolo all'interno di un numero indica il valore che esso esprime, o più precisamente l'esponente che bisogna dare alla base per ottenere il valore corretto.

Il valore (o la quantità) di **0**, **1**, **2**, **3**, **4**, **5**, **6**, **7**, **8** e **9** dipende dalla **posizione** che ciascuno di essi assume all'interno del numero:

la prima cifra a destra rappresenta le unità (il coefficiente di 10^0), la seconda le decine $(10^{1)}$, la terza le centinaia $(10^{2)}$, e così via.

Il primo 3 (leggendo da destra a sinistra) rappresenta 3 unità; il secondo 3, sta per unità, o 3 centinaia; infine il terzo 3, per 3 milioni di unità.

Notazione posizionale

Richiede b simboli diversi x rappresentare i numeri da 0 a b-1

decimale
$$\rightarrow$$
 0,1,2,3,4,5,6,7,8,9 (b=10)

binario
$$\rightarrow$$
 0,1 (b=2, base due)

ottale
$$\rightarrow$$
 0, 1, 2, 3, 4, 5, 6, 7 (b=8)

Esempio:

30.155₆ nel sistema in base sei è il numero

$$(3 \times 6^4) + (0 \times 6^3) + (1 \times 6^2) + (5 \times 6^1) + (5 \times 6^0) = 3959 \text{ nel s.d.};$$

$$(2 \times 16^{2}) + (14 \times 16^{1}) + (15 \times 16^{0}) = 751 \text{ del s.d.}$$

Il sistema di numerazione decimale

- È il sistema più conosciuto dall'uomo.
- La base β è pari a 10.
- I simboli utilizzati sono 0,1,2,...,9 dal significato ovvio.
 - -Esempio: la stringa 2349 rappresenta il numero 2*10³+3*10²+4*10¹+9*10⁰.
- I numeri decimali sono facilmente intelligibili.

Il sistema di numerazione binario

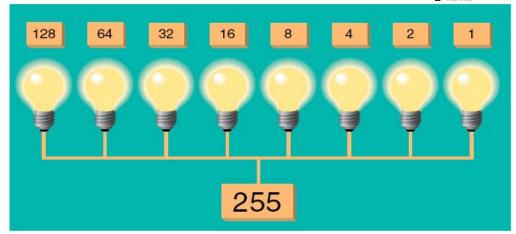
- È il sistema maggiormente utilizzato dai sistemi di elaborazione.
- La base β è pari a 2.
- I simboli utilizzati sono 0 e 1, rappresentanti lo zero e l'unità.
 - -Esempio: la stringa binaria 10010 rappresenta il numero $1*2^4+0*2^3+0*2^2+1*2^1+0*2^0$ (=18 in decimale).
- Per rappresentare un numero x, sono necessarie [log₂(x+1)] cifre binarie.
- È scarsamente leggibile, specie quando le stringhe sono molto lunghe.

Un esempio di messaggio digitale

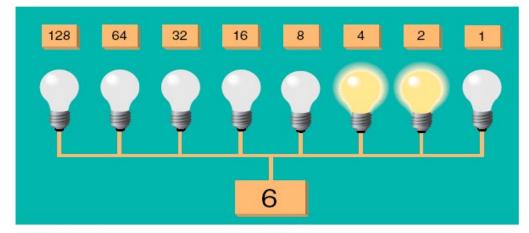
- La cavalcata di Paul Revere
 - -"Una lanterna se vengono da terra, e due se vengono dal mare"
- Segnale digitale?
- Quanti stati?
 - -Lanterne entrambe spente (00)
 - –Una lanterna accesa (01 e 10)
 - -Entrambe le lanterne accese (11)

Mc Graw Hill Education Decimale e binario

informatica di base


1 bit = 1 cifra binaria: 0 o 1

1 byte = 8 bit, es. 00000110


Nel sistema decimale: 312 = 3 centinaia, 1 decina e due unità, cioè: $3 \times 10^2 + 1 \times 10^1 + 2 \times 10^0$

Nel sistema binario: $0x2^7+0x2^6+0x2^5+0x2^4+$ $+0x2^3+1x2^2+1x2^1+0x2^0=$ =0+0+0+0+0+4+2+0=6

Quindi il numero binario 00000110 in decimale è il numero 6.

I bit che danno come somma 255

I bit che danno come somma 6

Le unità di misura nell'informatica

(bit e byte)

1 bit (cifra che può assumere solo due valori, 0/1) 8 bit =1 Byte = 1 carattere

- L'aggregazione degli 8 bit necessari per definire un carattere alfanumerico viene definita byte e rappresenta l'unità pratica principale in informatica, in quanto permette di esprimere un singolo carattere alfanumerico.
- I multipli del byte, espressi con 2 (il numero delle cifre nel sistema di numerazione binaria) elevato alle potenze di 10, sono:
 - 2^{10} byte = 1024 byte = 1 Kilobyte = 1 KB
 - 2²⁰ byte = 1024 Kbyte = 1 Megabyte = 1 MB
 - 2³⁰ byte = 1024 Mbyte = 1 Gigabyte = 1 GB
 - 2⁴⁰ byte = 1024 Gbyte = 1 Terabyte = 1 TB

I codici

- Codice: associazione di un significato ad una sequenza di simboli.
- Codice : {entità} → {sequenze di simboli}
 - -Un codice è una rappresentazione
- Un codice:
 - permette l'elaborazione e la memorizzazione di entità non gestibili nella loro forma originale
 - i sistemi di numerazione sono codici
 - -permettere l'interpretazione dei simboli
 - un dizionario di lingua italiana è un codice
 - Aggiungere proprietà ad un sistema di simboli
 - comprimere la lunghezza delle stringhe
 - aumentare l'affidabilità di trasmissione

Dal byte al linguaggio umano

	0	1	2	3	4	5	6	7	8	9
0										
1										
2										
3				!	п	#	\$	%	&	-
4	()	*	+	,	-		/	0	1
5	2	3	4	5	6	7	8	9	•	;
6	<	=	>	?	@	Α	В	С	D	E
7	F	G	Н		J	K	L	М	N	0
8	Р	Q	R	S	Т	U	V	W	Χ	Υ
9	Z	[1]	٨		`	а	b	С
10	d	е	f	g	h	i	j	k		m
11	n	0	р	q	r	S	t	u	٧	W
12	Χ	у	Z	{		}	~	•	•	•
13	,	f	,,		+	‡	^	‰	\$	<
14	Œ	•	•	•	•		,	"	П	•
15	_	_	-	TM	§	>	œ	•	•	Ϋ
16		i	¢	£	0	¥		§	-	©
17	a	**	Г	-	®	-	0	±	2	3
18		μ	¶	o e	,	1	0	»	1/4	1/2
19	3/4	i	À	Á	Ä	Ã	Ä	Â	Æ	ç
20	È	É	Ê	Ë	Ì	ĺ	Î	Ϊ	Đ	Ñ
21	Ò	Ó	Ô	Ö	Ö	Χ	Ø	Ù	Ú	Û
22	Ü	Ÿ	Ь	ß	à	á	â	ã	ä	ä
23	æ	Ç	è	é	ê	ë	Ì	ĺ	Î	Ϊ
24	ō	ñ	Ò	Ó	Ô	Õ	Ö	÷	Ø	ù
25	ú	û	ü	ý	þ	ÿ				

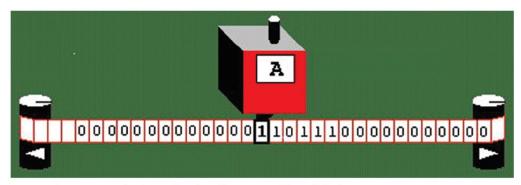
La tabella ASCII è stata progettata per convertire un numero da 0 a 255 in un carattere o simbolo del linguaggio naturale. Il codice ASCII è rappresentabile con soli otto bit (un byte), dal numero binario 00000000 (decimale 0) a 11111111 (decimale 255).

Il codice ASCII

I codici

- ASCII (American Standard Code for Information Interchange)
 - -128 caratteri
- ASCII esteso
 - -256 caratteri
- EBCDIC (Extended Binary Coded Decimal Interchange Code)
- UNICODE
 - -96.000 caratteri

Le origini dell'Informatica


- Alan Mathison Turing (1912-1954)
 - -Matematico e logico
 - –A 25 anni elaborò la teoria della "macchina di Turing"
- John Von Neumann (1903-1957)
 - -Matematico e informatico
 - -Fondatore della teoria dei giochi
- I calcolatori attuali sono macchine o automi di calcolo generale
 - Turing e von Neumann sono i padri della moderna informatica

La macchina di Turing

- Macchina teorica in grado di eseguire procedure logiche e matematiche
- ●Procedure ⇔ algoritmo

La rappresentazione classica di una macchina di Turing

Componenti:

- un *nastro* diviso in celle (memoria esterna);
- una *unità di lettura e scrittura*;
- un insieme finito di simboli,
- una *memoria interna*.

La macchina permette di formalizzare la nozione di procedura effettiva di calcolo, o *algoritmo*.

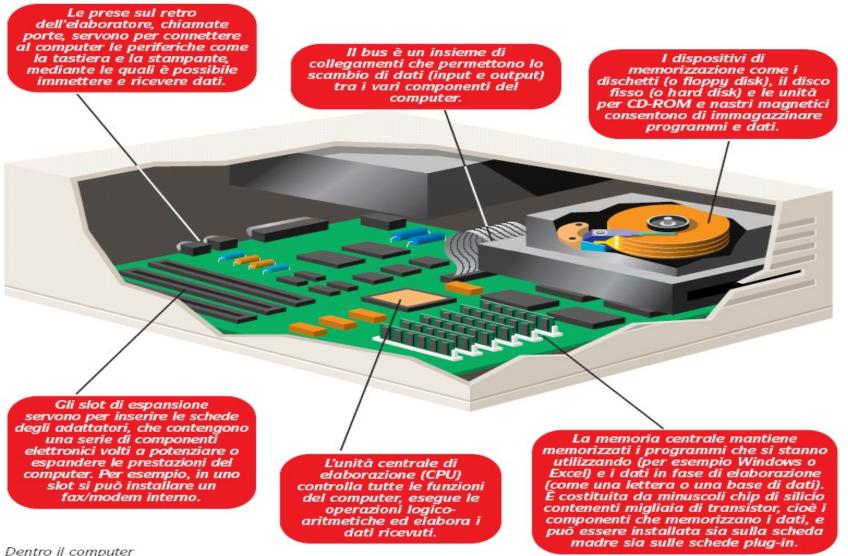
Teoria della macchina universale

 Turing dimostrò che è possibile progettare una macchina universale in grado di imitare qualsiasi altra macchina di Turing.

Tesi di Church

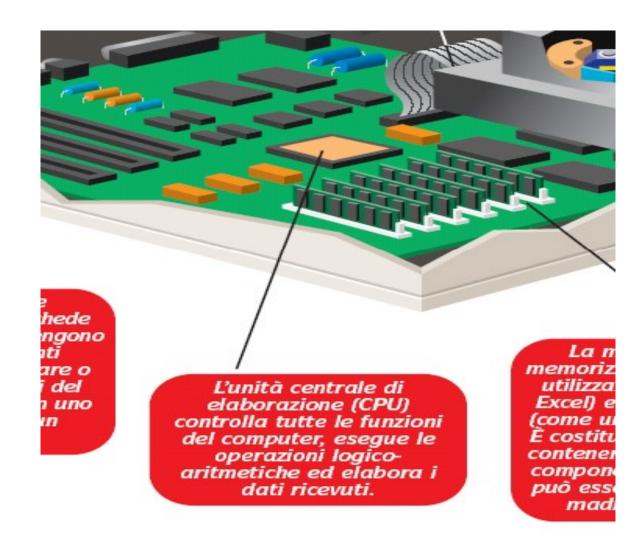
 L'insieme dei problemi effettivamente risolvibili con qualsivoglia metodo meccanico coincide con quello dei problemi risolvibili dalla macchina di Turing.

La macchina a registri a programma memorizzato

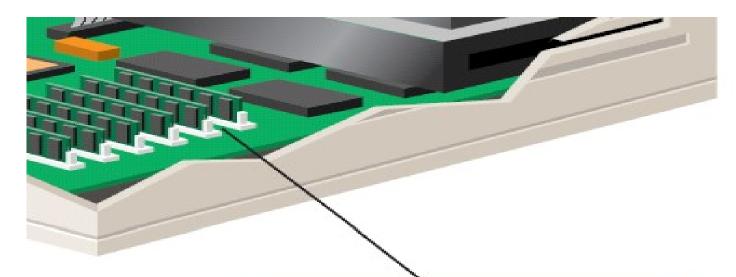


- Ideata da von Neumann.
- Ispirata dalla macchina (concettuale) di Turing.
- Costituita da:
 - –unità di elaborazione centrale (CPU);
 - –unità aritmetico-logica (ALU).
- Anche la macchina di von Neumann è una macchina universale.

Dentro la scatola



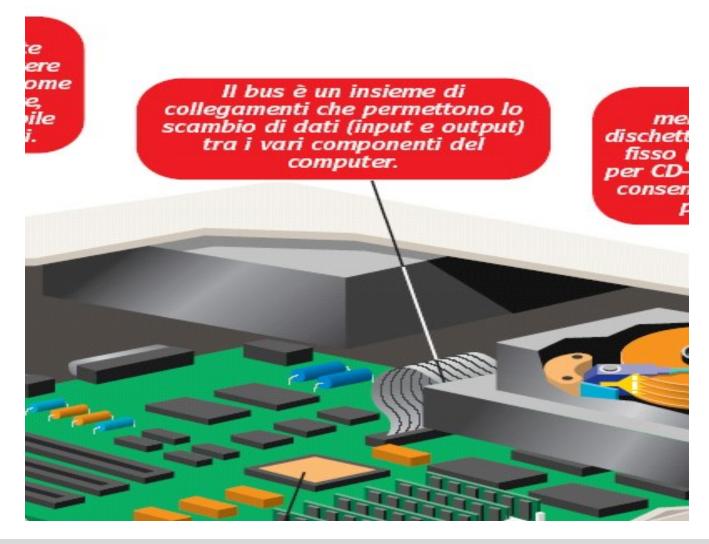
Dentro la scatola: la CPU



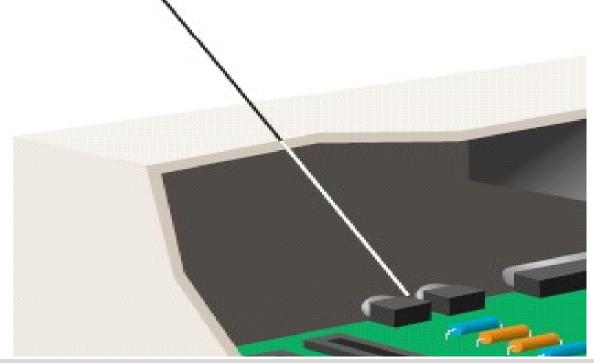
Elimentro la scatola: la memoria centrale

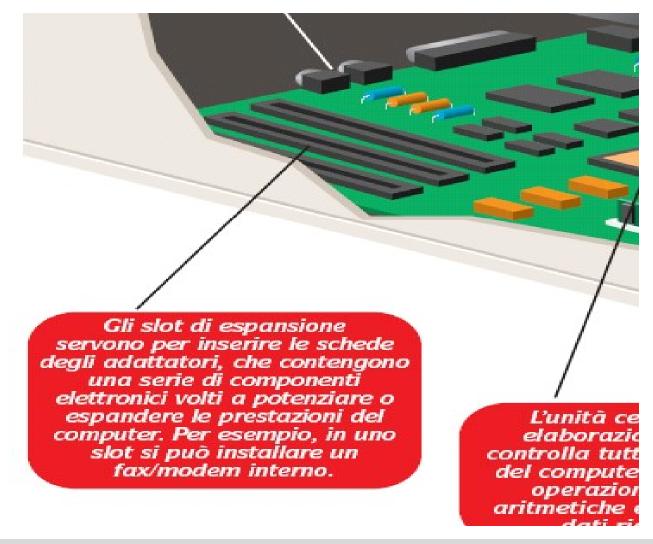
e di CPU) funzioni egue le icoabora i i. La memoria centrale mantiene memorizzati i programmi che si stanno utilizzando (per esempio Windows o Excel) e i dati in fase di elaborazione (come una lettera o una base di dati). È costituita da minuscoli chip di silicio contenenti migliaia di transistor, cioè i componenti che memorizzano i dati, e può essere installata sia sulla scheda madre sia sulle schede plug-in.

Dentro la scatola: l'hard disk

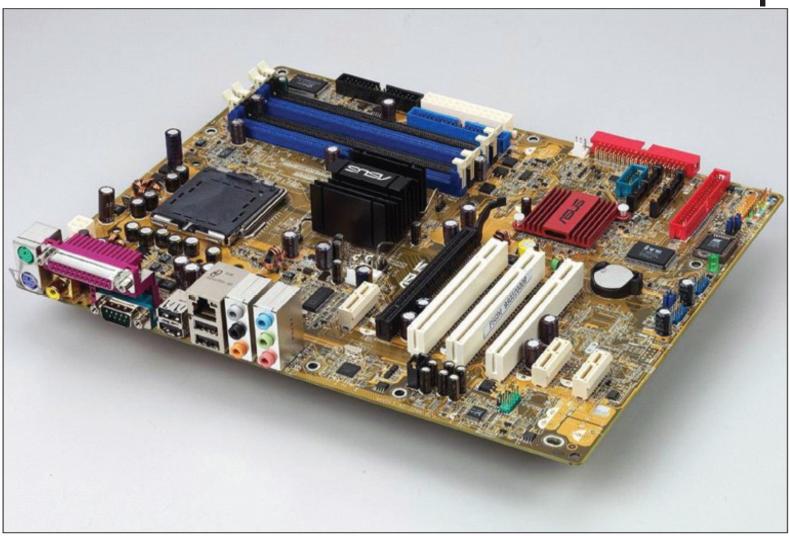


Dentro la scatola: il bus



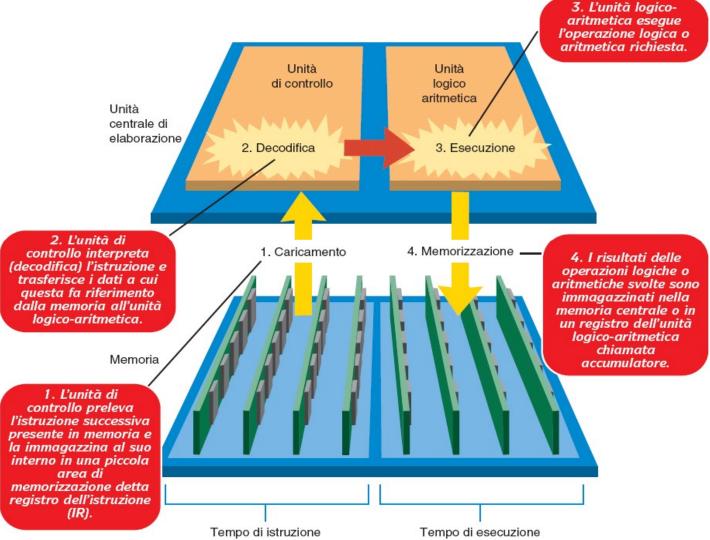

Le prese sul retro dell'elaboratore, chiamate porte, servono per connettere al computer le periferiche come la tastiera e la stampante, mediante le quali è possibile immettere e ricevere dati.

Dentro la scatola: gli slot di espansione



Mc Graw Hill omponenti all'interno della scatola

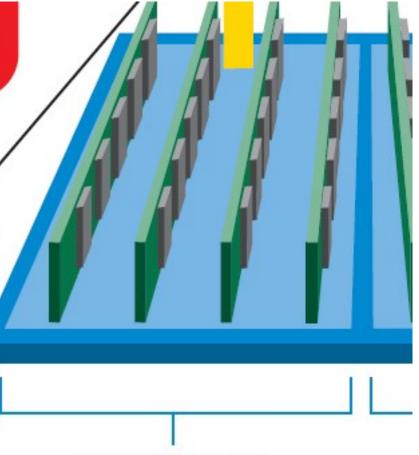
Una scheda madre – per gentile concessione della Asus


L'interazione tra CPU e memoria

- CPU (Central Processing Unit)
 - -CU (Control Unit o Unità di controllo)
 - Esegue le istruzioni
 - Coordina le attività del processore
 - Controlla il flusso di informazioni con la memoria
 - -ALU (Arithmetic Logic Unit o Unità Aritmetico-Logica)
 - Effettua le operazioni aritmetiche
 - Effettua le operazioni logiche
- Le due unità collaborano con la memoria in quattro fasi (ciclo della macchina).

Mc Graw Hill iclo della macchina

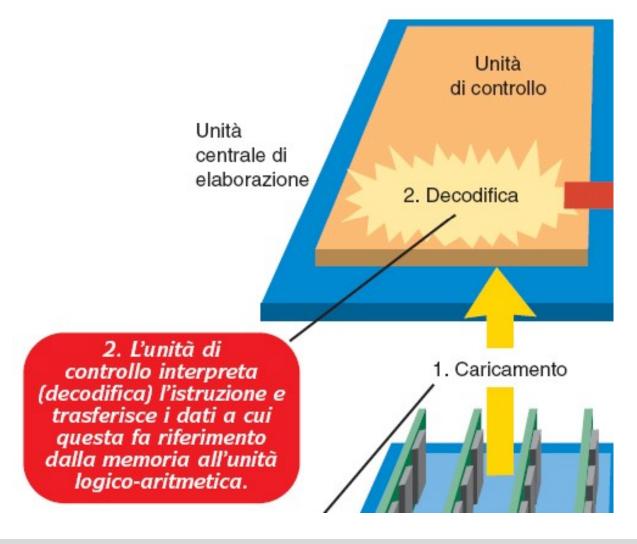
Il ciclo della macchina


Ciclo della macchina: fase di caricamento

questa fa riferimento dalla memoria all'unità logico-aritmetica.

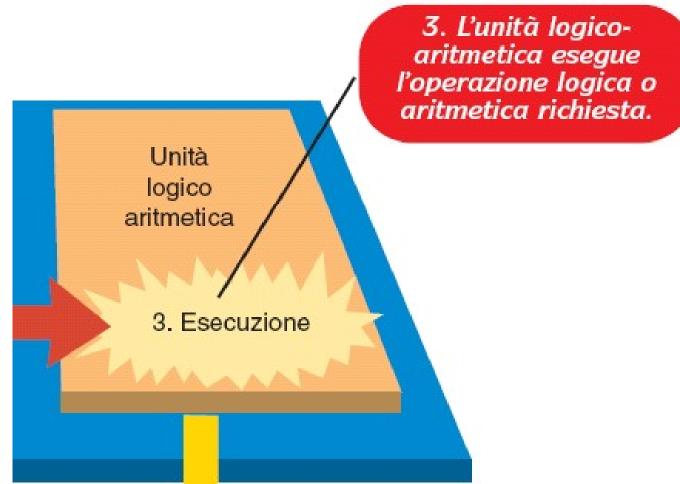
Memoria

1. L'unità di
controllo preleva
l'istruzione successiva
presente in memoria e
la immagazzina al suo
interno in una piccola
area di
memorizzazione detta
registro dell'istruzione
(IR).

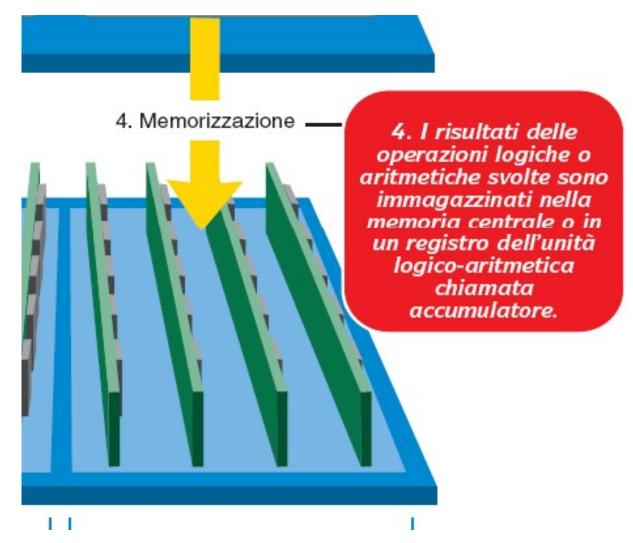


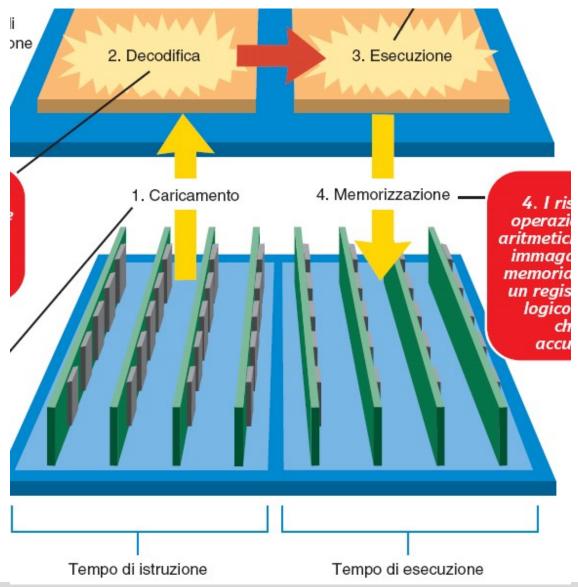
Tempo di istruzione

Ciclo della macchina: fase di decodifica



Ciclo della macchina: fase di esecuzione

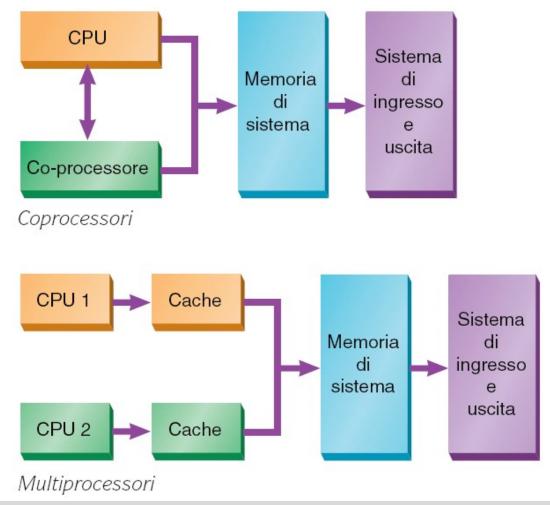



Ciclo della macchina: fase di memorizzazione

Il processore

C.P.U. Central Processing Unit

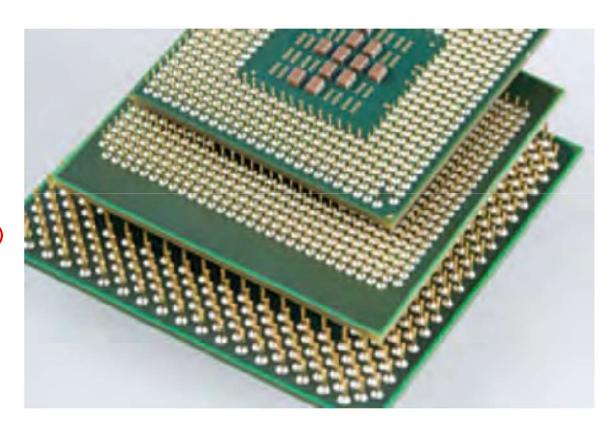
- -Esecutore dei programmi
- -Interagisce con la RAM
- Composto da:
 - -ALU
 - -Unità di Controllo
 - -Unità di Memoria



CPU = Central Processing Unit, centro nevralgico del computer. Ogni CPU ha un set di istruzioni diverso, e incompatibile tra diversi produttori. Il software per Windows (CPU Intel) non può funzionare su Apple (CPU Motorola).

In molti computer, e anche all'interno di CPU particolarmente evolute, ci sono coprocessori e multiprocessori.

I coprocessori e i processori paralleli

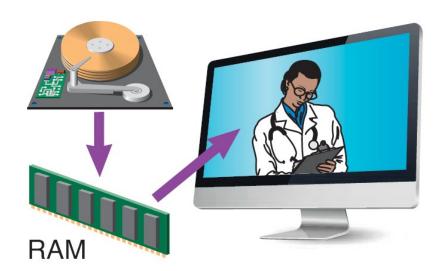

- I Coprocessori sono processori dedicati quali:
 - -coprocessore grafico
 - –coprocessore audio
 - –coprocessore video
 - –coprocessore matematico
 - -piattaforme mono-processore
- I processori paralleli condividono alla pari le risorse del sistema.

La CPU: dai numeri ai nomi

- •8086/8088
- 286
- 386
- 486
- 586 → Pentium®
- Multi-core

Velocità del microprocessore

- Velocità del clock
- MegaHertz (MHz o milioni di cigli al secondo)
- GigaHertz (GHz o miliardi di operazioni al secondo)


Tipi di memoria

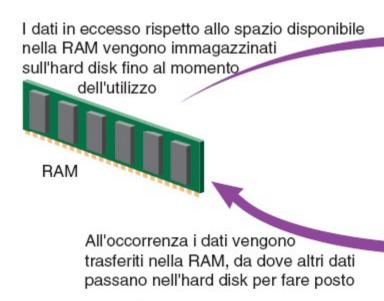
ROM = memoria non volatile, in cui è memorizzato il firmware.

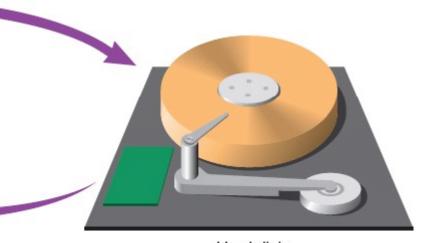
RAM = memoria volatile, random (accesso libero a qualunque sua parte), in cui si memorizza il software.

Memoria RAM

- Memoria centrale o memoria dell'utente
- Memoria volatile
- Ad accesso random

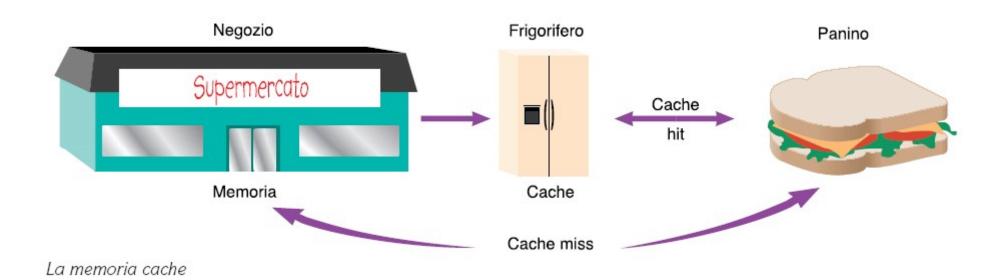
Primi PC: 128 KB


Oggi: almeno 2 GB


-Circa 16.000 volte più grande!

Funzionamento della memoria virtuale

Hard disk


La memoria virtuale

La memoria virtuale rallenta l'esecuzione dei programmi, ma permette di far funzionare applicazioni più grandi della ram stessa.

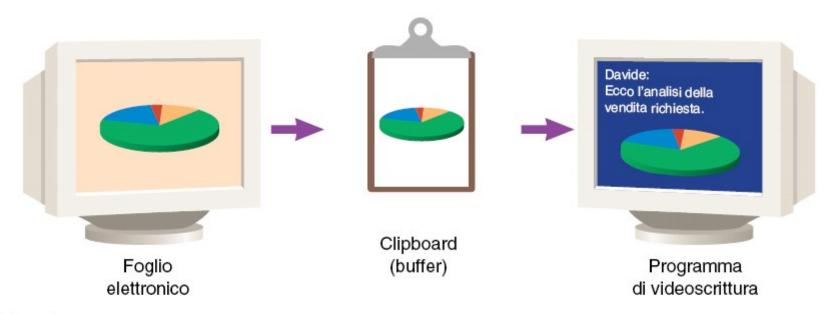
Funzionamento della cache

La memoria cache è velocissima ma il suo contenuto può essere superfluo per le operazioni in corso, quindi risultare inutile.

Memoria cache: livelli

Livello 1

- Cache interna o primaria o L1
- -interna al processore


Livello 2

- -Cache esterna o secondaria o L2
- –Esterna al processore
- -Chip di memoria

Funzionamento del buffer (clipboard)

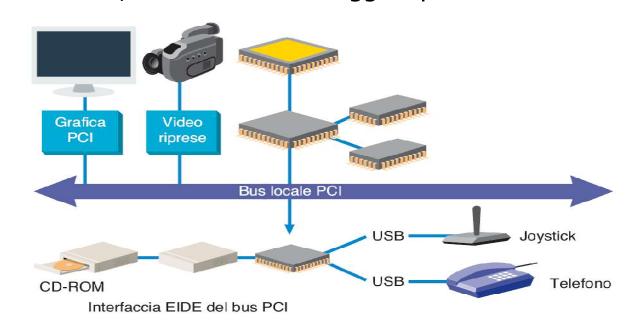
La clipboard

La clipboard (o buffer, o appunti) serve a trasferire informazioni tra applicazioni contemporaneamente aperte, oppure in punti diversi della stessa applicazione (es., Copia e Incolla).

I tipi di bus e le altre connessioni

Bus, *di sistema* oppure *locale* = connessione fisica tra CPU e le altre componenti del computer; trasporta i dati da un dispositivo all'altro.

Porta *seriale* o *parallela* = connessioni "storiche" dei computer, usate la prima per il modem e la seconda per le stampanti.


Porte USB e Firewire = più recenti, hanno molti vantaggi rispetto alle

precedenti connessioni.

1) Velocità.

2) Si possono connettere in serie, un dispositivo dopo l'altro.

3) Riconoscimento automatico dei dispositivi connessi (*Plug & Play*).

