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Mechanisms of Genomic Imprinting

Genomic imprinting is an epigenetic mechanism that results in
monoallelic expression of a gene in a parent of origin-specific
manner. It provides the classic example of lifelong epigenetic
memory of parental origin. To date, there have been ~100
imprinted genes identified in humans and many more are
predicted to be imprinted (http://www.geneimprint.com/).
Many imprinted genes are expressed in placenta and are
important for fetal growth. They play an important role in
postnatal growth and development, behavior, sleep, feeding,
maintenance of body temperature, metabolic regulation, and
stem cell maintenance and renewal.' The vast majority of
imprinted genes are clustered in domains that vary in size from
less than 100 kb to several megabases.! An imprinted domain
generally includes both paternally and maternally expressed
genes, as well as protein-coding genes and noncoding RNAs.
Parent of origin-specific expression of multiple imprinted
genes within a domain is under overall control of cis-acting
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imprinting control regions (ICRs), which are also often referred
to as primary/gametic differentially methylated regions
(DMRs).! The ICRs exhibit parent of origin-specific epigenetic
modifications including DNA methylation and histone mod-
ifications, which determine whether or not the genes within
the imprinted domain are expressed. In this review, we will
focus on DNA methylation as it is the epigenetic modification
used for molecular diagnosis due to its chemical stability and
easy accessibility. DNA methylation occurs at cytosines
followed by guanines (CpG dinucleotides). It is usually associ-
ated with gene silencing if located in the promoter. The allele-
specific DNA methylation at ICRs is established in the germ line
by the DNA methyltransferase DNMT3A and its cofactor
DNMT3L.2? After fertilization, the DNA methylation patterns
at ICRs are stably inherited through mitotic divisions with the
help of maintenance DNA methyltransferase DNMTT1; also
involved are other proteins such as ZFP57,* TRIM28,> and
DPPA3.° ICRs are resistant to genome-wide demethylation
and remethylation processes that occur in preimplantation
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embryos."’ In primordial germ cells, the methylation at ICRs is
erased by both passive loss through cell division in female
gametes and active demethylation in male gametes.8 The
majority of known ICRs are methylated on the maternal allele
and only two of clinically relevant ICRs, ICR1 at 11p15.5 and IG-
DMR at 14q32, are methylated on the paternal allele
(=Table 1). There are structural differences between maternal
and paternal ICRs in terms of their genomic position within
imprinted domains and CpG density. Usually, maternal ICRs
are markedly CpG-rich, overlapping CpG islands. They are
located at the promoters of long noncoding RNAs (IncRNAs).
When a maternal ICR is unmethylated, IncRNA may be ex-
pressed, silencing protein-coding imprinted genes in cis
through various mechanisms such as recruitment of histone
modifying enzymes and transcriptional interference. On the
other hand, when a maternal ICR is methylated the IncRNA is
silenced permitting expression of protein-coding imprinted
genes within the domain.! In contrast, paternal ICRs are
typically less CpG dense and located in intergenic regions."
An insulator model was proposed for the paternal ICR1 of the
well-studied IGF2-H19 domain'? (~Fig. 1A).

In addition to ICRs there are also secondary or somatic
DMRs (sDMRs) found in the promoters of some protein-
coding imprinted genes which also exhibit parent of origin
allele-specific DNA methylation acquired in somatic cells.!’
However, the promoters of the majority of protein-coding
imprinted genes are unmethylated on both parental alleles.!
The complexity of imprinted gene regulation is exemplified
by two imprinting domains located at 11p15.5 and 15q11-
q13 (~Fig. 1).

Genomic Imprinting and Human Disease

The consequence of genomic imprinting is that only one of the
two parental alleles is active. Thus, loss of function of an active
allele of an imprinted gene cannot be compensated by the
silent allele resulting in a disease phenotype. On the other
hand, a mutation in the inactive allele of an imprinted gene
does not have phenotypic consequences.’

There are several human pediatric conditions, known as
imprinting disorders (IDs), which are caused by abnormal
expression of imprinted genes at seven imprinted domains on
six human chromosomes (~Fig. 2, = Table 1). These disorders
can be caused by several types of molecular alterations: (1)
copy number variation (CNV, loss or gain) overlapping im-
printed genes; (2) uniparental disomy (UPD)— inheritance of
both chromosomes in a pair from the same parent; (3) point
mutation of the active allele; (4) epimutation defined as a
heritable change in gene activity that is not associated with an
alteration of DNA sequence but rather with gain or loss of
DNA methylation at ICR; (5) microdeletion or microduplica-
tion restricted to ICR, causing loss or gain of DNA methyla-
tion; and (6) structural chromosome rearrangements
(=~Fig. 3, =Table 1).

The frequency of underlying defects varies among IDs. For
example, in Beckwith-Wiedemann syndrome (BWS), Rus-
sell-Silver syndrome (RSS), and transient neonatal diabetes
mellitus type 1 (TNDM1), idiopathic epimutation is the most
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frequent underlying cause. In contrast, for Prader-Willi
syndrome (PWS) and Angelman syndrome (AS), the most
frequent cause is de novo deletions, due to the presence low
copy number repeats in 15q11-q13 region making this region
susceptible to nonhomologous recombination. For pseudo-
hypoparathyroidism type 1a (PHP1a) and IMAGE syndrome,
point mutations are the only known cause. In other IDs,
point mutations are rare and are usually found in familial
cases (=Table 1).

Inheritance of Imprinting Disorders

The recurrence risk of ID depends on the underlying molecu-
lar alteration. UPD and idiopathic loss of DNA methylation
usually occur sporadically and recurrence risk is low. In
contrast, CNVs or point mutations can either occur de novo
or be inherited from the parent, which could be affected or
unaffected, depending which grandparent transmits the
mutant allele. Whether a specific ID is predominantly spo-
radic or there is a substantial proportion of familial cases
depends on the reproductive fitness of this disorder. For
example, in severe developmental disorders, such a AS and
PWS, the genetic alterations almost exclusively occur de novo,
and recurrence risk is low, with the exception of point
mutations of UBE3A which cause AS and are associated
with 50% recurrence risk when are inherited from the unaf-
fected mother, and are not associated with a phenotype when
inherited from the father.'? In contrast, patients with BWS
have generally favorable outcomes as adults and approxi-
mately 15% of BWS cases are familial.'? In these families, the
disorder is inherited as a dominant trait with parent of origin-
specific effect and a recurrence risk of up to 50% when
transmitted from the parent contributing the expressed
allele.”> TNDM1 can be inherited as a recessive trait when
caused by homozygous or compound heterozygous muta-
tions in the ZFP57 gene with a recurrence risk of 25%'* (see
Multiple Imprinting Defect section).

Multiple Imprinting Defects

Recent research studies have shown that the methylation
alterations in IDs are not always restricted to one imprinted
domain. In some IDs, methylation alterations can be found at
multiple ICRs. Several terms have been used in literature to
describe this phenomenon, namely multiple imprinting de-
fect (MID), multilocus methylation defect (MLMD), hypome-
thylation of imprinting (HIL), and hypomethylation syndrome
(HMS). To date, cases of MID have been reported in four IDs
where primary epimutation is one of the most frequent
causes of the disorder: TNDM1, BWS, RSS, and PHP1b
(~Table 1).> Aberrant DNA methylation (mostly loss of
maternal methylation) at multiple imprinted loci is frequent-
ly found to be mosaic, suggesting that the mechanism is
failure of postfertilization maintenance of DNA methylation
imprints.16 In TNDM1, the MID has been associated with
mutations in ZFP57 gene,'” encoding Kruppel-associated box
domain zinc finger protein, involved in maintenance of DNA
methylation at imprinted loci.'® It is estimated that ~60% of
TNDM1 MID cases carry homozygous/compound
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Fig. 1 (A) The map of chromosome 11p15.5 imprinted cluster consisting of domain 1 and 2. M is maternal chromosome, P is paternal chromosome, cen is
centromere, tel is telomere, white rectangles are maternally expressed genes, gray rectangles are paternally expressed genes, black arrows indicate gene
expression, black circles indicate DNA methylation, gray triangle is enhancer, dashed arrow indicates accessibility of IGF2 promoter to the enhancer, and light
gray circle is CCCTGbinding factor (CTCF). In domain 1, imprinting control region 1 (ICR1) is located upstream of H19 noncoding RNA and is methylated on
the paternal allele. Methylation prevents CTCF binding to the paternal ICR1, permitting access of the IGF2 promoter to the downstream enhancer. Thus, IGF2
is expressed, whereas H19 is silenced. On the maternal allele, CTCF binds to the unmethylated ICR1, blocking IGF2 promoter access to the enhancer. Thus,
IGF2is silenced and H19 uses the enhancer and is transcribed. In domain 2, ICR2 is located at the 5’ end of the noncoding RNA KCNQ10T1 (KCNQ1 opposite
strand transcript) and is methylated on the maternal allele. When ICR2 is unmethylated, KCNQOTT s transcribed, KCNQ1 and CDKN1C are silenced in cis.
Methylation of ICR2 results in KCNQOTT1 silencing and expression of KCNQ1 and CDKN1C. IGF2 promotes growth, and CDKN1C suppresses growth.
Overexpression of IGF2 and|or loss of expression of CDKN1C is associated with Beckwith-Wiedemann syndrome (overgrowth), whereas overexpression of
CDKN1C and/or loss of expression of IGF2 is associated with Russell-Silver syndrome (growth restriction). (B) Map of human chromosomal region 15q11-
q13 involved in Prader-Willi (PWS), Angelman (AS), and 15q11q13 maternal duplication syndromes, containing an imprinted domain as well as biallelically
expressed genes. M is maternal chromosome, P is paternal chromosome, cen is centromere, tel is telomere, white rectangles are maternally expressed
genes, gray rectangles are paternally expressed genes, black arrows indicate gene expression in a parent of origin-specific manner, and black rectangles are
biallelically expressed genes. Imprinted control region (ICR) is shown as rounded rectangle with the black half being the PWS critical element and the white
part the AS critical element; black circles indicate DNA methylation. SNURF/SNRPN gene expression is regulated by ICR methylation and it is expressed in
multiple splice forms, including the UBE3A antisense transcript which is paternally expressed in brain and silences paternal UBE3A transcription in brain.
Clusters of C/D box small nucleolar RNAs (snoRNAs) are encoded within introns of SNURF-SNRPN and are regulated by its promoter. Promoters of MKRN3
and NDN are methylated on the maternal allele. Dashed vertical lines show the regions of common break points (BP) located within regions of low copy
repeats. The most common causes of PWS and AS are paternal and maternal deletions, respectively, occurring between BP1 and BP3 or between BP2 and
BP3. It is known that the critical gene for AS is UBE3A which is expressed from the maternal allele in human brain and biallelically in other tissues. The relative
contributions of single genes to PWS and maternal 15q11-q13 duplication syndrome remain unknown. The drawing is not to scale.

heterozygous mutation in ZFP57, making it ~5% of all TNDM1 DMR (7q32.2), ICR2 (11p15.5), and the GNASXL/NESPAS
cases.'? Individuals with ZFP57 mutations, in addition to loss ~DMR (20q13.3).19

of methylation at TNDM1 DMR, always exhibit loss of meth- In addition to ZFP57, other genes implicated in MID to date,
ylation at the PEG3 DMR (chr19q13.43) and GRB10 DMR include the NLRP2, NLRP5, NLRP7,and KHDC3L genes. Recessive
(7p12.1) and sometimes loss of methylation at the MEST  maternal effect mutations of NLRP7Z and KHDC3L are found in
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Fig. 2 Map of human imprinted domains known to be associated with disease. Paternally expressed genes are shown on the left side of the
chromosome and maternally expressed genes are shown on the right side of the chromosome (parent of origin-specific expression of GRB10 is
different in different tissues). Associated conditions are shown under the chromosome. TNDM1 is transient neonatal diabetes mellitus (TNDM1),
RSS is Russell-Silver syndrome, BWS is Beckwith-Wiedemann syndrome, KOS is Kagami-Ogata syndrome, TS is Temple syndrome, AS is Angelman
syndrome, PWS is Prader-Willi syndrome, and PHP1a&b are pseudo-hypoparathyroidism types 1a&b.

familial cases with recurrent biparental hydatiform moles
where loss of methylation is observed at all maternal
DMRs.2%2" In addition, maternal effect homozygous mutations
in NLRP2 were identified in one family with BWS/MID.??
Sequencing of these four genes as well as other candidate
genes (DNMT3L and TRIM28) involved in the regulation of
genomic imprinting failed to identify causative mutations in
BWS, SRS, and PHP1b MID cases.?3~%> Recent exome sequenc-
ing of a large cohort of families with children affected with MID
has identified mutations in NLRP5 gene in both heterozygous
and compound heterozygous forms in five mothers of children
with various forms of MID, including BWS, SRS, and MID with
unspecific neurodevelopmental presentations, these mothers
also exhibited higher than usual rates of miscarriages.?® An
environmental factor that has been suggested to predispose to
MID in BWS and TNDM1 is the conception with the help of
assisted reproductive technologies.'”27-28

Clear genotype/epigenotype/phenotype correlations are
not well established for MID disorders, with some patients
not presenting any additional clinical features compared with
isolated epimutation associated with the primary diagnosis,
whereas other patients may present more severe phenotypes.
For example, patients with TNDM1 MID caused by ZFP57
mutation may present with various combinations of congen-
ital anomalies and developmental delay, in addition to classi-
cal features of TNDM1.'%-242° For BWS, significantly lower
birth weight, decreased frequency of nevus flammeus and
hemihyperplasia,>® and significant increase of mild-to-mod-
erate developmental delay’’ in BWS-MID compared with
isolated ICR2 epimutation were reported in two studies,
whereas others do not report any significant phenotypic
differences.?’-3> No significant differences were found for
RSS MID?'-3% and PHP1b MID?436-37 versus respective single
epimutation phenotypes.

The variability of clinical MID phenotypes can potentially
be explained by mosaic methylation patterns in different

tissues, that is, the methylation pattern in blood leukocytes,
the tissue most frequently used for diagnostic testing, is
different from the tissue important for the development of
specific disease phenotypes. There is also a possibility of
contribution of abnormal methylation at other loci not tested
by current assays or other genomic determinants that have
not been identified. In addition, long-term follow-up in these
cases might reveal as yet unknown adult-onset disorders that
can be associated with MID.

To date, routine practice in genetic diagnostic laboratories
is testing for epimutations at imprinted loci specific for ID in
question. Testing for methylation alterations at multiple loci
is usually performed through research laboratories, experi-
enced in multilocus analysis of DNA methylation. For TNDM1,
the current recommendation is that all patients with an
epimutation at the TNDM1 DMR without an underlying
genomic alteration (UPD or duplication) are tested for
ZFP57 mutation. This allows estimation of recurrence risk
(25% for ZFP57 mutation).14 However, given the clinical
variability of phenotype, counseling of families with ZFP57
mutations may be challenging.'®

Genetic Testing of Imprinting Disorders

This section will focus on description of molecular genetics
and cytogenetics methods used to diagnose IDs.

DNA Methylation Analysis
Abnormal DNA methylation at ICRs is a feature of multiple
molecular alterations observed in IDs, including epimuta-
tion, CNV, and UPD (~Fig. 3); therefore, for majority of IDs,
DNA methylation analysis is used as first-tier diagnostic
test (~Fig. 4).

There are a variety of molecular techniques that can be
used to assess DNA methylation.>® However, many of them
are too labor intensive/time consuming to be used in routine
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Fig. 3 Schematic drawing of types of molecular alterations observed in imprinting disorders and their effect on DNA methylation at imprinting
control regions (ICRs) in a scenario when methylation occurs on the maternal allele. The paternal chromosome is shown in light gray, and the
maternal chromosome is shown in dark gray. M- is DNA methylation at the ICR. Imprinting defect can result either from idiopathic DNA
methylation change or microdeletion/microduplication at ICR.
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Fig. 4 Testing strategies for imprinting disorders (ID) based on initial methylation analysis (A) or simultaneous methylation and CNV analysis by
MS-MLPA (B). *Karyotype analysis to test for structural chromosome rearrangements can be initiated at the same time as methylation analysis if
this is a known cause for an ID. **If all testing is negative, but the phenotype is highly suggestive of a specific ID, testing of another cell type (skin
fibroblasts, buccal cells) can be considered to detect somatic mosaicism. ***In the majority of cases, an ID will be due to an idiopathic methylathion
change, however depending on the resolution of previous CNV analysis, testing for ICR microdeletion/microduplication can be performed to rule
out inherited genomic alterations.
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clinical diagnostic laboratories. Here, we will focus on tech-
niques that have been used in diagnostic laboratories and also
some of the new technologies that are currently used in the
research setting but have potential in future to be used for
diagnostics.

DNA methylation analysis techniques can be based either
on restriction enzyme digestion or sodium bisulfite conver-
sion. Some restriction enzymes are sensitive to methylation of
cytosine in CpG dinucleotides within the restriction site. Such
sites can be used for analysis of methylation status, that is,
unmethylated DNA molecules will be cut at this site, whereas
methylated molecules remain undigested. As a control, a
restriction enzyme cutting at the same sequence but not
sensitive to methylation is often used. The generated restric-
tion pattern can be analyzed by downstream techniques such
as Southern blot hybridization or methylation-specific multi-
plex ligation-dependent probe amplification (MS-MLPA).

Sodium bisulfite conversion methods are based on chemi-
cal conversion of unmethylated cytosine to uracil; methylated
C is resistant to this conversion. The ratio of DNA molecules
with methylated C to unmethylated C (T in amplified DNA)
can then be assessed in qualitative and quantitative assays
including methylation-specific PCR (MS-PCR), methylation-
specific single nucleotide primer extension (MS-SNuPe),
MALDI-TOF mass spectrometry (Sequenom), sequencing
methods including Sanger, pyrosequencing, and next-gener-
ation sequencing, as well as methylation BeadChip micro-
arrays using Infinium chemistry.>®

These techniques differ by the number and location of CpG
sites they are capable of detecting, for example, Southern blot
and MS-PCR target one CpG, whereas Sanger, pyrosequenc-
ing, and MALDI-TOF mass spectrometry can analyze multiple
consecutive CpGs within the same amplification product. The
other techniques can be mutiplexed and multiple indepen-
dent CpGs can be analyzed within one assay, for example,
about a dozen of CpGs can be assayed using MS-MLPA or MS-
SNUPE and up to several hundred thousand can be assayed
using the methylation BeadChip microarrays (Illumina).

Until recently, Southern blot and MS-PCR were the most
frequently used techniques in diagnostic laboratories. Their
main advantage is that they do not require special equipment.
However, their major disadvantage is that they provide only
qualitative data and assess only one CpG site in one assay. In
addition, a Southern blot is labor intensive, requires large
quantities of DNA and the use of radioactive labeling. In past
years, a semiquantitative technique, MS-MLPA, has become a
method of choice in many diagnostic laboratories. MS-MPLA
can simultaneously detect methylation status and copy num-
ber change for several dozens of selected sequences. It is
based on hybridization of two adjacent locus-specific probes,
ligation and simultaneous digestion with methylation-sensi-
tive enzymes and further amplification of target sequences
using universal primers, the fragment length of which is
further analyzed using an automated sequencer. If the probes
are not ligated due to deletion of target sequences or digestion
of umethylated CpG sites, no amplification product is formed.
The copy number change and relative percent of methylation
can be estimated by comparing peak heights of test probes to

Grafodatskaya et al.

control probes with normal copy number and fully methyl-
ated loci.3® In the case of IDs with CNVs, the conclusive
molecular diagnosis can be achieved using MS-MLPA, which
is particularly useful for AS and PWS, where deletions are
the most frequent causal mechanism. Another advantage of
MS-MLPA is the option of testing several independent CpG
sites within an ICR, reducing false-positive results due to SNPs
in the probe-binding site.

Copy Number Variation Analysis

Copy number analysis is usually used simultaneously with
methylation test (MS-MLPA) or as follow-up testing for
abnormal methylation result (~Fig. 4).

Copy number change can be detected by a variety of methods
including quantitative PCR, chromosomal microarray (CMA),
MLPA, and fluorescent in situ hybridization (FISH). FISH is
only suitable for identification of relatively large deletions
(> 50 kb); other methods can identify both large copy number
variants and microdeletions/microduplicatons within ICRs if the
probes/primers are located within this region. As microdeletion/
microduplication restricted to ICR can be associated with a 50%
recurrence risk, it is important to differentiate DNA methylation
changes associated with genomic alterations from an idiopathic
DNA methylation defect.

Currently, CMA is a first-tier diagnostic test for individuals
with developmental delay, intellectual disability, autism, and
congenital anomalies.*® Using CMA, infants and young chil-
dren with AS and PWS caused by deletions can be identified
prior to the time when the clinical phenotype has become
fully evident and a disorder specific methylation-based diag-
nostic test is considered. However, CMA will not distinguish
paternal versus maternal deletion and if a deletion of AS/PWS
critical region was identified, a methylation test is then
recommended to confirm the diagnosis and verify the parent
of origin of the deletion.

Uniparental Disomy

In the course of a molecular diagnosis of ID, once a methyla-
tion alteration is identified and copy number alteration is
ruled out, testing for uniparental disomy (UPD) is recom-
mended. UPD testing is also recommended if structural or
numerical abnormalities involving imprinted chromosome
regions are identified in prenatal diagnosis (see section
Prenatal Diagnosis of Imprinting Disorders).

UPD is defined as the inheritance of both homologous
chromosomes of a pair from one parent and no copy from the
second parent in a diploid genome.*' Depending on parent of
origin, UPD can be paternal or maternal. In addition, UPD can
be either isodisomic or heterodisomic. Isodisomy refers to the
inheritance of two identical chromosomes from the same
parent; this is associated with loss of heterozygosity. Hetero-
disomy occurs when two homologous chromosomes are
inherited from the same parent. Due to meiotic recombina-
tion, uniparentally inherited chromosomes are frequently a
mixture of isodisomic and heterodisomic segments. In addi-
tion to UPD for an entire chromosome, segmental UPD for a
region of chromosome and biparental inheritance of the rest
of the chromosome can also occur.

Journal of Pediatric Genetics Vol. 6 No. 1/2017
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Fig. 5 Possible mechanisms of uniparental disomy (UPD) formation. Dark gray and light gray are maternal nonhomologous chromosomes, white is paternal
chromosomes. The examples of UPD are shown for maternal chromosomes, however paternal UPD can occur by the same mechanism. Where mosaicism is
shown as a possible outcome, there is a possibility of the presence of trisomic cells in the placenta or the fetus for (A), (B), (C), and (F1), in the case of segmental
isodisomy (F2), mosaicism is present for a biparental cell line. (A,B,C) Trisomy can result from mesiosis | or Il nondisjunction in a parent with a normal karyotype.
Rescue can occur by complete loss of one of the parental chromosomes or formation of a residual small supernumary marker chromosome. Trisomy rescue and
UPD can also occur if the egg or sperm carries a balanced translocation and nondisjunction occurs. (C) Oocyte carriers of a homologous Robertsonian
translocation or isochromosome. (D) Monosomic fertilized zygote has to undergo immediate endoreduplication of monosomic chromosomes, otherwise the
embryo won’t survive. (E) Gamete complementation is a very rare event as it assumes nondisjunction of the same chromosome in both oocyte and sperm. (F1)
Two sequential mitotic nondisjunction events can lead to isodisomy. (F2) Segmental UPD can result from homologous chromatid exchange during mitosis,
resulting in segmental loss of heterozygosity and mosaicism for a UPD cell line and a biparental cell line. (This figure was adapted with modifications from
Yamazawa K, Ogata T, Ferguson-Smith AC. 2010).63
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The mechanisms of generating different types of UPD are
reviewed in**~** and are shown in ~Fig. 5. UPD for the majority
of human chromosomes is without any adverse phenotypic
consequences, with the exception of situations of isodisomic
inheritance of a mutant allele for an autosomal recessive condi-
tion from a carrier parent. However, UPD in a chromosomal
region carrying imprinted domain (=~ Table 1, - Fig. 2) can result
in imprinted gene disorder depending on the parent of origin.

Routinely, UPD testing is performed by genotyping of micro-
satellite markers distributed along the length of the chromo-
some in question in the proband and both parents (trio analysis).
The American College of Medical Genetics guidelines requires a
minimum of two informative markers to establish uniparental or
biparental inheritance of an entire chromosome. If UPD is
identified, it is also recommended that at least one other
chromosome is tested to demonstrate biparental inheritance
and verify paternity.*> There are no established guidelines for
diagnosing segmental UPD. If microsatellite analysis reveals
uniparental origin of the tested chromosome, a diagnosis of
UPD can be made. If the inheritance of the tested chromosome is
biparental, it is presumed that the ID is caused by an imprinting
defect. In this situation, if the ICR was not previously assessed for
microdeletion/microduplication by MS-MLPA or targeted CNV
analysis, it is important to perform this testing at this point to
better define the recurrence risk.

The UPDs occurring due to mitotic errors are often mosaic,
which can complicate the establishment of the diagnosis. For
example, the majority of individuals with BWS and UPD for
chromosome 11 have segmental paternal mosaic UPD of 11p15.
If a low level of UPD mosaicism occurs in the tissue tested
(usually peripheral blood leukocytes), the methylation-based
test could be negative. Thus, if there is a strong clinical suspicion
of BWS, but test results in peripheral blood are negative, testing
in additional cell types (e.g., skin fibroblasts, tumor biopsy,
buccal epithelial cells) is clinically indicated.’® In addition, the
majority of currently used CMAs also contain probes for single
nucleotide polymorphisms (SNPs), and SNP-based CMA has
been shown to be capable of detecting mosaicism as low as
5%.6 Thus, SNP-CMA testing of the proband and parents can be
considered if mosaic UPD is suspected.

Also, SNP-based CMA could suggest UPD in children with
IDs, before specific clinical features become apparent as CMA
is used as a first-tier diagnostic test for infants or young
children with developmental delay/congenital anomalies.*
Long contiguous stretches of homozygosity identified by SNP-
based CMA are suggestive of either consanguinity/origin from
isolated population if distributed throughout the genome or
could be a hallmark of UPD if found for a single chromo-
some.*? Long contiguous stretches of homozygosity, however,
are not diagnostic for UPD and follow-up testing using either
methylation assays and/or microsatellite analysis in trios
should be performed.

In addition, for cases with UPD of one chromosome, there are
also rare cases with genome-wide mosaic uniparental disomies
characterized by somatic mosaicism of a normal cell line and
another cell line with two sets of chromosomes of uniparental
origin. More than 10 live-born cases of paternal mosaic genome-
wide UPD, presenting with complex variable phenotypes,
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including features of BWS, AS, TNDM1,4~*° and three live-
born cases of mosaic genome-wide maternal UPD with pheno-
typic features of RSS have been reported to date.**>0>1

Cytogenetic Analysis

Rare cases of IDs can be associated with microscopically
visible chromosomal abnormalities: including balanced
rearrangements disrupting expression of genes within
imprinted domains but not resulting in methylation alter-
ations. For example, for BWS, balanced inversions and trans-
locations of 11p15.5 or unbalanced rearrangements resulting
in copy number changes at imprinting domains can occur.>?
In ID cases caused by UPD, karyotype abnormalities can
sometimes also be observed, for example, Robertsonian
translocations involving chromosome 14 or 15 and small
supernumerary marker chromosomes (SMCs) (~Fig. 5).42.53
There is no consensus regarding the need for routine karyo-
type analysis for diagnosis of IDs as structural chromosomal
abnormalities are relatively rarely observed in IDs (< 1% of
cases, =Table 1), and these analyses are costly and labor
intensive. However, the importance of karyotype analysis is
that in some situations parents can be carriers of balanced
rearrangements with potential risks for UPD or unbalanced
karyotypes in future offspring. Thus, the need for karyotype
analysis should be assessed on an individual basis. If a
chromosome rearrangement is identified in a proband,
parental karyotypes should be also assessed to define the
future risks to offspring for chromosomal abnormalities.

Sequence Analysis

In two IDs, PHP1A and IMAGE syndrome point mutations are the
main disease-causing mechanism: PHP1a is caused by loss of
function mutations on the maternal allele of GNAS, and IMAGE
syndrome is caused by gain of function mutations on the
maternal allele of CDKN1C (=Table 1). For these two disorders,
Sanger sequencing can be undertaken as a first-tier diagnostic
test. There are also several IDs (BWS, TNDM1, AS, and PWS)
where point mutations are found in a minority of cases
(=Table 1). Thus, Sanger sequencing is usually performed if
first-tier methylation testing is negative in sporadic cases. In
familial cases, sequencing can be performed as first-tier diag-
nostic test or in parallel with ICR microdeletion/microduplica-
tion analysis. Currently, next-generation sequencing panels
designed for simultaneous testing of a wider spectrum of patient
phenotypes, such as overgrowth, intellectual disability, or neo-
natal diabetes (www.genetests.org) may include genes that have
been implicated in causing IDs.

Diagnostic Algorithms for Imprinting
Disorders

For all IDs except for 15q11-q13 duplication, PHP1a and IMAGE
syndrome, the diagnostic algorithm is similar, starting with a
DNA methylation test, and if positive followed by copy number
and/or UPD tests. If the DNA methylation test is negative,
sequencing of imprinted genes can be undertaken
(=~Fig. 4, =Table 1). An abnormal DNA methylation test is
reflective of one of the following molecular alterations: CNV,
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including large CNVs of part or entire imprinted domains or ICR
microdeletions/microduplications, UPD, or an idiopathic meth-
ylation defect. However, with the exception MS-MLPA, DNA
methylation testing alone will not provide information regarding
the underlying molecular mechanism. Establishing the correct
molecular mechanism of the ID is important for several reasons.
First, differentiating heritable and nonheritable abnormalities is
important for estimating recurrence risk, that is, risk for offspring
and other family members. For example, a recent study estimat-
ing CNV rates in BWS using MS-MLPA revealed a higher
frequency of CNVs (8.4%) than previously anticipated (2-6%),
with one third of these CNVs being inherited.>* Second, different
molecular subtypes of IDs may be associated with phenotypic
differences. Therefore, knowledge of molecular subtype could
provide phenotype/genotype correlations. This is relevant to
patient management in that BWS patients with paternal UPD 11
or gain of methylation at ICR1 have a higher embryonal tumor
risk than patients with ICR2 loss of methylation or CDKN1C
mutations.'® In PWS, the risk of autism and psychosis is signifi-
cantly elevated in patients with maternal UPD 15 versus other
molecular subtypes.'? Third, idiopathic DNA methylation defects
without underlying genomic alterations in cis can be associated
with MID, which has further implications for patient manage-
ment/genetic counseling (see MID section for discussion).

Prenatal Diagnosis of Imprinting Disorders

Prenatal testing is possible for future pregnancies in families
in which an ID diagnosis in proband has been confirmed, the
molecular mechanism of ID has been defined, and the
recurrence risk has been estimated. For cases with inherited
mutations or genomic alterations, prenatal diagnosis should
be offered as recurrence risk is high, that is, 50% for the
majority of IDs and 25% for TNDM1 caused by ZFP57 muta-
tion. In cases with de novo mutations or genomic alterations,
the recurrence risk is low; however, the possibility of germ-
line mosaicism exists,”>°® thus, prenatal testing could be
offered for reassurance. UPD with normal karyotype is
considered a sporadic event and invasive prenatal testing
is not indicated.”” However, if a parent is a carrier of
Robertsonian translocation involving chromosomes 14 and
15, he/she is at risk of having a child with UPD for these
chromosomes and prenatal karyotype analysis and UPD
testing should be offered.”® For IDs caused by idiopathic
methylation defects, recurrence risk is also very low. How-
ever, a recurrence cannot be completely excluded (e.g.,
unknown mutation affecting methylation at ICR in cis or
trans) and prenatal diagnosis could be offered for reassur-
ance. However, due to the uncertainty of the exact timing of
the establishment of stable DNA methylation patterns in the
developing fetus, and because some DMRs can exhibit differ-
ent methylation patterns in placental versus fetal cells,** a
methylation analysis for prenatal diagnosis of an ID should
only be used if validated for specific DMRs in the appropriate
cell type (chorionic villus samples [CVS] and amniocytes). For
example, methylation at the MEG3 sDMR is routinely used for
diagnosis of Temple and Kagami-Ogata syndromes in pe-
ripheral blood cells. However, it is unmethylated on both
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alleles in normal placenta and thus cannot be used for
prenatal diagnosis in CVSs.4233

Ultrasound findings can also be indicative of IDs and
trigger prenatal testing for specific IDs. A small thorax with
ribs resembling coat hangers could be a sign of Kagami-Ogata
syndrome (paternal UPD 14), which has a poor prognosis;
prenatal testing should be offered.>”->®> Omphalocele, over-
growth, and macroglossia are suggestive of BWS, and prenatal
testing should be offered to enable better perinatal manage-
ment of these patients.”® Asymmetrical growth restriction
could be a sign of RSS, and prenatal testing is also possible, but
may be not pursued due to the relatively mild phenotype and
generally benign perinatal course.”®

A question of an ID can arise in a pregnancy without a
previously affected child or abnormal ultrasound findings, if
UPD is suspected. This may occur if a prenatal karyotype or
microarray is performed for advanced maternal age or
another indication and numerical or structural chromosome
abnormalities involving imprinted chromosomal regions are
detected. For example, prenatal testing for UPD is recom-
mended in cases of confined placental mosaicism for triso-
mies involving clinically relevant imprinted chromosomes as
the risk for UPD is estimated to be 11 to 25%.%>°° The presence
of a nonhomologous Robertsonian translocation is associated
with a 0.6 to 0.8% risk for UPD, and the risk is very high (60%)
for homologous Robertsonian translocations; UPD testing is
indicated if chromosomes 14 or 15 are involved.”®>® An SMC
15 not containing euchromatic material has been reported in
cases of paternal or maternal UPD 15 and a risk of 5% for UPD
has been estimated. Thus, testing for UPD is indicated if SMC
(15) or (14) is detected on prenatal karyotype.>®>°

Future Directions

In the past few years, there has been a lot of discussion in the
literature regarding the need for multilocus testing in IDs
associated with MID to elucidate the clinical spectrum of the
multiple MIDs.'>®1937 [n addition, it would be more
efficient to utilize platforms that support testing of imprinted
DMRs genome wide. Various methylation array platforms
capable for simultaneous analysis of thousands of CpG have
been used in epigenetic research; however, the majority of
them are not suitable for routine diagnostic use as they are
labor intensive and require sophisticated bioinformatics tools
for analysis.>® A promising array platform that could be used
in molecular diagnostics is the Methylation BeadChip micro-
arrays using Infinium chemistry (Illumina), which have single
CpG resolution of up to several hundred thousand sites
genome wide. Despite some methodological challenges due
to the presence of two types of probes®® and cross-reactivity
of some of the probes,> it represents a robust, high through-
put method with the capability to run 96 samples simulta-
neously. Various versions of this arrays are widely used in
epigenetic research including the discovery of new imprinted
genes®! and the characterization of methylation profiles in
patients with MID.?434:47.62

It is also possible that in parallel to the development of
next-generation sequencing in genetic diagnostics, next-
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generation bisulfite sequencing could be implemented for
molecular diagnosis of imprinting and other epigenetic dis-
orders in certain diagnostic laboratories, thereby providing
simultaneous detection of methylation patterns, copy num-
ber changes, and genomic sequence variants.
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