Neoplasia

Nature of Cancer

Treating Cancer

CANCER _ definition

Cancer is a disease in which some of the body's cells grow uncontrollably and spread to other parts of the body.

Cancer can start almost **anywhere** in the human body, which is made up of trillions of cells.

Normally, human cells grow and multiply (through a process called <u>cell</u> division) to form new cells as the body needs them. When cells grow old or become damaged, they die, and new cells take their place.

Sometimes this orderly process breaks down, and abnormal or damaged cells grow and multiply when they shouldn't. These cells may form tumors, which are lumps of tissue.

https://www.cancer.gov/aboutcancer/understanding/what-is-cancer#definition

Cancer in dinosaurs

JAMA. 2015;314(17):1850-1860

Why Elephants are resistant to cancer?

In risposta ad un DANNO del DNA

Le cellule di elefante vanno incontro a apoptosi (morte cellulare) mediata dalla proteina p53

Con una frequenza più elevata rispetto alle cellule di uomo

The Cell Cycle

https://www.thermofisher.com/it/en/home/life-science/cell-analysis/cell-viability-and-regulation/cell-cycle.ntml

Distribution of cancer mortality risk across the mammalian phylogeny

Cancer mortality risk proportional to bar length

Cancer mortality risk (%)

Nature | Vol 601 | 13 January 2022 |

Cancer mortality risk in mammals as a function of animal content in diet

Nature | Vol 601 | 13 January 2022 |

Inflammation: Granulation tissue

Mammary Gland: Fibroadenomatous Hyperplasia

Cutaneous Papillomas

Melanoma

Nomenclature neoplasm

Tissue Type	Benign	Malignant
Epithelial	"-oma"	" - carcinoma"
Glandular	Adenoma (eg. Tubular adenoma of colon)	Adenocarcinoma (eg. Colon adenocarcinoma)
Squamous	Squamous papilloma	Squamous cell carcinoma
Mesenchymal	"-oma"	"- sarcoma"
Bone (osteo-)	Osteoma	Osteosarcoma
Blood vessels Lymph vessels	Haemangioma; Lymphangioma	Angiosarcoma Lymphangiosarcoma
Smooth muscle	Leiomyoma	Leiomyosarcoma
Skeletal muscle	Rhabdomyoma	Rhabdomyosarcoma
Cartilage	Chondroma	Chondrosarcoma
Fat	Lipoma	Liposarcoma

Animation: How Tumors Grow

https://youtu.be/payuQYLeu1E

https://www.biointeractive.org/classroom-resources/how-tumors-grow

How to recognize cancer cells under the microscope?

Normal	Hyperplasia	Mild dysplasia	Carcinoma in situ (severe dysplasia)	Cancer (invasive)
	Hyperplasia	Dysplasia	Carcinoma Pre-invasivo	Carcinoma invasivo

MAIN DIFFERENCES CANCER VS. NORMAL CELLS

Normal cells

Cancer cells

- Fine chromatin
- Single nucleus
- Single nucleolus
- Large cytoplasm

- Coarse chromatin
- Multiple nuclei
- Multiple nucleoli
- Small cytoplasm

MAIN DIFFERENCES CANCER VS. NORMAL CELLS

cancer cells:

THE DIFFERENCE BETWEEN NORMAL AND CANCER CELLS

- grow in the absence of signals telling them to grow.
- ignore signals that normally tell cells to stop dividing or to die (a process known as programmed cell death, or apoptosis).
- invade into nearby areas and spread to other areas of the body.
- 4. tell blood vessels to grow toward tumors. These blood vessels supply tumors with oxygen and nutrients and remove waste products from tumors.

- 1. only grow when they receive such signals.
- 2. signals that normally tell cells to stop dividing or to die (a process known as <u>programmed</u> <u>cell death</u>, or <u>apoptosis</u>).
- stop growing when they encounter other cells, and most normal cells do not move around the body.
- They induce the production of new blood vessels always when needed by the body (wound healing)

cancer cells:

- 1. hide from the <u>immune system</u>.
- trick the immune system into helping cancer cells stay alive and grow. For instance, some cancer cells convince <u>immune cells</u> to protect the tumor instead of attacking it.

THE DIFFERENCE

AND CANCER CELLS

- 3. accumulate multiple changes in their <u>chromosomes</u>
- Different metabolism of the cells: make energy from nutrients in a different way than most normal cells. This lets cancer cells grow more quickly.

Normal cells

- The immune system normally eliminates damaged or abnormal cells.
- 2. Immune cells attack all the "different" cells in the body
- 3. Normal number and structure of chromosomes
- 4. Normal metabolism to maintain homeastasis

Differences between Cancer Cells and Normal Cells/2

Many times, cancer cells rely so heavily on these **abnormal behaviors** that they can't survive without them.

developing therapies that target the abnormal features of cancer cells.

For example:

some cancer therapies <u>prevent blood vessels from growing toward</u> <u>tumors</u>, essentially starving the tumor of needed nutrients.

Monotherapy and Combination Therapy Using Anti-Angiogenic Nanoagents to Fight Cancer

Pingping Liang, Byron Ballou, Xinyi Lv, Weili Si,* Marcel P. Bruchez,* Wei Huang, and Xiaochen Dong*

Schematic representation of tumour growth.

La popolazione cellulare si espande e una percentuale progressivamente sempre più alta di cellule tumorali lasciano il pool replicativo attraverso una reversione verso la fase G0, differenziazione e morte cellulare

Robbins and Cotran_Pathologic Basis of Disease.

Comparison Benign and Malignant Tumors

	Benign	Malignant
Differentiation	Well differentiated Structure similar to tissue of origin	Some lack of differentiation Structure often atypical
Growth rate	Slow Rare mitotic figures	Rapid Numerous mitotic figures
Local Invasion*	Expansile growth Often capsule	Infiltrative growth No capsule
Metastasis*	No metastasis	Frequent metastasis

* Definitive criteria for malignancy

Example: Leiomyoma vs. Leiomyosarcoma

Robbins and Cotran_Pathologic Basis of Disease.

How do cancer cells invade through the basement membrane ?

Lysanne Hendrikx, 2010

Invasion of Basement Membrane by Cancer Cells

Loosening of intercellular adhesion

Attachment

Lysanne Hendrikx, 2010

Invasion of Basement Membrane by Cancer Cells

Degradation

Migration

Lysanne Hendrikx, 2010

The metastatic cascade

Pathways of tumor metastasis

- Hematogenous
- Lymphatic
- Transcoelomic

Hallmark of Cancer: Activating Invasion and metastasis

Robbins and Cotran_Pathologic Basis of Disease.

In metastasis, cancer cells break away from where they first formed and form new tumors in other parts of the body.

https://www.cancer.gov/about-cancer/understanding/what-is-cancer#definition

What Causes Cancer?

Genetic mutations

Deletions

Chromosomal instability: Aneuploidy, Translocation, Deletions, Amplification

<u>Hallmark of cancer</u>: Genomic instability

Normal SKY chromosomes are not multicolored.

Chromosomes in breast cancer appear multicolored because they have exchanged genetic material.

Artwork by Jeanne Kelly. © 2004.

SKY chromosome painting: breast cancer

Which genes are mutated in cancer ?

Genes Implicated in Cancer

The prime suspects	But
Mutations in:	Other mutations also occur in:
Oncogenes	Cell death genes
Tumor suppressor genes	Cell signaling genes
DNA repair genes	Cell cycle checkpoint genes
	Cellular senescence genes
	Cellular differentiation genes
	Metastasis/invasion genes
	Carcinogen –activating genes –deactivating genes

Normal Cell Growth: The Cell Cycle

Abnormal Cell Growth: Oncogenes

Proto-oncogene to oncogene

Oncogene: Ras

Growth factor

Robbins and Cotran_Pathologic Basis of Disease.

Hallmark of cancer: Sustaining proliferative signaling

Tumor Suppressor Genes

С

ANCER

Active oncogene

Mutations in Tumor Suppressor Genes

Tumor Suppressor: p53

Hallmark of Cancer: Evading growth suppressors

Hallmark of Cancer: Resisting cell death

Robbins and Cotran_Pathologic Basis of Disease. Mutations in Cancer Genes Are Sometimes Inherited ...

....but most develop after birth

Examples of Dominantly Inherited Cancer Syndromes

Syndrome	Associated Gene
Familial retinoblastoma	RB1
Li-Fraumeni	TP53 (p53 protein)
Familial adenomatous polyposis	APC
Hereditary nonpolyposis colorectal cancer	MLH1, MSH2, MSH6 PMS1, PMS2
Wilms' tumor	WT1
Breast and ovarian cancer	BRCA1, BRCA2
von Hippel-Lindau	VHL
Cowden	PTEN

Artwork by Jeanne Kelly. © 2004.

Cancer Stem Cells

The Hallmarks of Cancer

Cell 144, March 4, 2011

Emerging Hallmarks of Cancer

Cell 144. March 4. 2011

The cells of tumor microenvironment

- Cancer Stem Cell (CSC)

Cell 144, March 4, 2011

Therapeutic targeting the hallmarks of cancer

