

... e nella diagnosi ...

Risonanza magnetica

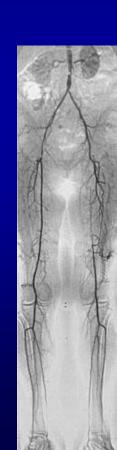
Imaging basato sull'assorbimento e l'emissione di energia nel range delle radiofrequenze

(oltre agli ultrasuoni)

Ecografia

Immagini generate dagli echi prodotti nell'interazione coi tessuti di un fascio di ultrasuoni

Radiazioni ionizzanti nella diagnosi:


Imaging radiologico

Immagini della trasmissione attraverso il corpo di un fascio di raggi X di frenamento prodotto da un apparecchio

Radiologia tradizionale
TAC

Applicazioni angiografiche, vascolari

Radiazioni ionizzanti nella diagnosi:

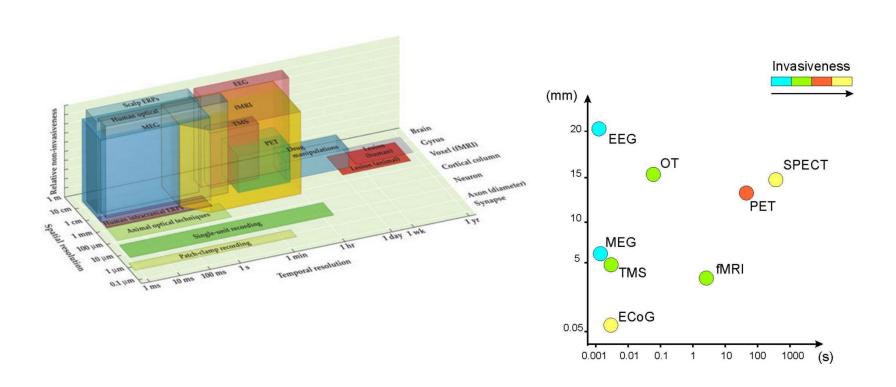
Medicina nucleare

Immagini della distribuzione nel corpo di un farmaco marcato con un radionuclide emettitore di radiazioni γ o di positroni

Outline

- Standard MRI techniques (T1, T2, FLAIR ...) and clinical applications;
- Perfusion MRI
- Angio MRI
- fMRI;
- DTI;
- MRI and multimodal imaging;
- Very high and ultra-low field MRI

Introduction


MRI applications can be grouped into:

- Clinical Neurology
 - Neuroimaging, e.g. demyelinating diseases, dementia, cerebrovascular disease, neurodegenerative diseases (Epilepsy, Parkinson, Alzeiheimer, Huntington ...), in general functional and structural brain abnormalities, development and aging
- Cancer
 - Breast, colorectal, Brain
 - MRI guided stereotactic surgery and radiosurgery

Introduction

- Cardiovascular
 - Myocardial ischemia and viability, cardiomyopathies, myocarditis, iron overload, vascular diseases and congenital heart disease
- Muscoloskeletal
 - Spinal imaging, assessment of joint disease and soft tissue tumors
- Liver and gastrointestinal
- Food quality control

Comparison MRI vs other imaging techniques in terms of invasiveness

MRI advantages

- Excellent soft tissue contrast resolution
- Ability to obtain direct transverse, sagittal, coronal and oblique images
- No ionizing radiation
- No bone-air artifacts
- A very rich information coming from a large set of parameters determining the MRI contrast

"OK, Mrs. Dunn. We'll slide you in there, scan your brain, and see if we can find out why you've been having these spells of claustrophobia."

MRI disadvantages

- Long imaging time
- Complexity of equipment and scan acquisition
- High cost
- Low resolution for calcification or bone details
- Not all subjects can undergo MRI (any metallic fragment may become projectile, no pace maker, dental implants, heart valves, aneurism clips, claustrophobia?)

MRI compared to CT

COMPARISON	MRI	CT SCAN		
Soft Tissue	Much higher detail in soft tissues	Less detailed in soft tissue		
Bony Structures	Less detailed when compared with CT Scan	More detail about bony structures		
Effects on the body	No hazards reported	Small risk of irradiation		
Cost	Cost can vary from \$1400 to \$4000 (when used with contrast). Generally more expensive than CT Scans and x-rays	Cost ranges from \$1200 to \$3200. Generally less than MRIs		
Also known as:	Magnetic Resonance Imaging	Computed Tomography		
Exposure to Radiation	None	Moderate		
Time Taken to scan	Typically 30 to 45 minutes	Generally within 5 minutes		

MR exam clinical setting

- Equipe and responsabilities:
 - Patient
 - Technician
 - Patient registration (from informed consent)
 - ➤ Check patient compliance with MRI exam (clips etc...) sometimes a metal detector is used
 - > Let the patient in the scanner
 - Patient positioning
 - > Perform exam
 - Let the patient out the MRI room

MR exam clinical setting

- Physicist
 - ➤ Setup the imaging protocol
 - Quality control (B0 homogeneity, coils)
 - > Develop new sequences or optimize existing ones
 - Data analysis
- Anesthetist (when contrast agent is administered)
- Nurse (difficult patients and help with the contrast agent administration)
- Physician (Radiologist / Neuro-radiologist)
 - ➤ Verify and sign the informed consent to allow patient in the MR room
 - Report on the MRI findings

MR clinical setting

QUESTIONARIO PER L'ACCESSO ALLA SALA DI RISONANZA MAGNETICA CON APPARECCHIATURA A 3 TESLA

Cognome			Nome		_
Luogo di nascita			Data di nascita		_
Luogo di residenza/domicilio indi	izzo		Telefono/œllulare		
Protocollo di studio:					
Ricercatore con recapito telefonico:					
ATTENZIONE: I PORTATORI DI PACE M IMPIANTATE O DI ELEMENTI METALLICI FER Per I portatori di impianto protesico occorre produrre materiale utilizzato per la protesi rilasciata dal servizio ci	RON al m	MAGNET omento de	'ICIMOBILI NON POSSONO E SEGUIRE L'ESA ell'esame RM la certificazione di compatibilità elettroma;	MEI	RM.
He sià seconite de second di BM 2		No		Sì	No
Ha già eseguito un esame di RM?			se sì, quando?	_	
E' portatore di PACE MAKER cardiaco?	_		Soffre di claustrofobia?	_	•
E' portatore di defibrillatore cardiaco?	_		Per Pazienti di sesso femminile:	_	
E' portatore di valvole o cateteri cardiaci?	_		E' in stato di gravidanza?		
E' portatore di protesi al cristallino?			Data ultime mestruazioni:		-
Ha neurostimolatori o elettrodi nel cervello?			E' portatrice di corpi intra-uterini?		
Ha cateteri e valvole di derivazione ventricolo-peritoneale?			Ha mai subito interventi chirurgici?		
Ha corpi metallici o impianti per udito?			Se sì, indicare quali e in che data:		-
Ha pompe per infusione di farmaci?	_	_			_
Ha clips per aneurismi, clips chirurgiche,	_	_			_
viti, chiodi, fili o schegge metalliche?					_
Ha subito incidenti stradali o di caccia?					
Ha mai lavorato come saldatore, tornitore, fabbro, carrozziere?	_				_
E' affetto da anemia falciforme?	_	_			_
E' portatore di piercing e/o tatuaggi?					_

ACCESSO ALLA ZONA CONTROLLATA DI RM 3 TESLA

PRIMA DI ENTRARE NELLA ZONA AD ACCESSO CONTROLLATO OCCORRE TOGLIERE QUALSIA SI OGGETTO METALLICO, MECCANICO O ELETTRONICO O MAGNETICO E ALTRI OGGETTI CHE POS SANO DANNEGGIARE IL PAZIENTE/VOLONTARIO O DANNEGGIARSI A SEGUITO DELL'ESPO SIZIONE AL CAMPO MAGNETICO E A ONDE DI RADIOFREQUENZA.

IN PARTICOLARE: lenti a contatto rigide, apparecchi per l'udito, protesi dentarie mobili, reggiseno con ferretto o parti metalliche, fermagli, mollette, occhiali, gioielli, orologi, carte di credito o schede magnetiche, ferma-soldi, monete, chiavi, ganci, bottoni metallici, spille, indumenti con lampo, punti metallici (quelli applicati in tintoria). E' necessario rimuovere prodotti cosmetici dal volto per la RM cerebrale.

Avete rimosso tutti gli oggetti meta	allici?	5	SI 🗆	NOD
Il paziente/volontario, informato sull rischi eventuali ad esso connessi,	e modalità di svolgimento dell'e	esame RM,	sulle cor	mplicanze e
Acconsente al trattamento dei suoi o Testo Unico sulla privacy <u>DL.vo</u> 196,			SI 🗆	NO
Acconsente al trattamento in forma derivanti dall'esame RM per finalità medici e ricercatori della IRCCS Foi	di ricerca scientifica da parte d	ei	SI 🗆	NOD
Letto e approvato, acconsente all'a	ccesso alla sala RM	5	SI 🗆	NO□
Data:	Firma del paziente/volontario_			
Data	Firma del Medico radiologo			
CONSENSO ALLA SOMMINISTRA LA SOMMINISTRAZIONE E' PREV		ASTO (COI	MPILARI	E SOLO SE
La somministrazione del mezzo di contraste allergico generalmente di scarsa entità,		aramente, pr	rovocare o	listurbi di tipo
Ha mai avuto reazioni allergiche a s	ostanze o a mezzi di contrasto	? 9	SI 🗆	NO□
In relazione alla nota informativa dell'AIFA (tra l'utilizzo di mezzi di contrasto contenent quindi essere utilizzati con cautela in pazier controindicati in pazienti con insufficienz	i gadolinio e fibrosi sistemica nefrogenio nti con moderata insufficienza renale	g. Questi me (GFR 30-59	zzi di cont	rasto devono
E' affetto da insufficienza renale?		5	SI 🗆	NO□
Il paziente (Età>30 anni) ha effettuat	o il seguente esame: Creatininen	oja s	SI 🗆	NO□
Informato dell'indicazione clinica, de eventuali complicanze e riscl somministrazione di mezzo di cont	hi connessi, acconsento a	lla	SI 🗆	NOD
Data:	Firma del paziente/volontario			
Data	Firma del Medico			

MR missile effect

Two magnets close to each other:

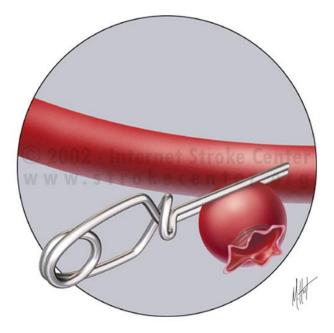
• Align themselves to one another positive-to-negative. In the case of a ferromagnetic object brought near an MRI, one weighs perhaps 12 tons and is bolted to the floor, the other is a pair of scissors that weigh a few ounces. Which of these two things is going to rotate to align itself?

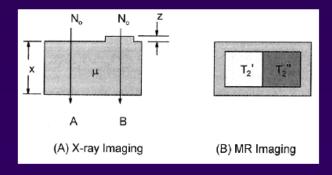
 Smaller ferromagnetic objects that we wear, carry, or have placed within our bodies can twist, turn and even tear whatever may be trying to hold them in place.

MR missile effect

 Attractive force: two aligned magnets are attracted (think about a magnet on the fridge door). Missile effect because ferromagnetic objects, propelled by enormous amounts of magnetic energy, can launch across the room with tremendous force towards an MRI. towards the peak of the magnetic field (typically the center of the MRI).

Oxygen tank example


MR safety

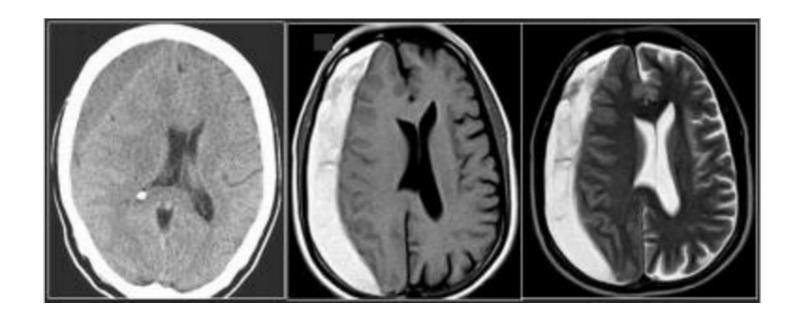

Aneurysm clips can be stripped away from the blood vesseles leading to death

Oggetti volanti possono uccidere la gente.

Anche se non creano incidenti gravi, possono volare nel magnete e danneggiarlo o richiedono un arresto costoso del sistema.

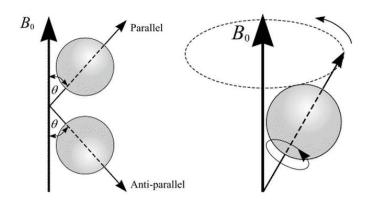
Image Contrast – What does it depend on?

- Remember: radiation needs to interact with the body's tissues in some differential manner to provide contrast
- X-ray/CT: differences in e⁻ density (e⁻/cm³ = ρ · e⁻/g)
- Ultrasound: differences in acoustic impedance (Z = ρ·c)
- Nuclear Medicine: differences in tracer concentration (ρ)
- MRI: many intrinsic and extrinsic factors affect contrast
 - intrinsic: ρ_H,T1, T2, flow, perfusion, diffusion, ...
 - extrinsic: TR, TE, TI, flip angle, ...

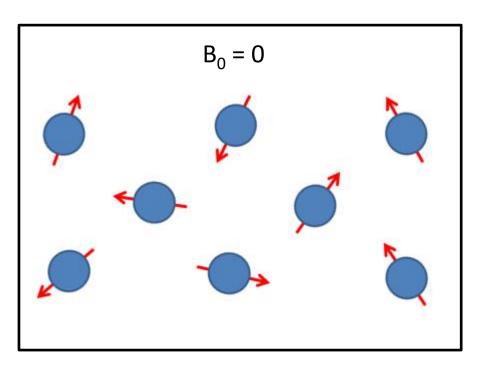


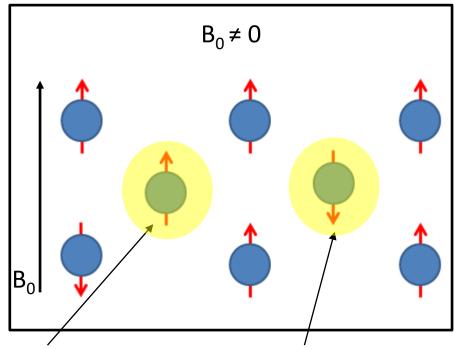
MRI parameters

MRI contrast depends on a large set of parameters:


- Intrinsic parameters include:
 proton density velocity
 spin-lattice relaxation time (T1) diffusion
 spin-spin relaxation time (T2) perfusion
 chemical environment temperature
- Extrinsic parameters include:
 echo time (TE) saturation pulses
 repetition time (TR)
 inversion pulses flip angle (α)
 flow compensation pulses
 contrast agents
 diffusion sensitization pulses

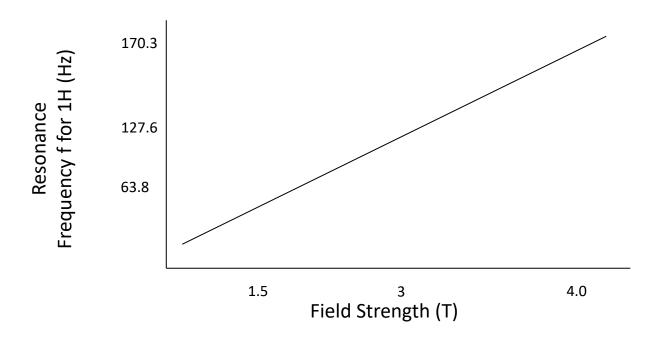
Where do these parameters come from?




Magnetic Moment and Spin

Atomic nuclei with an odd number of neutrons and/or protons have a small magnetic moment and an angular momentum called nuclear spin (e.g. H_2O)

Nuclei	Unpaired Protons	Unpaired Neutrons	Net Spin	Y(MHz/T)
¹H	1	0	1/2	42.58
^{2}H	1	1	1	6.54
³¹ P	1	0	1/2	17.25
²³ Na	1	2	3/2	11.27
¹⁴ N	1	1	1	3.08
¹³ C	0	1	1/2	10.71
¹⁹ F	1	0	1/2	40.08



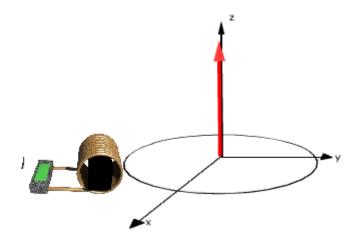
When $B_0 \neq 0$ protons will either align *parallel* to the magnetic field or *anti-parallel* to it and a small excess (1/10⁵) of parallel vs antiparallel spins leads to a net magnetization M_0

Larmor equation

the energy difference between the high (antiparallel) and low (parallel) energy states is expressed by the Larmor equation:

$$f = \gamma B_0$$
 with $(\gamma = 42.58 \text{ MHz/T})$

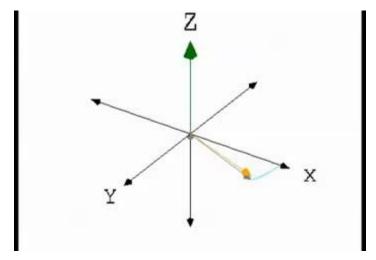
Resonance



Through Resonance protons can flip between energy states as long as the specific frequency is used

RF excitation

This is achieved by RF pulses used to flip M₀ out of alignment with B₀



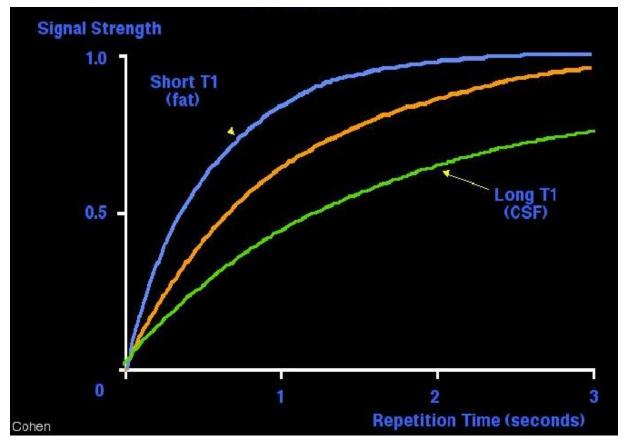
M₀ from a non-equilibrium state returns to the equilibrium distribution.

These two principal relaxation processes are described in terms of T_1 and T_2 relaxation times respectively.

T1 (Spin-Lattice) relaxation

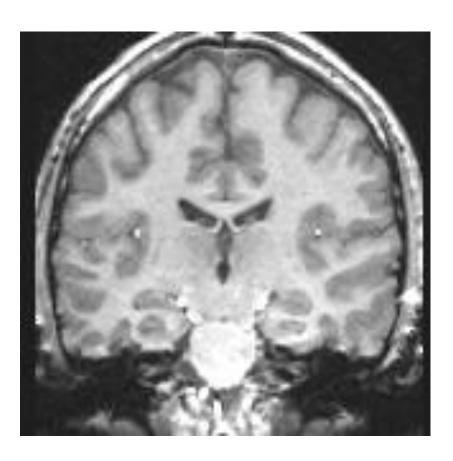
 T_1 relaxation involves redistributing the populations of the nuclear spin states to reach the thermal equilibrium distribution.

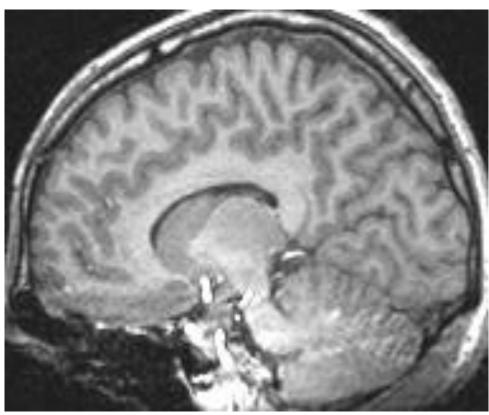
Relaxation mechanisms allow nuclear spins to exchange energy with their surroundings (lattice)


 T_1 relaxation strongly depends on the NMR frequency and so varies considerably with B_0

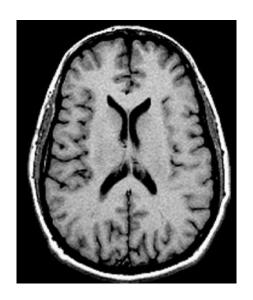
T1 and TR

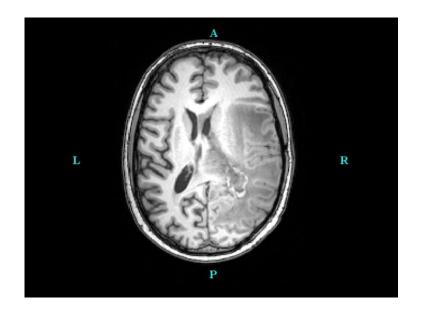
T1 = recovery of longitudinal (B_0) magnetization after the RF pulse


- used in anatomical images
- \sim 500-1000 msec (longer with bigger B₀)


TR (repetition time) = time to wait after excitation before sampling T1

Developing Contrast Using Weighting

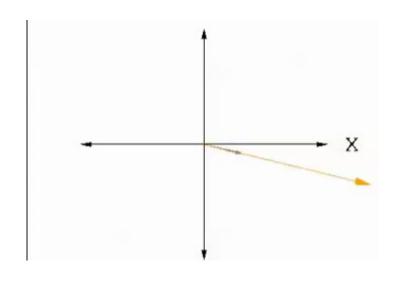

- *Contrast* = difference in image values between different tissues
- T1 weighted example: gray-white contrast is possible because T1 differs between these two types of tissue



T1-weighted image (usually used for anatomical images) measures the rate at which different types of molecules (and by extension tissue) approach M_0 at different rates allowing us to differentiate things like white and grey matter:

Healthy subject

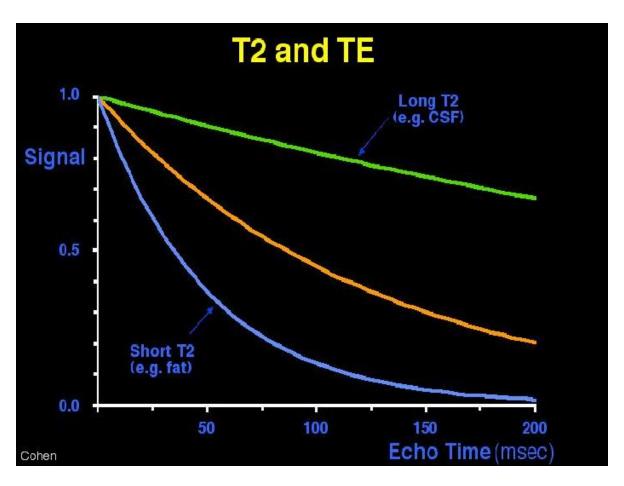
Tumor Patient

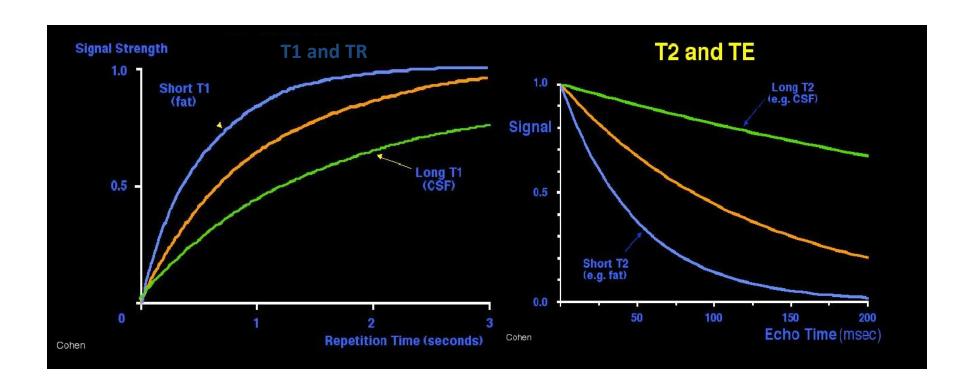

T2 (Spin-Spin) relaxation

 T_2 relaxation corresponds to a decoherence of the M_{xy}

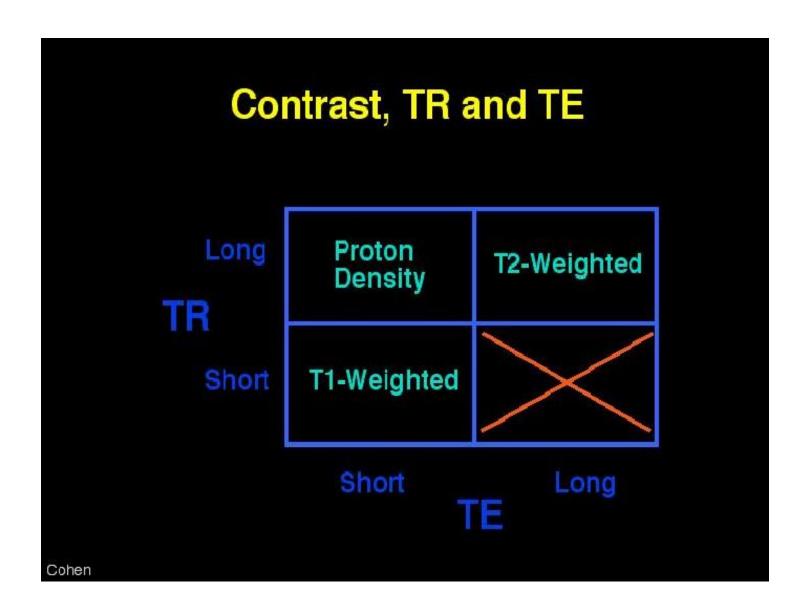
Random fluctuations of B lead to random variations of frequency of spins

The initial phase coherence is eventually lost


 T_2 values are generally much less dependent from B_0 than T_1 values


T2 and TE

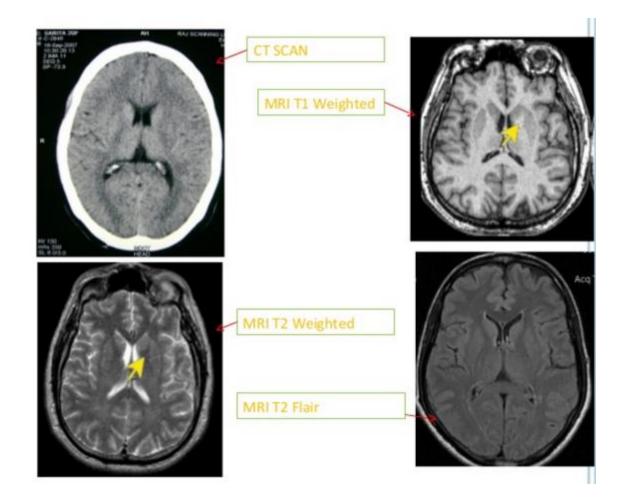
T2 = decay of transverse magnetization after RF pulse
TE (time to echo) = time to wait to measure T2 or T2* (after re-focusing with spin echo)



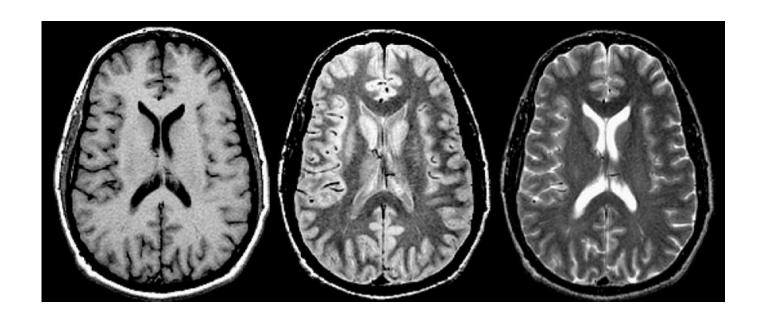
T1 vs. T2

 effectively, T1 and T2 images are the inverse of one another, with T1 typically used to form anatomical images and T2* used in fMRI

T1 vs. T2


Properties of Body Tissues

Tissue	T1 (ms)	T2 (ms)
Grey Matter (GM)	950	100
White Matter (WM)	600	80
Muscle	900	50
Cerebrospinal Fluid(CSF) 4500	2200
Fat	250	60
Blood	1200	100-200


T1 values for $B_0 \sim 1$ Tesla. T2 ~ $1/10^{th}$ T1 for soft tissues

GRADATION OF INTENSITY

IMAGING						
CT SCAN	CSF	Edema	White Matter	Gray Matter	Blood	Bone
MRI T1	CSF	Edema	Gray Matter	White Matter	Cartilage	Fat
MRI T2	Cartilag e	Fat	White Matter	Gray Matter	Edema	CSF
MRI T2 Flair	CSF	Cartilage	Fat	White Matter	Gray Matter	Edema

Proton density, recovery (T1) and decay (T2 and T2*) times.

Density weighted

T2 weighted

By 'weighting' the pulse sequence (and point at which data is collected)
 different images of the brain are obtained

T1 weighted

 Weighting is achieved by manipulating TE (time to echo) and TR (time to repetition of the pulse sequence) www.jbpe.org Review

Use of Magnetic Resonance Imaging in Food Quality Control: A Review

Ebrahimnejad Hamed¹*, Ebrahimnejad Hadi², Salajegheh A.³, Barghi H.⁴

ABSTRACT

Modern challenges of food science require a new understanding of the determinants of food quality and safety. Application of advanced imaging modalities such as magnetic resonance imaging (MRI) has seen impressive successes and fast growth over the past decade. Since MRI does not have any harmful ionizing radiation, it can be considered as a magnificent tool for the quality control of food products. MRI allows the structure of foods to be imaged noninvasively and nondestructively. Magnetic resonance images can present information about several processes and material properties in foods. This review will provide an overview of the most prominent applications of MRI in food research.

¹DDS, MSc, Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Kerman University of Medical Sciences, Kerman, Iran ²DVM, Ph.D., Assistant Professor, Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran ³MSc, Department of Radiology, School of Paramedical Sciences. Shiraz University of Medical Sciences, Shiraz, Iran ⁴DDS. MSc. Assistant Professor, Department of Pediatric Dentistry, Faculty of Dentistry, Shiraz University of Medical Sci-

- Today, MRI is used at online quality control systems for meat, fruits and vegetables
- Exquisite method for imaging the distribution of muscle and fat
- The processes during cooking, such as the amount of
- oil uptake in the meat frying process
- In fish products in order to monitor, for example to optimize brining

- Muscle structure (DW MRI)
- MRI can be utilized to monitor the structural events occurring during cooking, proofing of dough and baking
- During cooking, structural and physical properties of meat would change, such as deformation and water transfer in meat
- Freezing mechanisms, crystallization and ice formation
- Fruits and vegetables: soil, root, stem and leaf water content and transport
- Internal quality assessment and monitoring of ripening of a wide variety of fruits: apple, avocado, blueberry, cucumber, durian, kiwifruit, mandarin, mango, melon, nectarine, olive, onion, orange, papaya, pear, peach, pineapple, potato, persimmon, pomegranate, tangerine, tomato, strawberry, melon, watermelon and oil palm fruit
- Distinguish mealy from fresh fruits
- MRI is a technique which can detect and follow up the development of storage disorders over time.