1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Lancet Neurol. Author manuscript; available in PMC 2021 May 04.

-, HHS Public Access
«

Published in final edited form as:
Lancet Neurol. 2021 January ; 20(1): 68-80. d0i:10.1016/S1474-4422(20)30412-9.

APOE and Alzheimer’s Disease: Advances in Genetics,
Pathophysiology, and Therapeutic Approaches.

Alberto Serrano-Pozo, MD PhD1:2:3, Sudeshna Das, PhD123, Bradley T. Hyman, MD
PhD12:3
1Department of Neurology, Massachusetts General Hospital, Boston, MA 02114 (USA)

2Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA 02129 (USA)

SHarvard Medical School, Boston, MA 02115 (USA)

SUMMARY

The APOE ¢4 allele remains the strongest genetic risk factor for sporadic Alzheimer’s disease and
the APOE €2 allele the strongest genetic protective factor after multiple large scale genome-wide
association studies and genome-wide association meta-analyses. However, no therapies directed at
APOE are currently available. Although initial studies causally linked APOE with amyloid-p
peptide aggregation and clearance, over the past 5 years our understanding of APOE pathogenesis
has expanded beyond amyloid-p peptide-centric mechanisms to tau neurofibrillary degeneration,
microglia and astrocyte responses, and blood-brain barrier disruption. Because all these
pathological processes can potentially contribute to cognitive impairment, it is important to use
this body of knowledge to develop therapies directed at APOE. Several therapeutic approaches
have been successful in mouse models expressing human APOE alleles, including increasing or
reducing APOE levels, enhancing its lipidation, blocking the interactions between APOE and
amyloid-p peptide, and genetically switching APOE4 to APOE3 or APOE2 isoforms, but
translation to human clinical trials has proven challenging.

Keywords

Alzheimer’s disease; apolipoprotein E; amyloid beta peptide; tau; microglia; astrocytes; blood-
brain barrier; drug development

INTRODUCTION

Even after multiple large-scale genome-wide association studies (GWAS) and GWAS meta-
analyses, the e4 allele of the APOE gene (compared to the most common &3 allele)
continues to be the strongest genetic risk factor associated with sporadic Alzheimer’s
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disease since its discovery in 1993. Moreover, the relatively rare APOE 2 allele remains by
far the strongest genetic protective factor against sporadic Alzheimer’s disease (Panel 1),
emphasising the importance of APOE’s role in Alzheimer’s disease pathogenesis. Because
Alzheimer’s disease is defined by the accumulation of two hallmark pathological protein
aggregates: amyloid-p peptide (Ap) plaques and neurofibrillary tangles containing
hyperphosphorylated tau, one postulate is that APOE affects these lesions. Although solid
evidence supports this view, emerging advances are changing our understanding of APOE
involvement in Alzheimer’s disease. First, new genetic modifiers and the APOE local
ancestry (i.e., the population-specific genetic variation in the APOE region) have been
associated with a differential APOE e4-linked increased risk of Alzheimer’s disease.
Second, although APOE modification of Alzheimer’s disease risk has been long attributed to
its effects on AP, systematic neuropathological examination of large autopsy cohorts has
suggested that the APOE genotype also correlates with the presence and severity of other
proteinopathies, pointing to new causal links. Third, technological advances in the past
decade —including mouse models genetically engineered to express human APOE alleles;
virally-mediated gene transfer; proteomics and transcriptomics; patient-derived human-
induced pluripotent stem cells; plasma, CSF, PET and MRI biomarkers— have implicated
APOE in other aspects of Alzheimer’s disease pathophysiology, such as tau-induced
neurodegeneration, microglial and astrocyte reactions (including neuroinflammation), and
blood-brain barrier disruption. Lastly, although no APOE-based therapy is yet available,
several APOE-directed therapeutic approaches have been shown to be effective in mouse
models and hold promise for translation to human clinical trials. In this Review, we discuss
the advances made in genetics, pathophysiology, and therapeutic approaches related to
APOE and Alzheimer’s disease.

GENETIC DISCOVERIES RELATED TO APOE

Over the past 3 years, human genetic studies have suggested risk modifiers that mitigate or
increase APOE e4-associated Alzheimer’s disease risk, and identified haplotypes with
heterogeneous effects. Understanding the risk variation in APOE e4 carriers has the
potential to shed further light on APOE pathobiology and mechanisms of resilience and
resistance to Alzheimer’s disease, which could have therapeutic value.

APOE €2 homozygosity

In an analysis? of a US cohort with approximately 5,000 neuropathologically confirmed
Alzheimer’s disease and control subjects, APOE 2 homozygosity was associated with
much lower odds of Alzheimer’s disease than was APOE 3 homozygosity (odds ratio [OR]
0.13 [95% CI 0.05-0.36]), and the APOE e2/e3 genotype (0.39 [0.30-0.50]). The contrast
of APOE e2 homozygosity versus APOE e4 homozygosity was even greater (0.004 [0.001-
0.014]), and APOE 2 was also associated with milder Alzheimer’s disease
neuropathological changes (i.e., less widespread Ap plaques and neurofibrillary tangles) in
this autopsy cohort. However, these exceptionally low Alzheimer’s disease ORs in APOE &2
homozygotes were not found in the larger clinically defined but neuropathologically
unconfirmed group (23,857 individuals; 10,430 with probable Alzheimer’s disease and
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13,426 cognitively unimpaired), suggesting a stronger protection against Alzheimer’s
disease neuropathology.

APOE Christchurch mutation

A single case report3 described an approximately 70-year-old Colombian woman who,
despite carrying a fully penetrant autosomal dominant E280A mutation in PSENZ, which is
linked to familial Alzheimer’s disease, and abundant fibrillary A deposits in her PET scan,
remained cognitively healthy well beyond her expected year of symptom onset (age 44
years). After whole exome sequencing, it was concluded that a rare homozygous APOE €3
Christchurch (R136S) mutation conferred her resilience to Alzheimer’s disease.
Mechanistically, the APOE3 R136S mutation appears to inhibit AR oligomerization, disrupt
APOE binding to low-density lipoprotein receptor, and interfere with APOE affinity for
heparan sulfate proteoglycans, which are involved in toxic tau uptake by neurons, perhaps
explaining the lower than average radioligand uptake observed in her tau PET scan?.

Other genetic modifiers

A meta-analysis of 22 studies has revealed that KLOTHO-V'S heterozygosity —a
polymorphism previously associated with longevity— might attenuate the increased
Alzheimer’s disease risk associated with the APOE e4 allele, because APOE €4 carriers
older than 60 years with KLOTHO-VS heterozygosity had a reduced Alzheimer’s disease
risk (OR 0.75 [95% CI1 0.67-0.84]; p=7.4x1077), reduced risk of conversion from mild
cognitive impairment to dementia (hazard ratio [HR] 0.64 [95% CI 0.44-0.94]; p=0.02),
higher CSF AP levels, and lower Ap PET burden; the results were significant specifically in
the group of individuals aged 60-80 years*. A whole genome sequencing on a mainland
Chinese cohort identified nine potential causal variants in two genes located in the vicinity
of the APOE, PVRL2and APOCI?, which increased the risk of developing Alzheimer’s
disease independently of the APOE 4 allele. The risk haplotypes associated with these
variants correlated with some Alzheimer’s disease endophenotypes such as worse cognition,
more severe hippocampal atrophy, lower plasma A levels, and higher brain APOE mRNA
levels. Another analysis of whole genome sequencing data stratified by APOE genotype
identified three genes significantly associated with Alzheimer’s disease in APOE e4 carriers
only: OR8G5 (p=4.67x1077), IGHV3-7 (p=9.75x10716), and SLC24A3 (p=2.67x10712)5,
Conversely, a systematic review investigating the genetic basis of resilience to Alzheimer’s
disease among APOE 4 homozygotes revealed that CASP7 (encoding caspase 7)
rs10553596 and SERPINAS3 (encoding al-antichymotrypsin) rs4934-A/A polymorphisms
possibly reduce Alzheimer’s disease risk’.

Influence of race in APOE-linked Alzheimer’s disease risk

An interaction between race and the APOE genotype on Alzheimer’s disease risk has long
been known, with African American and Hispanic APOE &4 carriers having lower risk than
white APOE e4 carriers, and Asian (i.e., Japanese) carriers having the highest ORs.8-10
Studies have found that the local ancestry of APOE (i.e., the population-specific genetic
variation within the APOE region), rather than global ancestry (i.e., the population-specific
genetic variation in the entire genome) or environmental factors, explains these inter-racial
differences in Alzheimer’s disease risk. Specifically, an African local ancestry region
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surrounding APOE underlies the smaller APOE e4 allele effect on Alzheimer’s disease risk
observed in African American and Caribbean Hispanic (from Puerto Rico) populations!1:12,
Another study of 809 individuals identified a potentially protective African ancestral
haplotype within APOE defined by the rs769449 SNP3, but this was not been confirmed in
a larger (7,997 individuals) studyl4.

NEW PATHOLOGICAL CORRELATES OF APOE GENOTYPE

The classic post-mortem neuropathological correlates of the APOE genotype are a higher
AP plague burden and more severe cerebral amyloid angiopathy in APOE ¢4 carriers, and a
lower AB plaque burden in APOE €2 carriers, relative to APOE e3 homozygotes!®. These
differential effects of APOE alleles have been confirmed by AB PET imaging across
preclinical and clinical stages of Alzheimer’s disease (i.e., mild cognitive impairment and
mild-to-moderate dementia)16:17. The APOE 4 allele has also been associated with more
severe tau pathology as defined by Braak neurofibrillary tangle stages?18, and the APOE e2
allele with a lower Braak neurofibrillary tangle stages!®, independently of their effects on
AP plaques. Cross-sectional data on tau PET imaging examining APOE effects on tau
radioligand uptake after controlling for Ap radioligand uptake are conflicting1®20, but
longitudinal combined tau and A PET studies will elucidate this important question.

The APOE genotype can also impact the finding of comorbid brain pathologies at autopsy.
On one hand, APOE e4 partly drives (together with aging) the presence of AB plaques and
neurofibrillary tangles in individuals with other primary neuropathological diagnoses such as
amyotrophic lateral sclerosis, primary tauopathies, and Lewy body diseases?!. On the other
hand, in individuals with Alzheimer’s disease the APOE e4 allele appears to to correlate
with the presence and severity of TDP-43 pathology18-22, Lewy body diseases?3, and
possibly cerebrovascular disease?4, independently of its effects on Ap plaques and
neurofibrillary tangles. Lastly, APOE could be a genetic risk factor for neurodegenerative
diseases other than Alzheimer’s disease. Indeed, APOE e4 has been associated with Lewy
body diseases, independently of the AR plaque and neurofibrillary tangle burdens2°:26 (but
see also?). Of note, APOE e4 has been associated with an earlier age of symptom onset in
patients with MAPT-linked or autopsy-proven frontotemporal lobar degeneration-tau
independently of its effects on AB plaque burden28, and with more severe neurodegeneration
at post-mortem examination in primary tauopathies?®. Paradoxically, APOE e2 might
increase the risk of progressive supranuclear palsy3°, but results are conflicting?3. The
validation and expansion of PET imaging and CSF biomarkers for other neurodegenerative
diseases will help confirm these correlations between APOE genotype and non-Alzheimer’s
pathologies.

APOE PATHOPHYSIOLOGICAL MECHANISMS

Although traditionally the APOE e4 allele was represented as a trigger of Ap accumulation
at the top of the sporadic Alzheimer’s disease amyloid cascade, numerous new data show
that the APOE alleles have differential downstream effects in many other pathophysiological
processes beyond Ap metabolism (Figure).
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Cellular sources of APOE in brains with and without Alzheimer’s disease

Brain and peripheral pools of APOE are independent from each other because liver
transplantation changes APOE isoforms towards the donor’s in the recipient’s blood but not
CSF31, and depleting APOE from hepatocytes —its main source cell type in the periphery—
does not affect brain APOE (or AB) levels in mice32. Understanding the cell types
expressing APOE in the brain is relevant because APOE is a secreted glycoprotein and could
have autocrine effects on the secreting cell, but also paracrine effects on neighbouring cells.
Although astrocytes are the main source of APOE in the normal brain, in the Alzheimer’s
disease brain reactive astrocytes around Ap plaques were reported to be devoid of APOE,
whereas AP plaque-associated microglia express high levels of APOE33 (Figure). Single
nuclei RNA-sequencing studies in human Alzheimer’s disease and control brains have
confirmed a down-regulation of APOFE expression in reactive astrocytes3>-3¢ and an up-
regulation in activated microglia®>-37. Neuropathological studies also reported APOE
staining in pyramidal neurons in neurodegenerating areas such as the hippocampus, but rare
colocalisation between APOE and tangles, suggesting little direct interaction between APOE
and tau34. The presence of APOE in pyramidal neurons suggested the internalization of
APOE lipoparticles from the interstitial space through the APOE receptor LRP1 (Panel 1,
Figure), which is highly expressed in neurons among other cell types. Expression of APOE
has also been shown in vascular cells from the human brain, specifically pericytes3.

Effects on AB

The disparate impact of APOE isoforms on Alzheimer’s disease risk was attributed to a
differential effect — deleterious for APOE4 and protective for APOE2, with respect to
APOE3)— on both AB plaque burden and cerebral amyloid angiopathy severityl®. These
well-established autopsy neuropathological correlates of APOE alleles and the early
observation that compact (dense-core, fibrillar, Thioflavin-S-positive), but not diffuse
(amorphous, Thioflavin-S-negative), Ap plaques contain APOE3?, supported the idea that
APOE interacts with AB and promotes its aggregation and deposition in insoluble fibrillar
deposits (Figure). Indeed, genetic deletion and haploinsufficiency of APOE reduces dense-
core AB plaque burden in various mouse models of cerebral -amyloidosis#®-42, Of note,
APOE deficiency inhibits diffuse Ap deposits in some of these models#? but increases them
in others#2, further reinforcing the requirement of APOE for plaque compaction. When these
AB-plaque depositing mice were crossed with APOE targeted replacement mice expressing
human APOE alleles in place of the murine Apoe coding sequence (knock-in mice; Panel 1),
APOEA knock-in mice consistently exhibited higher Ap plaque burden than did APOE3
knock-in mice, and these APOE3 knock-in mice had higher Ap plaque burden than did
APOE2 knock-in mice?3-45, thus recapitulating the allele-specific differences observed in
human post-mortem autopsy and Ap PET studies.

In-vitro and in-vivo studies have shown that, relative to APOE2 and APOE3, APOE4
promotes the seeding of AB peptide into AB oligomers, protofibrils, and fibrils*6-48, but also
inhibits AB clearance from the brain prolonging its half-life in the interstitial fluid*>48 and
inhibiting its enzymatic degradation?®. The intimate mechanism underlying these APOE
isoform-driven differences in Ap metabolism remains debated. On one hand, it has been
proposed that APOE and A direct interaction in the brain extracellular space might be
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negligible in physiological conditions (i.e., Ap monomers and lipidated APOE), but that
both APOE and AB can compete for the same receptors, namely LRP150, which is involved
in Ap clearance by neurons®l, astrocytes®?, endothelial cells, vascular smooth muscle
cells®3, and pericytes®*. On the other hand, there is evidence supporting a direct interaction
between APOE and oligomeric and fibrillar AB. First, APOE colocalises with synaptotoxic
AP oligomers at the synapses in the vicinity of AB plaques and leads to synapse loss in an
isoform-dependent manner (APOE4 more than APOE3)°. Second, in-vivo experiments in
which APOE expression by astrocytes was conditionally deleted, or APOE expression
globally silenced with antisense oligonucleotides at different stages of Ap deposition, have
shown that APOE influences AP plague burden mainly during the seeding phase of Ap
aggregation, but has a lesser effect during the exponential growth phase (i.e., when fibrillar
AB deposits are already formed)*8:56. Third, a subtle difference in tertiary conformation
across APOE isoforms (i.e., closer N-terminus and C-terminus in APOE4 versus APOE3
and more open in APOE2) could affect both the affinity of the Ap and APOE interaction
(higher for APOE4 vs APOE3 and APOE?2) and the APOE propensity to enzymatic cleavage
in its hinge region between the N-terminus and the C-terminus, rendering presumably toxic
C-terminal fragments (also higher for APOE4 vs APOE3 and APOE2)>7-59,

Effects on tau

Unlike AB, there is little overlap between APOE-immunoreactive neurons and neurons that
have neurofibrillary tangles3*. No direct interaction between APOE (primarily secreted) and
the microtubule-associated protein tau (primarily intraneuronal and axonal) has been shown
in vivo3%, However, studies in transgenic Apoe knockout or APOE knock-in mice
overexpressing the P301S mutant of tau have shown that the human APOE isoforms do
affect tau downstream pathology2%-60. Specifically, APOE4 promotes tau-induced
neurodegeneration and atrophy compared to APOE3, whereas APOE? is protective with
respect to these outcomes??. The mechanism underlying these effects is indirect, mediated
by APOE effects on microglia, rather than a direct interaction between APOE and tau;
transcriptome profiling and cytokine measures indicate that APOE4 microglia is primed
towards a proinflammatory phenotype compared to APOE3, whereas APOE2 exhibits a
more homeostatic phenotype2®:60. Of note, LRP1 has been recently shown to be a receptor
for tau uptake by neurons, and APOE affects the ability of tau to bind LRP1 (Figure),
although in vitro all APOE isoforms reduced tau uptake to a similar extent®. Additionally,
knocking down neuronal LRP1 reduced neuronal tau spreading in mice, but some astrocytes
took up the human tau®1. Whether different receptors have a role in tau uptake into different
cell types remains unknown. Moreover, since LRP1 is a recycling receptor delivered into
endosomal/lysosomal compartments, it remains unclear how tau escapes to the cytoplasm to
interact with endogenous tau in neurons or to accumulate as glial fibrillary tangles in
astrocytes, but it is plausible that APOE affects tau intracellular trafficking in an isoform-
dependent manner®2,

Effects on glia

Astrocytes and microglia are known to react to plaques, neurofibrillary tangles, and
neurodegeneration. Although quantitation of reactive (GFAP+) astrocytes and activated
(IBA1+, CD68+) microglia per AB plaque in post-mortem sections of the temporal
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neocortex has shown no difference between APOE e4 carriers and non-carriers®3,
transcriptomic studies have reported that APOE influences glia reactions. Microglia from
APOE4 knock-in mice is primed towards a proinflammatory response compared with those
from APOE3 knock-in mice®* and APOE e4 microglia derived from human-induced
pluripotent stem cells exhibit a proinflammatory gene expression programme and impaired
AB phagocytosis relative to APOE e3 microglia®®. These APOE-mediated differential
effects on microglia phenotype appear to be at least partially mediated by the triggering
receptor expressed on myeloid cells 2 (TREMZ2), which is another receptor for both Ap and
APOE expressed by microglia®8. Loss of function mutations in 7TREMZ (e.g., R47H, R62H)
have been associated with a 2-3 times increased risk of developing Alzheimer’s disease and
with less compact Ap plaques that have more neuritic dystrophies, less coverage by
microglia, and less APOE content®”. The AB plaque features of Alzheimer’s disease mouse
models deficient in TREM2 or APOE are phenocopies#2:67, suggesting that APOE and
TREM?2 are both involved in chemotaxis of microglia towards plaques and that plaque-
associated microglia has a neuroprotective role minimising neuritic dystrophies. The
transcriptomic changes associated with the conversion from homeostatic to Alzheimer’s
disease microglia require both APOE and TREM2 because genetic deletion of either in
Alzheimer’s disease transgenic mice precludes such transition68.69 and 7REMZloss of
function mutations partially abrogate the microglia transcriptomic changes observed in the
brains of patients with Alzheimer’s disease3’. Regarding APOE effects on astrocytes, APOE
e4 astrocytes derived from human-induced pluripotent stem cells exhibit impaired
cholesterol metabolism and Ap phagocytosis®®, reduced neurotrophic support’®, and
impaired synaptic pruning’?, relative to APOE £3 and APOE &2 astrocytes.

Effects on blood brain barrier

Another area of growing interest is the effects of APOE ¢4 allele on the blood-brain barrier.
Traditionally, APOE ¢4 had been associated with a more severe cerebral amyloid
angiopathy1® (Figure), resulting in a higher risk of lobar intracerebral haemorrhage, but also
focal subarachnoid haemorrhage and cortical superficial siderosis, cortical microinfarcts,
and white matter ischemic changes. APOE &4 effects on the blood-brain barrier were also
shown in the first randomised clinical trials with anti-AB monoclonal antibodies, which
reported a higher incidence of MRI findings (brain oedema, microbleeds, and cortical
superficial siderosis) in the treatment versus placebo groups —collectively termed amyloid-
related imaging abnormalities. Only occasionally symptomatic (e.g., headaches, confusion,
and seizures), these amyloid-related imaging abnormalities are indicative of an increased
blood-brain barrier permeability presumably caused by the antibody-mediated Ap efflux
from the brain parenchyma into the bloodstream?2. Because amyloid-related imaging
abnormalities are twice as probable in APOE 4 carriers, their occurrence has been
attributed to a more severe pre-existing cerebral amyloid angiopathy in APOE e4 carriers vs
APOE &3 homozygotes’2. Supporting this interpretation, immunotherapy with an anti-Ag
monoclonal antibody is associated with higher numbers of cerebral microbleeds in
APPswePSEN1dE9 x APOE4 knock-in mice versus APOE3 knock-in and APOE2 knock-in
mice’3. A post-mortem quantitative neuropathological study on individuals who participated
in a phase 2 anti-Ap active immunotherapy trial (NCT00021723) also showed that Ap
plaque clearance is associated with a redistribution of AR and APOE from plaques to
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vessels, and more severe cerebral amyloid-angiopathy-related vasculopathic changes’.
Pericytes, which are another cellular source of APOE, are gaining attention for their
implication in cerebral amyloid angiopathy pathogenesis (Figure). Pericyte loss resulted in
increased cerebral amyloid angiopathy and AB plagues in a mouse model of A
deposition’®. Pericytes take up Ap via LRP1 in an APOE isoform-dependent manner, with
APOE4 interfering with this uptake compared to APOE3°*. Human APOE e4 pericytes
express higher levels of APOE mRNA and protein than APOE e3 pericytes, resulting in
increased AP vascular accumulation3®. Pericytes exposed to Ap oligomers constrict
capillaries via endothelin-1 receptor ET 4 activation, leading to reduced blood flow®.

APOEA4 can also increase blood-brain barrier permeability with respect to APOE3 in an Ap-
independent manner, as shown in APOE4 versus APOE3 knock-in mice’” and confirmed
with dynamic contrast-enhanced MRI in the medial temporal lobe of cognitively healthy
(clinical dementia rating score 0) and mildly impaired (clinical dementia rating score 0.5)
APOE ¢4 carriers versus APOE 3 homozygotes24. The underlying proposed mechanisms
include the activation of cyclophilin A, resulting in increased levels of MMP9 and pericyte
injury’8, and disruption of the capillary basement membrane (i.e., collagen 1V)’7.

APOE-BASED THERAPEUTIC OPPORTUNITIES

Experimental in-vivo studies in Alzheimer’s disease mouse models that have a human
APOE knock-in background have suggested promising approaches to ameliorate phenotypes
related to Alzheimer’s disease (Table 1). However, there are only a few APOE-directed
clinical trials completed or underway (Table 2), highlighting a lag in therapeutic translation
for this target.

Increasing APOE levels and its lipidation

Because brain APOEA4 is less lipidated and stable than APOE3 and APOE257:79, increasing
brain APOE levels and lipidation has been proposed as a therapeutic approach. Genetic
deletion of ABCAL1 results in poor APOE lipidation and increased AR plague burden®0,
whereas ABCA1 overexpression reduces AP deposition8. ABCA1 and ABCG1 expression
is induced by the stimulation of the retinoid X receptor. Bexarotene is a US Food and Drug
Administration approved retinoid X receptor agonist for use in cutaneous T-cell lymphoma
and was reported to cause a rapid reduction of Ap plaque burden and restoration of cognitive
functioning in Alzheimer’s disease mouse models by inducing ABCA1 and ABCG1
expression, enhancing APOE lipidation, and increasing APOE levels (Table 1)82. This result
was, at least partly, replicated by some investigators but not others, and led to examine
bexarotene for Alzheimer’s disease in human clinical trials. A phase 1b proof-of-mechanism
trial in young (21-49 years) volunteers revealed poor penetration of bexarotene in the CNS
according to its plasma versus CSF levels. Bexarotene was able to increase CSF APOE
levels by 25% although it had no effects on CSF A levels as measured by stable isotope
labelling kinetics (Table 2)83. In a proof of concept, double-blind, placebo-controlled
clinical trial in 20 patients with moderate Alzheimer’s disease (Mini Mental State
Examination range was 10-20; Table 2), bexarotene 150 mg twice daily for 4 weeks was
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associated with a significant reduction in Ap PET burden and a proportional increase in
serum APy, levels but, contrary to the prediction, only in APOE e4 non-carriers®4,

A non-toxic small peptide derived from the C-terminus of APOE, CS-6253, has been shown
to increase ABCAL1 levels and, subsequently, APOE lipidation without changing brain
APOE levels, in APOE4 but not APOE3 knock-in mice. These effects correlated with a
reduction of hippocampal Ap and phosphorylated tau and improved learning and memory in
APOE4 knock-in mice®.

Probucol, the now abandoned non-statin lipid-lowering drug, has been shown to counteract
hippocampal synaptic loss and cognitive impairment in A-injected wild-type mice8®,
increase APOE and LRP1 levels in the hippocampus of aged rats8” and, while results from a
phase 1/2 clinical trial (NCT02707458) are awaited, might also increase CSF APOE levels
in humans (Table 2)88,

Blocking APOE and A interaction

Another therapeutic strategy is to interfere with the APOE and Ap interaction, because this
is thought to stabilise toxic oligomeric and fibrillar AP species existing within and around
AB plaques?6:55:47:48 This strategy has been achieved in Alzheimer’s disease mouse models
with both monoclonal anti-APOE antibodies and small molecules that act as AR mimetics.

Chronic intraperitoneal administration of an anti-APOE monoclonal antibody (HJ6.3) to
APPswePSENIdEI mice led to a statistically significant reduction of insoluble Ap levels
and Ap plaque burden, and APOE levels in the brain, which correlated with improved
learning and memory and higher cortical network connectivity in the resting state. While the
AP plaque reduction was larger when administered before plaque deposition, in older mice
with substantial plague deposition this antibody appears to prevent the formation of new
plaques and clear the smallest previously existing plaques by binding APOE within them. Of
note, systemic treatment with this anti-APOE antibody increased plasma Ap levels, but did
not have systemic (i.e., unchanged plasma cholesterol and APOE levels) or local (i.e.,
cerebral amyloid angiopathy did not worsen) adverse side effects®%-90. Another anti-APOE
monoclonal antibody specific for non-lipidated APOE (HAE-4) reduced the plaque burden
in APPPS1-21 x APOE4 knock-in mice through microglia-mediated clearance, without
affecting the levels of plasma APOE, which is mostly lipidated®!. Therefore, anti-APOE
immunotherapy has promise for testing in future trials.

APB12-28P, a small peptide corresponding to the APOE-binding motif within Ap except for
a Val18Prol substitution, reduced soluble and insoluble AB levels and AR plaque burden in
APPswePSEN1dE9 x APOE3 knock-in and APPswePSEN1AdE9 x APOE4 knock-in mice
and improved memory deficits in APPswePSEN1dE9 x APOEA knock-in mice. Moreover,
AP12-28P reduced soluble and insoluble APOE levels and the deposition of APOE into Af
plaques. Of note, this improvement was not due to an active immunisation effect, because
these mice did not generate antibodies against this Ap fragment®2. AB12—28P efficacy
remains to be tested in clinical trials.
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APOE mimetics

Another approach is to use APOE N-terminal fragments including its receptor-binding
motif, so called APOE mimetics. Chronic subcutaneous administration of CN-105, a
pentapeptide corresponding to the receptor binding face of APOE, reduced both soluble A
and Ap plaque burden and improved cognition in APPI-21 x APOE4 knock-in mice before
plague deposition, but not after this®3. CN-105 is being tested to prevent delirium after major
surgery in a phase 2 clinical trial (NCT03802396; Table 2). APOE mimetics spanning the
APOE receptor binding motif such as COG1410 (12 amino acids) and COG112 (34 amino
acids) have been shown to ameliorate AB levels and AB plaque burden, tau
hyperphosphorylation, and neuroinflammation in various Alzheimer’s disease mouse
models®49°, but have not been tested in human clinical trials.

Lowering APOE levels

Lowering brain APOE levels has also been proposed as a therapy because Apoe genetic
deletion or haploinsufficiency reduces A deposition in mouse models of cerebral -
amyloidosis®®-42 and rescues neurodegeneration induced by tau in tauopathy mouse
models?9. Additionally, null mutations in the APOE gene do not seem to have adverse
effects on cognition in humans, although they are associated with familial
dyslipoproteinemia (also known as type 111 hyperlipoproteinemia)®. One way of reducing
brain APOE levels is increasing the expression of its receptors. Over-expression of LDLR
reduced AP plaque deposition®” due to increased efflux of A from the brain through the
blood-brain barrier%. A more specific approach is to silence APOE expression with specific
antisense oligonucleotides. In APPPS1-21 x APOE3 knock-in mice and APPPS1-21 x
APOE4 knock-in mice, a reduction in soluble APOE levels by half with anti-APOE
antisense oligonucleotides resulted in lower soluble and insoluble A levels and lower total
and dense-core plaque burden when administered intracerebroventricularly at birth, but did
not change much these Ap measures when applied at the onset of Ap plaque deposition (i.e.,
6 weeks in this mouse model)°6. However, both treatments resulted in fewer plaque-
associated dystrophic neurites, suggesting less neuronal toxicity of existing plaques and
some beneficial effect of APOE reduction on microglia and astrocyte responses to plaques,
and lending support for testing in patients with Alzheimer’s disease in clinical trials.

Genetic switch of APOE isoforms

Gene therapy has become a reality in several diseases, including neurodegenerative diseases
such as spinal muscular atrophy. The application of CRISPR-Cas9 editing technology to
switch APOE alleles has been successful in a dish with neurons and glial cells derived from
human-induced pluripotent stem cells5, but remains to be shown in APOE knock-in mice.
However, the application of gene therapy to express APOE e2 and increase APOE2 levels in
APOE 4 carriers (or even APOE £3 homozygotes) has become feasible and the first phase
1 clinical trial with this approach has been initiated (NCT03634007; Table 2). In mice,
intraventricular transfer of human APOE alleles with an adeno-associated virus type-4 leads
to sustained expression of human APOE in the choroid plexus and ependymal cell lining,
that diffuses to the brain parenchyma reaching a concentration of 10% of mouse endogenous
APOE®, Adeno-associated virus type-4-mediated delivery and expression of APOE e2 in 7-
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month-old APPswePSENIdEY mice (i.e., after AP plaque deposition) resulted in reduced
soluble and insoluble AB levels and enhanced plague clearance, whereas delivery of APOE
e4 had the opposite effects. Plasma AB4g concentrations were decreased in the APOE 3 and
APOE 4 treated mice versus APOE 2 treated mice, suggesting a reduced efflux from brain
to plasma through the blood-brain barrier, relative to APOE €2 treated mice. Monitoring of
AP plaque growth by in-vivo multiphoton microscopy in living mice showed a significant
effect on plaque growth rate, slower in APOE &2 treated mice and faster in APOE e4 treated
mice. Moreover, APOE 2 ameliorated plaque-associated dystrophic neurites and synapse
loss, which were more severe in APOE e4 treated mice. Similarly, intracerebroventricular
AAV8-mediated astrocyte-specific expression of human APOE 2 in APOE4 knock-in mice
from birth increased APOE lipidation and decreased endogenous murine AP, whereas
APOE £4 delivery had opposite deleterious effects’®.

CONCLUSIONS AND FUTURE DIRECTIONS

New insights in genetic modifiers, neuropathological and gene expression correlates, and
pathophysiological mechanisms in different brain cell types are broadening our
understanding of the implications of APOE in Alzheimer’s disease and offering previously
unforeseeable opportunities for therapeutic and preventative interventions. Because of this
mounting evidence, strategies to lower APOE4 levels and to increase APOEZ2 levels in the
brain hold the greatest promise (Table 2). Against this remarkable momentum, there remains
a paucity in translation of APOE-based therapies to human clinical trials, especially when
compared with the expedited cases of anti-Ap and anti-tau immunotherapies. What are the
hurdles slowing APOE-based drug development programmes down? First, further
development of small molecules that reliably change APOE4 conformation to APOE3 or
APOE?2 has proven to be difficult because the variable degree of lipidation of APOE might
influence its tertiary conformation. Second, the new data implicating a variety of non-Ap
and non-tau targets in APOE pathophysiology raises new questions, such as determining
what the best downstream therapeutic target should be and monitoring the consequences of
target engagement. Third, there are some unique problems related to APOE separate
peripheral (liver generated) and CNS pools and its inability to cross the blood-brain barrier.
This means that affecting CNS APOE (levels, isoforms, or interactions) will require drugs
with adequate blood-brain barrier penetration. Moreover, potential systemic off-target
adverse effects of some of these approaches should be carefully considered: rare APOE &2
homozygotes and Christchurch mutant carriers, and even more rare individuals with
homozygous APOE null mutations, suffer from type 111 hyperlipoproteinemia396.100,
resulting in accelerated atherosclerosis; in fact, APOE2 knock-in and Apoe knockout mice
are widely used to model atherosclerosis. Therefore, gene therapies to lower APOE levels or
switch APOE4 to APOE?2 should probably be targeted specifically to the CNS (i.e., via
direct injection or with viral capsids that penetrate the blood-brain barrier and appropriate
promoters), which poses its own challenges.

Notwithstanding all these barriers, the risk and protective profiles of APOE genotype in
human populations across the globe reinforce the robustness of the effects of subtle
variations in this gene, and encourage the field to redouble its efforts at further
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understanding the pathophysiology of APOE effects in Alzheimer’s disease (Panel 2), and
attempts at translating that knowledge into therapeutics.

Panel 1: Apolipoprotein E basic facts.

Two single nucleotide polymorphisms (SNPs) —rs429358 and rs7412— define
the three alleles of APOE, located in chromosome 19913.2: €2, €3, and e4.
Relative to the most common APOE 3/23 genotype (reference group),
possessing one APOE e4 allele increases the risk of developing Alzheimer’s
disease by approximately 3.7 times and being homozygous for the APOE e4
allele increases the risk up to 12 times, whereas carrying a single APOE 2 allele
reduces the risk by approximately 40%, and being homozygous for APOE &2
reduces the risk even further239,

Besides Alzheimer’s disease risk, the APOE genotype mainly affects the age of
onset of cognitive impairment, with APOE 4 carriers having an earlier age of
onset and APOE e2 carriers a later age of onset than APOE £3 homozygotes. By
contrast, the effect of APOE genotype on the rate of cognitive decline after
symptom onset remains controversial, with allele differences typically
considered not clinically relevantl®,

APOE is a 299-amino acid (MW 34 kDa) secreted glycoprotein that binds
cholesterol and phospholipids through the C-terminus domain and to its
receptors through the N-terminus domain®’.

The three APOE isoforms differ in two amino acid residues at positions 112 (Cys
in APOE2 and APOES3, and Arg in APOE4) and 158 (Cys in APOE2, and Arg in
APOE3 and APOE4), and these polymorphisms cause significant differences
across APOE isoforms in both lipid binding properties (i.e., APOE4 is
hypolipidated compared to APOE3 and APOE257:79) and receptor affinities.

APOE transports lipids packed into HDL-like particles in the brain, or LDL
particles in the peripheral blood. APOE main receptors in the brain are the LRP1,
the LDL receptor, the very LDL receptor, and the apolipoprotein E receptor 2, all
of which are also AP receptors39:51-53.98,

Lipidation of brain APOE is mediated by ATP-binding cassette transporters Al
and G180.81.85,

APOE directly interacts with amyloid-p peptide#6:47:50.57.59 byt there is no solid
in-vivo evidence of a direct interaction between APOE and tau3.

Mouse models to study the effects of APOE isoforms on amyloid-p peptide and
tau include mice deficient in APOE (Apoe knockout) and mice genetically
engineered to replace the mouse Apoe with each of the human APOE alleles
(APOE-targeted replacement or knock-in), crossed with either mice
overexpressing one or more familial Alzheimer’s disease-linked APP mutations
—with or without one or PSENI mutations (e.g., APPVTLTF 4345
APPswePSENIdEF?99, 5XxFADM, APPPS1-21*2:56)— or mice overexpressing
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frontotemporal lobar degeneration-tau-linked MAPT mutations (e.g.,

MAP7P3015)29’60.

Panel 2: Areas of uncertainty and research priorities.

Possible differential independent effects of APOE alleles on Alzheimer’s disease
progression through preclinical and clinical stages with longitudinal multimodal
imaging, CSF, and plasma or serum biomarkers.

Influence of genetic modifiers of APOE-linked Alzheimer’s disease risk,
including the intimate mechanisms of local ancestry, interaction with longevity
genetic polymorphisms such as KLOTHO-VS heterozygosity, and APOE
mutations such as R136S (Christchurch), as plausible substrates of resistance or
resilience to Alzheimer’s disease.

Possible AB-independent mechanisms of APOE on tau seeding and propagation
through neuronal circuits.

Influence of APOE genotype on other neurodegenerative proteinopathies, such
as primary tauopathies (e.g., Pick’s disease, progressive supranuclear palsy,
corticobasal degeneration), TDP-43 proteinopathies (amyotrophic lateral
sclerosis, frontotemporal lobar degeneration-TDP-43), and a-synucleinopathies
(Parkinson’s disease, dementia with Lewy bodies, multiple system atrophy), as
well as on other neurological disorders in which the blood-brain barrier or the
immune system play a substantial role.

Autocrine versus paracrine effects of APOE on each brain cell type (astrocytes,
microglia, neurons, oligodendrocytes, vascular smooth muscle cells, endothelial
cells, and pericytes).

In-vivo applications of gene therapy, including genetic editing of APOE alleles
with CRISPR-Cas9 technology and strategies for viral vector delivery to specific
brain cell types.

Search strategy and selection criteria

We searched PubMed articles in English published between Jan 1, 1993 and May 15, 2020
using the search terms “APOE AND Alzheimer’s disease”, “APOE AND blood-brain
barrier”, “APOE AND Lewy body disease”, “APOE AND alpha-synuclein”, “APOE AND
TAR DNA-binding protein 43”, “APOE AND tau”, “APOE AND microglia”, “APOE AND
astrocytes”, “APOE AND TREM2”, “APOE AND immunotherapy”, and “APOE AND gene
therapy”. Only human, mouse model, and human-induced pluripotent stem cell studies were
reviewed. In-vitro studies using recombinant APOE and synthetic or recombinant Ap or tau
species and in-cellulo studies using cultured cell lines or primary neuron, astrocyte, or
microglial cultures were excluded. The final reference list was generated on the basis of
relevance and originality with regards to the topics covered in this Review.
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Figure. Multifaceted effects of APOE in the brain and potential strategies to decrease APOE4
and increase APOE2 levels.

In the healthy brain, APOE is expressed and secreted predominantly by astrocytes, and to a
lesser extent by microglia. Most brain APOE is lipidated by the ATP-binding cassettes Al
(ABCAL1) and G1 (ABCG1) and lipidated APOE is internalized via APOE receptors such
low-density lipoprotein receptor-related protein 1 (LRP1), which is expressed in astrocytes,
neurons, vascular smooth muscle cells, endothelial cells, and pericytes. In the Alzheimer’s
disease brain, astrocytes and microglia react to (A) dense-core AR plagues®3, (B) cerebral
amyloid angiopathy-laden arteries and capillaries, and (C) neurofibrillary tangles, activating
transcriptional programmes that include APOE mRNA up-regulation in microglia3®37 and
down-regulation in astrocytes3:3¢ and lead to altered lipid metabolism (not shown). APOE
directly interacts with both soluble and fibrillar AB. Relative to APOE3 and APOE2,
APOE4 promotes Ap seeding and aggregation in oligomers and fibrils*6-48 and reduces its
clearance from the interstitial fluid*®, potentially leading to AB deposition as dense-core
(Thioflavin-S positive) amyloid plaques and cerebral amyloid angiopathy together with
APOE3°. This evidence suggests that decreasing APOE (especially APOE4) expression or
blocking the effects of APOE4 or enhancing the effects APOE2 would be beneficial (dashed
boxes). Experimental approaches to achieving these outcomes include lowering APOE4
levels with isoform-specific antisense oligonucleotides® or antibodies8%-91, which could
also target lipid-poor APOE associated with plaques®!. Alternatively, APOE4 could be
switched to APOE3 or APOE2%°, or APOE2 could be added’®:99, with gene therapy. Last,
APOE lipidation could be enhanced with RXR82-84 and ABCA1 or ABCG18° agonists to
improve APOE4 receptor-mediated internalization and lower Ap in the interstitial fluid.
Dashed boxes illustrate the most promising therapeutic approaches. ASO=antisense
oligonucleotides. AB=amyloid-p peptide. CAA=cerebral amyloid angiopathy.
TREM2=triggering receptor expressed in myeloid cells 2. RXR=retinoid X receptor.
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Adapted from Servier Medical Art by Servier (https://smart.servier.com/category/medical-
specialties/neurology/), which is licensed under a Creative Commons Attribution 3.0
Unported License (CC BY 3.0).
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