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ABSTRACT Bifidobacteria are members of the intestinal
microbiota of mammals and other animals, and some strains
are able to exert health-promoting effects. The genus
Bifidobacterium belongs to the Actinobacteria phylum.
Firmicutes, Bacteroidetes, and Actinobacteria constitute
the most abundant phyla in the human intestinal microbiota,
Firmicutes and Bacteroidetes being predominant in adults,
and Actinobacteria in breast-fed infants, where bifidobacteria
can reach levels higher than 90% of the total bacterial
population. They are among the first microbial colonizers of
the intestines of newborns, and play key roles in the develop-
ment of their physiology, including maturation of the immune
system and use of dietary components. Indeed, some nutrients,
such as human milk oligosaccharides, are important drivers of
bifidobacterial development. Some Bifidobacterium strains are
considered probiotic microorganisms because of their beneficial
effects, and they have been included as bioactive ingredients
in functional foods, mainly dairy products, as well as in food
supplements and pharma products, alone, or together with,
other microbes or microbial substrates. Well-documented
scientific evidence of their activities is currently available for
bifidobacteria-containing preparations in some intestinal and
extraintestinal pathologies. In this review, we focus on the role
of bifidobacteria as members of the human intestinal microbiota
and their use as probiotics in the prevention and treatment of
disease.

THE BIFIDOBACTERIUM GENUS
The genus Bifidobacterium is included within the
phylum Actinobacteria, class Actinobacteria (high G+C
Gram-positive bacteria), order Bifidobacteriales, and
family Bifidobacteriaceae. Currently, this genus contains
more than 50 species, including several subspecies; this

number rises every year. From ametabolic point of view,
the more typical trait of this genus is the catabolism of
monosaccharides. Bifidobacteria use a particular route
for monosaccharide degradation, the so-called fructose
6-phosphate pathway, or bifid shunt. The fructose 6-
phosphate phosphoketolase (Xfp) is the main enzyme of
this path. Xfp possesses a dual-substrate specificity on
fructose 6-phosphate or xylulose 5-phosphate. The end
metabolites of the pathway are acetate, lactate, and
ethanol (1). Xfp activity on fructose 6-phosphate is
the most common phenotypic test for bifidobacteria,
and for many years it has been the main taxonomic
test to identify this genus, since this activity is present
in members of the family Bifidobacteriaceae, but it is
not present in other Gram-positive intestinal bacteria.
However, currently, DNA-sequencing-based analyses
are the standard techniques for identification and typing
of bifidobacteria.

The species belonging to the genus Bifidobacterium
share high rRNA 16S sequence similarity, constituting a
coherent phylogenetic unit. During the past few years,
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genome sequencing has contributed significantly to clar-
ify the phylogenetic relationships among the different
Bifidobacterium species. In 2002, the first bifidobacte-
rial genome, from a strain of Bifidobacterium longum,
was published (2). Since then, the number of publicly
available bifidobacterial genomes has steadily increased,
with more than 50 complete genome sequences avail-
able nowadays. In this regard, comparative genomics
of the different species has shed light on the phylogeny
and the evolutionary adaptation of this genus (3, 4).
A recent phylogenetic analysis of bifidobacteria, based
on a robust reconstruction of the phylogeny of mem-
bers of this genus based on 48 genome sequences, has
shown that there are seven phylogenetic groups within
the genus: Bifidobacterium adolescentis group, Bifido-
bacterium asteroides group, Bifidobacterium boum
group, Bifidobacterium longum group, Bifidobacterium
bifidum group, Bifidobacterium pseudolongum group,
and Bifidobacterium pullorum group (3). These groups
partially correlate with the ecological niches from which
the representative species were isolated, members of the
B. asteroides group being the common inhabitants of
the microbiota of insects, and those of the B. pullorum
group being characteristic of birds. In relation to this,
members of the B. pseudolongum group (especially
Bifidobacterium animalis subsp. lactis strains),B. longum
group (Bifidobacterium breve and B. longum strains),
B. bifidum group (B. bifidum strains), and B. adolescentis
group (Bifidobacterium catenulatum, Bifidobacterium
pseudocatenulatum, and B. adolescentis strains) are often
found in the human intestinal microbiota, and most
probiotic bifidobacteria belong to these species.

BIFIDOBACTERIA AS MEMBERS OF THE
HUMAN INTESTINAL MICROBIOTA
Bifidobacterium Species Evolution
with Age, Distribution in the Bowel,
and Interindividual Variability
Bifidobacteria are among the dominant bacterial popu-
lations in the gastrointestinal tract (GIT) of humans.
Among the bifidobacterial species described so far,
B. catenulatum, B. pseudocatenulatum, B. adolescentis,
B. longum, B. breve, B. bifidum, B. animalis, and
Bifidobacterium dentium are commonly detected in
feces of healthy subjects (5, 6). The last two species are
not rigorously considered to be autochthonous to the
human bowel, being detected in fecal samples but not in
mucosa-associated samples. In fact, B. animalis subsp.
lactis is frequently applied in probiotic dairy products
and food supplements, and its presence in feces possibly

reflects a dietary origin. However, B. dentium has been
described as residing mainly in the human oral cavity,
and several studies link this species to the development
of caries (7, 8).

Although bifidobacterial intersubject variability
clearly exists, it seems that there are differences between
fecal- and mucosa-associated Bifidobacterium species,
with B. longum and B. pseudocatenulatum typically
being isolated from both mucosa and fecal samples and
B. bifidum being more related to feces (5, 6). In contrast,
a modest diversification of bifidobacterial populations
was observed between different intestinal regions within
the same individual (6).

Studies of the biodiversity of the human mucosa-
associated bifidobacteria by culture-independent tech-
niques have revealed no previously identified bifidobac-
terial sequences that may represent novel bifidobacterial
species (9). By using different approaches and tech-
niques, it has been observed that bifidobacteria numbers
and diversity decrease with age, although the fact that
particular bifidobacterial types are more related with
the elderly still remains obscure (10–12). That bifido-
bacteria achieve large concentrations during the first
few months after birth is more clearly established, as
explained in detail below. After weaning, bifidobacterial
numbers gradually decrease and other members of
the gut microbiota like Bacteroides and Eubacterium
become predominant. Although it has been estimated
that the bifidobacterial load in adults is close to 4% of
the total fecal microbiota (13), experimental biases in
PCR-based culture-independent techniques may be ac-
counting for this modest contribution. A recent work in
Japan reported higher abundancies of bifidobacteria for
Japanese people (14).

Bifidobacteria Acquisition and
Development in Infancy
Although bifidobacteria can be detected in the feces of
adults, they form a relatively small proportion of the
total bacterial community. However, they are numerous
in the feces during the first year of life and are among the
pioneers of the bacterial succession that occurs in the
large bowel of babies when the gut microbiota begins to
be established. Indeed, bifidobacteria are numerically
dominant members of the intestinal microbial com-
munities by the age of 3 to 4 months (15, 16). Bifido-
bacterial members are probably enriched in the bowel of
the suckling infants because of the variety of oligosac-
charides present in human milk. Additionally, human
milk is a source of living bifidobacteria for the infant
gut (17, 18). In fact it has been reported that breast-fed
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infants generally harbor a more complex and numerous
Bifidobacterium microbiota than formula-fed infants
(19, 20). Human colostrum and milk contain high con-
centrations of human milk oligosaccharides (HMOs).
Some of these are recalcitrant to digestion by the infant
and thus pass to the large bowel where they can be
foraged by gut bacteria. HMOs are structurally diverse
and composed of several monosaccharides (glucose,
galactose, N-acetylglucosamine, fucose, or sialic acid),
and they mainly consist of a lactose core linked to units
(n = 0 to 15) of lacto-N-biose (type I) or to N-acetyl-
lactosamine (type II) (21). Bifidobacteria are among
the best described gut bacteria with ability to utilize
HMOs. Several species possess glycosyl hydrolases
that cleave specific linkages within the HMO mole-
cules, the best characterized being those synthesized
by B. bifidum, which, together with B. longum subsp.
infantis and B. breve are the most abundant species in
breast-fed neonates (15, 22). Thus the ability of these
species to utilize these otherwise indigestible carbohy-
drates explains their abundance in the breast-fed infant.

Genomic data suggest that bifidobacteria may pos-
sess particular adaptation traits to explain this eco-
logical specialization. For example, genome analysis of
B. longum subsp. infantis ATCC15697 has shown that
it is an archetypical human milk-utilizing bacterium,
because its genome features genes encoding enzymes
involved in the breakdown of HMOs (23). B. bifidum is
predicted to possess lacto-N-biosidase activity, which
allows an efficient catabolism of HMOs (24). These
two species are specialized toward HMO utilization,
although they compete for HMOs using different strat-
egies; B. bifidum has an array of several membrane-
associated glycosyl hydrolases, whereas B. longum
subsp. infantis is more efficient in the import and in-
tracellular breakdown of HMOs (25). Indeed, it seems
that strains from the latter species seem to have a simi-
lar HMO utilization pattern, while B. bifidum strains
are more diverse, and some of them are not able to use
fucosylated or sialylated HMOs (26). Similarly, the
HMO utilization profile of B. breve is also variable de-
pending on the strain, but contrary to B. bifidum, some
strains consume HMOs decorated with fucosyl or sialic
acid residues. In any case, the capability of B. breve to
use these milk oligosaccharides also explains its high
presence in the feces of breast-fed babies (27).

In contrast, the genomes of enteric bifidobacteria re-
siding in the intestine of adult humans, such as B. ado-
lescentis, do not appear to harbor genes related to the
utilization of human milk components, and, instead,
they contain a large arsenal of genes dedicated to the

metabolism of complex carbohydrates commonly found
in the adult-type diet (e.g., starch and starch-derived
carbohydrates) (28–31). Until now there have been
no clear relationships between type of diet (Western,
Asian, Mediterranean) and the enrichment in the gut
of particular Bifidobacterium species, but differences
have been reported between different human groups and
countries (14, 32).

A recent bifidobacterial diversity study based on se-
quence analysis of PCR amplicons of the 16S rRNA gene
from infant stools from different geographical origins
reinforced the notion of bifidobacteria as being a pre-
dominant component of the infant gut microbiota,
which may undoubtedly influence the development of
the immune system and physiology of the infant (33).

Correlations with Other Members of the
Microbiota and Cross Talk Interactions
Bifidobacterium-mediated health benefits are the result
of a complex dynamic interplay established among
bifidobacteria, other members of the gut microbiota, and
the human host. These intricate correlation patterns
have not yet been fully deciphered at a molecular level;
thus, efforts are currently being pursued to understand
the metabolic fluxes within the gut ecosystem discerning
the microbiota-host cross talk in health and disease.
This will establish the basis for host health modulation
through microbiome-targeted approaches, in a more
precise, secure, and controlled manner (34).

Some of the first evidence of bifidobacterial capability
to interact with other gut bacteria was reported in works
pointing toward the existence of a correlation between
reduced bifidobacterial presence within the gastrointes-
tinal tract and the overrepresentation of enteropatho-
gens and disease risk (35, 36). Accordingly, among the
bifidobacterial proposed benefits, inhibition of entero-
pathogens and reduction of rotavirus infection (37)
are some of their best established outcomes. Numerous
in vitro studies have demonstrated that bifidobacteria
can inhibit pathogens through the production of organic
acids (38), antibacterial peptides (39), quorum-sensing
inhibitors (40, 41), or immune stimulation (42) among
other mechanisms, providing molecular clues of their
capacity to prevent certain infections.

Another fact pointing toward the existence of a crit-
ical bifidobacteria-gut microbiota-host cross talk has
been provided by the observation that microbiota es-
tablishment in early infancy seems to follow an orches-
trated and organized pattern of bacterial populations
succession (43, 44). The first gut colonizers, among
which bifidobacteria represent a dominant group, con-
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tribute to reduce the environment and produce metabo-
lites that enable other bacterial populations to stably
colonize the gut later on (45). This supports the idea that
strong bacterial correlations shape the gut microbiota
establishment, stabilization, and evolution (44). In-
deed, the fact that HMOs are preferentially metabolized
by B. longum and B. bifidum species, which are the
most abundant in the breast-fed infant gut microbiota,
supports the existence of critical molecular interac-
tion microbiota-host-dietary components, conditioning
bifidobacterial presence in the intestine (46). Further-
more, it is worth mentioning that significant mutualistic
effects have been described between bifidobacteria and
other intestinal bacteria. In this regard, using colonized
germ-free mouse models, it has been shown that Bac-
teroides thetaiotaomicron is able to expand its capacity
to utilize polysaccharides in the presence of B. longum,
suggesting that resident gut symbionts are able to adapt
their substrate utilization in response to bifidobacteria
(47).

The microbial populations within the gut micro-
biota coexist in a delicate balance that can be affected
by perturbations such as those imposed by antibiotic
treatments, enteropathogen challenges, or dietary com-
pounds, e.g., nondigestible carbohydrates (48). Although
these perturbations affect the gut microbiota and can
have negative consequences on host health, their de-
pendence on environmental factors offers the possibility
of modulating gut microbiota composition through
various approaches. In vitro and in vivo studies have
shown that modulating bifidobacterial levels through
probiotic or prebiotic supplementation can change the
overall composition and metabolism of the gut micro-
biota (49–53). For instance, supplementation with a
B. longum strain augmented production of pymelate,
butyrate, and biotin in a human-gut-derived microbiota
mouse model (53). These effects were suggested to be
mediated through yet to be deciphered cross talk mech-
anisms with the human-gut-derived microbiota. How-
ever, based on the evidence provided, the authors of this
work hypothesized that the increase in biotin production
was due to the coexistence of B. longum and Bacteroides
caccae. Moreover, B. longum supplementation also cor-
related with the reduced presence of Enterobacteriaceae
(54) and augmented representation of Eubacterium
rectale, supporting a bifidobacterial effect on quantity
and functionality of other gut microbiota members (53).

Bifidobacterial molecules, such as the exopolysac-
charides present in the outer cell-surface layer, have
been proven to be capable of modulating gut micro-
biota in in vitro fecal batch cultures (55) and in vivomice

trials (56), thus providing a molecular basis for gut
microbiota-bifidobacteria cross talk. In fact, in vitro
studies have shown that Bacteroides fragilis and Fae-
calibacterium prausnitzii modify their metabolism upon
growth in the presence of bifidobacterial exopolysac-
charides (57–59).

On the other hand, numerous studies have demon-
strated the capability of prebiotics to promote bifido-
bacterial presence within the microbiota, correlating
with other changes in the overall microbiota composi-
tion and metabolism. Thus, bifidobacterial promotion
through prebiotics, including inulin, arabinoxylans, ga-
lactooligosaccharides, and fructooligosaccharides, also
correlated with greater Lactobacillus-Bifidobacterium
to Enterobacteriaceae ratio, and modulated short-chain
fatty acid production (52, 60–62). In fact, most in vitro
and in vivo evidence on bifidobacteria cross talk with
other gut microbiotamembers has been obtained through
analysis of prebiotic metabolism. Cross-feeding mecha-
nisms between B. longum NCC2705 and E. rectale
ATCC 33656 were found to be the basis of the bifido-
genic and butyrogenic effects of arabinoxylan oligo-
saccharides (63). Similarly, recent works have provided
evidence to understand the cross-feeding mechanisms
between Bifidobacterium and Bacteroides species (59,
64) and Bifidobacterium and F. prausnitzii (58), respec-
tively, which would help understand butyrogenic activity
of coculture fermentations (65). These results also con-
tribute to clarify bacterial interactions within the gut
during prebiotic fermentations.

Some other works have also studied the potential
cross talk mechanisms between bifidobacterial strains.
Ruiz and colleagues analyzed through a proteomic
approach the interaction between a B. longum and a
B. breve strain (66), evidencing a significant effect on
the production of carbohydrate utilization enzymes. In-
deed, a more recent work proved the existence of cross-
feeding mechanisms between B. bifidum PRL2010, a
strain specialized in extracellular breakdown of HMOs,
and B. breve UCC2003 (67). This latter strain is unable
to utilize sialic acid as the sole carbon source in vitro,
although it can grow at the expense of the residues that
B. bifidum PRL2010 cleaves from mucins (67). In fact,
a detailed analysis on glycoside utilization capabilities
within the genus Bifidobacterium highlighted that par-
ticular species are specialized toward the utilization of
specific carbohydrates, therefore suggesting that bifido-
bacterial species might cooperate for carbohydrate uti-
lization within the gut (48). These facts support the use
of mixtures of probiotic strains, which might provide a
synergistic effect, improving their capability to exert the
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desired effects on the gut microbiota and, concomi-
tantly, on host health (68).

It is also worth highlighting that some bifidobac-
terial colonization traits are modulated by intestinal
factors, including the presence of other microorganisms.
For instance, Yuan and colleagues (69) found, using an
in vivo model, that exposure to intestinal environment
induces production of a series of proteins which are
not expressed upon growth in vitro in B. longum, like
the chologlycine hydrolase. Furthermore, transcription
of the bifidobacterial gene clusters required for exo-
polysaccharide production, a molecule essential for its
intestinal colonization ability (42), is strongly upreg-
ulated by intestinal factors, as evidenced following
growth on fecal-based media (70). Similar observations
were made regarding the bifidobacterial pilae structures.
The Tad pilus-encoding cluster, which was reported
to be essential for B. breve UCC2003 colonization of
the mouse intestine, was only expressed in the mouse
intestine, but not when grown under laboratory con-
ditions (71). Whereas the specific triggering factors
of these bifidobacterial traits remain to be determined,
it is reasonable to hypothesize that microbial-derived
molecules or metabolites, through yet to be deciphered
cross talk mechanisms, may be key signaling factors. In
fact, in B. bifidum PRL2010, pilus expression occurred
in vitro, but it was strongly upregulated following co-
culture with other bifidobacterial and Lactobacillus
strains (72).

Further evidence of the existence of a bifidobacterial-
gut microbiota cross talk has been provided by the fact
that individuals with different gut microbiota composi-
tion appear to respond differently to Bifidobacterium
supplementation (73). Although the molecular mecha-
nisms of the cross talk behind this different behavior are
far from being understood yet, their comprehension
would greatly help to design probiotic-based therapies
that can be functional even in those subpopulations
currently classified as “nonresponders” on clinical trials
(74).

BIFIDOBACTERIA AS PROBIOTICS
In a healthy state of intestinal “eubiosis” there is a pop-
ulation of naturally occurring microbiota that helps
to keep our homeostasis by maintaining or adjusting
physiological processes to counteract changes. The
equilibrium can be broken when internal or external
factors alter this microbial community, leading to a
state of “dysbiosis,” often resulting in a health problem
(75). A clear example of an imbalance in the intestinal

microbiota is the consequence of the use of antibiotics
to treat infections, which are needed to eradicate path-
ogens, but they also disrupt the symbionts, both mu-
tualists and commensals, inhabiting our gut (76). This
fact, together with the increased resistance to antibiotics
reported in recent years, leads to the interest in the ap-
plication of beneficial microorganisms, or probiotics, to
help in the recovery of infections through the restora-
tion of the intestinal homeostasis. The first international
consensus definition of probiotics was proposed in 2001
by a group of experts, joined by the Food and Agricul-
ture Organization (FAO) and World Health Organiza-
tion (WHO) (77); it has been recently accepted, with a
minor grammatical correction by a Scientific Committee
of the International Scientific Association for Probiotics
and Prebiotics (ISAAP) (78) as follows: “live microor-
ganisms that, when administered in adequate amounts,
confer a health benefit on the host.”

The first observations about the occurrence of certain
bacteria in “normal” feces in relation to the intestinal
physiology and health were established at the beginning
of the last century. In 1900, the pediatrician H. Tissier
found anaerobic bacteria, with a bifurcated (“bifid”)
shape, that were abundant in the feces of breast-fed
babies and he named them Bacillus bifidus; afterward,
he proposed the use of this bacterium for the treatment
of intestinal infections (79). In the same decade, E. More
reported the presence of an acid-tolerant, pleomorphic
bacterium, which he named Bacillus acidophilus, in-
habiting the intestine of infants who subsist entirely
on mother’s milk (80). Both authors disputed the first
assertion that these bacteria constitute the dominant
“flora” of the breast-fed infant (81). Simultaneously, at
the beginning of the 1900s, E. Metchnikoff postulated
that the long life expectancy of Bulgarian peasants was
due to the higher consumption of fermented dairy
products. These early observations could be considered
as the starting point to link the possible benefits of in-
testinal bacteria and certain foods to human health;
later on, after a long evolution of the definition of pro-
biotic based on scientific research (collected in reference
82), the scientific community reached the consensus
definition indicated above, which is nowadays widely
accepted.

Currently, the genera most commonly used as pro-
biotics to maintain a healthy intestinal function in
humans are Lactobacillus and Bifidobacterium. Some
specific species of bifidobacteria, as well as of lacto-
bacilli, have the GRAS (Generally Recognized As Safe)
status, given by the FDA. In addition, some of them,
based on a long history of safe consumption in different
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foods, have obtained the QPS (Qualified Presumption
of Safety) mark, given by the European Food Safety
Authority (EFSA); the last revision of the QPS list main-
tains the species B. adolescentis, B. animalis, B. bifidum,
B. breve, and B. longum as safe biological agents in-
tentionally added to food or feed (83). However, the
probiotic efficacy of bifidobacteria showing positive
effects on gastrointestinal functions after human inter-
vention trials has only been studied for a few strains,
normally supported by multinational food companies,
most of them belonging to the species B. animalis subsp.
lactis, B. breve, B. longum, and B. bifidum (75). In many
cases, there is insufficient scientific evidence to support
the positive effects reported for the strains, since clear
biomarkers for bifidobacterial efficacy are, as yet, not
identified (Fig. 1). This is the case of some studies re-
porting an improvement or alleviation of symptoms re-
lated to different inflammatory bowel diseases, such as
ulcerative colitis (84, 85) or irritable bowel syndrome
(86, 87). In addition, most bifidobacterial strains were
tested in combination with other microorganisms, typi-
cally lactic acid bacteria (LAB), or with prebiotic carbo-
hydrates, making it difficult to prove the probiotic effect
of a single strain (88). Also, the vehicle used for probiotic
delivery could play a relevant role. In this regard, it has
been demonstrated, in vivo, that B. animalis subsp. lactis
HN019 changes its effect on the (mice) host when the
strain is given in a fermented dairy format in comparison
with the unfermented milk (89).

The driving force of the global probiotic market was
conducted by dairy companies to launch now well-
known products during the past 20 years (90), although
other non-dairy-based products have been introduced in
the market as well (91). Dairy products, and specifically

fermented milks and yogurts, constitute a good matrix
for the delivery of bifidobacteria (92). Although (cow)
milk is a rich source of nutrients for microbial growth,
these are not always bioavailable; in the case of bifido-
bacteria, some amino acids could be limiting because of
the weak proteolytic activity reported for this genus
(93), thus limiting the growth in milk and milk-based
matrices used to manufacture dairy products. In spite
of this, it has been reported that some strains are able
to grow in milk and dairy products (94–95); even more,
B. bifidum, when growing in kefir, increased the ex-
pression of genes involved in the host-bacteria inter-
action, such as pili, thus helping the persistence of
the bifidobacteria later on in the gut (96). Besides, it is
worth mentioning that breast milk is the most suitable
medium to support a high population of bifidobacteria,
probably because of the high concentration of human
milk oligosaccharides (26). Nevertheless, the dairy ma-
trix is a good environment to improve bifidobacterial
survival in food, allowing the delivery of the probiotic
in a metabolically active state (97). The preparation of
bifidobacterial suspensions in skimmed milk increased
significantly their viability under simulated gastrointes-
tinal transit with human stomach and duodenal fluids
(98). The protein network of caseins could act as a pro-
tectant for the bacteria during the gastrointestinal tran-
sit. In this regard, we have visualized, by confocal
scanning laser microscopy, strains of B. animalis subsp.
lactis growing inside the pores enclosed by the casein
network formed after fermentation by the bifidobacteria
(Fig. 2). In comparison with milk, the use of fermented
products containing dairy starters together with bifido-
bacteria could also lead to an increase in the functional
benefit of probiotic foods (89, 99). As an example, the

FIGURE 1 Positive effects of some Bifidobacterium strains on gastrointestinal functions
studied by means of human intervention studies.
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milk fermented by B. bifidum MF 20/5 has a strong
angiotensin-converting enzyme (ACE) inhibitory activ-
ity due to the release of a novel ACE-inhibitory peptide
(LVYPFP) from milk protein, thus giving an added
functional property to the fermented product (100).

Finally, as previously stated, scientific evidence proving
the efficacy of bifidobacteria has been obtained for a few
strains/species; given that the beneficial effect, survival,
and capability of colonization or persistence in the colon
are highly dependent on the strain, the correct identifi-
cation of the species/strains included in any type of food
or food formulation is of pivotal relevance, and is still
an issue that must be resolved in the probiotic market.
Indeed, in a recent study performed with 16 probiotic
products, using DNA-based methods as well as culturing
techniques, only one matched its bifidobacterial label;
thus, most of them differ from the ingredient list (101).
Therefore, to keep the confidence of patients and consu-
mers in probiotic products intended for use in clinical
applications, or for specific human populations, more
effort must be made in the correct labeling of the strains
used to support the proposed claims (77).

BIFIDOBACTERIA FOR PREVENTION
AND TREATMENT OF DISEASE
Scientific and medical communities are becoming more
conscious about the impact of the composition of the
intestinal microbiota in human health. In this sense,
there are several publications demonstrating how some
imbalanced microbiota populations, or particular dys-
biosis, are related to a wide variety of illnesses and
abnormal physiological situations, including those as-
sociated with intestinal and immunological disorders
like allergy, irritable bowel syndrome, inflammatory
bowel disease, obesity, metabolic syndrome, systemic
lupus erythematosus, etc. (102). Interestingly, altera-
tions in the commensal gut microbiota appear to also
be related to some diseases progressing with extrain-
testinal manifestations, such as psoriasis, rheumatoid
arthritis, or mental illnesses (103). In this regard, it has
been proposed that the use of bacteriotherapy, mainly
through the administration of probiotics, often as an
adjuvant to medical treatments, could be helpful for the
recovery of a healthy state in the framework of all these
pathologies.

FIGURE 2 Visualization of B. animalis subsp. lactis growth in skimmed milk by using
confocal scanner laser microcopy. The staining method was previously reported by Ruas-
Madiedo and Zoon (167); in short, two dyes, rhodamine B (which dyes proteins) and
acridine orange (which dyes nucleic acids), were added to the milk at final concentra-
tion of 0.001 and 0.002%, respectively. Afterward, stained milk was inoculated (5%) and
carefully placed into high-optical-quality plastic μ-Slides (Ibidi GmbH) for direct confocal
laser scanning microscopy analysis. The microplates were incubated at 37°C until they
reached a pH of ≤4.5, and the confocal microscope Ultra-Spectral Leica TCS AOBS
SP2 (Leica Microsystems GmbH, located in the University of Oviedo facilities) was used.
Bacteria dyed with acridine orange were visualized with the laser 488 nm ion argon/
krypton (green), and proteins (mainly caseins) dyed with rhodamine B were visualized with
the laser 543 nm He/Ne (red) but also with the laser 488 nm. Thus, after image treatment,
the bacteria are visualized in green and the casein matrix in yellow (combination red
and green). The oil immersion objective 63×/1.40 combined with an amplification zoom
of 1.58 was directly used (×100 magnification). Microphotographs: (A) a Z-projection
(thickness about 10 μm) of 10 slides of an XY-field (bar, 10 μm); (B) a slide of an XY-field
(bar, 10 μm); (C) an optical zoom of a region inside the XY-field showed in B (bar, 5 μm).
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Bifidobacterium is one of the main genera of com-
mensal bacteria present in the human GIT and its pres-
ence has been related to health benefits in several
studies (83). Each Bifidobacterium species appeared
to elicit different immune effects on the host, note-
worthy being the ability of B. bifidum to expand the
T-regulatory response, which may be relevant for its
use in chronic inflammatory diseases (104). In this re-
gard, supplementation of the gut microbiota obtained
from a cohort of systemic lupus erythematosus pa-
tients with a B. bifidum strain partially corrected the
altered immune response characteristic of lupus, using
a dendritic cell/naive T-cell model (105). The posi-
tive effects that bifidobacteria could exert on human
health have been extensively reviewed during the
past few years (83, 106, 107). Because of the potential
impact on human health and the GRAS, QPS status
of some of the species of this genus, several strains
have undergone clinical studies and are currently being
used as probiotics in human nutrition. Beneficial
effects resulting from the consumption of bifidobacte-
ria on human health have mainly been associated with
the prevention and treatment of intestinal diseases
and immunological disorders (Tables 1 and Table 2).
In this section, we will focus on the effectivity of
bifidobacteria in clinical trials, and therefore neither
animal models nor in vitro or ex vivo studies will be
considered.

Antibiotic-Associated Diarrhea and
Other Intestinal Disorders
Regarding intestinal diseases, administration of bifido-
bacteria has been used to improve the symptoms of
lactose intolerance, mainly using strains of the species
B. animalis subsp. lactis (108), or with the probiotic
mixture containing the strain B. breve Yakult and Lac-
tobacillus casei Shirota (88). The strain B. animalis
subsp. lactis BB-12 has been used in the treatment
of intestinal infections; for instance, it has been dem-
onstrated that children fed with an infant formula
containing this strain displayed fewer and shorter epi-
sodes of diarrhea (109). A commercial probiotic formula
containing the same strain of bifidobacteria (BB-12)
together with a strain of Streptococcus thermophilus
was used satisfactorily in a clinical trial focused on the
prevention of antibiotic-associated diarrhea (AAD) in
infants (110). In this sense, the commercial probiotic
mixture VSL#3, which contains several strains, among
which are B. breve, B. infantis (or B. longum subsp.
infantis), and B. longum, displayed an ability to reduce
the incidence of AAD (111).

Clostridium difficile-Associated Diarrhea
In the case of theC. difficile-associated diarrhea (CDAD),
a mixture containing a strain of B. bifidum and Lacto-
bacillus acidophilus was efficient at preventing the pro-
liferation of this pathogen after antibiotic therapy (112).
In this sense, Goldenberg and coworkers (113) con-
cluded, after an exhaustive meta-analysis (23 clinical
trials, n = 4,213), that there is moderate evidence sug-
gesting that probiotics are effective in the prevention of
CDAD. Regarding C. difficile infection, the best meth-
odology to reduce the associated diarrhea and to eradi-
cate this pathogen is the fecal microbiota transplantation,
which has shown up to 95.9% success, including recal-
citrant and severe cases (114). In this therapy, the com-
plete microbiota of a healthy donor is placed into the
patient to modify their intestinal microbiota and to dis-
place C. difficile (115). For this purpose, the feces of the
healthy donor, in which the intestinal microbiota con-
stitutes a very important part, are homogenized in saline
buffer and administered to the patient in different ways,
such as colonoscopy, endoscopy, or enema (116). Be-
cause it is likely that the feces from a healthy person
contain between 1 and 4% bifidobacteria, it remains to
be elucidated whether increasing the number of bifido-
bacteria by appropriate donor selection, or by targeted
enrichment of this population before transplantation,
could be useful, not only in CDAD, but also in other
diseases through fecal microbiota transplantation.

Helicobacter pylori Infection
Regarding the use of bifidobacteria to avoid bacterial
infections, it is worth mentioning their application in in-
fections caused byH. pylori, a Gram-negative bacterium
present in the stomach that is responsible for chronic
ulceration, a pathology that has been linked to the de-
velopment of gastric cancer. Although very successful in
the beginning, antibiotic treatments decreased in effec-
tiveness after years of antibiotherapy, which resulted
in the emergence of antibiotic resistance in H. pylori
strains. In this regard, the use of probiotics has been
efficient in reducing H. pylori loads, or even definitively
eradicating the pathogen. Li and coworkers (117) pub-
lished a meta-analysis that compiled the clinical trial
studies involving H. pylori treatment, and they showed
that the use of probiotics could be as effective as phar-
macological approaches. In addition, probiotics were re-
vealed in the same analysis as the best treatment in terms
of tolerance for the patient. Recently, Boltin and co-
workers (118) reviewed the use of probiotics forH. pylori-
induced ulcer disease; they concluded that the use of
probiotics alone is not enough to eradicate H. pylori, but
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it is suitable to improve the efficacy of antibiotic regimens
for H. pylori eradication and prevent AAD.

The use of probiotics can be then considered as an
adjuvant therapy for the eradication of H. pylori thanks

to (i) their ability to stimulate mucin production, there-
fore limiting the adhesion of the pathogen to the gut
surface; (ii) production of short-chain fatty acids and
other antimicrobial substances that may reduceH. pylori

TABLE 1 Bifidobacterium strains used as probiotics with demonstrated effectivity in humans trials

Effect Strain(s) Reference(s)

• Improve symptoms in lactose-intolerant patients • B. breve Yakult + Lb. casei Shirota 88

• B. animalis subsp. lactis 108

• Prevent antibiotic-associated diarrhea • B. animalis subsp. lactis BB-12 + S. thermophilus 110

• Reduce the incidence of antibiotic-associated diarrhea • VSL#3 (B. breve + B. infantis + B. longum + S. thermophilus +
Lb. acidophilus + Lb. paracasei + Lb. plantarum + Lb. delbrueckii
subsp. bulgaricus)

111

• Prevent C. difficile-associated diarrhea • B. bifidum + Lb. acidophilus (Cultech strains) 112

• Prevent gastrointestinal infections • B. animalis subsp. lactis BB-12 109

• Improve functional gastrointestinal symptoms in adults • B. animalis subsp. lactis HN019 136

• Improve gastrointestinal symptoms in women • B. animalis subsp. lactis CNCM I-2494 168

• Alleviate symptoms of IBS • B. animalis subsp. lactis BB-12 + Lb. rhamnosus (GG + LC705) +
P. freudenreichii subsp. shermanii JS

86

• B. breve BB99 + Lb. rhamnosus (GG + LC705) + P. freudenreichii
subsp. shermanii JS

142

• B. infantis 35624 87, 169

• B. longum 101 + Lb. acidophilus 102 + Lactococcus lactis 103 +
S. thermophilus 104

143, 170

• Ameliorate symptoms of IBS in children • VSL#3 144

• Improve symptoms of IBS • B. animalis DN-173010 + S. thermophilus + Lb. delbrueckii
subsp. bulgaricus + Lc. lactis

137, 138

• Improve clinical conditions of patients with UC • B. breve Yakult + prebiotic GOS 171

• Reduce symptoms of patients with UC • VSL#3 140, 141

• Reduce proinflammatory biomarkers in patients with UC • B. infantis 35624 139

• Remission of UC in children • VSL#3 84

• Maintain remission in recurrent pouchitis • VSL#3 85, 172

• Reduce the pouchitis activity index • VSL#3 173

• Prevent necrotizing enterocolitis in preterm infants • B. bifidum NCDO 1453 + Lb. acidophilus NCDO1748 147

• Infloran (B. infantis) + Lb. acidophilus 146

• Prevent necrotizing enterocolitis in neonate • ABC Dophilus (B. infantis + B. bifidus) + S. thermophilus 148

• Reduce levels of Helicobacter pylori • B. bifidum YIT4007 121

• Improve immune function in resected CRC patients • B. animalis subsp. lactis BB-12 + Lb. rhamnosus GG 126

• Reduce cancer risk, improving epithelial barrier function • B. animalis subsp. lactis BB-12 + Lb. rhamnosus GG + prebiotic 128

• Reduce postoperative septicemia in colectomy • Lb. plantarum CGMCC1258 + Lb acidophilus-11 + B. longum-88 129

• Reduce postoperative infection complications • B. longum 131

• Improve disease score in atopic dermatitis (AD) in
children

• B. animalis subsp. lactis HN019 + Lb. rhamnosus HN001 153

• Improve clinical conditions in children with AD • B. animalis subsp. lactis UABLA-12 154

• Improve AD and reduce IgE • B. bifidum + LAB 155

• B. breve M-16V + prebiotics 156

• Reduce allergic symptoms, reducing Th2 cytokines • B. animalis subsp. lactis NCC2828 157

• Reduce pollinosis symptoms • B. longum BB536 158
• Reduce sensitization in infants with mother suffering

atopy
• B. animalis subsp. lactis BB-12 + Lb. rhamnosus GG 159

• Reduce eczema incidence • B. animalis subsp. lactis BB-12 160

• B. animalis subsp. lactis HN019 161

• B. breve BB99 + LAB 162

• B. animalis subsp. lactis AD011 + B. bifidum BGN4 163

• Prevent eczema incidence in high-risk children • B. animalis subsp. lactis W52 + B. bifidum W23 164
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density; and (iii) protection against human pathogens
due to host receptor competition and immune mod-
ulation capabilities (119). On the contrary, and based
on other meta-analyses, some authors agree that pro-
biotic supplementation does not improve the eradica-
tion rate of H. pylori (120). Most probiotics used in
these studies are members of the genus Lactobacillus,
but also some bifidobacteria species were tested as well,
such as the strain B. bifidum YIT4007. This strain was
able to reduce gastric mucosa alterations and other
gastrointestinal symptoms due to a reduction in the
levels ofH. pylori (121). Other published works showed
that the administration of a pretreatment with yogurt
containing mixtures of bifidobacteria and lactobacilli
improved the eradication of H. pylori (122, 123). A re-
cent study reported an H. pylori eradication rate of
32.5% in adults after 10 days of administration of
the commercial mix of probiotic VSL#3, which includes
several probiotic bifidobacteria as mentioned above
(118).

Colorectal Cancer
Probiotics have also been used to modify/modulate the
microbiota of patients toward a healthy microbiota in
those cases in which alterations of microbiota popula-
tions are associated with disease. In this context, pro-
biotics have been used to modulate the microbiota in
colorectal cancer (CRC). In CRC patients, it is known
that the composition of the microbiota is one of the
factors favoring the development of carcinogenic le-
sions, notably by the presence of genotoxic bacteria such
as Fusobacterium nucleatum or colibactin-producing
Escherichia coli (124, 125). Only a few clinical trials
(involving bifidobacteria administration) have been per-
formed in CRC, although there are promising results
in in vitro and preclinical studies. As a whole, the main
positive effects obtained in the clinical trials are the im-

provement of the gut environment by reducing the sec-
ondary effects of surgery and chemotherapy, notably at
the level of the epithelial layer and involving tissue re-
generation. In this sense, administration of B. animalis
subsp. lactis BB-12 together with Lactobacillus rham-
nosus GG and inulin improved the immune functions in
resected CRC patients (126). Other works reported on
the ability of bifidobacteria to induce fecal microbiota
modifications in CRC patients (127) as well as to reduce
some cancer risk factors by improving epithelial barrier
function and reducing colorectal proliferation by com-
mensal microorganisms (128). Recent studies showed
that administration of bifidobacteria as part of a peri-
operative probiotic treatment reduced the rate of post-
operative septicemia in patients undergoing a colectomy
(129) and in colorectal liver metastases surgery (130).
Moreover, Zhang and coworkers (131) showed that the
preoperative administration of bifidobacteria in CRC
patients reduced the postoperative infection complica-
tions through a mechanism involving maintenance of
the intestinal microbiota populations, reduction on the
numbers of E. coli, and restriction in bacterial translo-
cation from the intestine to the bloodstream.

Chemotherapy Treatments
Chemotherapy treatments cause diarrhea and alter the
normal function of the GIT, perturbing the proportions
of populations conforming the intestinal microbiota.
Alterations in the gut microbiome could be avoided with
the use of probiotics before, during, and after the che-
motherapy. In this sense, it is estimated that the com-
plex consortia of microorganisms will be more efficient
than a single strain when restoring the microbiota.
Wada and coworkers (132) showed that the adminis-
tration of B. breve strain Yakult improved the intestinal
environment through the production of small-chain
fatty acids favoring cross-feeding relationships among
the microorganism communities inhabiting the gut of
CRC patients receiving chemotherapy. Some of the fol-
lowing works are examples of clinical trials, but many
others are indeed preclinical models aimed at analyzing
the prevention and treatment ability of bifidobacteria
in CRC. To expand this information, the reader is
prompted to read an excellent review on the subject by
Ambalam and coworkers (133). As has been mentioned,
the use of probiotics in CRC is not a direct treatment
for the disease, but an adjuvant therapy that would
help patients avoid alterations in their gut microbiota.
Bifidobacteria-containing probiotics are expected to
help recovery from chemotherapy, while reducing the
possibilities of septicemia after surgery. Because of the

TABLE 2 Selection of meta-analyses and reviews about the
effect of probiotic products containing bifidobacteria on
certain diseases

Effect Reference(s)

• Probiotics effective in prevention of CDAD 113

• Reducing loads or eradicating H. pylori 117

• Improve efficacy of antibiotics against H. pylori
and AAD prevention

118

• Modulate microbiota composition reducing liver
disease

134, 135

• Probiotics and gut microbiota role in IBS 145

• Probiotic benefit in eczema prevention 166

• Probiotics and colorectal cancer prevention 133
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advantages of probiotic consumption, several authors
have proposed that an oral intake of probiotics should
be included as a preoperative and postoperative treat-
ment in CRC (133).

Liver Disease
Probiotics, including bifidobacteria, have become part
of novel therapeutic approaches in hepatology, mainly
because of their beneficial effect modulating the com-
position of the intestinal microbiota, a factor that can
influence liver disease onset (134). The increasing inter-
est in the use of probiotics for prevention and treatment
of liver disease is related to the effect of gut microbiota in
the pathogenesis of several liver complications including
cirrhosis. However, the scientific evidence in this field
is still controversial and further studies are required in
order to include probiotics in liver treatments with a
reasonable guarantee of success (135).

Inflammatory Bowel Disease and
Irritable Bowel Syndrome
The positive effects exerted on human health by bifido-
bacteria and, in general, by probiotics, are related to
their ability to modify the composition of the intestinal
microbiota and their capability to modulate the im-
mune response. Both parameters are altered in intestinal
pathologies like irritable bowel syndrome (IBS), in cer-
tain physiological situations such as obesity, autoim-
mune diseases such as systemic lupus erythematosus,
and chronic inflammatory diseases such as inflamma-
tory bowel disease (IBD), including Crohn disease (CD),
ulcerative colitis (UC), and pouchitis. Indeed, the prev-
alence rate of these noncommunicable diseases has in-
creased significantly in developed countries during the
past few decades (83). In these pathologies, B. animalis
subsp. lactis HN019 has been able to improve the gas-
trointestinal function in adults (136), and B. animalis
subsp. lactis DN171010 reduced IBS symptoms (137,
138). The beneficial effect associated with the immune
modulation capability of bifidobacteria has been related
to their ability to reduce systemic proinflammatory bio-
markers. This is the case of the strain B. infantis 35624
that was able to reduce proinflammatory cytokines at
gastrointestinal (mucosal immune system) and nongas-
trointestinal levels (systemic immune system) (139). The
administration of other Bifidobacterium strains has also
been efficient in alleviating IBS symptoms, such as a
probiotic mixture containing B. breve BB99 (140) or
the strain B. animalis subsp. lactis BB-12 (86). Another
probiotic mixture that reduced IBS symptoms contains
the strain B. longum 101, together with two strains of

the genus Lactobacillus (141). Another example was the
administration of VSL#3 for 6 weeks, which resulted in
the reduction of IBS symptoms and the improvement
of the quality of life in children (142). Further reading
on the use of probiotics in IBS and the gut microbiota
role can be obtained in the review by Distrutti and co-
workers (143).

In IBD, the probiotic mixture VSL#3, which con-
tains bifidobacteria of different species, was able to re-
duce the UC symptoms in adults (144, 145) as well as
the remission of the disease in children (84).

Necrotizing Enterocolitis
Regarding prevention of necrotizing enterocolitis
(NEC) in newborns, bifidobacteria has also been assayed
mainly as part of probiotic mixtures. A commercial
product containing a strain of B. infantis was able to
reduce the incidence and severity of NEC in very-low-
birth-weight infants (146) and in very-low-birth-weight
preterm infants (147). Moreover, another study showed
that a commercial probiotic product containing strains
of B. infantis and B. bifidum reduced the incidence and
severity of NEC in a premature neonatal cohort (148).
However, some results recently recorded in literature
did not support a positive effect of bifidobacteria on
NEC. For instance, a phase 3 clinical trial aimed at
testing the effectiveness of the probiotic B. breve BBG-
001 concluded that there is no evidence of benefit for
very preterm infants (149).

Allergic Disease
Probiotic bifidobacteria have also been proposed for
the prevention of nonintestinal diseases, such as allergic
disease. The prevalence of atopic eczema, food allergy,
and asthma has increased during the past decade, be-
coming a major public health problem, and indeed these
allergic disorders are one of the most common causes
of chronic illness and hospital admissions (150). Allergic
diseases are characterized by an inadequate T-helper
immune response balance, involving mainly an over-
representation of the Th2 response with a concomitant
inability to maintain the Th1/Th2 response balance.
Moreover, allergic patients usually display a reduced
number of T regulatory cells (Treg) (151). During the
past 10 years several studies have tried to demonstrate
the influence of the intestinal microbiota on allergic
processes. It is believed that this influence could be me-
diated through the interaction of microorganisms with
the mucosal immune system. In this sense, several studies
aimed to demonstrate the beneficial effects of probiotics
on the prevention and treatment of allergic disease
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through in vivo studies with animal models and human
trials (152). Regarding human trials for the treatment
of allergy, administration of Lb. rhamnosusHN001 and
B. animalis subsp. lactis HN019 improved the disease
scores of atopic dermatitis (AD) in children suffering
from atopic eczema (153). Similar results were obtained
with the administration of a probiotic mixture contain-
ing B. animalis subsp. lactisUABLA-12 that significantly
improved the clinical conditions in children with AD
(154). Improvement in AD scores and reduction of IgE
levels associated with eczema have also been observed in
children after the administration of B. bifidum in com-
bination with other lactic acid bacteria (155), as well as
with the strain B. breve M-16V combined with a mix-
ture of prebiotics (156). The immune modulatory effect
exerted by B. animalis subsp. lactis NCC2818, which
reduced allergic symptoms, was mediated by a reduction
in the production of Th2 cytokines (157). Moreover, a
human clinical trial performed with the strain B. longum
BB536 showed that the intake of yogurt supplemented
with this strain reduced pollinosis symptoms by modu-
lating the Th1/Th2 balance (158). Use of probiotics
to improve atopic eczema needs further investigation
and clinical trials to infer recommendations for aller-
gies, especially in adults where no evidence of signifi-
cant reduction in eczema symptoms has so far been
demonstrated.

Regarding the prevention of allergic disease by means
of probiotic intake, there are several clinical trials with
promising results. In general, the duration of the pro-
biotic intervention, rather than prenatal versus postnatal
treatment, seems to be the crucial factor determining
the success of probiotics. Administration of B. animalis
subsp. lactis BB-12 and Lb. rhamnosus GG during
pregnancy and lactation resulted in a reduction of the
risk of sensitization of infants whose mothers suffered
from atopy (159). Moreover, the strain BB-12 adminis-
tered during the pre- or postnatal period reduced the
incidence of eczema in an atopic dermatitis cohort
(160). Another strain able to reduce the atopic eczema
incidence was B. animalis subsp. lactis HN019, ad-
ministered during the pre- or postnatal periods (161).
Another clinical trial combining pre- and postnatal
treatments showed a reduction of eczema and IgE-
associated eczema when the strain B. breve BB99 was
administered together with other lactic acid bacteria
strains (162). Similar clinical trials, but with longer
treatment periods, showed reductions in eczema inci-
dence after the administration of B. animalis subsp.
lactis AD011 and B. bifidum BGN4 (163), and a pre-
ventive effect of the incidence of eczema in high-risk

children after the administration of the strains B. ani-
malis subsp. lactis W52 and B. bifidum W23 (164).

However, not all the clinical trials have been suc-
cessful and, for instance, no significant differences be-
tween the placebo and probiotic groups were found
regarding the incidence of atopic eczema when the strain
B. longum BL999 was administered to Asian infants
(165). The World Allergy Organization (WAO) recently
published their Guidelines for Allergic Disease Pre-
vention (GLAD-P) based on the use of probiotics (166).
The WAO published recommendations about the use
of probiotics in the prevention of allergy, based on sci-
entific evidence and from the results of human trials.
These guidelines concluded that currently there is no
evidence supporting probiotic supplementation for re-
ducing the risk of allergy incidence in children. How-
ever, there is likely to be a net benefit using probiotics
for eczema prevention, which requires further clinical
trials to increase the sample size and the reliability of
the results. On the contrary, in case a family history
of allergy (eczema) is identified as a risk factor for chil-
dren, WAO suggests the use of probiotics for pregnant
women, women who breastfeed their infants, and in
those infants.

CONCLUSIONS
In summary, although positive results of the use of
bifidobacteria for the treatment and prevention of dif-
ferent diseases are abundant in scientific literature,
further work is needed to improve the solidity of the
scientific evidence supporting the beneficial effects of
this particular group of intestinal bacteria. It is note-
worthy that the health benefits exerted by bifidobac-
teria seem to be strain dependent, notably at the level
of immunomodulation, but they are also dependent
on the genetic background of the target population
(77). Therefore, and despite the key contribution of
probiogenomics efforts in discovering the genetic back-
ground of probiotic bacteria (4), investment in basic
research is absolutely necessary to clarify the molecular
mechanism behind the probiotic action, a key point to
be able to define strain-specific effects. Furthermore, it is
also necessary to correctly identify not only the strains,
but also the pathology and the population to be targeted
with probiotic interventions. Finally, for future strain
selection, it would be desirable to choose appropriate
probiotic strains showing promising results in vitro and
in vivo, and ideally good technological properties, in
order to scale up the production of future probiotic
bifidobacteria at affordable costs.
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