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ABSTRACT The gut microbiome is considered an organ contributing to the regulation of host metabolism. Since the relationship between

the gut microbiome and specific diseases was elucidated, numerous studies have deciphered molecular mechanisms explaining how gut

bacteria interact with host cells and eventually shape metabolism. Both metagenomic and metabolomic analyses have contributed to the

discovery of bacterial-derived metabolites acting on host cells. In this review, we examine the molecular mechanisms by which bacterial

metabolites act as paracrine or endocrine factors, thereby regulating host metabolism. We highlight the impact of specific short-chain fatty

acids on the secretion of gut peptides (i.e., glucagon-like peptide-1, peptide YY) and other metabolites produced from different amino acids

and regulating inflammation, glucose metabolism, or energy homeostasis. We also discuss the role of gut microbes on the regulation of

bioactive lipids that belong to the endocannabinoid system and specific neurotransmitters (e.g., g-aminobutyric acid, serotonin, nitric

oxide). Finally, we review the role of specific bacterial components (i.e., ClpB, Amuc_1100) also acting as endocrine factors and eventually

controlling host metabolism. In conclusion, this review summarizes the recent state of the art, aiming at providing evidence that the gut

microbiome influences host endocrine functions via several bacteria-derived metabolites. (Endocrine Reviews 40: 1271 – 1284, 2019)

General Overview of the Gut Microbiome

T he term microbiota indicates a complex and
dynamic microbial community residing in

a specific habitat. In detail, the human microbiota
consists of the totality of microorganisms inhab-
iting the human body, mainly on the skin, the
genitals, and the intestine. Although almost all
body surfaces are colonized, most microbes reside
in the intestine and are known as the gut micro-
biota ().

Importantly, different types of microorganisms
constitute the gut microbiota; in addition to bacteria,
archaea, fungi, viruses, and phages also colonize the
intestine. To date, studies of host–gut microbiota
interactions have focused mainly on investigating the
bacteriome (the totality of bacteria composing the gut
microbiota). However, the mycobiome, virome, and

phageome are also attracting increasing attention in
this field (, ).

Consequently, the interactions between intestinal
bacteria and human cells are currently the best de-
scribed and will be the subject of this review. Here, the
more general term gut microbiome will be used to refer
to the gut bacteria.

The development of culture-independent methods
consisting of the sequencing of massive amounts of
DNA have substantially contributed to the develop-
ment of the field. Since their introduction in ,
next-generation sequencing technologies have enabled
advantageous, high-throughput, low-cost, and fast
sequencing. Microbial diversity has been determined
via two different sequencing approaches: amplicon
sequencing and shotgun metagenomics (). In the
amplicon sequencing approach, specific regions of the
microbial DNA are amplified (i.e., S rRNA gene)
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and then sequenced, facilitating a taxonomic or
phylogenetic analysis (Fig. ). Functional information
could also be extrapolated. On the other hand, the
shotgun metagenomics approach sequences the entire
genome of the organisms in the sample. After se-
quencing, the reads are assembled together, allowing
the identification of large numbers of coding and
noncoding sequences. This approach enables a taxo-
nomic analysis, but it is specifically intended for use in
functional analyses. Metabolic pathways have been
reconstructed based on enzyme coding genes ().

According to the most recent estimates, the in-
testine of a man with a standard weight hosts . 3
 bacteria, which reside mainly in the colon, with a
bacteria–to–human cell ratio of ~: (Fig. ) (). By
metagenomic sequencing of fecal samples of 
people from three different continents (America, Asia,
and Europe), a catalog of the genes expressed by the
human microbiome was created in ; this non-
redundant catalog counts ~ million bacterial genes,
a number  times greater than the number of genes
in the human genome (). In this same study, it was
calculated that each fecal sample contained an average
of , gut bacterial genes, meaning  times more
genes than the human genome (, ).

Although the number of gut bacterial genes per
individual has not been calculated but only estimated,
the aforementioned numbers emphasize the impor-
tance of the metabolic capacity of the gut microbiome,
which is predicted to be even higher than the host
metabolic capacity.

At the taxonomic level, ~% of gut bacteria
belong to the phyla Firmicutes, Bacteroidetes, and
Actinobacteria, with the remaining portion belong-
ing to Proteobacteria and Verrucomicrobia. Initially,
an increase in the Firmicutes to Bacteroidetes ratio
was associated with obesity in humans and rodents
(, ); however, the lack of consistency between
studies (, ) prompted an in-depth analysis at the
taxonomic level (i.e., family, genus, and species).
Researchers have not yet defined which level of
taxonomic investigation is the most suitable, because
the metabolic activity of the gut microbiome and the
interaction with the host increase the complexity of
the analysis ().

A complementary approach to analyze the gut
microbiome consists in investigating the collection of

genes harbored by the gut microbes. For example, a low
number of gut microbial genes (i.e., a low gene count) is
associated with an unhealthy state, as characterized by
higher adiposity, insulin resistance, dyslipidemia, and
low-grade inflammation (). Several other studies have
confirmed the positive correlations between a high basal
gene count, healthier metabolic status, and better out-
comes after dietary restriction (, ), thus supporting
the importance of the evaluation of the gene richness.

Recently, Vandeputte et al. () identified new
perspectives for the investigation of gut microbiome
by suggesting that quantifying the absolute number of
bacteria (microbial load or cell counts) is a reliable
approach for investigating the intestinal microbiome
and, conversely, highlighting the potential limitations
associated with the relative quantification and absolute
quantification of gut bacteria.

Overall, despite the technical and conceptual
progress achieved in the study of the gut microbiome,
we still lack a gold-standard method; the best strategy
relies on the use of complementary approaches
(taxonomic profiling, functional metagenomic analy-
sis, and gene count) and the analysis of multiple
samples over time to obtain a comprehensive picture
of the composition and numbers of metabolites (i.e.,
metabolome) involved in this complex and dynamic
biological system. Many improvements are still needed,
and many questions are still matters of debate ().

In the next part of the review, we will describe
several microbial metabolites and microbial compo-
nents that contribute to the host–gut microbiome di-
alogue. Those bacterial-derived molecules can locally
interact with the host (i.e., activating receptors expressed
on intestinal cells or on intestinal nervous terminations)
but can also exert their action distally, after entering the
circulation. Independent of the mechanism of action
(paracrine, endocrine, or nervous) microbiota-derived
metabolites and microbial components influence host
endocrine function.

What Are the Different Metabolites Produced
by the Gut Bacteria?

Short-chain fatty acids
The human gastrointestinal (GI) tract is highly spe-
cialized for the digestion and absorption of different

ESSENTIAL POINTS

· The gut microbiome helps to regulate host metabolism

· Numerous metabolites produced by gut microbes act on specific host receptors

· Short-chain fatty acids trigger the secretion of gut peptides (i.e., glucagon-like peptide-1, peptide YY)

· Gut microbes regulate the production of endocannabinoids and neurotransmitters

· Bacterial components (i.e., ClpB, Amuc_1100) act as endocrine factors controlling host metabolism
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nutrients that are present in our food. Actually, almost
all the fat contained in a meal is absorbed, and a very
minor portion (, g/d) will escape the digestion and
eventually reach the colon to be excreted. Numerous
factors are implicated in this complex process, in-
cluding bile acids and different lipases, and the fatty
acids are eventually actively transported into intestinal
epithelial cells. The upper GI tract is also very efficient
at digesting and absorbing simple sugars and most of
the amino acids derived from the digestion of proteins
contained in the diet.

Conversely, the human gut is unable to digest all
the different types of carbohydrates present in our diet.
The chemical features of those fibers vary according to
the source, such as cereals, fruits, and vegetables.
Therefore, numerous carbohydrates escape digestion
in the upper GI tract and become so-called dietary
fiber. Hence, dietary fibers are used as an energy source
by specific gut bacteria. The diverse enzymatic ma-
chinery of some bacteria contributes to the metabo-
lization of these nondigestible carbohydrates into
different molecules, such as short-chain fatty acids
(SCFAs) (e.g., acetate, butyrate, and propionate)
(Fig. ).

SCFAs have been investigated in numerous
conditions, and their impacts on host health are well
documented (–). Besides acting locally, those
compounds have endocrine properties and reach

different organs located at various distances from the
GI tract, such as the liver, adipose tissue, brain, and
muscles (, ). Consequently, their physiological
effects range from the regulation of energy, glucose,
lipid metabolism, and inflammation to the modu-
lation of immunity and cancer (). Thus, these
microbial metabolites have numerous physiological
roles.

Forty years ago, the pioneering studies by Daniel
Jenkins et al. (, ) revealed an irrefutable link
between the ingestion of “nonabsorbable” carbohy-
drates and glucose metabolism. In these studies,
the authors initially postulated that the bulking ef-
fects (i.e., water retention) of the nondigestible
carbohydrates ingested, such as guar gum or pectin,
explained the mechanisms underlying the beneficial
effects (–). Today, the positive association be-
tween fibers and health has undeniably been con-
firmed; however, the mechanisms are more complex
than the bulking effect. During the last  years,
numerous studies have discovered that different
nondigestible carbohydrates are, in fact, fermented
by the gut bacteria that are present in the lower part
of the gut.

SCFAs and gut peptides in rodents
The different mechanisms by which specific fer-
mentable fibers are fermented into SCFAs and

Figure 1. Host and gut
microbiota in comparison:
the numbers. In recent
decades, bacteria
composing the gut
microbiota have been
investigated. Today we
know that the intestine
of a healthy man hosts a
number of bacteria that is
comparable to the number
of cells composing his body
(excluding red blood cells);
on average, a stool sample
contains .7.5 million
bacterial genes, ~38 times
more genes than are
expressed by the human
genome. All these data
suggest that the metabolic
capacity of the gut
microbiota can exceed the
host’s metabolic capacity.
However, numerical
evidence is still lacking in
this sense.
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subsequently improve metabolism were initially
discovered in preclinical models using inulin-type
fructans as prebiotics (e.g., inulin or oligofructose)
() (Table ). In a series of studies, our group and
other researchers have investigated the molecular
mechanisms by which a diet enriched with prebiotics
decreased the body weight, fat mass gain, insulin
resistance, and energy intake in rodents with ge-
netically or diet-induced obesity (–). Seeking to
determine a mechanism that explains the lower food
intake and improved glucose tolerance observed
upon prebiotic treatment, we reasoned that the
improvements in glucose levels, insulin sensitivity,
and energy intake were due to the modulation of gut
peptides produced by the L-cells located in the lower
part of the gut and the production of glucagon-like
peptide- (GLP-) (). Hence, we measured the
levels of GLP- and found that the improved phe-
notype was associated not only with higher levels of
GLP- in the portal vein blood but also with a higher
GLP- content and proglucagon mRNA expression
in the intestinal segments (i.e., ileum and colon)
(–). Later, these effects were also accompanied
by an increased level of peptide YY (PYY) and more
enteroendocrine L-cells (, ) (Fig. ). Currently,
these effects are not exclusively limited to one type of

fermentable carbohydrate, such as inulin-type fruc-
tans. Indeed, resistant starches and arabinoxylans are
other fermentable, nondigestible carbohydrates that
produce effects similar to inulin-type fructan pre-
biotics, namely decreased food intake, fat mass, and
body weight gain, together with increased plasma
GLP- and PYY levels (–). Similarly to the
inulin-type fructans, the microbial fermentation of
all these fibers leads to the production of large
amounts of various SCFAs. Interestingly, the chemical
structure of the fermentable fibers is also directly
associated with the profile of SCFAs; in other words,
the quantity of butyrate, acetate, or propionate
produced depends on the type of fibers, because
inulin is described as propionigenic, whereas resistant
starches are more butyrogenic. The different path-
ways involved in the biosynthesis of SCFAs upon
nondigestible carbohydrate fermentation and the
cross-feedings observed between bacteria have been
described [for a review see ()]. Therefore, the profile
of SCFAs will directly depend on the microbiome
composition and hence the potential metabolic impact
on host health.

SCFAs bind to and activate specific G protein–
coupled receptors such as GPR- (also referred to as
FFAR, or free fatty acid receptor ) and GPR-

Figure 2. Microbiota-derived SCFAs influence host endocrine functions. Dietary fibers are substrates of the microbial
enzymatic machinery; they are fermented in SCFAs (namely acetate, butyrate, and propionate). SCFAs influence host metabolism
by acting locally on receptors expressed by the intestinal enteroendocrine L-type cells (i.e., GPR-41, GPR-43) or distally, after entering
the circulation and being transported to other organs (liver, adipose tissue, brain, andmuscle). Importantly, SCFAs can also be sensed by
the gut bacteria themselves and regulate pathogenic colonization, depending on their concentration. This type of cell-to-cell
interaction is known as quorum sensing.
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(also referred to as FFAR). More than  years ago,
Brown et al. () identified the endogenous ligands of
these receptors that are expressed in a wide variety of
tissues and cell types, ranging from endocrine cells to
adipocytes and immune cells (, ). Importantly,
both GPR- and GPR- are expressed on entero-
endocrine L-cells; therefore, those receptors are
directly contacted by the SCFAs produced by the
local microbiome (). Thus, the modulation of the
proportion and quantity of SCFAs will activate these
GPRs and eventually promote the secretion of gut
peptides such as GLP- and PYY (–) (Fig. ).
The role of the microbiome in controlling the
production of these gut peptides has been observed
in different genetically modified mice models lacking
either GPR- or GPR-. Mice lacking these re-
ceptors display altered secretion of GLP- and PYY
after exposure to SCFAs or specific prebiotics (, ,
). Aside from the role of SCFAs and GPR- in
the secretion of GLP- by L-cells, other molecules
influenced by the microbiota can also stimulate
GLP- secretion. Indeed, the gut microbiota regu-
lates both bile acid synthesis and the production of
secondary bile acids (). Bile acids bind to the
membrane receptors TGR (Gpbar) expressed on
the L-cells. The activation of TGR improves liver
metabolism and glucose tolerance in obese rodents
by a mechanism regulating intestinal GLP- pro-
duction (). In the adipose tissue, TGR stimulation
induces expression of the enzyme -iodothyronine
deiodinase (D), which produces the activated form
of thyroid hormone, thereby increasing thermo-
genesis ().

Another mechanism linking bile acids and metab-
olism is related to the activation of the farnesoid X
receptor, which is known to regulate glucose tolerance
and insulin sensitivity but via mechanisms other than
enteroendocrine regulation ().

SCFAs and gut peptides in humans
In addition to the numerous data regarding SCFAs
and fibers in rodents, human studies have also re-
ported changes in gut peptide production after
modification of the gut microbiome induced by the
administration of fermentable fibers. Nonetheless,
the general impacts on food intake, glucose meta-
bolism, and body weight are far less important that
the effects observed on rodents. Although dis-
crepancies exist in the magnitude of the impact on
these parameters, they are still interesting to con-
sider when using dietary fiber as a nutritional ad-
juvant to global and multidisciplinary therapeutic
care. Notably, the use of microbially fermented
compounds in medical care has been reported for
two decades. Indeed, in a  study, Ropert et al.
() first reported a correlation between levels of
lactulose, which is fermented by the gut micro-
biome, in healthy volunteers with higher daily
production of gut peptides. In , the adminis-
tration of oligofructose at a dosage of  g/d for
 week was reported to significantly increase plasma
GLP- levels after a meal (). Moreover, several studies
reported that modulation of the gut microbiome with
nondigestible carbohydrates increases satiety and
reduces food intake, with an impact on energy intake.
Nevertheless, none of these studies have investigated
the gut peptides (, ). In , we reported that
modulation of the microbiome induced by oligo-
fructose ( g twice daily for  days) significantly
increased satiety and reduced hunger and the pro-
spective desire to ingest food (), effects associated
with higher blood GLP- and PYY levels (). Since
the publication of these articles, several other studies
have confirmed that the consumption of fermented
carbohydrates affects appetite sensations in different
cohorts, including obese volunteers (–); for a
review, see ().

Table 1. Definitions

Prebiotics

Among the different types of fermentable dietary fiber, a specific family called prebiotics is defined as “a substrate that is selectively utilized by host microorganisms,
conferring health benefits” (24). The term prebiotic thus refers to specific compounds that escape digestion in the upper part of the GI tract and are metabolized
by specific bacteria.

Probiotics

Probiotics are “live microorganisms that, when administered in adequate amounts, confer a health benefit to the host” (25).

The Endocannabinoid System: A Glimpse

The ECS comprises several bioactive lipids (N-acylethanolamines and 2-acylglycerols), as well as the receptors that are activated by those lipids (e.g., CB1, CB2, GPR119,
TRPV1, PPARa) and the enzymes involved in the synthesis and degradation of those same lipids (NAPE-PLD, DAGL, FAAH, NAAA, and MAGL).

The ECS is ubiquitous and modulates glucose and lipid metabolism, food intake, and inflammation.

An extensive review describing the ECS and the crosstalk between the ECS and the gut microbiome has been published (26).
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However, very few studies have simultaneously
investigated the complex modulation of the gut
microbiome, production of different metabolites (i.e.,
the metabolome), levels of SCFAs, and metabolic effects
on subjects with type  diabetes. In , Liping Zhao
et al. () performed an in-depth investigation of this
problem by conducting a randomized clinical study
investigating the impact of modulation of the micro-
biome with isoenergetic diets that differed in their
concentrations of prebiotics (including whole grains
and traditional Chinese medicinal foods). They causally
linked the improved microbial and metabolic profile by
using gut microbiota transplantation into germ-free
mice. They concluded that the changes in the micro-
biome induced by increasing the consumption of
nondigestible carbohydrates was sufficient to improve
the metabolic parameters of patients with type  di-
abetes. However, although the levels of SCFAs correlated
with improvements in several metabolic parameters
and increased blood levels of GLP- and PYY, the
researchers have not been able to ascertain beyond a
doubt whether the combination of SCFAs and gut
hormones completely explains the observed results.
Therefore, whether modulation of the gut microbiota

upon fiber intake fully explains the mechanism by which
metabolism is improved remains to be demonstrated.

Microbial metabolites derived from amino acids
and their impacts on host metabolism

Microbial amino acid–derived metabolites: the
bad side?
A decade ago, Newgard et al. () highlighted a
positive correlation between the levels of branched-
chain amino acids (BCAAs) and related metabolites
and insulin resistance by performing metabolomic
profiling of healthy subjects and patients with meta-
bolic disorders. This pioneering study also provided
the proof of concept that some amino acids contribute
to the onset of metabolic disorders because rats ex-
posed to a high-fat diet enriched with BCAAs
exhibited higher BCAA contents in their skeletal
muscles and insulin resistance (Fig. ). According to
the authors, the increased pool of circulating BCAAs
was of dietary origin (). Recently, the positive
correlation between serum BCAA levels and insulin
resistance has been confirmed in humans (). Here,
gut bacteria have been proposed as a source of BCAAs,

Figure 3. Microbial metabolites derived from amino acids influence host endocrine functions. Some amino acid–derived compounds
negatively affect host metabolism. For example, bacterial-derived BCAAs are positively correlated with insulin resistance in humans and
rodents. Imidazole propionate (ImP), a bacterial metabolite derived from histidine, also contributes to insulin resistance. Other
bacterial metabolites such as indole and derivatives, produced mainly via tryptophan metabolism, have beneficial effects on host
metabolism. Indole and derivatives activate the aryl hydrocarbon receptor (AhR). Gut microbes also influence host metabolism by
synthesizing neurotransmitters (histamine, serotonin, GABA, catecholamine) or gaseous neurotransmitters (NO and H2S). In addition
to bacteria-to-host interaction, microbial neurotransmitters also contribute to bacteria–bacteria interaction (i.e., quorum sensing),
influencing microbial adaptation to the environment and pathogenesis.
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because the gut microbiome of insulin-resistant
people was enriched with enzymes for BCAA bio-
synthesis and depleted for enzyme for BCAA uptake.
Prevotella copri and Bacteroides vulgatus were iden-
tified as the bacterial species driving this phenotype.
In vivo studies confirmed the causal role of P. copri:
administration of this bacterium to high-fat diet–fed
mice increased serum BCAA levels and lowered
insulin sensitivity. Although no positive correlation
was found between P. copri abundance and ho-
meostatic model assessment of insulin resistance
in mice, the authors concluded that dysbiosis of
gut microbiota affects the host serum metabolome
and contributes to insulin resistance. Subsequently,
other studies also reported a significant relationship
between a higher proportion of BCAAs in the serum
and insulin resistance (, ).

A recent study by Koh et al. () identified a direct
link between the amino acid histidine and insulin
resistance. More precisely, the microbial metabo-
lization of histidine into imidazole propionate con-
stitutes a major risk factor for the onset of insulin
resistance and eventually type  diabetes (Fig. ). Using
metabolomic approaches, the authors observed higher
levels of imidazole propionate in subjects with type 
diabetes than subjects with a normal glucose tolerance
(). By using different molecular and in vivo models,
the authors finally discovered that imidazole pro-
pionate directly contributes to glucose disorders
by activating the pg/p/mTORC pathway and
subsequently inhibiting insulin receptor substrate ac-
tivity. This study is one of the few examples show-
ing how preliminary findings and correlations may
ultimately be translated into mechanisms explaining
how a specific microbial metabolite contributes to the
onset of a metabolic disorder. However, although the
study is interesting from a mechanistic point of view, it
has never been demonstrated that reducing this me-
tabolite can prevent or improve glucose metabolism.
In addition, this mechanism is probably not uniquely
involved in alteration of the insulin signaling path-
ways, because it has also been demonstrated that
low-grade inflammation can contribute to insulin
resistance.

Although not directly considered an amino acid,
trimethylamine N-oxide (TMAO) is another bacterial
metabolite derived from dietary choline and L-carni-
tine. These compounds are abundant in the diet.
Numerous studies have shown that TMAO levels
were strongly associated with cardiovascular risks
in both human and animal studies (, –). From
a mechanistic point of view, TMAO triggers plate-
let hyperresponsiveness and thrombosis, therefore
increasing the development of atherosclerotic risk (,
–).

Interestingly, because TMAO is produced by the
hepatic conversion of trimethylamine (TMA) (origi-
nating from bacteria) into TMAO, recent studies have

focused their attention on modulation of the bacterial
enzyme responsible for transforming choline and L-
carnitine into TMA. Roberts et al. () decided to use
an inhibitor targeting the major microbial TMA-
generating enzymes (CutC and CutD). In animal
models, they demonstrated that a single oral dose of
such an inhibitor reduced the levels of TMAO and
platelet activation as well as thrombus formation.
Therefore, this approach paves the way to using
molecules targeting microbiome activity instead of
changing the composition of the microbiome or the
dietary sources of TMAO precursors. However, what
are the potential unspecific targets on the host, is this
kind of approach translationally applicable in humans
harboring different risk factors, and is this approach
not bypassing the expected dietary approaches for
such patients? All these questions remain unanswered
and warrant deeper investigation.

Microbial amino acid–derived metabolites: the
good side?
Not all amino acid–derived metabolites directly
correlate with insulin resistance or altered glucose
metabolism. Different microbial metabolites derived
from tryptophan may alter metabolism (). For
example, metabolism of tryptophan by gut microbes
leads to the production of several molecules, in-
cluding indoles and their derivatives (Fig. ). In fact,
different indole derivatives have been shown to act as
endocrine molecules that are able to directly activate
aryl hydrocarbon receptor. Among these molecules,
indole- propionic acid (IPA), indole--acetaldehyde,
indole-acrylic acid, indole- aldehyde, and indole-
acetate have been described. For instance, IPA has
been shown to improve metabolism by reinforcing
the gut barrier function, increasing the immune
response, and exerting anti-inflammatory effects on
different animal models (, ). In two recent hu-
man studies, IPA was associated with a lower risk of
developing type  diabetes, mainly by protecting b
cell function and eventually increasing insulin se-
cretion. Moreover, the abundance of this metabolite
inversely correlates with low-grade inflammation (,
). Interestingly, in addition to the role of SCFAs in
stimulating GLP- secretion, indole and indole-
acetate modulate host metabolism by either re-
ducing liver inflammation or stimulating L-cells to
secrete GLP- (–).

Neurotransmitters
Gut microbes are also able to synthetize “classical”
neurotransmitters derived from amino acids and
gaseous neurotransmitters (Fig. ). Those neuro-
transmitters have a local impact on gut physiology
(e.g., motility, intestinal hormone release) and a
“central” impact (e.g., cognition, behavior) via the
link between the enteric nervous system and the
brain.
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First, gut microbes can secrete histamine ().
Histamine is a monoamine synthetized after de-
carboxylation of the amino acid histidine. Recently,
Barcik et al. () showed that the quantity of
histamine-secreting microbes is significantly increased
in the gut of patients with asthma, suggesting that
bacterial histamine could participate in the regulation
of gut immunity.

Another neurotransmitter derived from amino
acids is serotonin. Gut serotonin is known to have a
large impact on physiological processes, including gut
motility and immunity (). Most intestinal serotonin
has an endogenous origin (i.e., by enterochromaffin
cells) (). Nevertheless, by using germ-free and
gnotobiotic mice recolonized with specific pathogen-
free fecal microbiome, Hata et al. () discovered that
bacteria can produce the free serotonin via the
deconjugation of glucuronide-conjugated serotonin by
bacterial enzymes. Germ-free mice show diminished
monoaminergic activity associated with an overac-
tive hypothalamic-pituitary-adrenergic axis, suggesting
that gut microbiota can affect systems implicated in
the psychopathology of depression (, ). In support
of this finding, administration of the probiotic Bifi-
dobacterium infantis to conventionalized mice in-
creased the circulating level of tryptophan, decreased
the ratio of kynurenine to tryptophan, and reduced
products of serotonin breakdown in the brain, sug-
gesting that the probiotic has antidepressant prop-
erties (). Although it is clear from this study that
intestinal microbiota can affect central neurotrans-
mission, those findings must be interpreted with cau-
tion. In fact, in treated mice no behavioral improvement
was observed by forced swim test, no significant changes
in central serotonin level were found, and hypothalamic-
pituitary-adrenergic axis activity did not improve
(measured in terms of hypothalamic expression of
vasopressin and corticotrophin-releasing factor or by
plasma corticosterone concentration) ().

Numerous articles show that gut microbes can also
produce g-aminobutyric acid (GABA), and a recent
review from Xu et al. () clearly describes the mode of
GABA synthesis by the decarboxylation of L-glutamate
catalyzed by glutamate decarboxylase. It is the case for
culturable bacteria from the human gut, such as
Lactobacillus brevis and Bifidobacterium dentium,
which are two major producers of gut GABA ().
GABA transporters are localized on the blood-brain
barrier, but they are more likely to be involved in
GABA efflux (); therefore, it is still unknown
whether gut microbiota–derived GABA can reach the
central nervous system.

Finally, the gut microbiome can also produce
catecholamines, such as norepinephrine and dopa-
mine (), that have an effect on local and cen-
tral physiology, as described earlier. Importantly,
microbium-derived catecholamines are unlikely to
exert their action directly in the brain, because they

cannot cross the blood-brain barrier (). Some au-
thors showed that luminal gut (i.e., bacterial) dopa-
mine plays a crucial role as a proabsorptive modulator
of water transport in the colon (). However, we are
only beginning to discover the role of bacterial cat-
echolamines in host physiology.

Second, gut microbes are also able to release
various types of gases composed of nitrogen, oxygen,
hydrogen, methane, and carbon monoxide (, )
(Fig. ). As explained by Scaldaferri et al. () in a
review published in , “intestinal gases are the
expression of metabolic activity of gut microbiota in
the gut,” and variations in the production of intestinal
gas could be observed in some pathological states. In
addition to this well-characterized metabolic activity,
some bacterial-produced gases are considered as
neurotransmitters or “gasotransmitters,” as described
for nitric oxide (NO) and hydrogen sulfide (HS)
(), two gasotransmitters well known to modify the
gut physiology. To give some physiological examples,
bacteria are able to produce NO via bacterial NO
synthase enzyme (such as Bacillus subtilis) () and
HS from cysteine (). These two gaseous neuro-
transmitters cross the epithelium and modify gut
function. Very recently, a new concept has emerged
demonstrating that the inhibition of proximal gut
motility improves hyperglycemia observed during type
 diabetes (, ). Because NO (, ) and HS
() exert tonic inhibition of smooth muscle cells, one
could speculate that gut microbiome could have a direct
impact on gut muscle relaxation and then participate in
the control of glycemia via this novel mechanism of
action.

Gut bacteria and the endocannabinoid system

Gut bacteria produce endocannabinoid mimetics
and influence the host metabolism
In , human gut bacteria were reported to produce
N-acyl amide (Fig. ). Strikingly, those microbial
metabolites structurally mimic the host’s endogenous
bioactive lipids belonging to the endocannabinoid
system (ECS) and have affinity for several host re-
ceptors in the GI tract (Table ) (). In particular,
some of those metabolites act as strong agonists of
GPR. The endogenous ligands of GPR are
oleoylethanolamide and -oleoyl glycerol (-OG) (,
). Both bioactive lipids are members of the ECS,
and by activating GPR on the enteroendocrine L-
cells they trigger GLP- secretion and eventually
regulate glucose and energy metabolism (, ).
The structural and functional overlap between bac-
terial and endogenous metabolites prompted re-
searchers to investigate the effect of microbial N-acyl
amides on the physiology of the host. Cohen et al.
() administered an engineered bacterium pro-
ducing N-acyl amide (specifically N-acyl serinol) to
gnotobiotic mice and investigated oral glucose tolerance.

1278 Rastelli et al Gut Microbiome Influences Host Endocrine Functions Endocrine Reviews, October 2019, 40(5):1271–1284

REVIEW
D

ow
nloaded from

 https://academ
ic.oup.com

/edrv/article-abstract/40/5/1271/5487987 by N
ottingham

 Trent U
niversity user on 15 August 2019



Treated mice exhibited better oral glucose tolerance
than control mice, thus indicating that the microbial-
derived N-acyl amide directly modulates the physi-
ology of the host (, ). However, this study did
not investigate whether microbiota-derived N-acyl
amides exert their action with a paracrine or endocrine
mechanism.

Does the gut microbiome modulate intestinal ECS
tone or vice versa?
The aforementioned study is the only one showing
that gut bacteria produce metabolites analogous to the
endocannabinoids; nevertheless, several other studies
have also supported the existence of crosstalk between
gut bacteria and the ECS of the host. For example, the
administration of Akkermansia muciniphila, a com-
mensal bacterium known to prevent diet-induced
obesity (, ), increases the intestinal levels of
several -acylglycerols (namely, -OG, -arach-
idonylglycerol, and -palmitoyl glycerol) (). Those
-acylglycerols have been implicated in the control of
gut barrier and inflammation, and both -OG and
-palmitoyl glycerol have been shown to activate
GPR, thereby stimulating GLP- secretion (,
). However, in these particular studies, the origins
of those -acylglycerols were unclear: were they
derived from bacteria or the host? This key question
remains unanswered.

In another study by our group, variations in
gut microbiome composition were associated with

alterations in the intestinal ECS, which in turn
modulated gut permeability and endotoxemia ().
Indeed, by combining different approaches aimed at
modulating the composition of the gut microbiome,
such as a high-fat diet, prebiotics, probiotics, anti-
biotics, or germ-free mice, we discovered a colon-
specific modulation of CB receptor expression in all
these different models. In addition, the levels of
bioactive lipids and the expression of enzymes be-
longing to the ECS in the colon were altered in
response to probiotic-induced modulation of the gut
microbiome (). In another recent study we also
demonstrated that deletion of the main endocanna-
binoid-synthesizing enzyme from the intestinal epi-
thelial cells of mice alters the composition of gut
microbiome ().

Although these data are interesting and reveal a
direct association between the gut microbiome and
the intestinal ECS, numerous questions remain to be
addressed. For example, does variation in the com-
position of the gut microbiome modulate ECS tone?
Alternatively, does modulation of the intestinal tone of
endocannabinoids drive the alterations in the gut
microbiome composition?

Indeed, intestinal endocannabinoids act locally to
modulate peristalsis and food intake (, ).
Therefore, a conceivable hypothesis is that the host’s
ECS contributes to shape gut microbiome composi-
tion by modulating those two variables.

Figure 4. Microbial metabolites and microbial components influence host metabolism. Both bacterial metabolites and bacterial
components modulate host physiology by interacting with receptors expressed by the host locally (i.e., in the intestine) or distally. Gut
bacteria produce N-acyl amide, an endocannabinoid mimetic that influences host glucose metabolism via the GPR119 receptor.
Moreover, proteins constitutively expressed by symbionts (namely ClpB and Amuc_1100) also modulate host metabolism via a paracrine
or endocrine action. ClpB is involved in regulation of appetite, whereas Amuc_1100, expressed on the outer membrane of A. muciniphila,
improves barrier function and partially recapitulates the beneficial effect of the live bacterium.
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Gut microbiome–ECS crosstalk: beyond
the intestine
Crosstalk between the gut microbiome and the ECS is
not limited to the intestine. Actually, we observed
crosstalk between the gut microbiome and adipose
ECS. Almost a decade ago we observed that, similar
to the data observed in the colon, changes in gut
microbiome composition (induced by prebiotics and
antibiotics) modulated the levels of bioactive lipids in
adipose tissue and the expression of receptors and
enzymes belonging to the ECS (). More recently,
deletion of NAPE-PLD (the main enzyme synthe-
sizing bioactive lipids of the ECS) in adipocytes was
shown to induce a shift in the composition of the gut
microbiome (). Strikingly, after consuming a
normal diet, adipocyte NAPE-PLD–deficient mice
develop obesity, glucose intolerance, and adipose
tissue inflammation. The mechanism is directly as-
sociated with a decrease in adipose tissue browning
and beiging. The mice are unable to maintain their
body temperature upon cold exposure. This study
was the first to show a direct link between the gut
microbiome and adipose tissue browning processes.
More strikingly, antibiotic treatments abolished
the phenotype linked to deletion of the NAPE-PLD
in adipose tissue. Additionally, transferring gut
microbiota from knockout mice to germ-free mice
transferred the phenotype of obesity and lack of
beiging processes. This finding was clearly associated
with major changes in levels of bioactive lipids and
eventually confirmed the strong association between
gut microbes and the endocrine activities of adipose
tissue (). In conclusion, many aspects of this
exciting subject remain largely unknown and clearly
merit further investigation.

Bacterial components: the new frontiers of
endocrine factors
As detailed in previous sections of this review, bacterial
metabolites influence the host metabolism, but specific
bacterial components may also act as factors modu-
lating host endocrine functions. Recent evidence has
provided insights into some constitutive microbial
proteins that are able to influence host physiology.
Notably, this topic is a new field of investigation in this
area of research.

In , a bacterial protein mimicking the host’s
hypothalamic peptide was identified via a proteomic
approach (). Specifically, bacterial caseinolytic
protease B (ClpB) showed sequence homology with
host peptide a-melanocyte-stimulating hormone. Mice
immunized with ClpB exhibit increased levels of the
a-melanocyte-stimulating hormone autoantibody
and increased food intake compared with control
mice (). Consistent with these findings, mice force
fed with the wild type strain of Escherichia coli exhibit
altered food behaviors compared with mice ad-
ministered a strain of E. coli lacking ClpB, thus

confirming the involvement of ClpB in the modula-
tion of the host’s food pattern (). In humans, eating
disorders are associated with autoantibodies against
neuropeptides (, ), consistent with the higher
plasma ClpB levels detected in patients with eating
disorders than in healthy subjects ().

The same team of researchers also suggested an
autoantibody-independent role for ClpB in modu-
lating food intake. Indeed, a colonic infusion of
proteins from E. coli (containing ClpB) stimulates the
release of intestinal anorexigenic hormones, whereas
intraperitoneal administration of the proteins activates
anorexigenic neurons in the hypothalamus ().

Evidence of a role for bacterial proteins in mod-
ulating host metabolism was also provided by the
study by Plovier et al. (). Indeed, in their study they
found that daily oral administration of the bacterial
protein Amuc_, expressed on the outer mem-
brane of A. muciniphila, improves the gut barrier
function and partially recapitulates the beneficial ef-
fects of the live bacterium (). The proposed
mechanism involves activation of a receptor of the
innate immune system, Toll-like receptor .

Along the same lines, a recent study has described
the production of some proteins displaying high
homology with human peptide hormones, such as
insulin and IGF-, by viruses of the human micro-
biome. In vitro and in vivo studies have shown that
those viral insulin/IGF-–like peptides modulate the
host’s physiology ().

It Is Not Only About Bacteria–Host Interaction

Up to now we have focused mainly on bacteria–host
interaction. Nevertheless, it is important to highlight
that some of the bacterial metabolites described
earlier can also target or be sensed by the gut bacteria
themselves, thus contributing to a cell-to-cell in-
teraction known as quorum sensing. For instance,
SCFAs have beneficial or inhibitory role on path-
ogen colonization, depending on their concentration
(, ). Moreover, bacteria-produced biogenic
amines can also modulate bacterial behavior. For
instance, histamine is produced by the bacteria to
maintain intracellular pH homeostasis and can be
used to generate energy by exploiting proton motive
force (). On the other hand, serotonin, adrena-
line, and noradrenaline are sensed by pathogens and
play a role in pathogenesis (–). NO is also
sensed by bacteria and regulates cell-to-cell in-
teraction (, ). However, nothing is known
about the role of NO in the GI tract in the contest of
quorum sensing.

Overall, concerning the gut microbiome, bacteria-
to-bacteria interaction is still a new field of investigation
[for review, see (, )]. We firmly think that this
subject warrants further investigation. Undeniably, the
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intestinal microbiome is an extremely complex and
dynamic community of living bugs constantly com-
peting for nutrients and survival, and therefore cell-to-
cell interaction surely plays a major role in shaping the
composition of the gut microbiome.

Conclusions

Currently, in experimental models the role of the gut
microbiome as an endocrine organ is undeniable and
supported by numerous data. Nevertheless, the
precise roles of the different microbes that reside in
our gut and their incredible capacities to generate
complex molecules has opened Pandora’s box. In-
deed, the development of novel high-throughput
sequencing techniques designed to decipher the
composition of the gut microbiome has led to an
incredible number of publications. However, the
causality between gut microbes and host diseases
remains poorly defined and sometimes over-
interpreted (, ). Certainly, numerous studies

have linked the composition of the gut microbiome
(at both taxonomic and functional levels) with dif-
ferent diseases. In addition to these correlations, most
studies that have identified potential mechanisms
have been performed in rodents and warrant con-
firmation in humans. Although the use of animal
models is often viewed as caveat, we must ac-
knowledge that this field of investigation is bloom-
ing and represents a new era of research in the field
of endocrinology. However, we are still far from
using microbial metabolites or specific gut bacteria to
replace drugs currently used to target the endocrine
system. It is also important that scientists jumping into
the field remain cautious when concluding that one
metabolite or one bacterium explains the overall
phenotype observed. As a matter of fact, integrative
physiology is the result of complex interactions oc-
curring between different cells or organs, finely tuned.
Nevertheless, we anticipate that numerous microbial
components that are able to influence the host’s
physiology will be discovered, and some will become
future therapeutics.
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S, Jørgensen T, Holm JB, Trošt K, Kristiansen K, Brix S,
Raes J, Wang J, Hansen T, Bork P, Brunak S, Oresic M,
Ehrlich SD, Pedersen O; MetaHIT Consortium.
Human gut microbes impact host serum metab-
olome and insulin sensitivity. Nature. 2016;535(7612):
376–381.

71. Org E, Blum Y, Kasela S, Mehrabian M, Kuusisto J,
Kangas AJ, Soininen P, Wang Z, Ala-Korpela M,
Hazen SL, Laakso M, Lusis AJ. Relationships between
gut microbiota, plasma metabolites, and metabolic
syndrome traits in the METSIM cohort. Genome
Biol. 2017;18(1):70.

72. Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, Shi J,
Zhao S, LiuW,Wang X, Xia H, Liu Z, Cui B, Liang P, Xi
L, Jin J, Ying X, Wang X, Zhao X, Li W, Jia H, Lan Z, Li
F, Wang R, Sun Y, Yang M, Shen Y, Jie Z, Li J, Chen X,
Zhong H, Xie H, Zhang Y, GuW, Deng X, Shen B, Xu
X, Yang H, Xu G, Bi Y, Lai S, Wang J, Qi L, Madsen L,
Wang J, Ning G, Kristiansen K, Wang W. Gut
microbiome and serum metabolome alterations in
obesity and after weight-loss intervention. Nat Med.
2017;23(7):859–868.

73. Koh A, Molinaro A, Ståhlman M, Khan MT,
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Bibbò S, Laterza L, Gerardi V, Bruno G, Scoleri I,
Diroma A, Sgambato A, Gaetani E, Cammarota G,
Gasbarrini A. Intestinal gas production and gas-
trointestinal symptoms: from pathogenesis to
clinical implication. Eur Rev Med Pharmacol Sci.
2013;17(suppl 2):2–10.

99. Pimentel M, Mathur R, Chang C. Gas and the
microbiome. Curr Gastroenterol Rep. 2013;15(12):356.

100. Luhachack L, Nudler E. Bacterial gasotransmitters:
an innate defense against antibiotics. Curr Opin
Microbiol. 2014;21:13–17.

101. Adak S, Aulak KS, Stuehr DJ. Direct evidence for
nitric oxide production by a nitric-oxide synthase–
like protein from Bacillus subtilis. J Biol Chem. 2002;
277(18):16167–16171.

102. Blachier F, Beaumont M, Kim E. Cysteine-derived
hydrogen sulfide and gut health: a matter of en-
dogenous or bacterial origin. Curr Opin Clin Nutr
Metab Care. 2019;22(1):68–75.

103. Fournel A, Drougard A, Duparc T, Marlin A, Brierley
SM, Castro J, Le-Gonidec S, Masri B, Colom A, Lucas
A, Rousset P, Cenac N, Vergnolle N, Valet P, Cani PD,
Knauf C. Apelin targets gut contraction to control
glucose metabolism via the brain. Gut. 2017;66(2):
258–269.

104. Abot A, Lucas A, Bautzova T, Bessac A, Fournel A,
Le-Gonidec S, Valet P, Moro C, Cani PD, Knauf C.
Galanin enhances systemic glucose metabolism
through enteric nitric oxide synthase–expressed
neurons. Mol Metab. 2018;10:100–108.

105. Jimenez M, Gil V, Martinez-Cutillas M, Mañé N,
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