
Identificazione e quantificazione di Polifenoli da mirtillo (integratore alimentare) mediante estrazione in fase solida (SPE)

Esercitazione 16 Marzo 2023

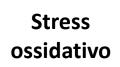
Attività biologica

Nelle piante: meccanismo di difesa

Attività antiossidante

Prevenzione del danno ossidativo delle biomolecole (DNA, lipidi e proteine)

Protegge dalle specie reattive dell'ossigeno (ROS)

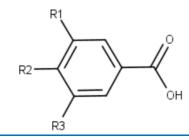

Benefici per la salute: proprietà antinfiammatorie, antimicrobiche, neuroprotettive, cardioprotettive, antivirali, antitumorali

Prevenire il deterioramento ossidativo e la contaminazione microbica

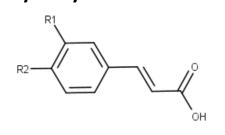
OXIDATIVE STRESS

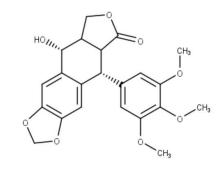
Superoxide anion (·O2⁻) Hydroxyl radical (⋅OH) Nitric oxide (NO·) Peroxynitrite anion (ONOO

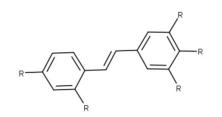
- disturbi del metabolismo
- malattie cardiovascolari
 - cancro
 - obesità
 - diabete


Conservanti naturali per alimenti

Composti fenolici

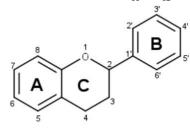

Phenolic Acids C₆-C₁

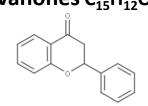

Hydroxybenzoic Acid


Hydroxycinnamic Acid

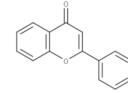
Lignans C₂₂H₂₂O₈

Stilbenes C₁₄H₁₂

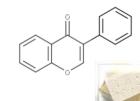



Flavonols C₁₅H₁₀O₃

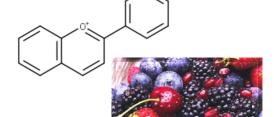
Flavanoids C₆-C₃-C₆


Flavanones C₁₅H₁₂O₂

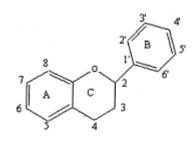
Flavan-3-ols C₁₅H₁₄O₂ (Catechines and Proantocianidines)



Flavones C₁₅H₁₀O₂



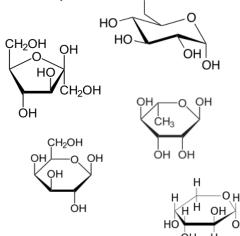
Isoflavones C₁₅H₁₀O₂

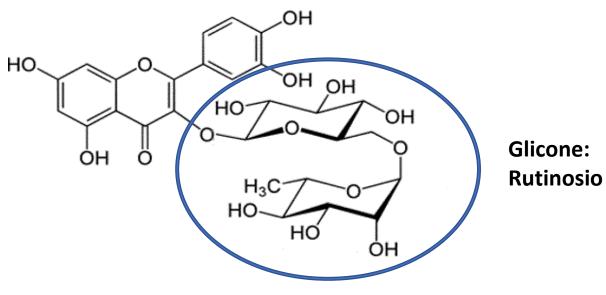


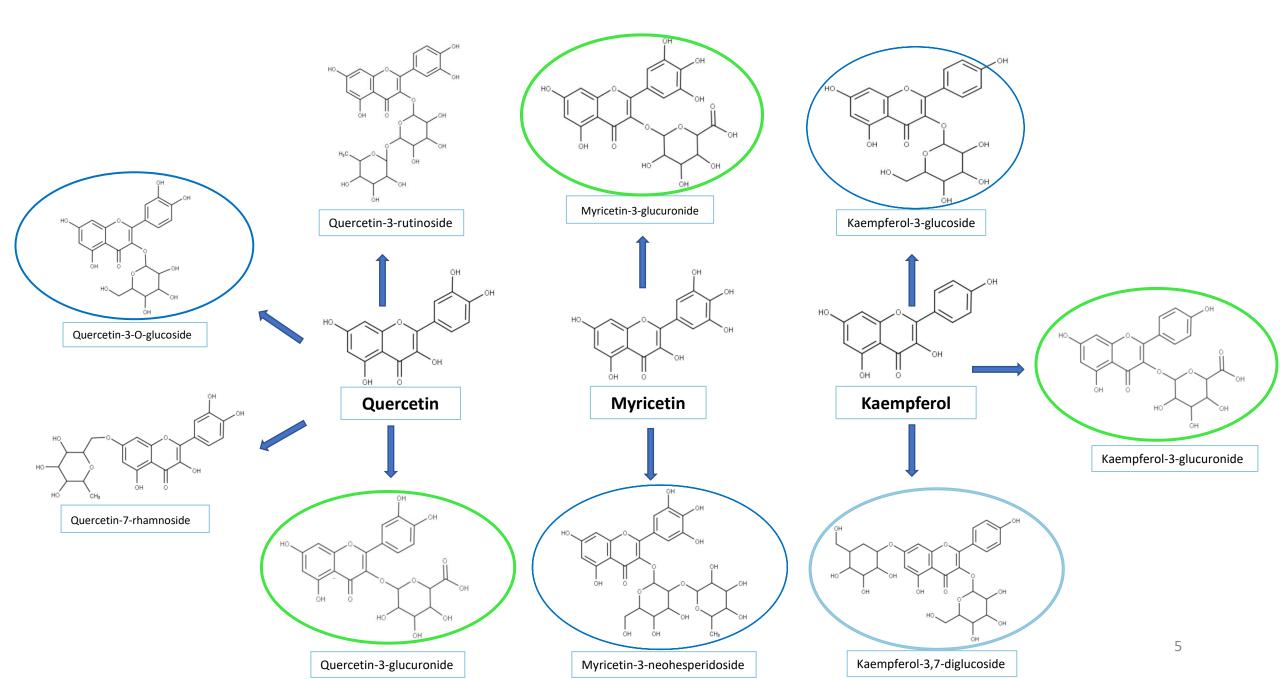
Anthocyanidinis C₁₅H₁₁O⁺

Derivativi dei composti fenolici

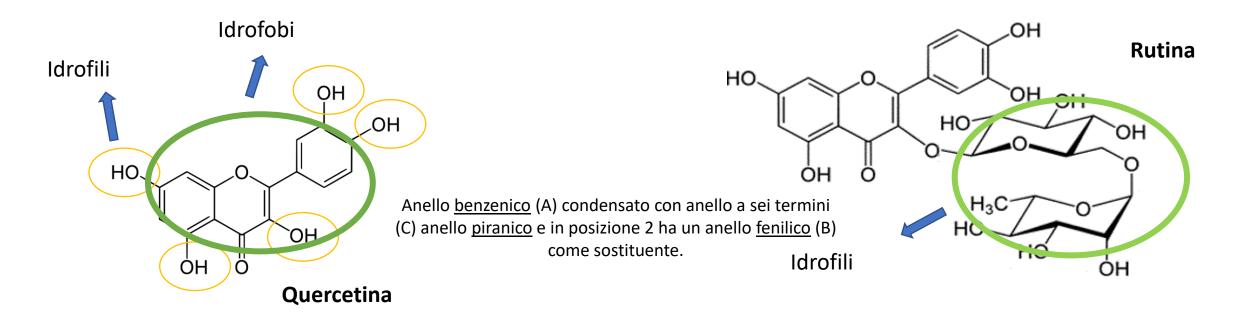
Aglicone (parte non zuccherina)




Anello benzenico (A) condensato con anello a sei termini (C) anello piranico e in posizione 2 ha un anello fenilico (B) come sostituente.


Glicone (parte zuccherina)

- glucosides (glycone = glucose)
- fructosides (glycone = fructose)
- ramnosides (glycone = rhamnose)
- galactosides (glycone = galactose)
- arabinosides (glycone = arabinose)
- >etc



Flavonoidi

Caratteristiche dei composti fenolici

Gruppo funzionale	Nome	Descrizione								
—ОН	ossidrilico - OH	polare e solubile in acqua: tende a formare legami a H								
− <i>c</i> oн	carbossilico -COOH	acido debole: tende alla forma -COO ⁻ perdendo uno ione H ⁺								
-n(H	amminico - NH2	base debole: tende alla forma NH3 ⁺ acquistando uno ione H ⁺								
-c=o	aldeidico - COH	polare e solubile in acqua								
<i>)c=</i> 0	chetonico =CO	polare e solubile in acqua								
O P-OH OH	fosfato - PO3H2	acido: tende alla forma PO3 ²⁻ perdendo due H ⁺								

Solventi

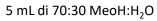
Polarity of Solvents

Water Polar Acetic Acid Ethyleneglycol Methanol Ethanol Isopropanol **Pvridine** Acetonitrile Nitromethane Diehylamine Aniline Dimethylsulfoxide Ethylacetate Dioxane Acetone Dicholoroethane Tetrahydrofuran Dicholoromethane Chloroform Diethylether Benzene Toluene Xylene Carbontetrachloride Cyclohexane Petroleum ether Hexane Non-polar Pentane

Non-Polar **Polar Solvents** Solvents **DMF Alkanes DMSO** Benzene Water Toluene Acetic acid Acetone Methanol Chloroform Diethyl ether Isopropanol Acetonitrile **Ethyl acetate**

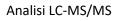
Campione in esame




Integratore alimentare su base di mirtillo rosso

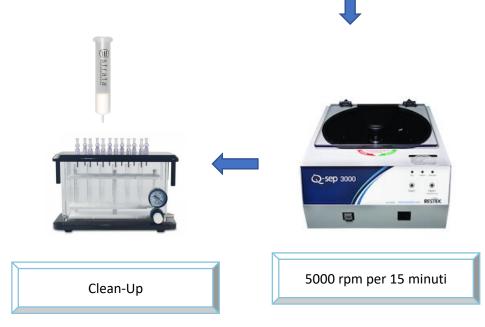
Estrazione

Pesare 1g di polvere di mirtillo



3 minuti di Vortex

5 mL di 70:30 MeoH: $\mathrm{H_2O}$



Diluzione 1:10

- ✓ Attivazione: 1 mL di MeOH
- ✓ Condizionamento : 1 mL di H₂O:MeOH 90:10 (H₂O)
- ✓ Carico: campione diluito 1:100 in 1 mL of
 - $H_2O:MeOH\ 90:10\ (H_2O)$
- ✓ Lavaggio: 1 mL di H₂O
- ✓ Eluzione:
- ✓ 1) 1mL di H₂O
- ✓ 2) 1mL di MeOH
- ✓ 3) 1mL di ACN

Parametri cromatografia liquida accoppiata alla spettrometria di massa (LC-MS/MS)

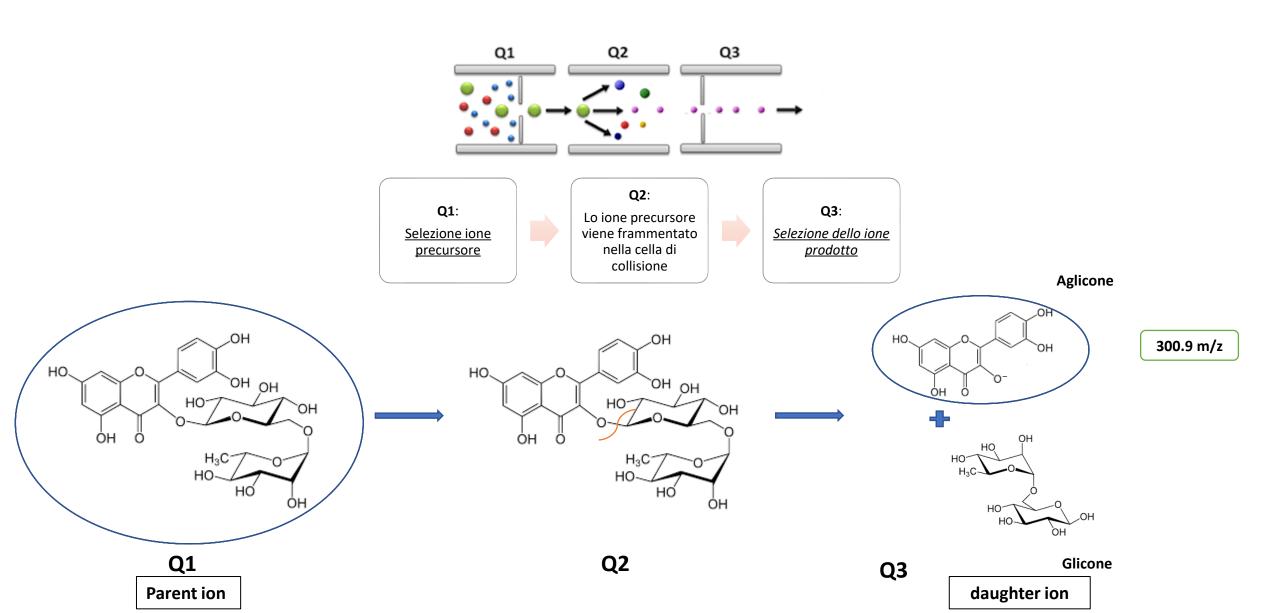
Pentafluorophenyl (PfP)

LC System: Shimadzu Nexera XR LC 20 AD system

Colonna: ACE Excel 2 C18-PFP 2.0 µm 100x2.1 mm

Flusso: 0.4 mL/min

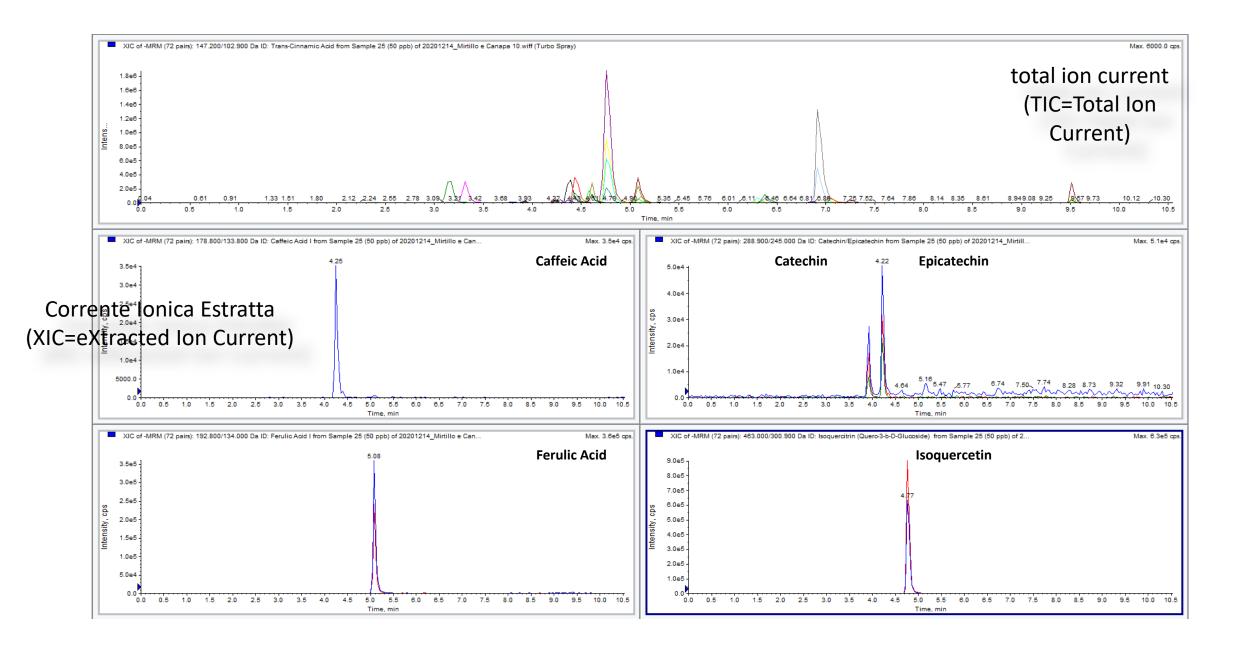
Fase A: H₂O 1% CH₃COOH


Fase B: ACN

MS/MS system: Sciex Qtrap4500

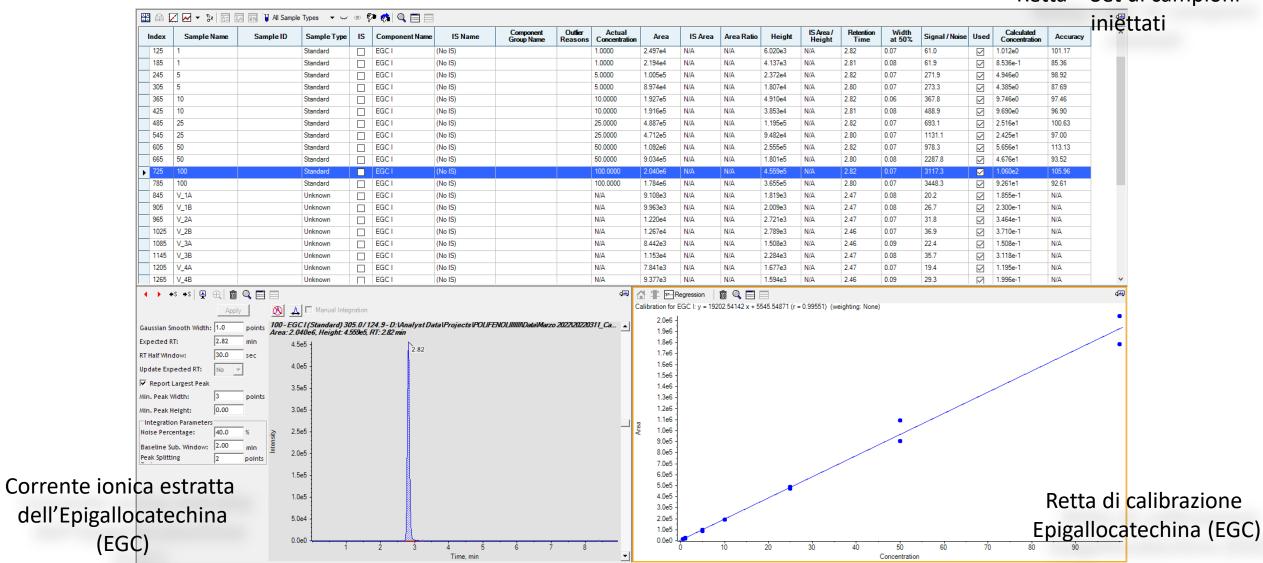
Ionizazione: ESI (-)

Modalità di acquisizione: Multiple Reaction Monitoring (MRM)


Mass spectrometry parameters:

Infusione dello standard in MS/MS

ID	Q1	Dp	Ep	Q3	CE	СХР	ID	Q1	Dp	Ep	Q3	CE	СХР	ID	Q1	Dp	Ep	Q3	CE	СХР
Epicatechin/Catechin	000.0	05.0	-8,0	245,0	-24,0	-9,0	Vanillic Acid	167,1	-49,0	-11,0	107,9	-28,5	-5,0	3/4-OH-Benzoic Acid	136,9	-12,0	-9,0	89,0	-15,5	-6,0
	288,9	-85,0		108,9	-38,5	-8,0					151,9	-19,5	-6,5					66,0	-30,0	-10,0
Ferulic Acid 1		40.0	-11,0	134,0	-21,0	-8,0	Apigenin	268,9	-110,0 -4,0		116,9	-50,0	-9,0	Trans-Cinnamic Acid	147,2	-50,0	-8,0	102,9	-16,0	-4,0
	192,8	-63,0		177,8	-18,0	-6,0				-4,0	151,0	-34,0	-5,0					77,2	-30,0	-6,0
Gallic Acid 1		70.0	10.5	124,9	-21,0	-9,0	Myricefin	316,9	-115,0	5.0	150,9	-34,0	-6,0	Orientin (Luteolin-8-Glucoside)	447,1	-105,0	-11,0	356,9	-29,0	-11,0
	168,9	-70,0	-10,5	96,9	-26,0	-6,0				-5,0	136,9	-36,0	-9,5					297,0	-43,0	-11,0
o-Coumaric Acid 1			-5,0	119,0	-19,0	-8,0	Luteolin	284,9	-100,0	-8,0	150,9	-35,0	-11,0	Hyperoside (Querc-3-D- Galactoside)	462,9	-110,0	-5,0	300,9	-48,0	-10,0
	163,0	-50,0		117,0	-33,0	-7,0					199,0	-35,0	-6,0					299,9	-40,0	-11,0
p-Coumaric Acid			-5,0	119,0	-20,0	-9,0	Trans 30H Cinnaminc Acid (m-coumaric acid)	163,1	-50,0	-6,0	118,9	-19,0	-9,0	Tyrosol	137,0	-65,0	-9,0	119,0	-21,0	-8,5
	162,8	-60,0		116,7	-42,0	-9,0					117,0	-33,0	-7,0					106,9	-23,0	-5,5
Quercefin			-10,0	151,0	-30,0	-6,0	Kampferol	285,0	-135,0	-7,0	228,8	-40,0	-9,0	(-)-Epigallocatechin	305,0	-98,0	-6,5	136,9	-36,0	-10,0
	300,9	-94,0		178,8	-26,0	-6,0					159,0	-42,0	-6,0					166,9	-28,5	-6,5
Caffeic Acid	178,8	-60,0	-10,0	133,8	-33,0	-7,0	Isoquercitrin (Querc-3-b-D- Glucoside) Chlorogenic Acid Diosmetin (Luteolin-4- methyl ether)	463,0	-100,0	-9,0	300,9	-33,0	-11,0	(-)-Epigallocatechin Gallato	457,2	-10,0	-7,0	168,8	-20,0	-17,0
		-78,0	-4,5	160,8	-24,0	-7,0					270,9	-58,0	-10,0					124,9	-40,0	-17,0
Rosmarinic Acid	359,0			197,0	-24,5	-6,5		353,1	-60,0	-7,0	190,9	-25,5	-6,5	OH-Tyrosol	152,9	-75,0	-7,0	122,9	-22,0	-8,0
Rufin			-6,0	300,9	-45,0	-11,0					160,9	-35,0	-6,0					104,6	-30,0	-7,0
	609,2	-100,0		254,7	-70,0	-9,0		299,1	-90,0	-6,0	255,8	-40,0	-9,0							
Siringic Acid 19				181,9	-19,0	-6,0					150,9	-40,0	-10,0							
	196,9	-57,0	-11,0	120,9	-22,0	-8,0	Oleuropein	539,2	-55,0	-10,0	275,0	-32,0	-9,0							


- Declustering Potential (DP): I parametro DP controlla il voltaggio applicato all'orifizio che controlla la capacità di separare i cluster di ioni tra l'orifizio e la guida ionica QJet . È impiegato per ridurre al minimo i cluster di solvente che possono restare sugli ioni campione dopo che questi entrano nella camera del vuoto e, se necessario, per frammentare gli ioni. Maggiore sarà la tensione, maggiore sarà l'energia impartita agli ioni. Se il parametro è impostato su un valore troppo alto, potrebbe verificarsi una frammentazione indesiderata.
- Entrance Potential (EP): Il parametro EP è il potenziale in entrata che guida e focalizza gli ioni attraverso l'alta pressione applicata alla regione Q0.
- Collision Energy (CE): Il parametro CE controlla la differenza di potenziale tra la regione Q0 e la camera di collisione Q2. È usato solo nelle scansioni di tipo MS/MS. Questo parametro corrisponde alla quantità di energia che gli ioni precursori ricevono quando sono accelerati nella camera di collisione Q2, dove collidono con le molecole di gas e i frammenti.
- Collision Cell Exit Potential (CXP): Il parametro CXP è impiegato solo nelle scansioni di tipo Q3 e MS/MS. Questo parametro trasmette gli ioni nel quadrupolo Q3.

Analisi qualitativa di composti fenolici

Analisi quantitativa di composti fenolici

Retta + Set di campioni iniettati Calculated Concentration ~ 1.012e0 101.17 ~ 8.536e-1 85.36 **V** 4.946e0 98.92 ~ 4.385e0 87.69 ~ 9.746e0 97.46 ~ 9.690e0 96.90 \checkmark 2.516e1 100.63 ~ 2.425e1 97.00 ~ 5.656e1 113.13 ✓ 4.676e1 93.52 ✓ 1.060e2 9.261e1 92.61 ~ 1.855e-1 N/A ~ 2.300e-1 N/A ~ 3.464e-1 N/A ~ 3.710e-1 N/A ~ 1.508e-1 N/A **V** 3.118e-1 N/A **V** 1.195e-1 N/A 1.996e-1 N/A

