
Multivariate data description: PCA 



One dimensional data 

One dimension (x) and three values are sufficient for 
data description 

Three samples, A, B, and C, could differ just for the extent of one 
variable (C > B > A) 

Example: 
A C B 

Sugar content x 



One dimensional data matrix 

A one per three matrix is required to describe the data set: 

each sample is identified by one values (x) or score 

the variable (x) has three cases (A, B, C) corresponding to 
samples 

Sugar content 

A xA 

B xB 

C xC 



Three samples, A, B, and C, could differ for two variables 

Example: 

Two dimensions (x, y) are required for data description; 

Each sample is identified by two values (x and y) 
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Two dimensional data matrix 

Sugar content Acidity 

A xA yB 

B xB yB 

C xC yC 

A two per three matrix is required to describe the data set: 

each sample is identified by two values (x, y) or scores 

each variable has three cases (A, B, C) corresponding to 
samples 



Three samples, A, B, and C, could differ for three variables 

Example: 

Three dimensions (x, y, z) are required for data description; 
each sample is identified by three values (x, y, z) 
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Three dimensional data matrix 

Sugar content (x) Acidity (y) Salt content (z) 
A xA yA zA 

B xB yB zB 

C xC yC zC 

A three per three matrix is required to describe the data 
set: 

each sample is identified by three values (x, y, z) or scores 

each variable has three cases (A, B, C) corresponding to 
samples 
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cartesian space each 
sample is identified by  
three points with x, y, z 
coordinates (scores). 
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Each coordinate 
represent the intensity 
or extent of a variable 
and is perpendicular to 
the plane defined by the 
other two variables 



The vectors correspond 
to the original variables 
and are described by a 
module (vector length) 
which describes their 
intensity (extent) and an 
angle which is of 90°. 
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described by vectors, 
orthogonals among 
them, that intersecates 
in one point defined as 
0,0,0. 
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z A tridimensional (3D) 
space is described by a 
polygonal solid with 
three opposite 
‘faces’ (six faces in a 
whole) called 
exahedron. In this solid 
the opposite faces are 
orthogonal among them. 



Description of  multidimensional data (1) 

l   What if we have a lot of variables that 
describes our samples? 

l   In such a case a multidimensional (n 
dimensional) space occurs to describe 
data distribution.  

l   In such a case a n dimensional matrix 
occurs to describe the data set. 



How to describe a n-dimensional space? 



Let’s ask help to geometry …. 

If an hexaedron could enable us  
to figure out a 3D space,  

then another orthogonal solid  
could help us anyway? 



Depiction of vectorial spaces D > 3 

D = 4 

D = 10 

D = 6 

octahedron dodecahedron 

icosahedron 



Description of multidimensional data (2) 

l It is not easy to depict a vectorial space with 7, 
8, 9 or n dimensions (since orthogonal polygonal 
solids are limited). 

l The visual representation of vectors (identifying 
variables) and coordinates (identifying scores) in 
a nD space is not easy. 

l nD spaces could still be easily mathematically 
described with data matrices. 



Principal component analysis (PCA) 

l PCA is a statistical descriptive analysis that 
enable the analyst to describe a system by using 
new variables (latent variables) which are a 
linear transformation of the original variables and 
are not correlated among them. 

l PCA could be used to reduce the dimensionality 
of a system at n (n > 3) dimensions by operating 
the othogonal projection of vectors and scores 
on a 2D plane or in a 3D space. 

l PCA is only useful to describe a data set since it 
‘summarizes’ the information. 
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Latent variables in data structure 

The maximum variance of the data set represented in the 
3D graph is along the direction indicated by the yellow line.   

Let’s return to our original A, B and C samples and 
imagine them as a part of a big data set.   



Explained variance maximization (1) 

l Each parameter (variable) of a data set could be 
described by a media and a variance value, which 
synthesize the information on the distribution of 
data values. 

  
l Three variables representing three parameters 

could be described by three media and three 
variance value, which synthesize the information 
on the distribution of the data values. 

l The maximum variance of multidimensional data 
could not be along the original variables. 
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PCA representation 
The vector that describes the yellow line is a new 
variable (factorial variable) that is called PC1 or 
first principal component. 

The PC1 brings always along with it the maximum 
explained variance.   



Explained variance maximization 

The PC2 (orange line) brings along with it the 
maximum variance not explained by PC1.   
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The vector perpendicular to PC1 is a new variable 
(factorial variable) that is called PC2 or second 
principal component. 



Principal components 

PC1 and PC2 could not explain the 
same part of variance since they 
are orthogonal among them by 
definition, thus they are not 
correlated among them. 
PC1 and PC2 form a 2D plane. 
 
PC1 and PC2 could preceed a PC3 
(pink line) orthogonal to both of 
them.  
PC1, PC2 and PC3 form a 3D 
space. PC1 
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Big data set 

l Starting from 3 variables 3PCs, which describes 
the 100% of the variance, could be calculated. 

l Starting from n variables nPCs, which describes 
the 100% of the variance, could be calulated. 

l In this case, PCA does not help to manage the 
complexity of the system. 



Description of multidimensional data 

Multidimensional data could bring along with 
them a lot of information 
 

Final paradigm: 
 

Too much information = no information 
 

We could not get use of all this information! 



Large data set in our mind 

l How could we manage large data set in 
our mind? 

l We ‘summarize’ the information 

l We keep the most pertinent information 

 



Most pertinent information? 

l  If there is no variance along a variable, it 
means that our data could not differ 
among them for that variable. 

l   If there is a lot of variance along a 
variable there is more probability that our 
data could differ among them for that 
variable. 

l In this case variance could be used as a 
criterion for ‘pertinence’. 



Dimensionality reduction (PCA) 

l PCA could be also used to reduce the 
dimensionality of a system at n (n > 3) 
dimensions by operating the othogonal 
projection of vectors and scores on a 2D plane 
or in a 3D space. 

l The first 2 or 3 PCs will bring along with them 
the maximum explained variance for definition. 

l In this case PCA is useful to describe a data set 
since it ‘summarizes’ the information. 



Figurative exemplification  

T h e r e d u c t i o n o f 
dimensionality of a 10D 
space to a 2D space 
could be seen as a cut 
of the solid space with a 
2 D  p l a n e t h a t 
intersecates the solid by 
pass ing t rough the 
o r i g i n o f  a x e s 
(geometrical centre of 
solid).  



How PCA operates to reduce dimensionality? 

Infinite planes could pass 
through the central point 
(geometrical centre of the 
solid). 
 
How does PCA choose the 
inclination (slope) of the 
cutting plane? 
 
PCA choose the slope that 
permits to maximize the 
variance explained from the 
new bidimensional space. 



Maximization of explained variance (2) 

l  The reduction of dimensionality determines unavoidably 
a loss of information.   

Example: the reduction of a 3D system to a 2D one (with no 
width) implies a loss of information. 
 
l  If a 3D system is reduced to 2D by eliminating one 

dimension (by observing it orthogonally to width) the third 
dimension will be completely lost. The information that 
the third dimension brings along with it will be lost too. 

l  However, if a 3D system is reduced to 2D by observing it 
axonometrically, less information is lost since the 
perception of width will remain in the brain. 



Loss of explained variance (4) 

orthogonal vision 
2 faces and 3 vectors are visible                
(yellow vector masks fucsia one) 

axonometric vision 

 4 faces and 4 vectors are visible 

low information high information 



PCA for data description 

l Orthogonal projection of original variables 
and scores on the plane described by the 
first two PCs (or on the space described 
by the first three PCs) has been 
extensively used for big data set 
description. 

l This approach permits to visualize 
samples scores along the directions 
depicted by PCs, which explain the 
maximum variance. 



Graphical representation of PCA (1) 
l  From the orthogonal projection of original vectors on 

cutting plane, a 2D graph called loading plot is obtained 
l  Each of the two dimensions is called principal 

component or PC (x = 1; y = 2) 
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vectors or autovectors 
represent the original 
variables 

Principal component 1 
brings along with it the 
greatest part of information 
(variance). 



Graphical representation of PCA (1) 
l  In the PCA graph, the origin represent the geometrical 

centre of the nD space which has been cut by a plane to 
reduce the dimensionality. 

PC 1 
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Origin represent the 
mean value of each 
original variable 

Each variable passes 
through the origin by 
acquiring positive or 
negative values  
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Graphical representation of PCA (2) 
Also the scores of samples could be be identified 
on the plane of the first two principal components: 

B
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PC 1 

PC 1  
This graph is called scores plot 
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Graphical representation of PCA (3) 

Loading and scores biplot 
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Graphical representation of PCA (3) 

How do the scores of the samples on the original 
variables could be represented on the plane 
described by PCs? 
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Graphical representation of PCA (4) 

    The scores of the samples on each original 
variables could be visualized by the orthogonal 
projection of PCs value on the selected variable 
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For the red 
variable here we 
have: A > B > C 



Graphical representation of PCA (4) 

    The scores of the samples on each original 
variables could be visualized by the orthogonal 
projection of PCs value on the selected variable 
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variable here we 
have: C > B > A 



In statistical terms 
Principal component analysis (PCA) is a statistical 
procedure that uses an orthogonal transformation to 
convert a set of observations of possibly correlated 
variables into a set of values of linearly uncorrelated 
variables called ‘principal components’.  
The number of principal components is less than or equal 
to the number of original variables. This transformation is 
defined in such a way that the first principal component has 
the largest possible variance (that is, accounts for as much 
of the variability in the data set as possible), and each 
succeeding component, in turn, has the highest possible 
variance under the constraint that it is orthogonal to the 
preceding components. The resulting vectors are an 
uncorrelated orthogonal basis set.  



In statistical terms 

If a multivariate dataset is visualised as a set of coordinates 
in a high-dimensional data space (1 axis per variable), it is 
difficult to interpret. 
PCA can supply the user with a lower-dimensional picture, 
a projection or "shadow" of this object when viewed from its 
most informative (higher variance) viewpoint.  
This is done by using only the first few principal 
components so that the dimensionality of the transformed 
data is reduced. 
If we consider only two or three principal components to 
describe a big multivariate data set, we could use PCA as a 
dimension reducing tool for explorative statistical analysis.  



Exercize 1 
A data set consisting of a set volatiles compounds from 
cheese samples samples obtained by using three different 
rennets (CR, KR, PR) and aged for different times (2 to 180 
days) has been provided as EDCF01DEC2016.xlsx file. 
 
Define the variables and the samples. 
Carry out PCA analysis; 
Calculate the variance explained up to the second PC; 
Create the loadings plot and the scores plot using 2 PCs; 
Carry out PCA analysis by using only the variables with a 
loading higher than 0.7 on the first two PCs; 
Calculate the variance explained up to the third PC; 
Create the loadings plot and the scores plot. 
 
 
 



Data set 

18 samples 
3 rennet type 
x 
6 aging times 
 
53 variables (volatile compounds) 
 
18 x 53 data matrix 
 



Results 

PCA extraction using all variables (53 volatiles) 
 
 
 
 
The percentage of variance explained by the first 
two principal components is slightly above 50%. 



Loadings plot (all variables) 



Scores plot (all variables) 



Considerations on Exercise 1 (all variables) 

PCA permitted to reduce the data dimensionality and to 
separate samples along PC1 on the basis of ripening time. 
 

PC2 seems to separate the samples on the basis of the 
rennet used in the cheese-making process. 
 

Ripening time determines the highest variance in data 
structure and its effect could be observed along PC1. 
 
Ripening time effect overwhelms that of the cheese making 
technology which could be observed along PC2. 
 

The overall explained variance is low (51%). 
 



How to increase explained variance? 

l  We could remove variables that gives little 
contribution to the overall data variance. 

l  The variance induced by these variables 
could be intended as a result of intrinsic 
variability of data. 

l   This is an assumption and should be 
taken with care. 



Variables selection 
- Criterion for selecting variables 
l Loading on PCs (generally > 0.70) 
- Modality of selection 
l Stepwise analysis 
-  Forward stepwise (insert the first most important variable 

and carry out PCA, then insert the second most 
important and so on, until the first non important appears 
in the model) 

-  Backward stepwise (remove the less important variable 
and carry out PCA, then remove the second less 
important and so on, until only important remain in the 
model) 



Data set 2 (variables selection) 

18 samples 
3 rennet type 
x 
6 aging times 
 
25 variables (volatile compounds with 
loading > 0.70 on the first two PCs) 
 
18 x 25 data matrix 
 



Results 
PCA extraction using only variables with a loading 
> 0.7 on the first two PCs (25 volatiles) 
Variables selection was peformed by backward 
stepwise analysis 
 
 
 
 
 

The percentage of variance explained by the first 
two principal components is above 74%. 

Extraction:	Principal	components
Eigenvalue %	Total Cumulative Cumulative

variance Eigenvalue %
1 12.55856 50.23426 12.55856 50.23426
2 6.03499 24.13995 18.59355 74.37421



Loadings 

Va r i a b l e s ( v o l a t i l e 
c o m p o u n d s ) w i t h a 
loading higher than 0.7 
on the first two PCs. 
 
Variables were selected 
by backward stewise 
analysis. 



Loadings plot 



Scores plot 



Considerations on Exercise 1 (selected variables) 

PCA permitted to reduce the data dimensionality 
and to separate samples along PC1 on the basis 
of ripening time. 
 

The overall explained variance is high (74%). 
 

PC2, and PCA in generis, did not pemit to 
separate the samples on the basis of the rennet 
used in the cheese-making process. 
 

Ripening time determines the highest variance in 
data structure and its effect overwhelms that of the 
cheese making technology. 



Final consideration 
The selection of variables to contruct the 
final PCA has its pros and cons. 
 

PCA could be used to describe the data set 
but could not always permit to discriminate 
sample among them because it is not a 
classification technique.  
 

This because samples are distributed in 
space on the basis of the maximum 
explained variance criterion. 



Homeworks 

PCA is retained to be sensitive to the 
relative scaling of the original variables (this 
is very important when variables coming 
from different analysis are considered). 
 
Let’s repeat PCA using variables normalized 
on variance at home and discuss the results 
in class. 
 
 


