Multivariate data description: PCA
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One dimensional data

Three samples, A, B, and C, could differ just for the extent of one
variable (C>B >A)

Example:

A B C

N
Sugar content

One dimension (x) and three values are sufficient for
data description



One dimensional data matrix

A one per three matrix is required to describe the data set:

each sample is identified by one values (x) or score

the variable (x) has three cases (A, B, C) corresponding to
samples

Sugar content

o
X
w



Three samples, A, B, and C, could differ for two variables

Example:

o>

Acidity <
O @

e

Sugar content X

Two dimensions (X, y) are required for data description;

Each sample is identified by two values (x and y)



Two dimensional data matrix

A two per three matrix is required to describe the data set:

each sample is identified by two values (X, y) or scores

each variable has three cases (A, B, C) corresponding to
samples

Sugar content Acidity
A XA Ys

Ys
C Xc Yc

o
X
w



Three samples, A, B, and C, could differ for three variables

Example:

N

Salt content

Sugar content X

Three dimensions (X, y, z) are required for data description;
each sample is identified by three values (X, v, z)



Three dimensional data matrix

A three per three matrix is required to describe the data
set:

each sample is identified by three values (X, y, z) or scores

each variable has three cases (A, B, C) corresponding to
samples

Sugar content (x) Acidity (y) Salt content (z)
A XA Ya Z
YB Zp

C Xc Yc Zc

V9
X
w



N

Salt content

N

Salt content

Sugar content

In a tridimensional
cartesian space each
sample is identified by
three points with x, y, z
coordinates (scores).

Each coordinate
represent the intensity
or extent of a variable
and is perpendicular to
the plane defined by the
other two variables



Salt content

N >

Sugar content

X=

The variables are
described by vectors,
orthogonals among
them, that intersecates

in one point defined as
0,0,0.

The vectors correspond
to the original variables
and are described by a
module (vector length)
which describes their
intensity (extent) and an
angle which is of 90°.



Salt content

N >

Sugar content

X=

A tridimensional (3D)
space Is described by a
polygonal solid with
three opposite

‘faces’ (six faces in a
whole) called
exahedron. In this solid
the opposite faces are
orthogonal among them.



Description of multidimensional data (1)

What if we have a lot of variables that
describes our samples?

In such a case a multidimensional (n
dimensional) space occurs to describe
data distribution.

In such a case a n dimensional matrix
occurs to describe the data set.



How to describe a n-dimensional space?




Let’s ask help to geometry ....

If an hexaedron could enable us
to figure out a 3D space,
then another orthogonal solid
could help us anyway?




Depiction of vectorial spaces D > 3

octahedron dodecahedron

icosahedron

D=0




Description of multidimensional data (2)

It iIs not easy to depict a vectorial space with 7,
8, 9 or n dimensions (since orthogonal polygonal
solids are limited).

The visual representation of vectors (identifying
variables) and coordinates (identifying scores) in
a nD space is not easy.

nD spaces could still be easily mathematically
described with data matrices.



Principal component analysis (PCA)

PCA is a statistical descriptive analysis that
enable the analyst to describe a system by using
new variables (latent variables) which are a
linear transformation of the original variables and
are not correlated among them.

PCA could be used to reduce the dimensionality
of a system at n (n > 3) dimensions by operating
the othogonal projection of vectors and scores
on a 2D plane or in a 3D space.



Latent variables in data structure

Let’s return to our original A, B and C samples and
imagine them as a part of a big data set.

N

Salt content

Sugar content X

The maximum variance of the data set represented in the
3D graph is along the direction indicated by the yellow line.



Explained variance maximization (1)

Each parameter (variable) of a data set could be
described by a media and a variance value, which
synthesize the information on the distribution of
data values.

Three variables representing three parameters
could be described by three media and three
variance value, which synthesize the information
on the distribution of the data values.

The maximum variance of multidimensional data
could not be along the original variables.



PCA representation

The vector that describes the yellow line is a new
variable (factorial variable) that is called PC1 or
first principal component.

SO
W/

Sugar content X
The PC1 brings always along with it the maximum
explained variance.

Z

Salt content




Explained variance maximization

The vector perpendicular to PC1 is a new variable
(factorial variable) that is called PC2 or second
principal component.

N

Salt content

Sugar content X

The PC2 (orange line) brings along with it the
maximum variance not explained by PC1.



Principal components

PC1 and PC2 could not explain the
same part of variance since they
are orthogonal among them by
definition, thus they are not

PC2

correlated among them.
PC1 and PC2 form a 2D plane.

PC1

PC1 and PC2 could preceed a PC3
(pink line) orthogonal to both of
them.

PC1, PC2 and PC3 form a 3D

C3
Q,

space. PC1



Big data set

Starting from 3 variables 3PCs, which describes
the 100% of the variance, could be calculated.

Starting from n variables nPCs, which describes
the 100% of the variance, could be calulated.

In this case, PCA does not help to manage the
complexity of the system.



Description of multidimensional data

Multidimensional data could bring along with
them a lot of information

Final paradigm:
Too much information = no information

We could not get use of all this information!



Large data set in our mind

How could we manage large data set in
our mind?

We ‘summarize’ the information

We keep the most pertinent information



Most pertinent information?

If there is no variance along a variable, it
means that our data could not differ
among them for that variable.

If there is a lot of variance along a
variable there is more probability that our
data could differ among them for that
variable.

In this case variance could be used as a
criterion for ‘pertinence’.



Dimensionality reduction (PCA)

PCA could be also used to reduce the
dimensionality of a system at n (n > 3)
dimensions by operating the othogonal
projection of vectors and scores on a 2D plane
or in a 3D space.

The first 2 or 3 PCs will bring along with them
the maximum explained variance for definition.

In this case PCA is useful to describe a data set
since it ‘summarizes’ the information.



Figurative exemplification

4

The reduction of
dimensionality of a 10D
space to a 2D space
could be seen as a cut
of the solid space with a
2D plane that
intersecates the solid by
passing trough the
origin of axes

(geometrical centre of
solid).




How PCA operates to reduce dimensionality?

Infinite planes could pass
through the central point
(geometrical centre of the
solid).

How does PCA choose the
inclination (slope) of the
cutting plane? ’

PCA choose the slope that
permits to maximize the
variance explained from the
new bidimensional space.




Maximization of explained variance (2)

The reduction of dimensionality determines unavoidably
a loss of information.

Example: the reduction of a 3D system to a 2D one (with no
width) implies a loss of information.

If a 3D system is reduced to 2D by eliminating one
dimension (by observing it orthogonally to width) the third
dimension will be completely lost. The information that
the third dimension brings along with it will be lost too.

However, if a 3D system is reduced to 2D by observing it
axonometrically, less information is lost since the
perception of width will remain in the brain.



Loss of explained variance (4)

low information high information

orthogonal vision axonometric vision

2 faces and 3 vectors are visible 4 faces and 4 vectors are visible
(yellow vector masks fucsia one)



PCA for data description

Orthogonal projection of original variables
and scores on the plane described by the
first two PCs (or on the space described
by the first three PCs) has been
extensively used for big data set
description.

This approach permits to visualize
samples scores along the directions
depicted by PCs, which explain the
maximum variance.



Graphical representation of PCA (1)

From the orthogonal projection of original vectors on
cutting plane, a 2D graph called loading plot is obtained

Each of the two dimensions is called principal
component or PC (x=1;y = 2)

vectors or autovectors
represent the original
variables

PC 2
[

Principal component 1
brings along with it the
greatest part of information
(variance).

PC 1



Graphical representation of PCA (1)

In the PCA graph, the origin represent the geometrical
centre of the nD space which has been cut by a plane to

reduce the dimensionality.

Origin represent the
mean value of each
original variable

B
v

PC 2

Each variable passes
through the origin by
acquiring positive or
negative values

PC 1



Graphical representation of PCA (2)

Also the scores of samples could be be identified
on the plane of the first two principal components:

PC 2

PC 1

This graph is called scores plot



Graphical representation of PCA (3)

Loading and scores biplot

Ao

PC 2
[

o

PC 1



Graphical representation of PCA (3)

How do the scores of the samples on the original
variables could be represented on the plane
described by PCs?

PC 2
[
L

o

PC 1



Graphical representation of PCA (4)

The scores of the samples on each original
variables could be visualized by the orthogonal
projection of PCs value on the selected variable

—
———
-

PC 2
[

For the red
variable here we
have: A>B >C




Graphical representation of PCA (4)

The scores of the samples on each original
variables could be visualized by the orthogonal
projection of PCs value on the selected variable

PC 2

For the red
variable here we

have: C>B > A

s T

PC1



In statistical terms

Principal component analysis (PCA) is a statistical
procedure that uses an orthogonal transformation to
convert a set of observations of possibly correlated
variables into a set of values of linearly uncorrelated
variables called ‘principal components’.

The number of principal components is less than or equal
to the number of original variables. This transformation is
defined in such a way that the first principal component has
the largest possible variance (that is, accounts for as much
of the variability in the data set as possible), and each
succeeding component, in turn, has the highest possible
variance under the constraint that it is orthogonal to the
preceding components. The resulting vectors are an
uncorrelated orthogonal basis set.



In statistical terms

If a multivariate dataset is visualised as a set of coordinates
in a high-dimensional data space (1 axis per variable), it is
difficult to interpret.

PCA can supply the user with a lower-dimensional picture,
a projection or "shadow" of this object when viewed from its
most informative (higher variance) viewpoint.

This is done by using only the first few principal
components so that the dimensionality of the transformed
data is reduced.

If we consider only two or three principal components to
describe a big multivariate data set, we could use PCA as a
dimension reducing tool for explorative statistical analysis.



Exercize 1

A data set consisting of a set volatiles compounds from
cheese samples samples obtained by using three different
rennets (CR, KR, PR) and aged for different times (2 to 180
days) has been provided as EDCFO1DEC2016.xIsx file.

Define the variables and the samples.

Carry out PCA analysis;

Calculate the variance explained up to the second PC;
Create the loadings plot and the scores plot using 2 PCs;

Carry out PCA analysis by using only the variables with a
loading higher than 0.7 on the first two PCs;

Calculate the variance explained up to the third PC;
Create the loadings plot and the scores plot.



Data set

18 samples

3 rennet type
X

6 aging times

53 variables (volatile compounds)

18 x 53 data matrix



Results

PCA extraction using all variables (53 volatiles)

Extraction: Principal components
Eigenvalue % Total Cumulative Cumulative
variance Eigenvalue %
1  18.55662  35.01248  18.55662  35.01248
2 8.67039 16.35923  27.22701  51.37172

The percentage of variance explained by the first
two principal components is slightly above 50%.



Loadings plot (all variables)
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Scores plot (all variables)
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Considerations on Exercise 1 (all variables)

PCA permitted to reduce the data dimensionality and to
separate samples along PC1 on the basis of ripening time.

PC2 seems to separate the samples on the basis of the
rennet used in the cheese-making process.

Ripening time determines the highest variance in data
structure and its effect could be observed along PC1.

Ripening time effect overwhelms that of the cheese making
technology which could be observed along PC2.

The overall explained variance is low (51%).



How to increase explained variance?

We could remove variables that gives little
contribution to the overall data variance.

The variance induced by these variables
could be intended as a result of intrinsic
variability of data.

This i1s an assumption and should be
taken with care.



Variables selection

- Criterion for selecting variables
Loading on PCs (generally > 0.70)
- Modality of selection

Stepwise analysis

Forward stepwise (insert the first most important variable
and carry out PCA, then insert the second most
important and so on, until the first non important appears
in the model)

Backward stepwise (remove the less important variable
and carry out PCA, then remove the second less
Important and so on, until only important remain in the
model)



Data set 2 (variables selection)

18 samples

3 rennet type
X

6 aging times

25 variables (volatile compounds with
loading > 0.70 on the first two PCs)

18 x 25 data matrix



Results

PCA extraction using only variables with a loading
> 0.7 on the first two PCs (25 volatiles)

Variables selection was peformed by backward
stepwise analysis

Extraction: Principal components
Eigenvalue % Total Cumulative Cumulative
variance Eigenvalue %
1 1255856 50.23426  12.55856  50.23426
2 6.03499  24.13995 18.59355  74.37421

The percentage of variance explained by the first
two principal components is above 74%.



Loadings

Variables

(volatile

compounds) with a
loading higher than 0.7
on the first two PCs.

Variables were selected
by backward stewise

analysis.

Compound IUPAC name ID PC1 loading PC2 loading
acetone propan-2-one 1 - -
ethyl acetate ethyl acetate 2 - -
2-butanone butan-2-one 3 -0.82 0.42
ethyl alcohol ethanol 4 0.88 0.13
diacetyl butane-2,3-dione 5 0.83 -0.23
2-pentanone pentan-2-one 6 0.11 -0.75
1-ethanone ethan-1-one 7 0.71 0.59
2-butanol butan-2-ol 8 -0.87 0.30
3-methyl-(2 o 3)-heptanol 3-methylheptan-(2 o 3)-ol 9 - -
thiophene thiophene 10 0.80 0.15
1-propyl alcohol propan-1-ol 11 - -
ethyl butyrate ethyl butanoate 12 - -
methyl butyrate methyl butanoate 13 - -
2-hexanone hexan-2-one 14 - -
5-methyl-2-hexanone 5-methylhexan-2-one 15 - -
hexanal hexanal 16 0.73 -0.05
isobutyl alcohol 2-methylpropan-1-ol 17 - -
3-methyl-2-butanol 3-methylbutan-2-ol 18 - -
2-pentanol pentan-2-ol 19 - -
butyl alcohol butan-1-ol 20 - -
2-heptanone heptan-2-one 21 0.03 -0.92
heptanal heptanal 22 0.92 0.28
isoamyl alcohol 3-methylbutan-1-ol 23 - -
ethyl hexanoate ethyl hexanoate 24 - -
2-methyl hexanoate 2-methyl hexanoate 25 - -
1-pentanol pentan-1-ol 26 0.93 0.21
2-octanone octan-2-one 27 -0.16 -0.94
acetoin 3-hydroxybutan-2-one 28 0.87 0.08
octanal octanal 29 - -
1-heptanol heptan-1-ol 30 -0.75 -0.03
isobutyl hexanoate 2-methylpropyl hexanoate 31 -0.70 0.42
hexanol hexan-1-ol 32 0.76 0.53
2-methyl-3-pentanol 2-methylpentan-3-ol 33 - -
2-nonanone nonan-2-one 34 -0.26 -0.88
nonanal nonanal 35 - -
ethyl heptanoate ethyl heptanoate 36 - -
ethyl octanoate ethyl octanoate 37 - -
acetic acid acetic acid 38 -0.87 0.09
8-nonen-2-one non-8-en-2-one 39 -0.11 -0.82
propionic acid propanoic acid 40 -0.84 0.27
2-nonenale non-2-enal 41 - -
benzaldehyde benzaldehyde 42 - -
2-undecanone undecan-2-one 43 - -
butyric acid butanoic acid 44 -0.92 0.26
isovaleric acid 3-methylbutanoic acid 45 -0.79 0.22
2-thiopheneethanol 2-thiophen-2-yl ethanol 46 - -
phenylacetaldehyde 2-phenylacetaldehyde 47 - -
2-thiopheneacetic acid 2-thiophen-2-yl acetic acid 48 - -
hexanoic acid hexanoic acid 49 -0.86 0.28
phenethyl alcohol 2-phenylethanol 50 0.78 0.20
octanoic acid octanoic acid 51 - -
nonanoic acid nonanoic acid 52 - -
decanoic acid decanoic acid 53 -0.06 0.75




Loadings plot
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Scores plot
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Considerations on Exercise 1 (selected variables)

PCA permitted to reduce the data dimensionality
and to separate samples along PC1 on the basis
of ripening time.

The overall explained variance is high (74%).

PC2, and PCA in generis, did not pemit to
separate the samples on the basis of the rennet
used in the cheese-making process.

Ripening time determines the highest variance in
data structure and its effect overwhelms that of the
cheese making technology.



Final consideration

The selection of variables to contruct the
final PCA has its pros and cons.

PCA could be used to describe the data set
but could not always permit to discriminate
sample among them because it is not a
classification technique.

This because samples are distributed In
space on the basis of the maximum
explained variance criterion.



Homeworks

PCA is retained to be sensitive to the
relative scaling of the original variables (this
IS very important when variables coming
from different analysis are considered).

Let's repeat PCA using variables normalized
on variance at home and discuss the results
In class.



