
Multivariate data discrimination: LDA 

 TQ
 Americano
 Francese-20 -15 -10 -5 0 5 10

Variabile canonica 1

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

V
ar

ia
bi

le
 c

an
on

ic
a 

2



Let’s start from practical PCA results … 

l PCA was applied to the data set provided in 
the EDCF01DEC2016.xlsx file 

l 18 samples of cheeses produced with three 
different rennets (CR, KR and PR) were aged 
for 180 days and analysed for their volatiles 
profile. 

l A matrix of 18 x 53 was obtained 
l PCA was carried out on the data matrix 
l The matrix was reduced to a 18 x 25 one by 

stepwise selection of variables 
 



Results: Loadings plot 



Results: Scores plot 



Let’s analyze PCA results … 

l PCA permitted to visualize sample distribution 
along PC1 on the basis of explained variance 
maximization. 

l Samples appears as if they were ordered along 
PC1 on the basis of their aging (from 2 to 180 
days). 

l PCA did not permit to differentiate samples on 
the basis of the rennet type used for 
cheesemaking eventhough some variability due 
to rennet effect could be seen along PC2. 



Meaning of results 

l   Ripening time is the major source of 
variability (variance) in data structure. 

l   Rennet type is a secondary source of 
variability and the type of analysis that was 
carried out is focused on maximizing 
explained variance. 

l   PCA is aimed to highlight data structure 
as determined by internal data variance.   

l  PCA is not aimed to discriminate among 
different group of samples! 



Further questions … 

l  Is it possible to discriminate samples on 
the basis of rennet type? 

l  Is it possible to find a latent variable that 
could serve to this need? 



Linear Discriminant Analysis 

l LDA is closely related to principal component 
analysis (PCA) in that they both look for linear 
combinations of variables (latent variables) 
which best explain the data. 

l LDA explicitly attempts to model the difference 
and similarities between the classes of data.  

l PCA on the other hand does not take into 
account any difference in class, and builds the 
feature combinations based on difference 
(variance) rather than similarities.  



Discriminant Analysis 

l Discriminant analysis implies a distinction 
between categorical independent variables  
(measured variables) and dependent 
variables (also called criterion variables). 

l In the case of our study the criterion 
var iable is a categor ical var iable 
consisiting in three categories (CR, KR 
and PG). 



l Classificatory discriminant analysis is used to 
test the possibility of attributing a sample to a 
class (CR, KR or CR) by knowing a priori it’s 
classification.  

l This attribution/classification is performed 
starting from the independent variables. 

l The success of attribution is measured in terms 
of probability (%).  

l If the 100% of PR sample are attributed to (or 
classified in) the PR group, the result is 
optimum. 

Discriminant Analysis 



l  Disc r im inan t ana lys i s deve lop func t ions 
(discriminant functions), based on the combination 
of independent variables, which permits to attribute 
a sample to a class with the minum possibility of 
error.  

l The discriminant function is a latent structure since it 
is a combination of original variables. The number of 
discriminant functions is equal to the number of 
classes. 

l  Just in the case that discriminant functions are 
linear, the analysis tooks the name of Linear 
Discriminant Analysis (LDA). 

Linear Discriminant Analysis 



Example using two variables and two groups 

Two groups of samples, A, and B could differ for two variables 

Two dimensions (x, y) are required for data description; 

Each sample is identified by two values (x and y) 
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Example using two variables and two groups 

LDA permit to calculate two functions, F1 and F2, which are 
linear combinations of x and y since y = f(x) in both cases. 

F1 permits to better discriminate samples of A group from 
sample of B group, and F2 permits to better discriminate 
samples of B group from samples of A group.  
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Another example using two variables and 
two groups 

LDA permit to calculate two functions, F1 and F2, which 
are linear combinations of x and y (y = f(x)). 

F1 permits to better discriminate samples of A group from 
sample of B group, and F2 permits to better discriminate 
samples of B group from samples of A group.  
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Quadratic Discriminant Analysis 



Canonical discriminant analysis 

l This technique permits to extrapolate new variables 
(Roots or Canonical variables) which synthesise the 
variability among classes (between-class variation) 
in much the same way that principal components 
summarize total variation. 

l Root 1 is a linear combination of variables that 
maximizes the distance among the different classes, 
Root 2 is the second linear combination that 
maximizes the distance between different classes 
and so on, until all the combinations are considered. 



Canonical discriminant analysis 

l The numbers of roots is equal to that of the 
original variables similarly to PCA. 

l Similarly to PCs, Roots are uncorrelated 
(orthogonal) among them, but differently from 
PCs they define a ‘System of Reference’ that 
maximizes the mean separation among classes 
and not among single observations, such as 
PCA. 

 



Canonical discriminant analysis 

l Similarly to PCA, Root 1 and 2 could constitute a 
limited number of variables that could substitute 
the original variables in order to have a good 
discrimination among samples. 

l The Root 1 versus Root 2 plot is used to 
adequately visualize the results of CDA by 
performing a reduction of dimensionality in a way 
which is similar to that previously studied in 
PCA.  



Dimensionality reduction (CDA) 
l CDA could be thus used to reduce the 

dimensionality of a system at n (n > 3) 
dimensions by operating the othogonal 
projection of vectors and scores on a 2D plane 
or in a 3D space. 

l The first 2 or 3 Roots will bring along with them 
the maximum distance among classes for 
definition. 

l In this case PCA is useful to describe a data set 
since it ‘summarizes’ the information. 



Figurative exemplification  

T h e r e d u c t i o n o f 
dimensionality of a 10D 
space to a 2D space 
could be seen as a cut 
of the solid space with a 
2 D  p l a n e t h a t 
intersecates the solid by 
pass ing t rough the 
o r i g i n o f  a x e s 
(geometrical centre of 
solid).  



How CDA operates to reduce dimensionality? 

Infinite planes could pass 
through the central point 
(geometrical centre of the 
solid). 
 
How does CDA choose the 
inclination (slope) of the 
cutting plane? 
 
CDA choose the slope that 
p e r m i t s t o m a x i m i z e 
distance among classes in 
the new bidimensional space. 



Maximization distance among classes  

l Restart from our data inset provided in the 
EDCF01DEC2016.xlsx file 

l 18 samples of cheeses produced with three 
different rennets (CR, KR and PR) were aged for 
180 days and analysed for their volatiles profile. 

l A matrix of 18 x 53 was obtained 
l CDA was carried out on the experimental data 
l In order to carry out CDA we need two matrices 
l The variable matrix (18 x 53) 
l The groups matrix  



Exercise 

-  Carry out linear discriminant analysis on 
the data set 

-  Individuate the variables that could be 
used for classes discrimination 

-  Verify the correct attribution to classes 
-  Visualize data using CDA 



Original table 
Group Age V1 V2 V3 V4 V5 V6 … Vn 

CR 2 1.05 26.65 3.90 27.19 2.37 1.48 … 1.01 

CR 15 0.64 7.23 4.76 35.98 3.01 1.29 … 1.51 

CR 30 1.10 6.26 4.90 24.39 4.03 1.53 … 1.34 

CR 60 0.89 2.80 1.87 18.21 3.85 6.98 … 1.05 

CR 90 0.73 3.99 0.00 20.28 2.07 7.01 … 0.57 

CR 180 1.18 1.93 2.03 13.66 4.56 6.55 … 1.15 

KR 2 0.18 1.95 3.73 21.31 3.69 4.02 … 0.52 

KR 15 0.54 0.04 5.05 16.89 2.29 2.95 … 1.28 

KR 30 0.33 2.31 5.39 29.44 3.72 4.23 … 0.81 

KR 60 0.43 1.40 9.49 10.38 1.35 2.92 … 0.64 

KR 90 0.57 1.18 9.53 9.30 0.84 5.42 … 0.9 

KR 180 0.43 1.88 6.65 14.61 2.03 2.75 … 1.03 

PR 2 0.35 2.69 11.07 10.21 0.46 2.84 … 0.77 

PR 15 0.45 4.65 8.77 11.77 0.33 4.03 … 0.82 

PR 30 2.74 0.86 11.35 7.47 0.93 1.27 … 1.18 

PR 60 0.87 0.60 16.12 5.22 0.28 3.95 … 1.05 

PR 90 0.43 0.68 13.66 6.72 0.35 2.11 … 1.3 

PR 180 0.31 1.68 11.77 8.17 0.43 1.47 … 1.76 



Data matrix 
V1 V2 V3 V4 V5 V6 … Vn 

1.05 26.65 3.90 27.19 2.37 1.48 … 1.01 

0.64 7.23 4.76 35.98 3.01 1.29 … 1.51 

1.10 6.26 4.90 24.39 4.03 1.53 … 1.34 

0.89 2.80 1.87 18.21 3.85 6.98 … 1.05 

0.73 3.99 0.00 20.28 2.07 7.01 … 0.57 

1.18 1.93 2.03 13.66 4.56 6.55 … 1.15 

0.18 1.95 3.73 21.31 3.69 4.02 … 0.52 

0.54 0.04 5.05 16.89 2.29 2.95 … 1.28 

0.33 2.31 5.39 29.44 3.72 4.23 … 0.81 

0.43 1.40 9.49 10.38 1.35 2.92 … 0.64 

0.57 1.18 9.53 9.30 0.84 5.42 … 0.9 

0.43 1.88 6.65 14.61 2.03 2.75 … 1.03 

0.35 2.69 11.07 10.21 0.46 2.84 … 0.77 

0.45 4.65 8.77 11.77 0.33 4.03 … 0.82 

2.74 0.86 11.35 7.47 0.93 1.27 … 1.18 

0.87 0.60 16.12 5.22 0.28 3.95 … 1.05 

0.43 0.68 13.66 6.72 0.35 2.11 … 1.3 

0.31 1.68 11.77 8.17 0.43 1.47 … 1.76 
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Results 

LDA extraction using all variables (53 volatiles) 
 
The analysis was not feasible because there were 
a lot of variables and most of them have less than 
three valid cases (this fact is very important for 
discriminant analysis). 
 
A stepwise analysis was carried out to select a 
limited number of variables that permit to carry out 
the analysis. 



Stepwise analysis 
l  Forward stepwise analysis: variables are inserted one by 

one in the model starting from the x variable that most 
contributed to maximize distance among classes, then 
another variable is inserted. When the first x variable that 
does not affect distance among classes is identified by 
the analysis, it is removed from the model. This is 
removal process was repeated for all the other variables. 

l  Backward stepwise analysis: all variables are inserted in 
the model, then the x variables that does not affect 
distance among classes are removed from the system 
one by one and the LDA is repeated each time. When 
the first variable that affects the distance among classes 
is identified by the analysis, the procedure of removal is 
stopped. 



Results 

A forward stepwise analysis was carried out to 
select a limited number of variables which were 
used to carry out the analysis. 
 
12 variables were selected 
13 / 30 / 34 / 37 / 38 / 42 / 43 / 45 / 47 / 49 / 52 / 53 
that permitted a 100% attribution of samples to 
each class. 
 
The results were visualized using CDA. 



Variables 

Va r i a b l e s ( v o l a t i l e 
compounds) 
se lected by forward 
stepwise analysis. 



CDA results 



Considerations on Exercise  (all variables) 

LDA permitted to attribute all samples to their classes in the 
100% of cases. 
 

12 variables (volatile compounds) permitted the sample 
attribution to classes. 
 
The results were well represented on the plane defined by 
the first two canonical variables (roots). 
 

 

 


