Multivariate data discrimination: LDA
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Variabile canonica 1



Let's start from practical PCA results ...

PCA was applied to the data set provided in
the EDCFO1DEC2016.xlIsx file

18 samples of cheeses produced with three
different rennets (CR, KR and PR) were aged
for 180 days and analysed for their volatiles
profile.

A matrix of 18 x 53 was obtained
PCA was carried out on the data matrix

The matrix was reduced to a 18 x 25 one by
stepwise selection of variables



Results: Loadings plot
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Results: Scores plot
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Let’'s analyze PCA results ...

PCA permitted to visualize sample distribution
along PC1 on the basis of explained variance
maximization.

Samples appears as if they were ordered along
PC1 on the basis of their aging (from 2 to 180
days).

PCA did not permit to differentiate samples on
the basis of the rennet type used for
cheesemaking eventhough some variability due
to rennet effect could be seen along PC2.



Meaning of results

Ripening time is the major source of
variability (variance) in data structure.

Rennet type is a secondary source of
variability and the type of analysis that was
carried out Is focused on maximizing
explained variance.

PCA is aimed to highlight data structure
as determined by internal data variance.

PCA is not aimed to discriminate among
different group of samples!



Further questions ...

Is it possible to discriminate samples on
the basis of rennet type?

Is it possible to find a latent variable that
could serve to this need?



Linear Discriminant Analysis

LDA is closely related to principal component
analysis (PCA) in that they both look for linear
combinations of variables (latent variables)
which best explain the data.

LDA explicitly attempts to model the difference
and similarities between the classes of data.

PCA on the other hand does not take into
account any difference in class, and builds the
feature combinations based on difference
(variance) rather than similarities.



Discriminant Analysis

Discriminant analysis implies a distinction
between categorical independent variables
(measured variables) and dependent
variables (also called criterion variables).

In the case of our study the criterion
variable is a categorical variable
consisiting in three categories (CR, KR
and PG).



Discriminant Analysis

Classificatory discriminant analysis is used to
test the possibility of attributing a sample to a
class (CR, KR or CR) by knowing a priori it's
classification.

This attribution/classification is performed
starting from the independent variables.

The success of attribution is measured in terms
of probability (%).

If the 100% of PR sample are attributed to (or
classified in) the PR group, the result is
optimum.



Linear Discriminant Analysis

Discriminant analysis develop functions
(discriminant functions), based on the combination
of independent variables, which permits to attribute
a sample to a class with the minum possibility of
error.

The discriminant function is a latent structure since it
IS a combination of original variables. The number of
discriminant functions is equal to the number of
classes.

Just in the case that discriminant functions are
linear, the analysis tooks the name of Linear
Discriminant Analysis (LDA).



Example using two variables and two groups

Acidity <

Sugar content X
Two groups of samples, A, and B could differ for two variables

Two dimensions (X, y) are required for data description;

Each sample is identified by two values (x and y)



Example using two variables and two groups
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LDA permit to calculate two functions, F1 and F2, which are
linear combinations of x and y since y = f(x) in both cases.

F1 permits to better discriminate samples of A group from
sample of B group, and F2 permits to better discriminate
samples of B group from samples of A group.



Another example using two variables and
two groups
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LDA permit to calculate two functions, F1 and F2, which
are linear combinations of x and y (y = f(x)).

F1 permits to better discriminate samples of A group from
sample of B group, and F2 permits to better discriminate
samples of B group from samples of A group.



Quadratic Discriminant Analyisis

Quadratic Discriminant Analysis
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Canonical discriminant analysis

This technique permits to extrapolate new variables
(Roots or Canonical variables) which synthesise the
variability among classes (between-class variation)
In much the same way that principal components
summarize total variation.

Root 1 is a linear combination of variables that
maximizes the distance among the different classes,
Root 2 is the second linear combination that
maximizes the distance between different classes
and so on, until all the combinations are considered.



Canonical discriminant analysis

The numbers of roots is equal to that of the
original variables similarly to PCA.

Similarly to PCs, Roots are uncorrelated
(orthogonal) among them, but differently from
PCs they define a 'System of Reference’ that
maximizes the mean separation among classes

and not among single observations, such as
PCA.



Canonical discriminant analysis

Similarly to PCA, Root 1 and 2 could constitute a
limited number of variables that could substitute
the original variables in order to have a good
discrimination among samples.

The Root 1 versus Root 2 plot is used to
adequately visualize the results of CDA by
performing a reduction of dimensionality in a way

which is similar to that previously studied In
PCA.



Dimensionality reduction (CDA)

CDA could be thus used to reduce the
dimensionality of a system at n (n > 3)
dimensions by operating the othogonal
projection of vectors and scores on a 2D plane
or in a 3D space.

The first 2 or 3 Roots will bring along with them
the maximum distance among classes for
definition.

In this case PCA is useful to describe a data set
since it ‘'summarizes’ the information.



Figurative exemplification

4

The reduction of
dimensionality of a 10D
space to a 2D space
could be seen as a cut
of the solid space with a
2D plane that
intersecates the solid by
passing trough the
origin of axes

(geometrical centre of
solid).




How CDA operates to reduce dimensionality?

Infinite planes could pass
through the central point
(geometrical centre of the
solid).

How does CDA choose the
inclination (slope) of the
cutting plane? /

CDA choose the slope that
permits to maximize
distance among classes in
the new bidimensional space.




Maximization distance among classes

Restart from our data inset provided in the
EDCFO1DEC2016.xlIsx file

18 samples of cheeses produced with three
different rennets (CR, KR and PR) were aged for
180 days and analysed for their volatiles profile.

A matrix of 18 x 53 was obtained

CDA was carried out on the experimental data
In order to carry out CDA we need two matrices
The variable matrix (18 x 53)

The groups matrix



Exercise

Carry out linear discriminant analysis on
the data set

Individuate the variables that could be
used for classes discrimination

Verify the correct attribution to classes
Visualize data using CDA



Original table
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Data matrix
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Results

LDA extraction using all variables (53 volatiles)

The analysis was not feasible because there were
a lot of variables and most of them have less than
three valid cases (this fact is very important for

discriminant analysis).

A stepwise analysis was carried out to select a
limited number of variables that permit to carry out

the analysis.



Stepwise analysis

Forward stepwise analysis: variables are inserted one by
one in the model starting from the x variable that most
contributed to maximize distance among classes, then
another variable is inserted. When the first x variable that
does not affect distance among classes is identified by
the analysis, it is removed from the model. This is
removal process was repeated for all the other variables.

Backward stepwise analysis: all variables are inserted in
the model, then the x variables that does not affect
distance among classes are removed from the system
one by one and the LDA is repeated each time. When
the first variable that affects the distance among classes
is identified by the analysis, the procedure of removal is
stopped.



Results

A forward stepwise analysis was carried out to
select a limited number of variables which were
used to carry out the analysis.

12 variables were selected

13/30/34/37/38/42/43/45/47/49/52 /53

that permitted a 100% attribution of samples to
each class.

The results were visualized using CDA.



Variables

Variables
compounds)
selected by
stepwise analy

(volatile

forward
SIS.

Compound IUPAC name ID PC1 loading PC2 loading
acetone propan-2-one 1 - -
ethyl acetate ethyl acetate 2 - -
2-butanone butan-2-one 3 -0.82 0.42
ethyl alcohol ethanol 4 0.88 0.13
diacetyl butane-2,3-dione 5 0.83 -0.23
2-pentanone pentan-2-one 6 0.11 -0.75
1-ethanone ethan-1-one 7 0.71 0.59
2-butanol butan-2-ol 8 -0.87 0.30
3-methyl-(2 o 3)-heptanol 3-methylheptan-(2 o 3)-ol 9 - -
thiophene thiophene 10 0.80 0.15
1-propyl alcohol propan-1-ol 11 - -
ethyl butyrate ethyl butanoate A2 - -
methyl butyrate methyl butanoate (13) - -
2-hexanone hexan-2-one 14 - -
5-methyl-2-hexanone 5-methylhexan-2-one 15 - -
hexanal hexanal 16 0.73 -0.05
isobutyl alcohol 2-methylpropan-1-ol 17 - -
3-methyl-2-butanol 3-methylbutan-2-ol 18 - -
2-pentanol pentan-2-ol 19 - -
butyl alcohol butan-1-ol 20 - -
2-heptanone heptan-2-one 21 0.03 -0.92
heptanal heptanal 22 0.92 0.28
isoamyl alcohol 3-methylbutan-1-ol 23 - -
ethyl hexanoate ethyl hexanoate 24 - -
2-methyl hexanoate 2-methyl hexanoate 25 - -
1-pentanol pentan-1-ol 26 0.93 0.21
2-octanone octan-2-one 27 -0.16 -0.94
acetoin 3-hydroxybutan-2-one 28 0.87 0.08
octanal octanal 29 - -
1-heptanol heptan-1-ol (30) -0.75 -0.03
isobutyl hexanoate 2-methylpropyl hexanoate 31 -0.70 0.42
hexanol hexan-1-ol 32 0.76 0.53
2-methyl-3-pentanol 2-methylpentan-3-ol 33 - -
2-nonanone nonan-2-one (34) -0.26 -0.88
nonanal nonanal 35 - -
ethyl heptanoate ethyl heptanoate 36 - -
ethyl octanoate ethyl octanoate 37\ - -
acetic acid acetic acid 38 } -0.87 0.09
8-nonen-2-one non-8-en-2-one 39 -0.11 -0.82
propionic acid propanoic acid 40 -0.84 0.27
2-nonenale non-2-enal 41 - -
benzaldehyde benzaldehyde 42 - -
2-undecanone undecan-2-one 43 - -
butyric acid butanoic acid A4 -0.92 0.26
isovaleric acid 3-methylbutanoic acid (45) -0.79 0.22
2-thiopheneethanol 2-thiophen-2-yl ethanol A6 - -
phenylacetaldehyde 2-phenylacetaldehyde (47) - -
2-thiopheneacetic acid 2-thiophen-2-yl acetic acid 48 - -
hexanoic acid hexanoic acid (49) -0.86 0.28
phenethyl alcohol 2-phenylethanol 50 0.78 0.20
octanoic acid octanoic acid 51 - -
nonanoic acid nonanoic acid 52 - -
decanoic acid decanoic acid 53 -0.06 0.75




CDA results
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Considerations on Exercise (all variables)

LDA permitted to attribute all samples to their classes in the
100% of cases.

12 variables (volatile compounds) permitted the sample
attribution to classes.

The results were well represented on the plane defined by
the first two canonical variables (roots).



